AU2003205017B2 - Antisense modulation of survivin expression - Google Patents

Antisense modulation of survivin expression Download PDF

Info

Publication number
AU2003205017B2
AU2003205017B2 AU2003205017A AU2003205017A AU2003205017B2 AU 2003205017 B2 AU2003205017 B2 AU 2003205017B2 AU 2003205017 A AU2003205017 A AU 2003205017A AU 2003205017 A AU2003205017 A AU 2003205017A AU 2003205017 B2 AU2003205017 B2 AU 2003205017B2
Authority
AU
Australia
Prior art keywords
dna
artificial sequence
antisense oligonucleotide
antisense
oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2003205017A
Other versions
AU2003205017A1 (en
Inventor
Elizabeth J. Ackermann
C. Frank Bennett
Lex M. Cowsert
Eric E. Swayze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionis Pharmaceuticals Inc
Original Assignee
Isis Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU61598/99A external-priority patent/AU758545B2/en
Application filed by Isis Pharmaceuticals Inc filed Critical Isis Pharmaceuticals Inc
Priority to AU2003205017A priority Critical patent/AU2003205017B2/en
Publication of AU2003205017A1 publication Critical patent/AU2003205017A1/en
Application granted granted Critical
Publication of AU2003205017B2 publication Critical patent/AU2003205017B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

