AU2002362863A1 - Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly - Google Patents

Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly

Info

Publication number
AU2002362863A1
AU2002362863A1 AU2002362863A AU2002362863A AU2002362863A1 AU 2002362863 A1 AU2002362863 A1 AU 2002362863A1 AU 2002362863 A AU2002362863 A AU 2002362863A AU 2002362863 A AU2002362863 A AU 2002362863A AU 2002362863 A1 AU2002362863 A1 AU 2002362863A1
Authority
AU
Australia
Prior art keywords
pinion
tooth
gear
determining
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002362863A
Other versions
AU2002362863B2 (en
Inventor
Edward M. Stopper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Outotec USA Inc
Original Assignee
Metso Minerals Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/682,768 external-priority patent/US6705022B2/en
Application filed by Metso Minerals Industries Inc filed Critical Metso Minerals Industries Inc
Publication of AU2002362863A1 publication Critical patent/AU2002362863A1/en
Application granted granted Critical
Publication of AU2002362863B2 publication Critical patent/AU2002362863B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

METHOD AND APPARATUS FOR DETERMINING A PINION BEARING MOVE TO ALIGN A PINION-TO-GEAR ASSEMBLY
BACKGROUND OF THE INVENTION
The present invention relates generally to pinion-to-gear alignment and, more particularly to, a method and apparatus for determining a pinion bearing move to achieve proper pinion-to-gear alignment based on temperature differentials of a pinion and a visual representation of a pinion-gear assembly.
Pinion-gear assemblies are widely used in a number of industrial and commercial systems, such as grinding mills. Conventional grinding mills are typically driven by a ring gear attached to the body of the mill. An electric motor or, in some circumstances, a gasoline powered engine, drives a pinion which powers the ring gear. To minimize wear and tear on the gear and pinion as well as to prevent costly down time due to broken or damaged teeth on the gear or pinion, it is imperative that the pinion be properly aligned to the ring gear. A number of techniques have been developed to properly align the pinion to the ring gear.
In one known method, an initial alignment of the pinion to the gear is achieved by collecting mechanical readings with feeler gauges and then making the best alignment possible based on those readings. Typically, this initial alignment is made with the pinion in a static condition and having no loads. As is well known, the pinion will take a slightly different position when running and under load conditions. Additionally, the alignment (or load distribution) of the pinion to the gear teeth will generate temperatures that are proportional to the load distribution. Simply, the side of the pinion with the heaviest load distribution will have higher temperatures than the side of the pinion with the lightest load distribution. These temperature differentials of the pinion when running with a load may be used to perform an alignment of the pinion-to-gear to achieve an even load distribution across the pinion teeth.
Complicating matters however, is that grinding mills are often driven by more than one pinion. Further, in grinding mills it is not uncommon for each pinion to be running in two directions. For example, autogenuous and semi-autogenuous mills are typically run in alternating directions in order to achieve longer liner life. Under these conditions, temperature data must be recorded on both pinions and in both directions. Additionally, a gear pressure angle, an angle of each pinion down from the mill center line, and a rotation of the mill while taking the temperature readings must be known in order to calculate a proper pinion move for realignment thereof. A number of computer programs have been developed to calculate pinion realignments based on temperature data. These specific programs are particularly well suited when the proper data is input directly into the program. However, it is relatively easy to make a mistake in the input of data into the computer program which ultimately could result in a damaged or broken gear or pinion due to an ill-advised alignment move. Additionally, manual calculations may be used to calculate a pinion realignment move, but manual calculations require considerable time and an extensive working knowledge of geometry as well as trigonometry.
It would therefore be desirable to design an apparatus and method for determining a pinion bearing move to align a pinion-to-gear assembly quickly and less prone to error without requiring a computer program or a number of complex manual calculations.
BRIEF DESCRIPTION OF THE INVENTION