AUSTRALIA
Patents Act 1990 ISIS PHARMACEUTICALS, INC.
COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Antisense modulation of survivin expression The following statement is a full description of this invention including the best method of performing it known to us:- ANTISENSE MODULATION OF SURVIVIN EXPRESSION This is a divisional of AU 758545, the entire contents of which are incorporated herein by reference.
FIELD OF THE INVENTION The present invention provides compositions and methods for modulating the expression of Survivin. In particular, this invention relates to antisense compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding human Survivin. Such oligonucleotides have been shown to modulate the expression of Survivin.
BACKGROUND OF THE INVENTION A hallmark feature of cancerous cells is uncontrolled proliferation. Among the differences that have been discovered between tumor and normal cells is resistance to the process of programmed cell death, also known as apoptosis (Ambrosini et al., Nat.
Med, 1997, 3, 917-921). Apoptosis is a process multicellular organisms have evolved to prevent uncontrolled cell proliferation as well as to eliminate cells that have become sick, deleterious, or are no longer necessary. The process of apoptosis involves a multistep cascade in which cells are degraded from within through the concerted action of proteolytic enzymes and DNA endonucleases, resulting in the formation of apoptotic bodies that are removed by scavenger cells. Research to date has shown that removed by scavenger cells. Research to date has shown that much of the intracellular degradation is carried out through the action of caspases, a family of proteolytic enzymes that cleave adjacent to aspartate residues (Cohen, Biochemistry Journal, 1997, 326, 1-16).
The finding that most tumor cells display resistance to the apoptotic process has led to the view that therapeutic 2 strategies aimed at attenuating the resistance of tumor cells to apoptosis could represent a novel means to halt the spread of neoplastic cells (Ambrosini et al., Nat. Med., 1997, 3, 917-921). One of the mechanisms through which tumor cells are believed to acquire resistance to apoptosis is by overexpression of Survivin, a recently described member of the IAP (inhibitor of apoptosis) caspase inhibitor family. To date, overexpression of Survivin has been detected in tumors of the lung, colon, pancreas, prostate, breast, stomach, non- Hodgkin's lymphoma, and neuroblastoma (Adida et al., Lancet, 1998, 351, 882-883; Ambrosini et al., Nat. Med., 1997, 3, 917- 921; Lu et al., Cancer Res., 1998, 58, 1808-1812). A more detailed analysis has been performed in neuroblastoma where it was found that Survivin overexpression segregated with tumor histologies known to associate with poor prognosis (Adida et al., Lancet, 1998, 351, 882-883). Finally, Ambrosini et al. describe transfection of HeLa cells with an expression vector containing a 708 nt fragment of the human cDNA encoding effector cell protease receptor 1 (EPR-1), the coding sequence of which is extensively complementary to the coding strand of Survivin (Ambrosini et al., J. Bio. Chem., 1998, 273, 11177-11182) and which potentially acts as a Survivin antisense RNA. This construct caused a reduction in ;a cell viability. Methods for modulating apoptosis and for reducing the severity of a pathological state mediated by Survivin using agents that modulate amounts or activity of Survivin are disclosed in WO 98/22589, which also discloses the EPR-1 coding strand/Survivin antisense construct described by Ambrosini et al., supra.
Survivin has recently been found to play a role in cell cycle regulation. It has been found to be expressed in the G2/M phase of the cell cycle in a cycle-regulated manner, and associates with microtubules of the mitotic spindle.
Disruption of this interaction results in loss of Survivin's 3 anti-apoptotic function and increased caspase-3 activity during mitosis. Caspase-3 is associated with apoptotic cell death. It is therefore believed that Survivin may counteract a default induction of apoptosis in G2/M phase. It is believed that the overexpression of Survivin in cancer may overcome this apoptotic checkpoint, allowing undesired survival and division of cancerous cells. The Survivin antisense construct described by Ambrosini above was found to downregulate endogenous Survivin in HeLa cells and to increase caspase-3dependent apoptosis in cells in G2/M phase. Li et al., Nature, 1998, 396, 580-584.
As a result of these advances in the understanding of apoptosis and the role that Survivin expression is believed to play in conferring a growth advantage to a wide variety of tumor cell types, there is a great desire to provide compositions of matter which can modulate the expression of Survivin. It is greatly desired to provide methods of diagnosis and detection of nucleic acids encoding Survivin in animals. It is also desired to provide methods of diagnosis and treatment of conditions arising from Survivin expression.
In addition, improved research kits and reagents for detection and study of nucleic acids encoding Survivin are desired.
Currently, there are no known therapeutic agents which effectively inhibit the synthesis of Survivin. Consequently, there is a long-felt need for agents capable of effectively inhibiting Survivin expression in tumor cells. Antisense oligonucleotides against Survivin may therefore prove to be uniquely useful in a number of therapeutic, diagnostic and research applications.
SUMMARY OF THE INVENTION The present invention is directed to antisense compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding Survivin, and which modulate the expression of Survivin. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the expression of Survivin in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of Survivin by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.
The present invention relates to an antisense oligonucleotide consisting of SEQ ID NO: 38.
The present invention further relates to an antisense oligonucleotide consisting of SEQ ID NO: 38, wherein every internucleoside linkage is a phosphorothioate linkage, nucleobases 1-4 and 15-18 comprise a 2'-O-methoxyethyl modification and the cytidine residues at positions 5 and 10 comprise a 5-methyl modification.
The present invention further relates to a pharmaceutical composition comprising the antisense according to the first and second aspects of the invention in a pharmaceutically acceptable diluent or carrier.
The present invention further relates to a pharmaceutical composition comprising an antisense compound up to 30 nucleobases in length comprising at least an 8 nucleobase portion of SEQ ID NO: 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 27, 28, 31, 32, 34, 38, 39, 40, 41, 42, 43, 44, 45 or 47 in a pharmaceutically acceptable diluent or carrier.
The present invention further relates to a pharmaceutical composition comprising an antisense compound comprising at least an 8 nucleobase portion of SEQ ID NO: 38 in a pharmaceutically acceptable diluent or carrier.
The present invention further relates to a pharmaceutical composition comprising an antisense compound comprising SEQ ID NO: 38 in a pharmaceutically acceptable diluent or carrier.
The present invention further relates to a method of treating a hyperproliferative condition in an individual, comprising administering an effective amount of the antisense oligonucleotide according to the first and second aspects of the invention, or the pharmaceutical composition according to any one of the third to sixth aspects of the invention.
The present invention further relates to a method of treating a hyperproliferative condition in an individual comprising administering to said individual an effective amount of an antisense compound up to 30 nucleobases in length comprising at least an 8 nucleobase portion ofSEQ ID NO: 8, 9, 10, 11, 12, 13,15, 16, 17, 19, 20, 21, 23, 27, 28, 31, 32, 34, 38, 39, 40, 41, 42, 43, 44, 45 or 47 to said individual.
The present invention further relates to a method of treating a hyperproliferative condition in an individual comprising administering to said individual an antisense compound comprising at least an 8 nucleobase portion of SEQ ID NO: 38.
The present invention further relates to a method of treating a hyperproliferative condition in an individual comprising administering to said individual an antisense compound comprising at least an 8 nucleobase portion of SEQ ID NO: 38.
The present invention further relates to a use of an antisense oligonucleotide consisting of SEQ ID NO: 38 in the preparation of a medicament for treating a hyperproliferative condition in an individual.
The present invention further relates to a use of an effective amount of an antisense compound up to 30 nucleobases in length comprising at least an 8 nucleobase portion of SEQ ID NO: 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 31, 32, 34, 38, 39, 40, 41, 42, 43, 44, 45 or 47 in the preparation of a medicament for treating a hyperproliferative condition in an individual.
The present invention further relates to a use of an antisense compound comprising at least an 8 nucleobase portion of SEQ ID NO: 38 in the preparation of a medicament for treating a hyperproliferative condition in an individual.
According to one aspect of the invention there is provided an antisense compound 8 to 30 nucleobases in length targeted to a nucleic acid molecule encoding human Survivin, wherein said antisense compound inhibits the expression of human Survivin.
According to another aspect of the invention there is provided an antisense compound 8 to 30 nucleobases in length targeted to the 5' UTR or 3' UTR of a nucleic acid molecule encoding human Survivin, wherein said antisense compound inhibits the expression of human Survivin.
According to another aspect of the invention there is provided an antisense compound up to 30 nucleobases in length comprising SEQ ID NO: 38, wherein said antisense compound inhibits the expression of human Survivin.
According to another aspect of the invention there is provided an antisense compound consisting of SEQ ID NO: 38.
According to another aspect of the invention there is provided an antisense compound comprising SEQ ID NO: 38, wherein every intemucleoside linkage is a phosphorothioate linkage, four bases at the 5' end comprise a 2'-O-methoxyethyl modification, and four bases at the 3' end comprise a 2'-O-methoxyethyl modification.
According to another aspect of the invention there is provided an antisense compound consisting of SEQ ID NO: 38, wherein every internucleoside linkage is a phosphorothioate linkage, and nucleobases 1 4 and 15 18 comprise a methoxyethyl modification.
According to another aspect of the invention there is provided an antisense compound according to the invention that is a pharmaceutically acceptable salt.
According to another aspect of the invention there is provided a sodium salt of an antisense compound comprising SEQ ID NO: 38, wherein every internucleoside linkage is a phosphorothioate linkage, four bases at the 5' end comprise a methoxyethyl modification, and four bases at the 3' end comprise a 2'-O-methoxyethyl modification.
According to another aspect of the invention there is provided a sodium salt of an antisense compound consisting of SEQ ID NO: 38, wherein every internucleoside linkage is a phosphorothioate linkage, and nucleobases 1-4 and 15-18 comprise a methoxyethyl modification.
According to another aspect of the invention there is provided a composition comprising the antisense compound according to the invention, or a salt according to the invention, in combination with a carrier or diluent.
According to another aspect of the invention there is provided a pharmaceutical composition comprising the antisense compound according to the invention, or a salt according to the invention, in combination with a pharmaceutically acceptable carrier or diluent.