A method and apparatus for determining a pinion bearing move to align a pinion-to- gear assembly overcoming the aforementioned drawbacks are provided. Using a realistic visual representation of a gear to pinion mesh showing pressure angles of the gear and pinion as well as the angle of the pinion down from the mill center line allows for a quick and accurate determination of a pinion bearing move to align the pinion-to-gear. Using temperature differential data of the pinion under load conditions, the present invention allows for an easy and efficient means of determining a pinion bearing move to align the pinion-to- gear without requiring complicated manual calculations or data input to a computer program. Furthermore, the present invention is lightweight and portable thereby avoiding the drawbacks often associated with handheld electrical devices and laptop computers.
Therefore, in accordance with an aspect of the present invention, a method for determining a pinion bearing move for a pinion-to-gear alignment assembly comprises positioning a gear tooth to a first angle and positioning a pinion tooth to a starting position. The method further includes determining a pinion temperature differential, At, and repositioning the pinion tooth to a corrected position based on the "pinion temperature differential. The method further includes determining a distance from the starting position to the corrected position.
In accordance with another aspect of the present invention, a nomograph includes a gear tooth having a number of temperature gradient reference marks. The nomograph further includes a pinion tooth having a pair of aligned reference lines. The nomograph further includes a gradient grid having a plurality of reference points for determimng a pinion bearing adjustment move.
In accordance with yet another aspect of the present invention, a tool for realigning a pinion to gear assembly is provided. The tool includes a visual representation of a gear to pinion mesh illustrating pressure angles of a gear and pinion assembly. The tool further includes an instructional manual having a set of instructions for determining one or more pinion bearing moves based on one or more pinion temperatures.
Various other features, objects, and advantages of the present invention will be made apparent from the following detailed description and the drawings. BRIEF DESCRIPTION OF THE FIGURES
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
Fig. 1 is a top view of a nomograph in accordance with the present invention.
Fig. 2 is an exploded view of the nomograph of Fig. 1.
Fig. 3 is a cross-sectional view of the nomograph of Fig. 1.
Fig. 4 is a top view of a portion of the nomograph of Fig. 1 showing a pinion tooth at a starting position.
Fig. 5 is an enlarged view of a portion of the nomograph shown in Fig. 4.
Fig. 6 is a top view of a portion of the nomograph of Fig. 1 showing movement of a pinion tooth to a corrected position in accordance with the present invention.
Fig. 7 is an enlarged view of a portion of the nomograph shown in Fig. 6 illustrating movement of the pinion tooth from a starting position to a corrected position in accordance with the present invention.
Fig. 8 is a top view of a portion of the nomograph shown in Fig. 1 illustrating annular movement of a gear tooth and a pinion tooth in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figs. 1-2, a nomograph 10 for determining a pinion bearing move to align a pinion-to-gear assembly based on temperature differentials of a pinion-gear assembly is shown. Nomograph 10 includes a gear tooth 12 and a pinion tooth 14. In a preferred embodiment, pinion tooth 14 has a polygonal shape and a reference eyelet 15, and is configured to be slidably positioned in pocket 16 of gear tooth 12. Gear tooth 12 has a top surface 18 and an extending bottom surface 20 that cooperatively form pocket 16. Movement of the pinion tooth 14 into pocket 16 is limited by a pair of convergent interfaces 22 joining the outer surface 18 to bottom surface 20. That is, movement of pinion tooth 14 is prevented by the abutment of pinion tooth sidewalls 24 against interfaces 22. Gear tooth 12 further includes a number of gradient reference lines 26 as well as a number of root change reference lines 28. Two sets gradient reference lines 26 converge to an intersection (not shown) resulting in a mirrored alignment of the two sets. Additionally, each set of gradient reference lines includes a starting reference line 30 that is centrally disposed between the remaining reference lines 26. Furthermore, reference line 30, in a preferred embodiment, is conspicuously identified using a bold type.
Gear tooth 12 further includes a linearly extending positioning line 32 that extends along a bottom surface 20. Line 32 extends from an eyelet 34 laterally through the intersection of the sets of reference lines 26 and is hiddenly positioned underneath the number of vertically oriented linearly arranged root reference lines 28. Reference line 32 then extends from underneath the number of root reference lines 28 laterally along surface 20. After a momentary break, line 32 begins again along surface 20 and extends to an outer edge 36 of gear tooth 12. Gear tooth 12 further includes an alignment point 38 centrally disposed along one of the root reference lines 28.