According to another aspect of the invention there is provided a composition comprising an antisense compound 8 to 30 nucleobases in length that specifically hybridizes to at least 8 nucleotides of target sites selected from the group consisting of nucleotides 75-92, 103-120, 128-145, 226-243, 249-266, 306-323, 363-380, 393-410, 417-434, 438-455, 542-559, 650-667, 682-699, 777-794, 808-825, 867-884, 1099- 1116, 1137-1154, 1178-1195, 1216-1233, 1276-1293, 1373-1390, or 1571-1588 of SEQ ID NO: 1, or a pharmaceutically acceptable salt thereof, wherein said composition inhibits the expression of human Survivin.
According to another aspect of the invention there is provided a composition comprising an antisense compound 8 to 30 nucleobases in length that specifically hybridizes to at least 8 nucleotides of nucleotides 1099 1116 of SEQ ID NO: 1, or a pharmaceutically acceptable salt thereof, wherein said composition inhibits the expression of human Survivin.
According to another aspect of the invention there is provided a pharmaceutical composition comprising an antisense compound that specifically hybridizes to at least 8 nucleotides of nucleotides 1099-1116 of SEQ ID NO: 1, or a pharmaceutically acceptable salt thereof, wherein said composition inhibits the expression of human Survivin.
According to another aspect of the invention there is provided a method of inhibiting the expression of Survivin in human cells or tissues comprising contacting human cells or tissues with an effective amount of the antisense compound according to the invention, or a salt according to the invention, so that expression of Survivin is inhibited.
According to another aspect of the invention there is provided a method of inhibiting the expression of Survivin in human cells or tissues comprising contacting human cells or tissues with an effective amount of the composition according to the invention so that expression of Survivin is inhibited.
According to another aspect of the invention there is provided a method of treating an individual having a disease or condition associated with Survivin comprising administering to said individual a therapeutically or prophylactically effective amount of the antisense compound according to the invention, or a salt according to the invention, or a composition according to the invention so that expression of Survivin is inhibited.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or a composition according to the invention in preparation of a medicament for the inhibition of Survivin expression in an individual having a disease or condition associated with Survivin.
According to another aspect of the invention there is provided a method of treating a hyperproliferative condition in an individual, comprising the step of administering to said individual the antisense compound according to the invention, or a salt according to the invention, or a composition according to the invention, in an amount effective to treat the hyperproliferative condition.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention in preparation of a medicament for the treatment of a hyperproliferative condition.
According to another aspect of the invention there is provided a method of treating an individual having a disease or condition characterized by a reduction in apoptosis comprising administering to said individual a prophylactically or therapeutically effective amount of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention.
According to another aspect of the invention there is provided a method of modulating apoptosis in a cell comprising contacting the cell with an effective amount of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention so that apoptosis is modulated.
According to another aspect of the invention there is provided a method of modulating cytokinesis in a cell comprising contacting the cell with an effective amount of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention so that cytokinesis is modulated.
According to another aspect of the invention there is provided a method of inhibiting proliferation of cells comprising contacting the cells with an effective amount of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention, so that proliferation of the cells is inhibited.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention in preparation of a medicament for treating a human having a disease or condition characterized by a reduction in apoptosis.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention in preparation of a medicament for modulating apoptosis.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention in preparation of a medicament for modulating cytokinesis.
According to another aspect of the invention there is provided use of the antisense compound according to the invention, or a salt according to the invention, or the composition according to the invention in preparation of a medicament for inhibiting proliferation of cells.
n 4e
O
O
c According to the invention there is also provided a modified or unmodified 0 antisense compound up to 30 nucleobases in length comprising SEQ ID NO: 38,
O
wherein said antisense compound inhibits the expression of human Survivin; or a Cc pharmaceutically acceptable salt thereof.
According to the invention there is also provided a modified or unmodified antisense compound consisting of SEQ ID NO: 38; or a pharmaceutically acceptable O salt thereof.
O According to the invention there is also provided an antisense compound on comprising SEQ ID NO: 38, wherein every internucleoside linkage is a O 10 phosphorothioate linkage, four bases at the 5' end comprise a 2'-O-methoxyethyl c I modification, and four bases at the 3' end comprise a 2'-O-methoxyethyl modification; or a pharmaceutically acceptable salt thereof.
According to the invention there is also provided an antisense compound consisting of SEQ ID NO: 38, wherein every intemucleoside linkage is a phosphorothioate linkage, and nucleobases 1 4 and 15 18 comprise a methoxyethyl modification, and the cytidine residues comprise a modification; or a pharmaceutically acceptable salt thereof.
According to the invention there is also provided a pharmaceutical composition comprising the antisense compound according to the invention, in combination with a pharmaceutically acceptable carrier or diluent.
According to the invention there is also provided use of the antisense compound according to the invention in the preparation of a medicament for the treatment of a hyperproliferative condition.
Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
n4f c N DETAILED DESCRIPTION OF THE INVENTION 0 The present invention employs an oligomeric antisense compounds, particularly oligonucleotides, for use in. modulating the function of the nucleic acid molecules oC encoding Survivin, ultimately modulating the amount of Survivin produced. This is accomplished by providing antisense compounds which specifically hybridize with one r- or more nucleic acids encoding Survivin. As used herein, the terms "target nucleic O acid" and "nucleic acid encoding Survivin" encompass DNA encoding Survivin, RNA 0(including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA Cc derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This C, modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA.
5 The overall effect of such interference with target nucleic acid function is modulation of the expression of Survivin.
In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.
It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated.
This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding Survivin. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG. or and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in 6 prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding Survivin, regardless of the sequence(s) of such codons.
It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about contiguous nucleotides in either direction 5' or 3') from a translation initiation codon. Similarly, the terps "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction 5' or from a translation termination codon.
The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively.
Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA 7 in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.
Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, intronexon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease.
Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.
Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, hybridize sufficiently well and with sufficient specificity, to give the desired effect.
In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, 8 refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position.
The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, under physiological conditions in the case of in vivo assays or therapeutic treatment, or in the case of in vitro assays, under conditions in which the assays are performed.
Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes.
Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway.
9 Antisense modulation has, therefore, been harnessed for research use.
The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses.
Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.
In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA). or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.
While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 30 nucleobases.
Particularly preferred are antisense oligonucleotides comprising from about 8 to about 30 nucleobases from about 8 to about 30 linked nucleosides). Preferred embodiments comprise at least an 8-nucleobase portion of a sequence of an antisense compound which inhibits expression 10 of Survivin. As is known in the art, a nucleoside is a basesugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines.
Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to phosphodiester linkage.
Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages.
As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and
I
11 aminoalkylphosphoramidates, thionophosphcramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal linkages, linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked to 5'-3' or to Various salts, mixed salts and free acid forms are also included.
Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Patents 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.
Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, 0, S and CH. component parts.
Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Patents 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 12 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.
In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugarbackbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Patents 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.
Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH,-N (CH 3 [known as a methylene (methylimino) or MMI backbone], -CH,-O-N(C )-CH -CH -N(C N (CH 3 and -0-N (CH 3 -CH -CH [wherein the native phosphodiester backbone is represented as of the above referenced U.S. Patents 5,489,677, and the amide backbones of the above referenced U.S. Patents 5,602,240.
Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Patents 5,034,506.
13 Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, or N-alkyl; or N-alkenyl; S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C: to alkyl or C. to alkenyl and alkynyl. Particularly preferred are O[ (CH 2 O(CH:) .OCH O(CH:) NH 1 O (CH CH O(CH QNH and O(CH,)nON[(CH,) ,CH 3 where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C: to lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or Oaralkyl, SH, SCH., OCN, Cl, Br, CN, CF,, OCF., SOCH., SO.CH., ONO,, NO, N 3 NH;, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CHCHOCH,, also known as methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, a O(CH,) ON(CH 3 a) group, also known as 2'-DMAOE, as described in United States patent application Serial Number 09/016,520, filed on January 30, 1998, which is commonly owned with the instant application and the contents of which are herein incorporated by reference.
Other preferred modifications include 2'-methoxy
CH
3 2'-aminopropoxy (2'-OCHCHCHHNH) and 2'-fluoro Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in linked oligonucleotides and the 5' position of 5' terminal 14 nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Patents 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,0531 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference in its entirety.
Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine and guanine and the pyrimidine bases thymine cytosine and uracil Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine hydroxymethyl cytosine, xanthine, hypoxanthine, 2aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, and cytosine, 5-propynyl uracil and cytosine, 6azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, particularly 5-bromo, 5-trifluoromethyl and other substituted uracils and cytosines, 7-methylguanine and 7methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.
Further nucleobases include those disclosed in U. S. Patent 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, ed. John Wiley Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 613, and those disclosed by Sanghvi, Chapter 15 Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B. ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 0 C (Sanghvi,
Y.S.,
Crooke, S.T. and Lebleu, eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined _with 2'-0-methoxyethyl sugar modifications.
Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Patent 3,687,808, as well as U.S. Patents 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; and 5,750,692, each of which is herein incorporated by reference.
Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a 16 thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 533-538), an aliphatic chain, dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO 1991, 10, 1111- 1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim.
Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J.
Pharmacol. Exp. Ther., 1996, 277, 923-937.
Representative United States patents that teach the preparation of such oligonucleotide..conjugates include, but are not limited to, 5,218,105; 5,525,465; 5,578,717, 5,580,731; 5,118,802; 5,138,045; 5,578,718; 5,608,046; 4,762,779; 4,789,737; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,258,506; 5,262,536; 5,371,241, 5,391,723; 5,512,667; 5,514,785; 5,585,481; 5,587,371; 5,599,928 and 5,688,941 by reference.
U.S. Patents 4,828,979; 5,541,313; 5,545,730; 5,580,731; 5,591,584; 5,414,077; 5,486,603; 4,587,044; 4,605,735; 4,824,941; 4,835,263; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,272,250; 5,292,873; 5,416,203, 5,451,463; 5,565,552; 5,567,810; 5,595,726; 5,597,696; Seach of which is herein 4,948,882; 5,552,538; 5,109,124; 5,512,439; 4,667,025; 4,876,335; 5,214,136; 5,254,469; 5,317,098; 5,510,475; 5,574,142; 5,599,923; incorporated in a given It is not necessary for all positions compound to be uniformly modified, and in fact more than one 17 of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, a nucleotide in the case of an oligonucleotide compound.
These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter .oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.
Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Patents 5,013,830; 5,149,797; 5,220,007; 18 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5.,652,356; and 5,700,922, each of which is herein incorporated by reference in its entirety.
The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.
The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.
The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Patents 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.
The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to 19 an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.
The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 to Imbach et al.
The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.
Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1- 19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms 20 differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are' the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid.
Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable 21 pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.
For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and salts formed from elemental anions such as chlorine, bromine, and iodine.
The antisense compounds of the present invention can be utilized for diagnosticsi therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of Survivin is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount .of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, to prevent or delay infection, inflammation or tumor formation, for example.
The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize 22 to nucleic acids encoding Survivin, enabling sandwich and other assays to easily be constructed to exploit this fact.
Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding Survivin can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of Survivin in a sample may also be prepared.
The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-Omethoxyethyl modification are believed to be particularly useful for oral administration.
Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.
23 Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets.
Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
Pharmaceutical compositions and/or formulations comprising the oligonucleotides of the present invention may also include penetration enhancers in order to enhance the alimentary delivery of the oligonucleotides. Penetration enhancers may be classified as belonging to one of five broad categories, fatty acids, bile salts, chelating agents, surfactants and non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8, 91-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7:1, 1-33). One or more penetration enhancers from one or more of these broad categories may be included.
Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein 1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arichidonic acid, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, mono- and di-glycerides and physiologically acceptable salts thereof oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 91-192; Muranishi, Critical Reviews in Therapeutic Drug 24 Carrier Systems, 1990, 7:1, 1-33; El-Hariri et al., J. Pharm.
Pharmacol., 1992, 44, 651-654). Examples of some presently preferred fatty acids are sodium caprate and sodium laurate, used singly or in combination at concentrations of 0.5 to The physiological roles of bile include the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 In: Goodman Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al., eds., McGraw-Hill, New York, NY, 1996, pages 934-935).
Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus, the term "bile salt" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Examples of presently preferred bile salts are chenodeoxycholic acid (CDCA) and/or ursodeoxycholic acid (UDCA), generally used at concentrations of 0.5 to 2%.
Complex formulations comprising one or more penetration enhancers may be used. For example, bile salts may be used in combination with fatty acids to make complex formulations.
Preferred combinations include CDCA combined with sodium caprate or sodium laurate (generally 0.5 to Chelating agents include, but are not limited to, disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7:1, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51). Chelating agents have the added advantage of also serving as DNase inhibitors.
Surfactants include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and ether (Lee et al., Critical Reviews in Therapeutic Drug 25 Carrier Systems, 1991, 8:2, 92-191); and perfluorcchemical emulsions, such as FC-43 (Takahashi et al., J. Pharm.
Pharmacol., 1988, 40, 252-257).
Non-surfactants include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-191); and non-steroidal antiinflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626) As used herein, "carrier compound" refers to a nucleic acid, or analog thereof, which is inert does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioated oligonucleotide in hepatic tissue is reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'-isothiocyano-stilbene- 2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 115-121; Takakura et al., Antisense Nucl. Acid Drug Dev., 1996, 6, 177-183).
In contrast to a carrier compound, a "pharmaceutically acceptable carrier" (excipient) is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more 26 nucleic acids to an animal. The pharmaceutically acceptable carrier may be liquid or solid and is selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutically acceptable carriers include, but are not limited to, binding agents pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrates starch, sodium starch glycolate, etc.); or wetting agents sodium lauryl sulphate, etc.). Sustained release oral delivery systems and/or enteric coatings for orally administered dosage forms are described in U.S. Patents 4,704,295; 4,556,552; 4,309,406; and 4,309,404.
The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional compatible pharmaceutically-active materials such as, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the composition of present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the invention.
27 Regardless of the method by which the antisense compounds of the invention are introduced into a patient, colloidal dispersion systems may be used as delivery vehicles to enhance the in vivo stability of the compounds and/or to target the compounds to a particular organ, tissue or cell type. Colloidal dispersion systems include, but are not limited to, macromolecule complexes, nanocapsules, microspheres, beads and lipid-based systems including oil-inwater emulsions, micelles, mixed micelles, liposomes and lipid:oligonucleotide complexes of uncharacterized structure.
A preferred colloidal dispersion system is a plurality of liposomes. Liposomes are microscopic spheres having an aqueous core surrounded by one or more outer layer(s) made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech., 1995, 6, 698-708).
Certain embodiments of the invention provide for liposomes and other compositions containing one or more antisense compounds and one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine 5-fluorouracil floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, pages 1206-1228). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and 28 Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.
In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Examples of antisense oligonucleotides include, but are not limited to, those directed to the following targets as disclosed in the indicated U.S. Patents, or pending U.S. applications, which are commonly owned with the instant application and are hereby incorporated by reference, or the indicated published PCT applications: raf (WO 96/39415, WO 95/32987 and U.S. Patents 5,563,255 and 5,656,612), the p120 nucleolar antigen (WO 93/17125 and U.S. Patent 5,656,743), protein kinase C (WO 95/02069, WO 95/03833 and WO 93/19203), multidrug resistanceassociated protein (WO 95/10938 and.U.S. Patent 5,510,239), subunits of transcription factor AP-1 (pending application U.S. Serial No. 08/837,201, filed April 14, 1997), Jun kinases (pending application U.S. Serial No. 08/910,629, filed August 13, 1997), MDR-1 (multidrug resistance glycoprotein; pending application U.S. Serial No. 08/731,199, filed September 1997), HIV Patents 5,166,195 and 5,591,600), herpesvirus Patents 5,248,670 and 5,514,577), cytomegalovirus (U.S.
Patents 5,442,049 and 5,591,720), papillomavirus Patent 5,457,189), intercellular adhesion molecule-i (ICAM-1) (U.S.
Patent 5,514,788), 5-lipoxygenase Patent 5,530,114) and influenza virus Patent 5,580,767). Two or more combined compounds may be used together or sequentially.
The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC,,s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 [tg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 g to 100 g per kg of body weight, once or more daily, to once every 20 years.
While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.
Throughout this specification the word "comprise", or variations such as "comprises" or "comprising'", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the .purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed in Australia before the priority date of each claim of this application.
30
EXAMPLES