Nomograph 10 further includes an opaque base portion 40 having along the surface thereof a plurality of reference angle marks 42 angularly positioned from one another at, in a
preferred embodiment, 5° intervals. A curvilinear grid 44 is also positioned along a top
surface of base portion 40 and includes a plurality of angularly aligned reference points 46. Reference points 46 are linearly aligned with angle reference marks 42. Base portion 40 further includes a plurality of angular reference lines 48 extending angularly towards and in corresponding alignment with reference marks 42 from eyelet 50. Base portion 40 may alternatively include a company name and logo section 52.
Nomograph 10 further includes a transparent sheath portion 54 having a plurality of curvilinearly aligned access windows 56. As will be discussed shortly, reference windows 56 enable a user to slidably position pinion tooth 14 within pocket 16 of the gear tooth 12. Sheath 54 further includes an eyelet 56 that is aligned with eyelet 34 of gear tooth 12 and the eyelet 50 of the base portion 40. Sheath 54, gear tooth 12, and base portion 40 are fasteningly comiected to one another by a peg 58, Fig. 2, disposed through eyelets 56, 34, and 50. An angular ring or clamp 60, Fig. 2, is used to secure components 12, 40, and 54 of nomograph 10 to one another.
Referring to Fig. 3, a cross-sectional view of nomograph 10 is shown illustrating the layered construction of sheath 54, gear tooth top surface 18, pinion tooth 14, gear tooth bottom surface 20, and base portion 40. As shown, surface 20 of gear tooth 12 rests above base portion 40 but below pinion tooth 14. Further, as is readily shown, sheath 54 is positioned atop the gear tooth surface 18 and pinion tooth 14.
Referring to Fig. 4, the gear tooth 12 and the pinion tooth 14 are shown positioned in one of a number of starting positions. That is, the gear tooth 12 is positioned such that reference line
32 is linearly aligned with the angle reference mark 42 corresponding to 15°. Further,
pinion tooth 14 is positioned within pocket 16 such that gear tooth sidewalls 24 align with bolded gradient reference lines 30. Further, pinion tooth leading edge 24(a) is positioned to align with root reference line 28(a). As a result of aligning the pinion tooth sides 24 and edge 24(a) with reference lines 30, 28(a), the pinion tooth eyelet 15 is aligned over a grid reference point 46 and, in the position illustrated in Fig. 4, the pinion tooth eyelet 15 would be
positioned over grid reference point 46(a) which corresponds to angle reference mark 15°.
Angle reference lines 42 correspond to an angle below mill center line. Therefore,
positioning the gear tooth reference line 32 as shown in Fig. 4 corresponds to a 15° angle
below mill center line. That is, the present invention is designed such that gear tooth 12 may pivot angularly from eyelet 56 such that a number of mill center line angles may be selected.
While Fig. 4 sets forth angles ranging from 0 to 30° at 2 lA° intervals, this is shown for
illustrative purposes only and is not meant to limit the scope nor the breadth of the instant invention. Further, the present invention is designed such that gear tooth 12 may be repositioned along any angular line while the pinion tooth 14 is slightably engaged within- pocket 16. Angular movement of the gear tooth-pinion tooth assembly 12, 14 may be achieved by simply moving gear tooth 12 and pinion tooth 14 through access windows 56 of sheath 54, Fig. 2.
Fig. 5 shows an enlarged view of the starting position achieved by placement of pinion tooth 14 within pocket 16 of gear tooth 12. As may be readily seen, pinion tooth eyelet 15 is positioned such that grid point 46(a) of gradient grid 44 is centrally positioned within the eyelet 15. As indicated previously, this positioning of the gear tooth and pinion
tooth is achieved when the gear tooth 12 is positioned to reflect a 15° below mill center line
location of the pinion bearing assembly.
Now referring to Fig. 6, the gear tooth-pinion tooth assembly 12, 14 is shown such that the position of the pinion tooth 14 within the pocket 16 and the gear tooth 12 have been moved to a corrected position 46(b). Determining the proper pinion move to achieve corrected position 46(b) is based upon pinion temperatures recorded of the pinion gear assembly. In one preferred embodiment, the pinion temperatures are recorded using an infrared heat gun whereupon temperatures are determined over a number of time intervals. These temperature readings are used to determine a temperature differential, At. For a dual direction mill, temperatures are recorded for both into mesh and out of mesh directions. The determined temperature differential of the pinion is then used to determine a scale for the pinion temperature change per gradient. For example, if the pinion temperature differential is
greater than 30° F and less than or equal to 60° F, then each gradient line 26 of the gear tooth
14 represents a 10° F interval. If the pinion temperature differential is greater than 15° F and
less than or equal to 30° F, then each gradient reference line 26 represents a 5° F interval. If
the pinion temperature differential is less than 15° F, each gradient reference line 26
represents a 2 lA° F interval. Furthermore, if the pinion tooth is moved laterally toward the
gradient grid 44, an "out of mesh" pinion move is being represented. However, if the pinion tooth is moved laterally away from the gradient grid 44, an "into mesh" pinion move is being represented. If the pinion teeth on the top half of the pinion diverge with the gear teeth, this is considered to be "out of mesh" rotation. Conversely, if the pinion teeth on the top half of the pinion converge with the gear teeth, this is considered to be "into mesh" rotation.
Now referring to Fig. 7, an enlarged view of the corrected position 46(b) illustrated in Fig. 6 is shown. As readily shown in Fig. 7, the pinion tooth 14 has been moved "out of mesh" by two gradient lines as indicative by pinion tooth sidewalls 24 being moved inward of gradient reference line 30 by two gradient lines 26. This "out of mesh" movement of the pinion tooth 14 results in pinion tooth opening highlighting a new gradient grid point or corrected position 46(b).
Once the pinion tooth 14 has been repositioned according to the proper temperature differential scale, it is possible to determine an appropriate pinion bearing move to correct for the measured temperature differential. That is, referring to the individual gradients of gradient grid 44 and by determining a position of the corrected position 46(b) compared to the starting position 46(a) and by measuring and determining the number of gradients along an x and y axis from the starting reference position 46(a) to the corrected position 46(b), it is possible to determine the appropriate pinion bearing move to correct the pinion alignment to the gear of a grinding mill. For example, the corrected position 46(b) corresponds to approximately 3 ! _> gradients along an x axis and one gradient downward along a y axis to the corrected position 46(b). Therefore, to correct for the recorded temperature differentials, it is necessary to move the pinion out of the mesh 3 Vz gradients and downward one gradient.
Determining the value of each gradient depends upon which temperature differential scale was used to determine pinion tooth repositioning. That is, in one embodiment, each gradient represents 0.5 thousandths of an inch if the pinion tooth was repositioned according
to a 2 V20 F gradient scale. Additionally and as best shown in Fig. 6, repositioning of the pinion tooth 14 causes a repositioning of pinion tooth leading edge 24(a). The number of root gradient lines between initial position 38 and the position following movement of the pinion tooth is indicative of the relative root change of the pinion gear assembly that will result once the pinion gear assembly is recalibrated to correct the temperature differentials. Like each gradient of grid 44, each root change line 28 has a different value depending upon which temperature differential scale was used in moving the pinion tooth. For example, if
each gradient reference line 36 represents a 2 V° F per gradient change, then each root line 28
represents 0.25 thousandths of an inch of change. The table below sets forth the additional root change and pinion bearing per gradient values for each temperature differential scale.
(*) These values assume the pinion face width is half the distance between the pinion bearing centerlines, the mill is drawing full power, and the gear and pinion tooth pressure
angles are 25°.
By determining the appropriate values, it is possible for a service technician, engineer, etc. to determine the appropriate pinion move.
As indicated previously and referring to Fig. 8, the present invention is designed such that gear tooth 12 and pinion tooth 14 may be aligned at any number of angles depending upon the angle of the pinion bearing below mill center line. The gear tooth 12 and the pinion
tooth 14 are positioned at a starting reference point 46(a) and at a 30° angle below mill center
line. As indicated previously, the range of angles shown in Fig. 8 represent only one embodiment of the present invention and is not intended to limit the scope thereof