Example 1 Nucleoside phosphoramidites for oligonucleotide synthesis deoxy and 2'-alkoxy amidites 2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g.
Chemgenes, Needham MA or Glen Research, Inc. Sterling VA).
Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was increased to 360 seconds.
Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).
2'-Fluoro amidites 2'-Fluorodeoxyadenosine amidites 2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831- 841] and U. S. Patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S,2displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-ditetrahydropyranyl (THP) 31 intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-phosphoramidite intermediates.
2'-Fluorodeoxyguanosine The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyrylarabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine.
Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.
2'-Fluorouridine Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'anhydro-l-beta-D-arabinofuranosyluracil was treated with hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.
2'-Fluorodeoxycytidine 2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 3'phosphoramidites.
32 2'-0-(2-Methoxyethyl) modified amidites 2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, Helvetica Chimica Acta, 1995, 78, 486-504.
2,2'-Anhydro[l-(beta-D-arabinofuranosyl)-5methyluridine] (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca.
The material was.used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4 0
C).
2,2'-Anhydro-5-methyluridine (195 g, 0.81 tris(2methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160"C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution 33 evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CHCN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH,Cl/Acetone/MeOH (20:5:3) containing 0.5% Et.NH.
The residue was dissolved in CH.Cl. (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g of product. Additional material was obtained by reworking impure fractions.
2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour.
Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CHCN (200 mL). The residue was dissolved in CHC1, (1.5 L) and extracted with 2x500 mL of saturated NaHCO, and 2x500 mL of saturated NaC1.
The organic phase was dried over Na.SO 4 filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/Hexane/Acetone containing 0.5% EtNH. The pure fractions were evaporated to give 164 g of product.
Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g 34 3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methyluridine 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by tic by first quenching the tlc sample with the addition of MeOH. Upon completion of the reaction, as judged by tic, MeOH (50 mL) was added and the mixture evaporated at 35 0 C. The residue was dissolved in CHC1, (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHC1 3 The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/Hexane(4:l). Pure product fractions were evaporated to yield 96 g An additional g was recovered from later fractions.
3'-O-Acetyl-2'-O-methoxyethyl-5' methyl-4-triazoleuridine A first solution was prepared by dissolving 3'-O-acetyl- 2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH 3 CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH 3 CN (1 cooled to -5°C and stirred for 0.5 hours using an overhead stirrer. POCI 3 was added dropwise, over a minute period, to the stirred solution maintained at 0-10 0
C,
and the resulting mixture stirred for an additional 2 hours.
The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was 35 evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO- and 2x300 mL of saturated NaC1, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.
2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-0dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NHOH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH, gas was added and the vessel heated to 100 0 C for 2 hours (tlc showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g of the title compound.
N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, tlc showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHC1: (700 mL) and extracted with saturated NaHCO.
(2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO, and evaporated to give a residue (96 g) The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane containing 0.5% Et 3 NH as the eluting solvent. The pure 36 product fractions were evaporated to give 90 g of the title compound.
N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine-3'-amidite N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine (74 g, 0.10 M) was dissolved in CH-C1 (1 L).
Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra- (isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (tlc showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO (1x300 mL) and saturated NaCI (3x300 mL). The aqueous washes were back-extracted with CHCl1 (300 mL), and the extracts were combined, dried over MgSO, and concentrated. The residue obtained was chromatographed on a kg silica column using EtOAc/Hexane as the eluting solvent. The pure fractions were combined to give 90.6 g of the title compound.
2'-(Aminooxyethyl) nucleoside amidites and 2'- (dimethylaminooxyethyl) nucleoside amidites Aminooxyethyl and dimethylaminooxyethyl amidites are prepared as per the methods of United States patent applications serial number 10/037,143, filed February 14, 1998, and serial number 09/016,520, filed January 30, 1998, each of which is commonly owned with the instant application and is herein incorporated by reference.
Example 2 Oligonucleotide synthesis Unsubstituted and substituted phosphodiester (P=0) oligonucleotides are synthesized on an automated DNA 37 synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.
Phosphorothioates are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole- 3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step.
After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55 0 C (18 hours), the oligonucleotides were purified by precipitating twice with volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.
Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.
3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.
Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.
Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.
3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.
Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.
38 Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.
Example 3 Oligonucleoside synthesis Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference.
Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.
Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.
Example 4 PNA synthesis Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA) Synthesis, Properties and Potential Applications, Bioorganic Medicinal Chemistry, 1996, 4, 5-23.
They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.
39 Example Synthesis of chimeric oligonucleotides Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound.
Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".
chimeric phosphorothioate oligonucleotides Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-methyl-3'-0-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 Ammonia/Ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hours at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in IM TBAF in THF for 24 hours at room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by 40 rotovac before being desalted on a G25 size exclusion column.
The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.
(2-Methoxyethyl) '-deoxy] (Methoxyethyl)] chim~eric phosphorothioate ol igonucleo tides [2'-O-(2-methoxyethyl)]-[2'-deoxy]-[-2'-O-(methoxyethyl)] chimeric phosphorothicate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O- (methoxyethyl) amidites for the 2'-O-rnethyl amidites.
(2-Methoxyethyl) Phosphodiester] -deoxy PhosphorothioateJ-[2'-O-(2-Methoxyethyl) Phosphodiester] chimeric oligonucleotides [2'-O-(2-methoxyethyl phosphodiester]-[2'-deoxy phosphorothioateJ-[2'-O-(methoxyethyl) phosphodiester) chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.
Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to U. S. Patent 5,623,065, herein incorporated by reference.
41 Example 6 Oligonucleotide isolation After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55 0 C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by 'P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol.
Chem. 1991, 266, 18162-18171. Results obtained with HPLCpurified material were similar to those obtained with non-HPLC purified material.
Example 7 Oligonucleotide synthesis 96 well plate format Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected betacyanoethyldiisopropyl phosphoramidites.
42 Oligonucleotides were cleaved from support and deprotected with concentrated NHOH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.
Example 8 Oligonucleotide analysis 96 well plate format The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE' M MDQ) or, for individually prepared samples, on a commercial CE apparatus Beckman P/ACE T 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.
Example 9 Cell culture and oligonucleotide treatment The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following four cell types are provided for illustrative purposes, but other cell types can be routinely used.
43 T-24 cells: The transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD) Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.
For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.
A549 cells: The human lung carcinoma cell line A549 was obtained from the American Type.Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD).
Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.
NHDF cells: Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by 44 the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.
HEK cells: Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville MD) HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville MD) formulated as recommended by the supplier. Cells were routinely maintained for up to passages as recommended by the supplier.
Treatment with antisense compounds: When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 200 pL OPTI-MEM™-1 reduced-serum medium (Gibco BRL) and then treated with 130 pL of OPTI-MEMM-l containing 3.75 pg/mL LIPOFECTIN T (Gibco BRL) and the desired oligonucleotide at a final concentration of 150 nM. After 4 hours of treatment, the medium was replaced with fresh medium.
Cells were harvested 16 hours after oligonucleotide treatment.
Example Analysis of oligonucleotide inhibition of Survivin expression Antisense modulation of Survivin expression can be assayed in a variety of ways known in the art. For example, Survivin mRNA levels can be quantitated by, Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, 45 Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley Sons, Inc., 1996.
Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM" 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions.
Other methods of PCR are also known in the art.
Survivin protein levels can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescenceactivated cell sorting (FACS). Antibodies directed to Survivin can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley Sons, Inc., 1997.
Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley Sons, Inc., 1997.
Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1- 10.16.11, John Wiley Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley Sons, Inc., 1991.
46 Example 11 Poly(A)+ mRNA isolation Poly(A)+ mRNA was isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp.
4.5.1-4.5.3, John Wiley Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 pL cold PBS. pL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaC1, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 uL of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 uL of wash buffer mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaC1). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 pL of elution buffer (5 mM Tris-HCl pH preheated to 70'C was added to each well, the plate was incubated on a 90 0 C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.
Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.
Example 12 Total RNA isolation Total mRNA was isolated using an RNEASY 96T" kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 pL cold PBS. 100 pL Buffer RLT was added to each well and the plate vigorously 47 agitated for 20 seconds. 100 pL of 70% ethanol was then added to each well and the contents mixed by pippeting three times up and down. The samples were then transferred to the RNEASY 96T well plate attached to a QIAVAC T manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY 96 1 plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96T plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. The plate was then removed from the QIAVAC" manifold and blotted dry on paper towels. The plate was then re-attached to the
QIAVAC
T manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting pL water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution step was repeated with an additional 60 pL water.
Example 13 Real-time quantitative PCR analysis of Survivin mRNA levels Quantitation of Survivin mRNA levels was determined by real-time quantitative PCR using the ABI PRISM" 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closedtube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye JOE or FAM, obtained from either Operon Technologies 48 Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase.
During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular (six-second) intervals by laser optics built into the ABI PRISM M 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.
PCR reagents were obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions were carried out by adding 25 pL PCR cocktail (lx TAQMAN buffer A, 5.5 mM MgCl., 300 uM each of dATP, dCTP and dGTP, 600 pM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD
T
and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 pL poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48'C. Following a 10 minute incubation at 95 0 C to activate thk AMPLITAQ GOLD
M
40 cycles of a two-step PCR protocol were carried out: 95C for seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension). Survivin probes and primers were 49 designed to hybridize to the human Survivin sequence, using published sequence information (GenBank accession number U75285, incorporated herein as SEQ ID NO:1).
For Survivin the PCR primers were: forward primer: AAGGACCACCGCATCTCTACA (SEQ ID NO: 2) reverse primer: CCAAGTCTGGCTCGTTCTCAGT (SEQ ID NO: 3) and the PCR probe was: FAM-CGAGGCTGGCTTCATCCACTGCC-TAMRA (SEQ ID NO: 4) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.
For GAPDH the PCR primers were: forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 6)and the PCR probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC- TAMRA 3' (SEQ ID NO: 7) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.
Example 14 Northern blot analysis of Survivin mRNA levels Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL (TEL-TEST Inc., Friendswood, TX). Total RNA was prepared following manufacturer's recommended protocols.
Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA was transferred from the gel to HYBOND
T
nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST Inc., Friendswood, TX).
RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER m
UV
Crosslinker 2400 (Stratagene, Inc, La Jolla, CA).
50 Membranes were probed using QUICKHYB
T
hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions with a Survivin specific probe prepared by PCR using the forward primer AAGGACCACCGCATCTCTACA (SEQ ID NO: 2) and the reverse primer CCAAGTCTGGCTCGTTCTCAGT (SEQ ID NO: To normalize for variations in loading and transfer efficiency membranes were stripped and probed for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).
Hybridized membranes were visualized and quantitated using a
PHOSPHORIMAGER
T and IMAGEQUANT" Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to GAPDH levels in untreated controls.
Example Antisense inhibition of Survivin expression- phosphorothioate oligodeoxynucleotides In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human Survivin RNA, using published sequences (GenBank accession number U75285, incorporated herein as SEQ ID NO: 1).
The oligonucleotides are shown in Table 1. .Target sites are indicated by nucleotide numbers, as given in the sequence source reference (Genbank accession no. U75285), to which the oligonucleotide binds. All compounds in Table 1 are oligodeoxynucleotides with phosphorothioate backbones (internucleoside linkages) throughout. The compounds were analyzed for effect on Survivin mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from three experiments. If present, indicates "no data".
51 Table 1 Inhibition of Survivin mRNA levels by phosphorothioate oligodeoxynucleotides ISIS# REGION TARGET SEQUENCE SEQ ID SITE Inhibition NO.
23652 5' UTR 1 gcqattcaaatctggcgg 0 8 23653 5' UTR 19 cctctgccaacgggtccc 4. 9 23654 5' UTR 75 tgagaaagggctgccagg 46 23655 5' UTR 103 ttcttgaatgtagagatg 0 11 23656 5' UTR 128 ggcgcagccctccaagaa 38 12 23657 coding 194 caagtctggctcgttctc 0 13 23658 Coding 226 tccagctccttgaagcag 32 14 23659 lCoding 249 ggtcgtcatctggctccc 36 23660 Coding 306 gcttcttgacagaaagga 35 16 23661 Coding 323 ggttaattcttcaaactg 0 17 23662 Coding 363 tcttggctctttctctgt 34 18 23663 Coding 393 tcttattgttggtttcct 0 19 23664 Coding 417 tcgcagtttcctcaaatt 37 23665 Coding 438 cgatggcacggcgcactt 72 21 23666 Coding 511 cctggaagtggtgcagcc 16 22 23667 Coding 542 acaggaaggctggtggca 70 23 23668 Coding 587 tttgaaaatgttgatctc 8 24 23669 lCoding 604 acagttgaaacatctaat 0 23670 Coding 625 ctttcaagacaaaacagg 0 26 23671 Coding 650 acaggcagaagcacctct 0 27 23672 Coding 682 aagcagccactgttacca 64 28 23673 Coding 700 aaagagagagagagagag 18 29 23674 Coding 758 tccctcacttctcacctg 29 23675 3' UTR 777 agggacactgccttcttc 43 31 23676 3' UTR 808 ccacgcgaacaaagctgt 62 32 23677 3' UTR 825 actgtggaaggctctgcc 0 33 23678 3' UTR 867 aggactgtgacagcctca 62 34 23679 3' UTR 901 tcagattcaacaggcacc 0 23680 3' UTR 1016 attctctcatcacacaca 26 36 23681 3' UTR 1054 tgttgttaaacagtagag 0 37 23682 3' UTR 1099 tgtgctattctgtgaatt 20 38 23683 3' UTR 1137 gacttagaatggctttgt 37 39 23684 3' UTR 1178 ctgtctcctcatccacct 41 23685 3' UTR 1216 aaaaggagtatctgccag 39 41 23686 3' UTR 1276 gaggagcggccagcatgt 47 42 23687 3' UTR 1373 ggctgacagacacacggc 41 43 52 As shown in Table 1, SEQ ID NOs 10, 12, 14, 15, 16, 18, 21, 23, 28, 31, 32, 34, 39, 40, 41, 42, 43 and 47 demonstrated at least 30% inhibition of Survivin expression in this assay and are therefore preferred.
Example 16 Antisense inhibition of Survivin expression- phosphorothioate 2'-MOE gapmer oligonucleotides In accordance with the present invention, a second series of oligonucleotides targeted to human Survivin were synthesized. The oligonucleotide sequences are shown in Table 2. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (Genbank accession no.
U75285), to which the oligonucleotide binds.
All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central "gap" region'consisting of ten 2'-deoxynucleotides, which is flanked on both sides and 3' directions) by fournucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide.
Cytidine residues in the 2'-MOE wings are Data were obtained by real-time quantitative PCR as described in other examples herein and are averaged from three experiments. If present, indicates "no data".
53 Table 2 Inhibition of Survivin mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MO wings and a deoxy gap ISIS# REGION TARGET SEQUENCE. SEQ ID SITE Inhibition NO.
23692 5' UTR 1 gcgattcaaatctggcgg 22 8 23693 5' UTR 19 cctctgccaacgggtccc 15 9 23694 5' UTR 75 tgagaaagggctgccagg 11 23695 5' UTR 103 ttcttgaatgtagagatg 37 11 23696 5' UTR 128 ggcgcagccctccaagaa 16 12 23697 Coding 194 caagtctggctcgttctc 17 13 23698 Coding 226 tccagctccttgaagcag 0 14 23699 Coding 249 ggtcgtcatctggctccc 19 23700 Coding 306 gcttcttgacagaaagga 35 16 23701 Coding 323 ggttaattcttcaaactg 15 17 23702 Coding 363 tcttggctctttctctgt 8 18 23703 Coding 393 tcttattgttggtttcct 41 19 23704 Coding 417 tcgcagtttcctcaaatt 24 23705 Coding 438 cgatggcacggcgcactt 72 21 23706 Coding 511 cctggaagtggtgcagcc 4 22 23707 Coding 542 acaggaaggctggtggca 48 23 23708 Coding 587 tttgaaaatgttgatctc 2 24 23709 Coding 604 acagttgaaacatctaat 28 23710 Coding 625 ctttcaagacaaaacagg 0 26 23711 Coding 650 acaggcagaagcacctct 38 27 23712 Coding 682 aagcagccactgttacca 27 28 23713 Coding 700 aaagagagagagagagag 0 29 23714 Coding 758 tccctcacttctcacctg 0 23715 3' UTR 777 agggacactgccttcttc 44 31 23716 3' UTR 808 ccacgcgaacaaagctgt 25 32 23717 3' UTR 825 actgtggaaggctctgcc 8 33 23718 3' UTR 867 aggactgtgacagcctca 49 34 23719 3' UTR 901 tcagattcaacaggcacc 0 23720 3' UTR 1016 attctctcatcacacaca 0 36 23721 3' UTR 1054 tgttgttaaacagtagag 0 37 23722 3' UTR 1099 tgtgctattctgtgaatt 80 38 23723 3' UTR 1137 gacttagaatggctttgt 44 39 23724 3' UTR 1178 ctgtctcctcatccacct 27 23725 3' UTR 1216 aaaaggagtatctgccag 21 41 23726 3' UTR 1276 gaggagcggccagcatgt 39 42 54 23727 3' UTR 1373 ggctgacagacacacggc 45 43 23728 3' UTR 1405 ccgtgtggagaacgtgac 24 44 23729 3' UTR 1479 tacgccagacttcagccc 25 23730 3' UTR 1514 atgacagggaggagggcg 0 46 23731 3' UTR 1571 gccgagatgacctccaga 19 47 As shown in Table 2, SEQ ID NOs 11, 16, 19, 21, 23, 27, 31, 34, 38, 39, 42 and 43 demonstrated at least 30% inhibition of Survivin expression in this experiment and are therefore preferred.
Example 17 Western blot analysis of Survivin protein levels Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 hours after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 pl/well), boiled for minutes and loaded on a 16% SDS-PAGE gel. Gels are run for hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to Survivin is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER" m (Molecular Dynamics, Sunnyvale CA).
Example 18 Effect of Survivin antisense oligonucleotide on apoptosis ISIS 23722 and a mismatch control, ISIS 28598 (TAAGCTGTTCTATGTGTT; SEQ ID NO: 48) were assayed for their effect on apoptosis in HeLa cells. The caspase inhibitor z- VAD.fmk was purchased from Calbiochem (La Jolla CA) and used according to manufacturer's recommendations. In HeLa cells without oligonucleotide, approximately 4% of cells are hypodiploid (indicating DNA fragmentation, a measure of apoptosis). With the addition of ISIS 23722, approximately 22% of cells are hypodiploid, compared to approximately 11% with 55 the mismatch oligonucleotide. In the presence of the caspase inhibitor z-VAD.fmk (42.8 mM), the percent of hypodiploid (apoptotic) cells drops to 3% without oligonucleotide, 6i with ISIS 23722 and 4% with the mismatch control. This demonstrates that antisense inhibition of Survivin increases apoptosis and this effect is caspase-mediated.
Example 18 Effect of antisense inhibition of Survivin on cytokinesis HeLa cells treated with an antisense oligonucleotide targeted to Survivin (ISIS 23722) can be observed to form large, multinucleated cells as a result of improper cell division.
The mismatch control oligonucleotide did not have this effect and cells appeared normal (comparable to untreated controls).
This effect can be quantitated by flow cytometry.
Untreated cells or cells treated with the control oligonucleotide display two prominent peaks, representing populations of cells in the Gl phase and the G2/M phase of cell division, respectively. G1 cells have a single copy of their DNA (Ix) and G2/M cells have two copies(2x).Over time from 24 hours to 72 hours, these Ix and 2x peaks remain virtually unchanged in cells treated with the control oligonucleotide or without oligonucleotide. However, in cells treated with the antisense oligonucleotide targeted to Survivin, the majority of cells have two copies of DNA by 24 hours after oligo treatment. This indicates that cell division is arrested. By 48 hours after treatment with this oligonucleotide, a 4x peak is approximately equal in size to the Ix and 2x peaks, indicating roughly equal numbers of cells with one, two and four copies of DNA. By 72 hours the largest peak is 16x, indicating that cells have 16 copies of their DNA and thus that division of the cytoplasm has not occurred for multiple generations. Thus inhibition of Survivin is shown to interfere with cytokinesis.

Claims (24)

1. A modified or unmodified antisense compound up to 30 nucleobases in length c comprising SEQ ID NO: 38, wherein said antisense compound inhibits the expression of human Survivin; or a pharmaceutically acceptable salt thereof.
S2. A modified or unmodified antisense compound consisting of SEQ ID NO: 38; or Sa pharmaceutically acceptable salt thereof.
3. The antisense compound of either of claims 1 or 2 which comprises at least one modified internucleoside linkage.
4. The antisense compound of claim 3 wherein the modified internucleoside linkage is a phosphorothioate linkage.
The antisense compound of claim 4 wherein every intemucleoside linkage is a phosphorothioate linkage.
6. The antisense compound of any of claims 1 5 which comprises at least one modified sugar moiety.
7. The antisense compound of claim 6 wherein the modified sugar moiety is a 2'- O-methoxyethyl sugar moiety.
8. The antisense compound of any of claims 1 7 which comprises at least one modified nucleobase.
9. The antisense compound of claim 8 wherein the modified nucleobase is a methylcytosine.
An antisense compound comprising SEQ ID NO: 38, wherein every intemucleoside linkage is a phosphorothioate linkage, four bases at the 5' end comprise a 2'-O-methoxyethyl modification, and four bases at the 3' end comprise a methoxyethyl modification; or a pharmaceutically acceptable salt thereof. m 57 O O
11. The antisense compound of claim 10 wherein the cytidine residues comprise a o 5-methyl modification. O
12. An antisense compound consisting of SEQ ID NO: 38, wherein every intemucleoside linkage is a phosphorothioate linkage, and nucleobases 1 4 and 15 18 comprise a 2'-O-methoxyethyl modification, and the cytidine residues comprise a O methyl modification; or a pharmaceutically acceptable salt thereof. c€
13. The antisense compound of any one of claims 1 12 wherein the pharmaceutically acceptable salt is a sodium salt.
14. A pharmaceutical composition comprising the antisense compound of any of claims 1 13, in combination with a pharmaceutically acceptable carrier or diluent.
15. Use of the antisense compound of any of claims 1 13, or the composition of claim 14 in the preparation of a medicament for the treatment of a hyperproliferative condition.
16. The use of claim 15 wherein the hyperproliferative condition is cancer.
17. The use of claim 16 wherein said cancer is lung cancer, colon cancer, pancreatic cancer, prostate cancer, breast cancer, stomach cancer, non-Hodgkin's lymphoma, neuroblastoma, bladder cancer, or cancer involving keratinocyte or fibroblast cells.
18. The use of claim 16 wherein said cancer is pancreatic cancer.
19. The use of claim 16 wherein said cancer is colon cancer.
The use of claim 16 wherein said cancer is non-Hodgkin's lymphoma.
21. The use of claim 16 wherein said cancer is bladder cancer.
22. An antisense compound according to any one of claims 1, 2, 10 and 12, substantially as herein described with reference to any one or more of the Examples. tt 58
23. A pharmaceutical composition according to claim 14, substantially as herein o described with reference to any one or more of the Examples. ¢C
24. Use according to claim 15, substantially as herein described with reference to any one or more of the Examples. Dated this twenty-eighth day of October 2005 Isis Pharmaceuticals, Inc. Patent Attorneys for the Applicant: F B RICE CO SEQUENCE LISTING <110> Bennett, C. Frank Aekermannf, Elizabeth J. Swayze, Eric E. CowBert, Lex M. <120>~.NTIENSEMODULATJA) Uk'"UnVCCL11 AZZ' <130> ISPH-0405 <150> 09/286,407 <151> 1999-04-05 <150> 09/163,162 <151> 1998-09-29 <160> 47 <210> 1 <211> 1619 <212> DNA <213> HOMO sapiens <221> CDS <222> (50)..(478) <400> 1' ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc gCC ceg Ala Pro ate tct Ile Ser ceg gag Pro Giu gag cca Giu Pro tgg gag Trp Giu ggt tge Gly Cys acg Thr aca Thr cgg Arg gaC Asp cca Pro get Al a t ig Leu tte Phe atg Met ttg Leu gat Asp tic Phe ccc cct gcc Pro Pro Ala aag aac tgg Lys Asn Trp 25 gcc gag get Ala Glu Ala 40 gcc cag tgt Ala Gin Cys 55 gaC gac ccc Asp Asp Pro cit tet gtc Leu Ser Val tgg cag ccc ttt Trp Gin Pro Phe 10 ccc tie ttg gag Pro Phe Leu Giu ggc tte ate eac Gly Phe Ile His 45 tie tte tgc tte Phe Phe Cys Phe 60 ata gag gaa cat Ile Giu Glu His 75 aag aag eag tt Lys Lys Gin Phe 90 ggeggcgge aig ggt Met Gly 1 etc aag gac eae cge Leu Lys Asp His Arg ggC tgc gee tge ace Gly Cys Ala Cys Thr tge ccc act gag aac Cys Pro Thr Giu Asn so aag gag ctg gaa ggc Lys Glu Leu Giu Gly aaa aag cat tcg ice Lys Lys His Ser Ser gaa gaa tta ace ct Glu Giu Leu Thr Leu 103 151 199 247 295 343 ggt gaa ttt ttg aaa ctg gac aga gaa aga 9cc Gly Glu Phe Leu Lys Leu Asp Arg Glu Arg Ala 100 10S aag gaa acc aac aat aag aag aaa gaa ttt gag Lys Glu Thr Asn Asn Lys Lys Lys Glu Phe Glu 115 120 125 gtg cgc cgt gcc atc gag cag ctg gct gcc atg Val Arg Arg Ala Ile Glu Gin Leu Ala Ala Met aag aac aaa att gca Lys Asn Lys Ile Ala 110 gaa act gcg aag aaa Glu Thr Ala Lys Lys 130 gat tga ggcctctggc Asp cggagctgcc agccttcctg atgtttcaac cagcgggtgc atttttgctg gtcccttttg gtctggacct ttgaatctga tttgttgttg agaatggaga ttgaattgtt taagtcattg gaagcgtctg gcggggcaca atgacttggc cccaaccttc ccgctttctt tgattcgccc tggtcccaga tgggcccctt tgtgctcctg tgctggtaac ttttgattcc ctagagctga catgttgttg gctgcaggtt tgtttttttg cagagtccct aattcacaga gggaaacggg gcagatactc tgctggccgc tcgatgctgt acatctgtca tggaggcagc tcctccctgt gtggctgcac agcaatgtct ttttgtcttg agtggctgct cgggcttac cagctttgtt aggctgtcac ccttatctgt tttttttttt ggctcctcta atagcacaaa gtgaacttca cttttgccac tcctccctca gggggactgg cgttctccac agctcccgca catagagctg cacttccagg taggaaagga aaagtggcac tctctctctc aggtgagaag cgcgtgggca agtcctgagt cacacctgtg ttggtagatg ctgtttaaca ctacaattaa ggtggatgag tgctgtgtga gaaaaaggca ctgggctgCt acgggggaga gggctgaagt cagggtggat gtttattccc gatcaacatt cagaggtgct tctctctttt tgagggagga gagccttcca gtggacttgg cctcctcaga catgacttgt acatggcttt aactaagcac gagacagaat t tagacaggc gtggc ctaa a gcaggccgtg gacgcagtcc ctggcgtaag tgttacagct tggtgccacc ttcaaattag tctgcctgtg ttgggggctc agaaggcagt cagtgaatgt caggtgcctg ggacagtttt gtgtgatgag cttattttgt aaagccattc agagtgatag ccagtgagcc tcctttttaa tgtctgtcag gcccaggtcc atgatggatt t cgctggaaa 548 608 668 728 788 848 908 968 1028 1088 1148 1208 1268 1328 1388 1448 1508 1568 1619 cctctggagg tcatctcggc tgttcctgag aaataaaaag cctgtcattt c <2.10> 2 <211> 21 <212> DNA <21'3> Artificial Sequence <223> PCR Primer <400> 2 aaggaccacc gcatctctac a 21 <210> 3 c211> 22 <212> DNA <213> Artificial Sequence <223> PCR Primer <400> 3 ccaagtctgg ctcgttctca gt 22 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence c223> PCR Probe <400> 4 cgaggctggc ttcatccact gcc 23 <210> <211> 19 <212> DNA <213> Artificial Sequence <223> PCR Primer <400> gaaggtgaag gtcggagtc 19 <210> 6 <211> <212> DNA <213> Artificial Sequence <223> PCR Primer <400> 6 gaagatggtg atgggatttc <210> 7 <211> <212> DNA <213> Artificial Sequence <223> PCR Probe <400> 7 caagcttccc gttctcagcc <210> 8 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 8 gcgattcaaa tctggcgg 18 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 9 cctctgccaa cgggtccc 18 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> tgagaaaggg ctgccagg 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 11 ttcttgaatg tagagatg 18 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense oligonucleotide <400> 12 ggcgcagccc tccaagaa 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense oligonucleotide <400> 13 caagtctggc tcgttctc <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense oligonucleotide <400> 14 tccagctcct tgaagcag <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> ggtcgtcatc tggctccc <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 16 gcttcttgac agaaagga <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide. <400> 17 ggttaattct tcaaactg <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 18 tcttggctCt ttctctgt <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 19 tcttattgtt ggtttcct 18 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> tcgcagtttc ctcaaatt 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <40.0> 21 cgatggcacg gcgcactt 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 22 cctggaagtg gtgcagcc 18 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 23 acaggaaggc tggtggca 18 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 24 tttgaaaatg ttgatctc 18 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> acagttgaaa catctaat 18 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 26 ctttcaagac aaaacagg 18 <210> 27 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 27 acaggcagaa gcacctct 1 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 28 aagcagccac tgttacca 1 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 29 i aaagagagag agagagag 1 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> tccctcactt ctcacctg 18 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 31 agggacactg ccttcttc 18 <210> 32 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 32 ccacgcgaac aaagctgt 18 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense oligonucleotide <400> 33 actgtggaag gctctgcc 18 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 34 *aggactgtga cagcctca 18 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> tcagattcaa caggcacc 18 <210> 36 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 36 attctctcat cacacaca 18 <210> 37 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 37 tgttgttaaa cagtagag 18 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 38 tgtgctattc tgtgaatt 18 <210> 39 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 39 gacttagaat ggctttgt 18 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> ctgtctcctc atccacct 18 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 41 aaaaggagta tctgccag 18 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 42 gaggagcggc cagcatgt 18 <210> 43 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 43 ggctgacaga cacacggc 18 <210> 44 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 44 ccgtgtggag aacgtgac 1 <210> <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> tacgccagac ttcagccc 18 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 46 atgacaggga ggagggcg 18 <210> 47 <211> 18 <212> DNA <213> Artificial Sequence <223> Antisense Oligonucleotide <400> 47 gccgagatga cctccaga 18
AU2003205017A 1998-09-29 2003-06-27 Antisense modulation of survivin expression Ceased AU2003205017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003205017A AU2003205017B2 (en) 1998-09-29 2003-06-27 Antisense modulation of survivin expression