Therefore, the present invention includes a method for determining a pinion bearing move to align a pinion-to-gear assembly. To determine the proper realignment move, the gear tooth is set to a proper angle below mill center line. The pinion tooth is then inserted or positioned into a pocket of the gear tooth such that the eyelet of the pinion tooth is positioned over a starting reference point. Temperature differentials recorded from the pinion gear assembly are then analyzed to determine the appropriate scale for a pinion temperature change per gradient. Simply, the highest temperature differential recorded over a series of time intervals determines which pinion temperature change per gradient scale is to be used.
Once the appropriate scale has been determined, the pinion tooth is accordingly moved to correct for the differential in temperature. For example, if the pinion temperature differential
for the "out of mesh" rotation is 10° F, then each gradient line of the gear tooth corresponds
to 2 lΛ° F. Therefore, to increase the pinion temperature by 10° F, the pinion tooth must be
moved closer to mesh four gradient lines for the "out of mesh" rotation. Conversely, if the
pinion temperature for the "out of mesh" rotation is to be decreased by 10° F, the pinion
tooth is moved away from the mesh four gradient lines for the "out of mesh" rotation.
Moving the pinion tooth the requisite number of gradient lines to account for the temperature differentials will result in the eyelet of the pinion tooth to be repositioned. The distance of the new position of the eyelet in relation to the starting position may then be used to determine the appropriate pinion bearing move. Simply, the pinion bearing move of the pinion gear assembly required to reduce the pinion temperature differential to zero is the difference between the pinion bearing starting reference point and the end point of the pinion tooth target after correction. After determining the distance in an x and in a y direction between the final position and the initial reference position, it is necessary to determine the appropriate scale to use in determining the pinion bearing realignment move. As discussed previously, the appropriate pinion bearing move as well as relative root change may be determined based upon which temperature gradient scale that was selected for moving the pinion tooth to the final corrected position.
Determining appropriate pinion bearing moves to correct pinion-to-gear alignment in accordance with the present invention are easy, quick and accurate. Furthermore, the present invention may also be used not only as an in-field product to recalibrate grinding mills and other pinion bearing assemblies, but may also be used as a teaching tool for those learning pinion gear alignments. The visual representation of the actual gear-pinion pressure angles and the pinion positions down from mill central line enables students to ascertain gear pressure angles, angles of the pinions below mill central line, and why and how pinion alignment corrections may be made. Further, those learning pinion alignment correction techniques may implement the present invention without having to input a significant amount of data into a computer program or solving a number of highly complex and often geometrical and trigometrieal mathematical calculations. Further, the present invention also contemplates including a series of instructions on a reverse side of base portion 40, Fig. 2, for instructing users on determining pinion bearing moves to correct pinion-to-gear alignments in accordance with the teachings of the present invention.
Therefore, in accordance with an embodiment of the present invention, a method for determining a pinion bearing move to correct pinion-to-gear alignments for a pinion-gear assembly comprises positioning a gear tooth to a first angle and positioning a pinion tooth to a starting position. The method further includes determining a pinion temperature differential, Δt, and repositioning the pinion tooth to a corrected position based on the pinion temperature differential. The method further includes determirring a distance from the starting position to the corrected position.
In accordance with another embodiment of the present invention, a nomograph includes a gear tooth having at least one set of a number of temperature gradient reference lines. The nomograph further includes a pinion tooth having a pair of aligned reference points. The nomograph further includes a gradient grid having a plurality of reference points for determining a pinion adjustment move.
In accordance with yet another embodiment of the present invention, a tool for realigning a pinion gear assembly is provided. The tool includes a visual representation of a gear to pinion mesh illustrating pressure angles of a gear and pinion assembly. The tool further includes an instructional manual having a set of instructions for determirring one or more pinion bearing moves based on one or more pinion temperatures.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

Claims (28)

CLAIMS:
1. A method for determining a pinion bearing move to align a pinion for a pinion-to- gear assembly, the method comprising: positioning a gear tooth to a' first angle; positioning a pinion tooth to a starting position; determining a pinion temperature differential, Δt; repositioning the pinion tooth to a corrected position based on Δt; and determining a distance from the starting position to the corrected position.
2. The method of claim 1 further comprising: comparing Δt to a table of predetermined values; and determining a repositioning scale therefrom.
3. The method of claim 2 wherein determining a repositioning scale further comprises selecting a change in pinion temperature per gradient guide.
4. The method of claim 1 wherein determining a distance further comprises moving the pinion tooth a number of pinion temperature gradients such that Δt will equal zero.
5. The method of claim 4 wherein determining a distance further comprises determining a number of gradients along at least one of an x-axis and a y-axis from the starting position to the corrected position and determining a unit of adjustment from the number of gradients.
6. The method of claim 5 wherein determining a unit of adjustment further comprises determining a pinion bearing move of at least one of into mesh, out of mesh, upwardly, and downwardly.
7. The method of claim 1 wherein determimng a pinion temperature differential comprises detecting heat using an infrared heat gun at two axial ends of axe pinion teeth while running under load and taking a difference thereof.
8. A nomograph for determining pinion adjustment comprising: a gear tooth having at least one set of a number of temperature gradient reference lines; a pinion tooth having a pair of aligned reference points; and a gradient grid having a plurality of reference points.
9. The nomograph of claim 8 further comprising a plurality of reference angle marks.
10. The nomograph of claim 8 further comprising a strip of vertically aligned reference lines, the strip extending axially from an intersection of the pair of gear teeth.
11. The nomograph of claim 8 wherein each gear tooth includes a temperature gradient reference line.
12. The nomograph of claim 11 wherein the pinion tooth has a pair of mutually facing, converging sides such that aligning of a aligned reference point and a reference point centrally interposed between the pair of gear teeth causes each pinion tooth side to align with a corresponding temperature gradient reference line.
13. The nomograph of claim 8 wherein the plurality of reference angle marks is positioned between the gradient grid and the tooth.
14. The nomograph of claim 13 wherein the gradient grid has a concave shape and wherein the plurality of reference angle marks is positioned along each side of the gradient grid.
15. The nomograph of claim 13 wherein the plurality of reference angle marks
corresponds to a gear tooth angle below mill centerline, the angle marks ranging from 0° to
30° at 2.5° intervals.
16. The nomograph of claim 8 wherein a distance and a direction between a gradient grid starting reference point and a gradient grid corrected point represents a move of the pinion bearing to realign the pinion-to-gear assembly.
17. The nomograph of claim 8 wherein the pinion-to-gear tooth, the pinion tooth, and the gradient grid visually represent pressure angles of a gear and pinion mesh assembly.
18. A tool for realigning a pinion-gear assembly, the tool comprising: a visual representation of a gear to pinion mesh illustrating pressure angles of a gear and pinion assembly; and an instructional manual having a set of instructions for determining one or more pinion bearing moves based on one or more pinion temperatures.
19. The tool of claim 18 wherein the visual representation further comprises: an eyelet; a pair of converging gear teeth extending from the eyelet, each gear tooth having a number of temperature gradient reference lines; a polygonal pinion tooth insertable into a region defined by the pair of converging gear teeth; and a gradient map having a plurality of reference points.
20. The tool of claim 19 wherein the visual representation further comprises a plurality of angle markings extending from at least one side of the gradient map, the plurality
of angle markings intervally identifying angles between 0° and 30° and representing an angle
of pinion below mill centerline.
21. The tool of claim 19 wherein the gradient map has a curvilinear configuration.
22. The tool of claim 19 wherein the visual representation includes a gear teeth guide, the gear teeth guide extending from the eyelet and having the pair of gear teeth positioned therein.
23. The tool of claim 22 wherein the gear teeth guide further comprises a reference line extending from the eyelet to an intersection of the pair of gear teeth.
24. The tool of claim 18 wherein the instructional manual further comprises at least one table of pinion data for facilitating selection of an appropriate pinion bearing move.
25. The tool of claim 24 wherein the at least one table includes at least one scale for determining a unit adjustment per gradient.
26. The tool of claim 25 wherein the instructional manual further comprises at least one legend for determining a direction of the unit of adjustment.
27. The tool of claim 18 further comprising a sheath enclosing the visual representation on one side thereof and enclosing the instruction manual on an opposite side thereof.
28. The tool of claim 27 wherein the sheath is transparent.
AU2002362863A 2001-10-16 2002-10-16 Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly Expired AU2002362863B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/682,768 2001-10-16
US09/682,768 US6705022B2 (en) 2001-10-16 2001-10-16 Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly
PCT/US2002/032954 WO2003033940A1 (en) 2001-10-16 2002-10-16 Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly

Publications (2)

Publication Number Publication Date
AU2002362863A1 true AU2002362863A1 (en) 2003-07-03
AU2002362863B2 AU2002362863B2 (en) 2009-07-16

Family

ID=24741048

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002362863A Expired AU2002362863B2 (en) 2001-10-16 2002-10-16 Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly

Country Status (6)

Country Link
US (1) US6705022B2 (en)
AU (1) AU2002362863B2 (en)
BR (1) BR0206158A (en)
GB (1) GB2397108B (en)
WO (1) WO2003033940A1 (en)
ZA (1) ZA200405428B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401415B2 (en) * 2004-08-06 2008-07-22 Ratech Pinion gear depth measurement tool
US20070085269A1 (en) * 2005-10-17 2007-04-19 Martin Paul E Jr User-customizable children's puzzles

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB280746A (en) 1927-01-25 1927-11-24 Healey Aeromarine Bus Co Inc Improvements in gear trains
US2241692A (en) * 1939-10-25 1941-05-13 Toledo Scale Co Measuring device
US2546532A (en) * 1945-09-17 1951-03-27 Fmc Corp Tangential angle gauge
US2653387A (en) * 1949-05-06 1953-09-29 Cameron James Arthur Layout instrument
US3434365A (en) 1967-06-13 1969-03-25 United Aircraft Corp Gear alignment means
US3559881A (en) * 1968-09-13 1971-02-02 Richard L Maison Nomogram computer
US3820414A (en) 1972-07-24 1974-06-28 Gleason Works Gear tooth design
US4001980A (en) 1972-11-17 1977-01-11 Ambar Investment Inc. Grinding machine
GB1458814A (en) 1973-03-13 1976-12-15 English Electric Co Ltd Gearboxes
IT1055428B (en) * 1975-12-29 1981-12-21 Borgato A ESTIMATED AIR NAVIGATION INSTRUMENT, OBTAINED FROM THE COMBINATION OF: A SCALIMETRIC LINE, A REGULAR CIRCULAR LOGARITHMIC CALCULATOR, A REVOLVING GONIOMETER, A CHRONOMETRIC MONOGRAM AND A POLAR RETICLE WITH TROTO-TRANSLATION
JPS5578229A (en) 1978-12-11 1980-06-12 Ono Sokki Co Ltd Gearing test unit
US5112131A (en) 1981-02-27 1992-05-12 Diffracto, Ltd. Controlled machining of combustion chambers, gears and other surfaces
US5940302A (en) 1981-02-27 1999-08-17 Great Lakes Intellectual Property Controlled machining of combustion chambers, gears and other surfaces
US5231875A (en) 1991-04-22 1993-08-03 Toyota Jidosha Kabushiki Kaisha Method and apparatus for evaluating gear motion characteristics, based on tooth profile deflection differentiated by rotation angle of the gear
US5221513A (en) 1992-01-31 1993-06-22 The Penn State Research Foundation Apparatus and method for net shape finishing of gears
US5615485A (en) * 1995-03-07 1997-04-01 Safe-T Products, Inc. Instruments for drawing circles
US5610994A (en) 1995-05-03 1997-03-11 The Gleason Works Digital imaging of tooth contact pattern
JP3034447B2 (en) 1995-09-06 2000-04-17 トヨタ自動車株式会社 Gear multi-stage rolling device
JP3298765B2 (en) 1995-09-06 2002-07-08 トヨタ自動車株式会社 High precision gear rolling method
US5901454A (en) 1997-09-02 1999-05-11 The Gleason Works Method of meshing gears
US6393902B1 (en) 1998-06-29 2002-05-28 Veri-Tek Inc. Noise testing system with temperature responsive sensitivity

Similar Documents

Publication Publication Date Title
CA2136398C (en) Measuring and drawing instrument
US6574582B1 (en) Electronic calipers having scaling, nominal-value look-up, and geometric-calculation functions
US4420891A (en) Framing and layout square
US5647135A (en) Drafting instrument with electronically controllable scale
AU2002362863B2 (en) Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly
US9671209B2 (en) Tool for establishing the length of specific thickness stock required to form an enclosed shape having predetermined dimensions
US20160023502A1 (en) System and a method for drawing arcs and circle
CN206300601U (en) Orifice plate centering instrument
AU2002362863A1 (en) Method and apparatus for determining a pinion bearing move to align a pinion-to-gear assembly
US5189804A (en) Angle indicating instrument
US20030051358A1 (en) Degree finding instrument
US9457612B2 (en) System and a method for drawing arcs and circle
CN212253948U (en) Arc radius measuring tool
US7748129B2 (en) Apparatus and method for measuring the trigonometric cosine and trigonometric sine of an angle
US20030233761A1 (en) Measuring device
US10228227B2 (en) Scale
US4324050A (en) Scale magnifier
US4559712A (en) Cutter tip measuring device
US2972816A (en) Aligning and leveling device
US8398A (en) Plotting-scale
EP3623744B1 (en) Fan blade masking/coating check inspection tool
US2575697A (en) Combination measuring instrument for layout work
JPH1151602A (en) Size measuring jig for key
US4135824A (en) Scope for viewing the internal surface of a bore or similar cavity
US3482319A (en) Percentage measuring device