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/163162 1998-09-29
US09/286407 1999-04-05
AU61598/99A AU758545B2 (en) 1998-09-29 1999-09-23 Antisense modulation of survivin expression
AU2003205017A AU2003205017B2 (en) 1998-09-29 2003-06-27 Antisense modulation of survivin expression

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU61598/99A Division AU758545B2 (en) 1998-09-29 1999-09-23 Antisense modulation of survivin expression

Publications (2)

Publication Number Publication Date
AU2003205017A1 AU2003205017A1 (en) 2003-07-24
AU2003205017B2 true AU2003205017B2 (en) 2005-12-15

Family

ID=39272355

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003205017A Ceased AU2003205017B2 (en) 1998-09-29 2003-06-27 Antisense modulation of survivin expression

Country Status (1)

Country Link
AU (1) AU2003205017B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022589A2 (en) * 1996-11-20 1998-05-28 Yale University Survivin, a protein that inhibits cellular apoptosis, and its modulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022589A2 (en) * 1996-11-20 1998-05-28 Yale University Survivin, a protein that inhibits cellular apoptosis, and its modulation

Similar Documents

Publication Publication Date Title
US5945290A (en) Antisense modulation of RhoA expression
US6007995A (en) Antisense inhibition of TNFR1 expression
AU758545B2 (en) Antisense modulation of survivin expression
US7288530B2 (en) Antisense modulation of survivin expression
AU2001236581B2 (en) Antisense modulation of survivin expression
AU2001236581A1 (en) Antisense modulation of survivin expression
EP1507005A2 (en) Antisense modulation of BCL-X expression
EP1082456A1 (en) Antisense modulation of cd40 expression
AU765928B2 (en) Antisense modulation of transforming growth factor-beta expression
US6001652A (en) Antisense modulation of cREL expression
US6020198A (en) Antisense modulation of RIP-1 expression
US5962672A (en) Antisense modulation of RhoB expression
US6077672A (en) Antisense modulation of TRADD expression
US5962671A (en) Antisense modulation of fan expression
US6004814A (en) Antisense modulation of CD71 expression
WO2002048168A1 (en) Antisense modulation of tnfr1 expression
US6030786A (en) Antisense modulation of RhoC expression
US5965370A (en) Antisense modulation of RhoG expression
AU2003205017B2 (en) Antisense modulation of survivin expression
US20040147471A1 (en) Antisense modulation of TNFR1 expression

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired