AU2002362443A1 - 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof - Google Patents

2-propynyl adenosine analogs having A2A agonist activity and compositions thereof

Info

Publication number
AU2002362443A1
AU2002362443A1 AU2002362443A AU2002362443A AU2002362443A1 AU 2002362443 A1 AU2002362443 A1 AU 2002362443A1 AU 2002362443 A AU2002362443 A AU 2002362443A AU 2002362443 A AU2002362443 A AU 2002362443A AU 2002362443 A1 AU2002362443 A1 AU 2002362443A1
Authority
AU
Australia
Prior art keywords
compound
carboxylic acid
piperidine
aryl
alkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002362443A
Other versions
AU2002362443B2 (en
Inventor
Robert Alan Figler
Joel M. Linden
Timothy L. Macdonald
Lauren Jean Murphree
Jayson M. Rieger
Gail W. Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UVA Licensing and Ventures Group
Original Assignee
University of Virginia Patent Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Virginia Patent Foundation filed Critical University of Virginia Patent Foundation
Priority claimed from PCT/US2002/031383 external-priority patent/WO2003029264A2/en
Publication of AU2002362443A1 publication Critical patent/AU2002362443A1/en
Application granted granted Critical
Publication of AU2002362443B2 publication Critical patent/AU2002362443B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

2-PROPYNYL ADENOSINE ANALOGS HAVING A2A AGONIST ACTIVITY AND COMPOSITIONS THEREOF
Cross-Reference to Related Applications This application claims priority of U.S. provisional patent application Serial No. 60/326,517, filed October 1, 2001, and U.S. provisional patent application Serial No. 60/383,200, filed May 24, 2001, both of which are incorporated by reference herein.
Government Funding The invention described herein was made with government support under Grant Number (RO1-HL37942), awarded by the National Science Foundation. The United States Government has certain rights in the invention.
Background of the Invention The inflammatory response serves the purpose of eliminating harmful agents from the body. There is a wide range of pathogenic insults that can initiate an inflammatory response including infection, allergens, autoimmune stimuli, immune response to transplanted tissue, noxious chemicals, and toxins, ischemia/reperfusion, hypoxia, mechanical and thermal trauma, Inflammation normally is a very localized action which serves in expulsion, attenuation by dilution, and isolation of the damaging agent and injured tissue. The body's response becomes an agent of disease when it results in inappropriate injury to host tissues in the process of eliminating the targeted agent, or responding to a traumatic insult.
As examples, inflammation is a component of pathogenesis in several vascular diseases or injuries. Examples include: ischemia/reperfusion injury (N. G. Frangogiannis et al., in Myocardial Ischemia: Mechanisms, Reperfusion, Protection, M. Karmazyn, ed., Birkhuser Verlag (1996) at 236-284; H. S. Sharma et al., Med. of Inflamm., 6, 175 (1987)), atherosclerosis (R. Ross, Nature, 362, 801 (1993)), inflammatory aortic aneurysms (N. Girardi et al., Ann. Thor. Surg., 64, 251 (1997); D. I. Walker et al., Brit. J. Surg., 59, 609 (1972); R. L. Pennell et al., J. Nasc. Surg., 2, 859 (1985)), and restenosis following balloon angioplasty (see, R. Ross cited above). The cells involved with inflammation include leukocytes (i.e., the immune system cells - neutrophils, eosinophils, lymphocytes, monocytes, basophils, macrophages, dendritic cells, and mast cells), the vascular endothelium, vascular smooth muscle cells, fibroblasts, and myocytes.
The release of inflammatory cytokines such as tumor necrosis factor- alpha (TΝFα) by leukocytes is a means by which the immune system combats pathogenic invasions, including infections. TΝFo! stimulates the expression and activation of adherence factors on leukocytes and endothelial cells, primes neutrophils for an enhanced inflammatory response to secondary stimuli and enhances adherent neutrophil oxidative activity. See, Sharma et al., cited above. In addition, macrophages/dendritic cells act as accessory cells processing antigen for presentation to lymphocytes. The lymphocytes, in turn, become stimulated to act as pro-inflammatory cytotoxic cells.
Generally, cytokines stimulate neutrophils to enhance oxidative (e.g., superoxide and secondary products) and nonoxidative (e.g., myeloperoxidase and other enzymes) inflammatory activity. Inappropriate and over-release of cytokines can produce counterproductive exaggerated pathogenic effects through the release of tissue-damaging oxidative and nonoxidative products (K. G. Tracey et al., J. Exp. Med.. 167, 1211 (1988); and D. Ν. Mannel et al., Rev. Infect. Pis.. 9 (suppl. 5), S602-S606 (1987)). For example, TΝFαcan induce neutrophils to adhere to the blood vessel wall and then to migrate through the vessel to the site of injury and release their oxidative and non-oxidative inflammatory products.
Although monocytes collect slowly at inflammatory foci, given favorable conditions, the monocytes develop into long-term resident accessory cells and macrophages. Upon stimulation with an inflammation trigger, monocytes/macrophages also produce and secrete an array of cytokines (including TΝFα), complement, lipids, reactive oxygen species, proteases and growth factors that remodel tissue and regulate surrounding tissue functions.
For example, inflammatory cytokines have been shown to be pathogenic in: arthritis (C. A. Dinarello, Semin. Immunol.. 4, 133 (1992)); ischemia (A. Seekamp et al., Agents-Actions-Supp., 41, 137 (1993)); septic shock (D. N. Mannel et al., Rev. Infect. Pis., 9 (suppl. 5), S602-S606 (1987)); asthma (N. M. Cembrzynska et al, Am. Rev. Respir. Pis.. 147, 291 (1993)); organ transplant rejection (P. K. Lnagawa et al., Transplantation, 51, 57 (1991); multiple sclerosis (H. P. Hartung, Ann. NeuroL, 33, 591 (1993)); ADDS (T. Matsuyama et aUAIPS, 5, 1405 (1991)); and in alkali-burned eyes (F. Miyamoto et al., Opthalmic Res., 30, 168 (1997)). In addition, superoxide formation in leukocytes has been implicated in promoting replication of the human immunodeficiency virus (FflV) (S. Legrand-Poels et al, ATPS Res. Hum. Retroviruses, 6, 1389 (1990)).
It is well known that adenosine and some analogs of adenosine that nonselectively activate adenosine receptor subtypes decrease neutrophil production of inflammatory oxidative products (B. N. Cronstein et al., Ann. N.Y. Acad. Sci.. 451. 291 (1985); P. A. Roberts et al., Biochem. J.. 227. 669 (1985); P. J. Schrier et al., J. Immunol.. 137, 3284 (1986); B. N. Cronstein et al, Clinical Immunol, and Immunopath., 42, 76 (1987); M. A. Iannone et al., in Topics and Perspective in Adenosine Research, E. Gerlach et al, eds., Springer- Verlag, Berlin, p. 286 (1987); S. T. McGarrity et al., J. Leukocyte Biol. 44, 411421 (1988); J. Pe La Harpe et al., J. Immunol.. 143. 596 (1989); S. T. McGarrity et al, J. Immunol.. 142. 1986 (1989); and C. P. Nielson et al, Br. J. Pharmacol., 97, 882 (1989)). For example, adenosine has been shown to inhibit superoxide release from neutrophils stimulated by chemoattractants such as the synthetic mimic of bacterial peptides, f-met-leu-phe (fMLP), and the complement component C5a (B. N. Cronstein et al, J. Immunol., 135, 1366 (1985)). Adenosine can decrease the greatly enhanced oxidative burst of PMN (neutrophil) first primed with TNF-α and then stimulated by a second stimulus such as f-met-leu-phe (G. W. Sullivan et al., Clin. Res.. 41, 172A (1993)). Additionally, it has been reported that adenosine can decrease the rate of HIV replication in a T-cell line (S. Sipka et al., Acta. Biochim. Biopys. Hung., 23, 75 (1988)). However, there is no evidence that in vivo adenosine has anti- inflammatory activity (G. S. Firestein et al., Clin. Res., 41, 170A (1993); and.B. N. Cronstein et al., Clin. Res., 41, 244A (1993)). It has been suggested that there is more than one subtype of adenosine receptor on neutrophils that can have opposite effects on superoxide release (B. N. Cronstein et al, J. Clin. Invest., 85, 1150 (1990)). The existence of A2A receptor on neutrophils was originally demonstrated by Nan Calker et al. (P. Nan Calker et al, Eur. J. Pharmacology, 206, 285 (1991)).
There has been progressive development of compounds that are more and more potent and/or selective as agonists of A A adenosine receptors (AR) based on radioligand binding assays and physiological responses. Initially, compounds with little or no selectivity for A2A receptors were developed, such as adenosine itself or 5 ' -carboxamides of adenosine, such as 5 ' -Ν- ethylcarboxamidoadenosine (ΝECA) (B. Ν. Cronstein et al., J. Immunol., 135, 1366 (1985)). Later, it was shown that addition of 2-alkylamino substituents increased potency and selectivity, e.g., CN1808 and CGS21680 (M. F. Jarvis et al., J. Pharmacol. Exp. Ther.. 251, 888 (1989)). 2-Alkoxy-substituted adenosine derivatives such as WRC-0090 are even more potent and selective as agonists at the coronary artery A2A receptor (M. Ueeda et al., J. Med. Chem., 34> 1334 (1991)). The 2-alklylhydrazino adenosine derivatives, e.g., SHA 211 (also called WRC-0474) have also been evaluated as agonists at the coronary artery A2A receptor (K. Νiiya et al., J. Med. Chem., 35, 4557 (1992)). There is one report of the combination of relatively nonspecific adenosine analogs, R-phenylisopropyladenosine (R-PIA) and 2-chloroadenosine (Cl-Ado) with a phosphodiesterase (PPE) inhibitor resulting in a lowering of neutrophil oxidative activity (M. A. Iannone et al., Topics and Perspectives in Adenosine Research, E. Garlach et al, eds., Springer-Nerlag, Berlin, pp. 286- 298 (1987)). However, R-PIA and Cl-Ado analogs are actually more potent activators of Ai adenosine receptors than of A A adenosine receptors and, thus, are likely to cause side effects due to activation of Ai receptors on cardiac muscle and other tissues causing effects such as "heart block."
R. A. Olsson et al. (U.S. Pat. No. 5,278,150) disclose selective adenosine A2 receptor agonists of the formula: wherein Rib is ribosyl, Ri can be H and R2 can be cycloalkyl. The compounds are disclosed to be useful for treating hypertension, atherosclerosis and as vasodilators.
Olsson et al. (U.S. Pat. No. 5,140,015) disclose certain adenosine A2 receptor agonists of formula:
wherein C(X)BR2 can be CH2OH and Ri can be alkyl- or alkoxyalkyl. The compounds are disclosed to be useful as vasodilators or an antihypertensives. Linden et al. (U.S. Pat. No. 5,877,180) is based on the discovery that certain inflammatory diseases, such as arthritis and asthma, may be effectively treated by the administration of compounds which are selective agonists of A2 adenosine receptors, preferably in combination with a Type IN phosphodiesterase inhibitor. An embodiment of the Linden et al. invention provides a method for treating inflammatory diseases by administering an effective amount of an A2A adenosine receptor of the following formula: wherein R and X are as described in the patent.
In one embodiment, the Linden et al. invention involves the administration of a Type IN phosphodiesterase (PPE) inhibitor in combination with the A A adenosine receptor agonist. The Type IN phosphodiesterase (PPE) inhibitor includes racemic and optically active 4-(polyalkoxyphenyl)-2- pyrrolidones of the following formula:
wherein R', R18, R19 and X are as disclosed and described in U.S. Pat. No. 4,193,926. Rolipram is an example of a suitable Type IN PPE inhibitor included within the above formula.
G. Cristalli (U.S. Pat. No. 5,593,975) discloses 2-arylethynyl, 2-cycloalkylethynyl or 2-hydroxyalkylethynyl derivatives, wherein the riboside residue is substituted by carboxy amino, or substituted carboxy amino (R HNC(O)-). 2-Alkynylpurine derivatives have been disclosed in Miyasaka et al. (U.S. Pat. No. 4,956,345), wherein the 2-alkynyl group is substituted with (C3-Cι6)alkyl. The '975 compounds are disclosed to be vasodilators and to inhibit platelet aggregation, and thus to be useful as anti-ischemic, anti- atherosclerosis and anti-hypertensive agents. Recently, U.S. Patent 6,232,297 to Linden, et al. disclosed compounds having the general formula: wherein each R is H, X is ethylaminocarbonyl and R1 is 4- carboxycyclohexylmethyl (PWΗ-146a), R1 is 4- methoxycarbonylcyclohexylmethyl (PWH-146e) or R1 is 4-acetoxymethyl- cyclohexylmethyl (JMR-193). These compounds are reported to be A A agonists.
However, a continuing need exists for selective A adenosine receptor agonists useful for therapeutic applications, that have reduced side effects.
Summary of the Invention
The present invention comprises compounds and methods of their use for the treatment of inflammatory activity in mammalian tissue. The inflammatory tissue activity can be due to pathological agents or can be due to physical, chemical or thermal trauma, or the trauma of medical procedures, such as organ, tissue or cell transplantation, angioplasty (PCTA), inflammation following ischemia/reperfusion, or grafting. The present compounds comprise a novel class of 2-alkynyladenosine derivatives, substituted at the ethyn-2-yl position by substituted cycloalkyl and heterocycle (heterocyclic) moieties. Preferably, the riboside residue is substituted at the 5 '-position by an N-alkyl-(or cycloalkyl)carboxyarnino ("aminocarbonyl") moiety ("X"). Thus, the present invention provides a method for inhibiting the inflammatory response in a mammal, such as a human subject, and protecting the tissue subject to the response, by administering an effective amount of one or more compounds of the invention. The compounds of the invention have general formula (I):
(I) wherein
Z is CR3R4R5 orNR4R5; each R1 is independently hydrogen, halo, -ORa, -SR , (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, C3.8cycloalkyl, heterocycle, hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaRbN-, RaR NC(=O)-, RaC(-O)N(Rb)-, RaRbNC(=O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, RaS(=O)2-, -N=NRa, or -OPO2Ra; each R2 is independently hydrogen, halo, (Cι-C8)alkyl, (C3-C8)cycloalkyl, heterocycle, heterocycle(Cι-C8)alkylene-, aryl, aryl(C1-C8)alkylene-, heteroaryl, or heteroaryl(Cι-C8)alkylene-; or R1 and R2 and the atom to which they are attached is C=O, C=S or
C=NRC.
R4 and R5 together with the atoms to which they are attached form a saturated or partially unsaturated, mono-, bicyclic- or aromatic ring having 3, 4, 5, 6, 7, 8, 9 or 10 ring atoms optionally comprising 1, 2, 3, or 4 heteroatoms selected from non-peroxide oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (-S(O)2-) or amine (-NR -) in the ring; wherein any ring comprising R4 and R5 is substituted with from 1 to 14 R6 groups; wherein each R6 is independently halo, -ORa, -SR , (Cι-Cg)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (Cι-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, heterocycle or hetrocycle (Cι-C8)alkylene-, aryl, aryl
(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2R , RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaRbN-, RaRbNC(=O)-, RaC(=O)N(Rb)-, RaRbNC(=O)N(Rb)-, RaR NC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, -NNRa,-OPO2Ra, or two R6 groups and the atom to which they are attached is C=O, C=S or; two R6 groups together with the atom or atoms to which they are attached can form a carbocyclic or heterocyclic ring.
R3 is hydrogen, halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, heterocycle, hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, R OC(=O)N(Ra)-, RaRbN-, RaRbNC(=O)-, RaC(=O)N(R )-, RaRbNC(-O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, RaS(=O)2-, -NNRa, -OPO2Ra; or if the ring formed from CR4R5 is aryl or hetreroaryl or partially unsaturated then R3 can be absent; each R7 is independently hydrogen, (Cι-C8)alkyl, (C3-C8)cycloalkyl, aryl or aryl(Cι-C8)alkylene, heteroaryl, heteroaryl(C1-C8)alkylene-;
X is -CH2ORa, -CO2Ra, -OC(O)Ra, -CH2OC(O)Ra, -C(O)NRaRb, -CH2SRa, -C(S)ORa, -OC(S)Ra, -CH2OC(S)Ra or C(S)NRaR or -CH2N(Ra)(Rb); wherein any of the alkyl, cycloalkyl, heterocycle, aryl, or heteroaryl, groups of R , R , R , R and R is optionally substituted on carbon with one or more (e.g. 1, 2, 3, or 4) substituents selected from the group consisting of halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, heterocycle or hetrocycle(Cι-C8)alkylene-, aryl, aryloxy, aryl (Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaRbN-, R'TΛTC^O)-, RaC(=O)N(Rb)-, RaR NC(=O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)p-, RaR NS(O)p-, N=NRa, and -OPO2Ra; wherein any (Cι-C8)alkyl, (C3-C8)cycloalkyl, (C6-C12)bicycloalkyl, (Cι-C8)alkoxy, (Cι-C8)alkanoyl, (Cι-C8)alkylene, or heterocycle, is optionally partially unsaturated;
Ra and R are each independently hydrogen, (Cι-C8)alkyl, or (Cι-C8)alkyl substituted with 1-3 (Cι-C8)alkoxy, (C3-C8)cycloalkyl, (Ci-C8)alkylthio, amino acid, aryl, aryl(Cι-C8)alkylene, heteroaryl, or heteroaryl(Cι-C8)alkylene; or Ra and Rb, together with the nitrogen to which they are attached, form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring; and
Rc is hydrogen or (Cι-C6)alkyl; m is 0 to about 8 and p is 0 to 2; provided that when CR4R5 is a carbocyclic ring then at least one of R1,
R2, or R3 is a group other than hydrogen or at least one R6 group is a group other than -CH2OH, -CO2Ra, RaC(=O)O-, RaC(=O)OCH2- or RaRbNC(=O)-; provided that m is at least 1 when Z is NR4R5; or a pharmaceutically acceptable salt thereof. The invention provides a compound of formula I for use in medical therapy, preferably for use in treating inflammation or protecting mammalian tissue from inflammation such as an inflammatory response, e.g., resulting from allergy, trauma or ischemia/reperfusion injury, as well as the use of a compound of formula I for the manufacture of a medicament for the treatment of an inflammatory response due to a pathological condition or symptom in a mammal, such as a human, which is associated with inflammation.
Although certain A A adenosine receptor agonists have been reported to be vasodilators, and thus to be useful to directly treat hypertension, thrombus, atherosclerosis and the like, the tissue-protective anti-inflammatory activity of the compounds of formula (I) is not suggested by the prior art.
The invention also includes the use of a combination of these compounds with type IN phosphodiesterase inhibitors to preferably cause synergistic decreases in the inflammatory response mediated by leukocytes.
The invention also provides a pharmaceutical composition comprising an effective amount of the compound of formula I, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable diluent or carrier, and optionally, in combination with a Type IV phosphodiesterase (PPE) inhibitor. Preferably, the composition is presented as a unit dosage form. Additionally, the invention provides a therapeutic method for preventing or treating a pathological condition or symptom in a mammal, such as a human, wherein the activity of A2A adenosine receptors is implicated and agonism of said receptors is desired, comprising administering to a mammal in need of such therapy, an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof. It is believed that activation of A2A adenosine receptors inhibits inflammation by affecting neutrophils, mast cells, monocytes/macrophages, platelets T-cells and/or eosinophils. Inhibition of these inflammatory cells results in tissue protection following tissue insults.
Among the inflammatory responses that can be treated (including treated prophylactically) with a compound of formula I, optionally with a Type IN PPE inhibitor, are inflammation due to:
(a) autoimmune stimulation (autoimmune diseases), such as lupus erythematosus, multiple sclerosis, infertility from endometriosis, type I diabetes mellitus including the destruction of pancreatic islets leading to diabetes and the inflammatory consequences of diabetes, including leg ulcers, Crohn's disease, ulcerative colitis, inflammatory bowel disease, osteoporosis and rheumatoid arthritis; (b) allergic diseases such as asthma, hay fever, rhinitis, poison ivy, vernal conjunctivitis and other eosinophil-mediated conditions;
(c) skin diseases such as psoriasis, contact dermatitis, eczema, infectious skin ulcers, open wounds, cellulitis;
(d) infectious diseases including sepsis, septic shock, encephalitis, infectious arthritis, endotoxic shock, gram negative shock, Jarisch-Herxheimer reaction, anthrax, plague, tularemia, ebola, shingles, toxic shock, cerebral malaria, bacterial meningitis, acute respiratory distress syndrome (ARPS), lyme disease, HIN infection, (TΝFα-enhanced HIN replication, TΝFc inhibition of reverse transcriptase inhibitor activity); (e) wasting diseases: cachexia secondary to cancer and HIN;
(f) organ, tissue or cell transplantation (e.g., bone marrow, cornea, kidney, lung, liver, heart, skin, pancreatic islets) including transplant rejection, and graft versus host disease;
(g) adverse effects from drug therapy, including adverse effects from amphotericin B treatment, adverse effects from immunosuppressive therapy, e.g., interleukin-2 treatment, adverse effects from OKT3 treatment, contrast dyes, antibiotics, adverse effects from GM-CSF treatment, adverse effects of cyclosporine treatment, and adverse effects of aminoglycoside treatment, stomatitis and mucositis due to immunosuppression;
(h) cardiovascular conditions including circulatory diseases induced or exasperated by an inflammatory response, such as ischemia, atherosclerosis, peripheral vascular disease, restenosis following angioplasty, inflammatory aortic aneurysm, vasculitis, stroke, spinal cord injury, congestive heart failure, hemorrhagic shock, ischemia/reperfusion injury, vasospasm following subarachnoid hemorrhage, vasospasm following cerebrovascular accident, pleuritis, pericarditis, and the cardiovascular complications of diabetes; (i) dialysis, including pericarditis, due to peritoneal dialysis;
(j) gout; and
(k) chemical or thermal trauma due to burns, acid, alkali and the like.
Of particular interest and efficacy is the use of the present compounds to limit inflammatory responses where the ischemia/reperfusion injury caused by angioplasty or throbolysis. Also of particular interest and efficacy is the use of the present compounds to limit inflammatory responses due to organ, tissue or cell transplantation, i.e., the transplantation of allogeneic or xenogeneic tissue into a mammalian recipient, autoimmune diseases and inflammatory conditions due to circulatory pathologies and the treatment thereof, including angioplasty, stent placement, shunt placement or grafting. Unexpectedly, it was found that administration of one or more compounds of formula (I) was effective after the onset of the inflammatory response, e.g., after the subject was afflicted with the pathology or trauma that initiates the inflammatory response. Tissue or cells comprising ligand bound receptor sites can be used to measure the selectively of test compounds for specific receptor subtypes, the amount of bioactive compound in blood or other physiological fluids, or can be used as a tool to identify potential therapeutic agents for the treatment of diseases or conditions associated with receptor site activation, by contacting said agents with said ligand-receptor complexes, and measuring the extent of displacement of the ligand and/or binding of the agent, or the cellular response to said agent (e.g., cAMP accumulation). Brief Pescription of the Figures Figure 1 illustrates the results of a comparison of the depression of blood pressure in rats using the compound ATL-146e and JR4007 at lOOug/kg. Figure 2 illustrates the results of a dose-response experiment for the depression of blood pressure in rats using the compound JR4007 at concentrations of 1, 10, and 100 ug/kg.
Figure 3 illustrates the results of a comparison of the depression of blood pressure in rats using test compounds at 1 ug/kg.
Figure 4 illustrates the results of a comparison of the depression of blood pressure in rats using test compound JR 3223 in two animals.
Figure 5 illustrates the results of a of a dose-response experiment for the depression of blood pressure in rats using for JR4051 at concentrations of 1, and 10, ug/kg.
Figure 6 illustrates the results of a comparison of the depression of blood pressure in rats using the compounds of the invention.
Figures 7 - 16 illustrate the results of the coronary blood flow for test compounds in dogs.
Figure 17 illustrates the results of the liver ischemia/reperfusion injury test
Petailed Pescription of the Invention The following definitions are used, unless otherwise described. Halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, aralkyl, alkylaryl, etc. denote both straight and branched alkyl groups; but reference to an individual radical such as "propyl" embraces only the straight chain radical, a branched chain isomer such as "isopropyl" being specifically referred to. Aryl includes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. Heteroaryl encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and one to four heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(X) wherein X is absent or is H, O, (Cι-C4)alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
It will be appreciated by those skilled in the art that the compounds of formula (I) have more than one chiral center and may be isolated in optically active and racemic forms. Preferably, the riboside moiety of formula (I) is derived from O-ribose, i.e., the 3',4'-hydroxyl groups are alpha to the sugar ring and the 2' and 5 ' groups is beta (3R, 4S, 2R, 5S). When the two groups on the cyclohexyl group are in the 1- and 4-position, they are preferably trans. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, or enzymatic techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase) and how to determine adenosine agonist activity using the tests described herein, or using other similar tests which are well known in the art.
Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
Specifically, (Cι-C8)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, heptyl or octyl. As used herein, the term "cycloalkyl" encompasses bicycloalkyl (norbornyl, 2.2.2-bicyclooctyl, etc.) and tricycloalkyl (adamantyl, etc.), optionally comprising 1-2 N, O or S. Cycloalkyl also encompasses (cycloalkyl)alkyl. Thus, (C -C6)cycloalkyl can be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
(Cι-C8)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexyloxy; (C2-C6)alkenyl can be vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl; (C2-C6)alkynyl can be ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, or 5-hexynyl; (Ci-C6)alkanoyl can be acetyl, propanoyl or butanoyl; halo(Cι-C6)alkyl can be iodomethyl, bromomethyl, chloromethyl, fluoromethyl, trifluoromethyl, 2-chloroethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, or pentafluoroethyl; hydroxy(Cι-C6)alkyl can be hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 1-hydroxybutyl, 4-hydroxybutyl, 1-hydroxypentyl, 5-hydroxypentyl, 1-hydroxyhexyl, or 6-hydroxyhexyl; (Cι-C6)alkoxycarbonyl (CO2R2) can be methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, or hexyloxycarbonyl; (Cι-C6)alkylthio can be methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, pentylthio, or hexylthio, (C2-C6)alkanoyloxy can be acetoxy, propanoyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, or hexanoyloxy; aryl can be phenyl, indenyl, or naphthyl; and heteroaryl can be furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyraxolyl, pyrrolyl, pyrazinyl, tetrazolyl, puridyl (or its N-oxide), thientyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N-oxide) or quinolyl (or its N-oxide).
Aryl denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. Heteroaryl denotes a radical of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and 1, 2, 3, or 4 heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(Y) wherein Y is absent or is H, O, (Cι-C8)alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
The term "heterocycle" generally represents a non aromatic heterocyclic group, having from 3 to about 10 ring atoms, which can be saturated or partially unsaturated, containing at least one heteroatom (e.g., 1, 2, or 3) selected from the group consisting of oxygen, nitrogen, and sulfur. Specific, "heterocycle" groups include monocyclic, bicyclic, or xricyclic groups containing one or more heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur. A "heterocycle" group also can include one or more oxo groups (=O) attached to a ring atom. Nonlimiting examples of heterocycle groups include 1,3-dioxolane, 1,4-dioxane, 1,4-dithiane, 2H-pyran, 2-pyrazoline, 4H-pyran, chromanyl, imidazolidinyl, imidazolinyl, indolinyl, isochromanyl, isoindolinyl, morpholine, piperazinyl, piperidine, piperidyl, pyrazolidine, pyrazolidinyl, pyrazolinyl, pyrrolidine, pyrroline, quinuelidine, thiomorpholine, and the like.
The term "alkylene" refers to a divalent straight or branched hydrocarbon chain (e.g. ethylene -CΗ22-). The term "aryl(Cι-C )alkylene" for example includes benzyl, phenethyl, naphthylmethyl and the like.
The carbon atom content of various hydrocarbon-containing moieties is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety, i.e., the prefix -Cj indicates a moiety of the integer "i" to the integer "j" carbon atoms, inclusive. Thus, for example, (Cι-C8)alkyl refers to alkyl of one to eight carbon atoms, inclusive.
The compounds of the present invention are generally named according to the IUPAC or CAS nomenclature system. Abbreviations which are well known to one of ordinary skill in the art may be used (e.g., "Ph" for phenyl, "Me" for methyl, "Et" for ethyl, "h" for hour or hours and "rt" for room temperature).
Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents. Specifically, (Cι-C8)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, or heptyl; (Cι-C8)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, hexyloxy, 1-methylhexyloxy, or heptyloxy; aryl can be phenyl, indenyl, or naphthyl; and heteroaryl can be furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N-oxide) or quinolyl (or its N-oxide). A specific value for R1 is hydrogen, -OH, -CH2OH, -OMe, -OAc, -NH2, -NHMe, -NMe2 or -NHAc.
Another specific value for R1 is hydrogen, -OH, -OMe, -OAc, -NH2, -NHMe, -NMe2 or -NHAc. Another specific value for R1 is hydrogen, -OH, -OMe, or -NH2.
Another specific value for R1 is hydrogen, -OH, or -NH2.
A more specific value for R1 is hydrogen or -OH.
A specific value for R1, R2 and the carbon atom to which they are attached is carbonyl (C=O). A specific value for R2 is hydrogen or (Cι-C8)alkyl, cyclopropyl, cyclohexyl or benzyl.
Another specific value for R2 is hydrogen, methyl, ethyl or propyl.
Another specific value for R2 is hydrogen or methyl.
A more specific value for R2 is hydrogen A specific value for R3 is hydrogen, OH, OMe, OAc, NH2, NHMe,
NMe2 or NHAc.
Another specific value for R3 is hydrogen, OH, OMe, or NH2.
Another specific value for R3 is hydrogen, OH, or NH2.
A more specific value for R3 is hydrogen or OH. A specific value for the ring comprising R4, R5 and the atom to which they are connected is cyclopentane, cyclohexane, piperidine, dihydro-pyridine, tetrahydro-pyridine, pyridine, piperazine, decaline, tetrahydro-pyrazine, dihydro-pyrazine, pyrazine, dihydro-pyrimidine, tetrahydro-pyrimidine, hexahydro-pyrimidine, pyrazine, imidazole, dihydro-imidazole, imidazolidine, pyrazole, dihydro-pyrazole, and. pyrazolidine.
A more specific value for the ring comprising R4 and R5 and the atom to which they are connected is, cyclohexane, piperidine or piperazine.
A specific value for R6 is (Cι-C8)alkyl, or substituted (Cι-C8)alkyl, -ORa, -CO2Ra, RaC(=O)-, RaC(=O)O-, RaRbN-, RaR NC(=O)-, or aryl. Another specific value for R6 is (Cι-C8)alkyl, -ORa, -CO2Ra, RaC(=O)-,
RaC(=O)O-, RaR N-, RaRbNC(=O)-, or aryl.
Another specific value for R6 is methyl, ethyl, butyl, OH, ORa, -CO2Ra, RaC(=O)-, OC(=O)CH2CH3, -CONRaR , -NRaR or phenyl. Another specific value for R6 is OH, OMe, methyl, ethyl, t-butyl, -CO2Ra, -C(=O)NRaRb, -OAc, -NH2, -NHMe, -NMe2, -NHEt or -N(Et)2.
Another specific value for R6 is-(CH2)ι_2ORa, -(CH2)ι.2C(=O)ORa, -(CH2)!.2OC(=O)Ra, -(CH2)ι_2C(=O)Ra, -(CH2)1.2OCO2Ra, -(CH2)!.2NHRa, -(CH2)!.2NRaRb, -(CH2)ι.2OC(=O)NHRa, or -(CH2)!.2OC(-O)NRaRb.
Another specific value for R6 is -CH2OH, -CH2OAc, -CH2OCH3, -CH2C(=O)OCH3, -CH2OC(=O)CH3, -CH2C(=O)CH3, -CH2OCO2CH3, -CH2NH(CH3), or-(CH2)ι.2N(CH3)2.
Another specific value for R6 is methyl, ethyl, t-butyl, phenyl, -CO2Ra, -CONRaR , or RaC(=O)-.
Another specific value for R6 is -CH2OH, -CH2OAc, -C(=O)OCH3, -C(=0)CH3, OCO2CH3 -OCO2CH3, -CH2NH(CH3), or -(CH2)1.2N(CH3)2.
A more specific value for R6 is methyl, ethyl, -CO2Ra -CONR Rb, or RaC(=O)-. A specific number of R6 groups substituted on the R4R5 ring is froml to about 4.
A specific value for Ra and Rb is independently hydrogen, (Cι-C )alkyl, aryl or aryl(Cι-C8)alkylene.
A specific value for Ra and Rb is independently hydrogen, methyl, ethyl, phenyl or benzyl.
A more specific value for Ra is (Cι-C8)alkyl.
Another specific value for Ra is methyl, ethyl, propyl or butyl.
A more specific value for R is methyl, ethyl, i-propyl, i-butyl or tert-butyl. Another specific value for Ra and R is a ring
A specific value for R7 is hydrogen, alkyl, aryl or aryl(C1-C8)alkylene.
Another specific value for R7 is hydrogen, methyl or ethyl, phenyl or benzyl.
A more specific value for R7 is H, or methyl. A specific value for -N(R7)2 is amino, methylamino, dimethylamino, ethylamino, pentylamino, diphenylethylamino, pyridylmethylamino, diethylamino or benzylamino. A specific value for -N(R7)2 is amino, methylamino, dimethylamino, ethylamino, diethylamino diphenylethylamino, pentylamino or benzylamino.
A specific value for N(R7)2 is amino, or methylamino.
A specific value for X is -CH2ORa, -CO2Ra, -OC(O)Ra, -CH2OC(O)Ra, -C(O)NRaR .
Another specific value for X is -CH2ORa or -C(O)NRaRb.
A more specific value for X is -CH2OH or -C(O)NHCH2CH3.
A specific value for m is 0, 1, or 2.
A more specific value for m is 0, or 1. Specific examples of rings comprising R4, R5 and the atom to which they are connected include:
where q is from 0 to 14 and Rd is hydrogen, provided that when q is zero then Rd is not hydrogen.
More specific examples of rings comprising R4, R5 and the atom to which they are connected include:
A specific value for the ring comprising -C(R3)R4R5 is 2-methyl cyclohexane, 2,2-dimethylcyclohexane, 2-phenylcyclohexane, 2-ethylcyclohexane, 2,2-diethylcyclohexane, 2-tert-butyl cyclohexane, 3 -methyl cyclohexane, 3,3-dimethylcyclohexane, 4-methyl cyclohexane, 4-ethylcyclohexane, 4-phenyl cyclohexane, 4-tert-butyl cyclohexane,
4-carboxymethyl cyclohexane, 4-carboxyethyl cyclohexane, 3,3,5,5-tetramethyl cyclohexane, 2,4-dimethyl cyclopentane. 4-cyclohexanecarboxyic acid, 4-cyclohexanecarboxyic acid esters, or 4-methyloxyalkanoyl-cyclohexane.
A specific value for the ring comprising -C(R3)R4R5 is 4-piperidine, 4-piperidene-l-carboxylic acid, 4-piperidine- 1-carboxylic acid methyl ester,
4-piperidine- 1-carboxylic acid ethyl ester, 4-piperidine- 1-carboxylic acid propyl ester, 4-piperidine- 1-carboxylic acid tert-butyl ester, 1 -piperidine, l-piperidine-4-carboxylic acid methyl ester, l-piperidine-4-carboxylic acid ethyl ester, l-piperidine-4-carboxylic acid propyl ester, l-piperidine-4-caboxylic acid tert-butyl ester, l-piperidine-4-carboxylic acid methyl ester, 3-piperidine, 3-piperidene-l-carboxylic acid, 3-piperidine-l-carboxylic acid methyl ester, 3-piperidine- 1-carboxylic acid tert-butyl ester, 1,4-piperazine, 4-piperazine- 1-carboxylic acid, 4-piperazine- 1-carboxylic acid methyl ester, 4-piperazine- 1-carboxylic acid ethyl ester, 4-piperazine- 1-carboxylic acid propyl ester, 4-piperazine- 1-carboxylic acid tert-butylester, 1,3-piperazine,
3-piperazine-l-carboxylic acid, 3-piperazine-l-carboxylic acid methyl ester, 3-piperazine-l-carboxylic acid ethyl ester, 3-piperazine-l-carboxylic acid propyl ester, 3-piperidine-l-carboxylic acid tert-butylester, l-piperidine-3-carboxylic acid methyl ester, l-piperidine-3-carboxylic acid ethyl ester, l-piperidine-3-carboxylic acid propyl ester or l-piperidine-3-caboxylic acid tert- butyl ester.
A specific value for the ring comprising R4 and R5 is 2-methyl cyclohexane, 2,2-dimethylcyclohexane, 2-phenyl cyclohexane, 2-ethylcyclohexane, 2,2-diethylcyclohexane, 2-tert-butyl cyclohexane, 3-methyl cyclohexane, 3,3-dimethylcyclohexane, 4-methyl cyclohexane,
4-ethylcyclohexane, 4-phenyl cyclohexane, 4-tert-butyl cyclohexane, 4-carboxymethyl cyclohexane, 4-carboxyethyl cyclohexane, 3,3,5,5-tetramethyl cyclohexane, 2,4-dimethyl cyclopentane, 4-piperidine- 1-carboxylic acid methyl ester, 4-piperidine- 1-carboxylic acid tert-butyl ester 4-piperidine, 4-piperazine- 1-carboxylic acid methyl ester, 4-piperidine- 1-carboxylic acid tert- butylester, l-piperidine-4-carboxylic acid methyl ester, l-piperidine-4-caboxylic acid tert-butyl ester, tert-butylester, l-piperidine-4-carboxylic acid methyl ester, or l-piperidine-4-caboxylic acid tert-butyl ester, 3-piperidine-l-carboxylic acid methyl ester, 3-piperidine-l-carboxylic acid tert-butyl ester, 3-piperidine, 3-piperazine-l-carboxylic acid methyl ester, 3-piperidine-l-carboxylic acid tert- butylester, l-piperidine-3-carboxylic acid methyl ester, l-piperidine-3-caboxylic acid tert-butyl ester In another embodiment the invention includes a compound having the general formula (I):
(I) wherein Z is CR3R4R5 or NR4R5; each R1 is independently hydrogen, halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, heterocycle, hetτocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(O)0-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, R OC(=O)N(Ra)-, RaR N-, RaR NC(=O)-, RaC(=O)N(R )-, RaRbNC(=O)N(R )-, RaR NC(=S)N(R )-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, -N=NRa, or -OPO2Ra; each R2 independently hydrogen, (Cι-C8)alkyl, (C3-C8)cycloalkyl, heterocycle, heterocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, or heteroaryl(Cι-C8)alkylene-; or,
1 9
R and R and the atom to winch they are attached can be C=O or C=NRC.
R and R5 together with the atoms to which they are attached can form a saturated or unsaturated, mono-, bicyclic- or aromatic ring having 3, 4, 5, 6, 7 or 8 ring atoms optionally comprising 1, 2, 3, or 4 heteroatoms selected from oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (-S(O)2-) or amine (-NRa-) in the ring; wherein any ring comprising R4 and R5 is substituted with from 1 to 14 R6 groups; wherein each R6 is independently halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, heterocycle or hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, R OC(=O)N(Ra)-, RaRbN-, RaRbNC(=O)-, RaC(=O)N(Rb)-, RaRbNC(=O)N(Rb)-, RaR NC(=S)N(R )-, -OPO3Ra, RaOC(=S-, RaC(=S)-, -SSRa, RaS(=O)-, -NNRa or -OPO2Ra;
R3 is hydrogen, halo, -ORa, -SRa, Cι_8alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, heterocycle or hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra,
RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaRbN-, R^C^O)-, RaC(=O)N(R )-, RaRbNC(-O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, -N=NRa, -OPO2Ra; or if the ring formed from CR4R5 is aryl or hereroaryl or partially unsaturated then R3 can be absent; each R7 is independently hydrogen, (Cι-C8)alkyl, (C3-C8)cycloalkyl, aryl or aryl(Cι-C8)alkylene;
X is -CH2ORa, -CO2Ra, -OC(O)Ra, -CH2OC(O)Ra, -C(O)NRaR , -CH2SRa, -C(S)ORa, -OC(S)Ra, -CH2OC(S)Ra or C(S)NRaRb or -CH2N(Ra)(Rb); wherein any of R1, R2, R3 and R6 is optionally substituted with (Ci-C8)alkyl, aryl, heteroaryl, heterocycle, aryloxy, (C3-C8)cycloalkyl, hydroxy, nitro, halo, cyano, (Cι-C8)alkoxy, (Cι-C8)alkanoyl, (Cι-C8)alkoxycarbonyl, (Cι-C8)alkanoyloxy, RaS(O)p-, RaRbNS(O)-, RaR NS(O)2-, RaRbN-, or RaR NC(=O)-; wherein any (Cι-C8)alkyl, (C3-C8)cycloalkyl, (C3-C8)bicycloalkyl, (Cι-C8)alkoxy, (Cι-Cs)alkanoyl, (Cι-C8)alkylene, or heterocycle, is optionally partially unsaturated;
Ra and R are each independently hydrogen, (Cι-C8)alkyl, or (Cι-C8)alkyl substituted with 1-3 (Cι-C8)alkoxy, (C3-C8)cycloalkyl, they are attached, form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring; and Rc is hydrogen or C^ alkyl; m is 0 to about 8 and p is 0 to 2; provided that when m is 0 or all R1 and R2 groups present are hydrogen then R3 is not hydrogen; provided that m is at least 1 when Z is NR4R5; or a pharmaceutically acceptable salt thereof.
Specific compounds of formula (I) are those wherein each R7 is H, X is ethylaminocarbonyl and
R1 is hydroxy, R2 is hydrogen, and Z is 4-carboxycyclohexyl, wherein Ra is hydrogen, 4; Z is 4-methoxycarbonylcyclohexylmethyl, Ra is methyl, 5; R1 and R2 together are oxo, Z is a 4-carbonylcyclohexyl group, wherein Ra is methyl, methoxy, ethyl, ethoxy, propyl, isopropoxy, - isobutyl, tert-butyl, amine, methylamine or dimethylamine, 6.
Another group of specific compounds of formula (I) are those wherein each R7 is H, X is ethylaminocarbonyl,
R is hydroxy, R is hydrogen, and Z is a substituted 4-(methyleneoxy- carbonyl)cyclohexyl group, wherein R is methyl, ethyl, propyl, tert-butyl, methoxy, ethoxy, methylamine or dimethylamine, 7; or R1 and R together are oxo, and Z is a substituted -(methyleneoxycarbonyl)- cyclohexyl group, wherein R is methyl, ethyl, propyl, tert-butyl, methoxy, ethoxy, methylamine or dimethylamine, 8.
Another group of specific compounds of formula (I) are those wherein each R is H, X is ethylaminocarbonyl, and
R and R are each hydrogen, and Z is a l-piperidyl-4-carboxylic acid or ester group, wherein Ra is hydrogen, methyl, ethyl, propyl, isopropyl, or
1 9 ■ t-butyl, 9; R and R together are oxo, and Z is a l-piperidyl-4-carboxyhc acid or ester group, wherein Ra is hydrogen, methyl, ethyl, propyl, isopropyl, or t-butyl, 10; R1 and R2 are each hydrogen and Z is a 4-(methyleneoxycarbonyl)piperidin-4-yl group wherein Ra is methyl, ethyl, propyl or t-butyl, amine, methylamine, dimethylamine, 11; or R1 and R2 together are oxo, and Z is a 4-(methyleneoxycarbonyl)piperidin- 4-yl wherein Ra is methyl, ethyl, propyl or t-butyl, amine, methylamine, dimethylamine, 12; R and R are each hydrogen and Z is a 4-(methyleneoxycarbonyl)piperidin-4-yl-oxy wherein Ra is hydrogen, methyl, ethyl, propyl isopropyl, isobutyl, or t-butyl, 13or R1 and R2 together are oxo, Z is a 4-(methyleneoxycarbonyl)piperidin-4-yl-oxy wherein Ra is hydrogen, methyl, ethyl, propyl, isopropyl, isobutyl, or t-butyl, 14.
10
11
12
13
14
Another group of specific compounds of formula (I) are those wherein each R7 is H, X is ethylaminocarbonyl, R1 and R2 are each hydrogen, and Z is a 4-piperidyl- 1-carboxylic acid or ester group, wherein Ra is methyl, ethyl, propyl, isopropyl, isobutyl, or t-butyl, 15, R1 is hydroxy, R2 is hydrogen, and Z is a 4-piperidyl- 1-carboxylic acid or ester group, wherein Ra is methyl, ethyl, propyl,
1 * • isopropyl, isobutyl, or t-butyl, 16; or R and R together are oxo, and Z is a 4-piperidyl- 1-carboxylic acid or ester group, wherein Ra is methyl, ethyl, propyl, isopropyl, isobutyl, or t-butyl, 17.
15
16
17
Another group of specific compounds of formula (I) are those wherein each R7 is H, X is ethylaminocarbonyl,
1 •
R and R are each hydrogen, Z is a 4-piperazine- 1-carboxylic acid or ester group wherein Ra is methyl, ethyl, isopropyl, isobutyl, or t-butyl,
1 9
18; or R and R together are oxo, Z is a 4-piperazine- 1-carboxylic acid or ester group wherein Ra is methyl, ethyl, isopropyl, isobutyl, or t-butyl, 19.
18
19
Additional compounds of the invention are depicted in tables 1, 2, 3, 4, , 6 and 7 below:
Table 1
Compound R R1 R2 R6
ATL2037 NECA H H CH2OH
MP9056 NECA OH H CH2OH
ATL146a NECA H H CO2H
MP9057 NECA OH H CO2H
ATL146e NECA H H CO2Me
MP9058 NECA OH H CO2Me
JR2145 CH2OH H H CO2Me
MP9059 CH2OH OH H CO2Me
ATL193 NECA H H CH2OAc
MP9060 NECA OH H CH2Oac
JR2147 CH2OH H H CH2Oac
MP9061 CH2OH OH H CH2Oac
JR3023 NECA H H CH2N(CH3)2
MP9062 NECA OH H CH2N(CH3)2
TR3021 NECA H H COOCH2CH2NHBoc
MP9063 NECA OH H COOCH2CH2NHBoc
JR3033 NECA H H COOCH2CH2NH2 MP9064 NECA OH H COOCH2CH2NH2
JR3037 NECA H H CONHCH2CH3
MP9065 NECA OH H CONHCH2CH3
JR3065 NECA H H CONHMe
MP9066 NECA OH H CONHMe
JR3067B NECA H H Me, cis C02Me
MP9067 NECA OH H Me, cis CO2Me
JR3067A NECA H H Me, trans CO2Me
MP9068 NECA OH H Me, trans CO2Me
JR3087 NECA H H CH2CH3
MP9069 NECA OH H CH2CH3
JR3159A NECA OH H H
JR3159B NECA OH H H
JR3121 NECA H H CHCH3(OH)
MP9071 NECA OH H CHCH3(OH)
JR3139 NECA OH CeHπ H
NECA = CH3CH2N(H)C(0)-
Table 2
Compound R1 R2 Rd
JR3261 H H H JR3259 H H CO2tBu JR3269 H H CO2Et JR4011 H H CO2iBu JR4009 H H CO2iPr JR4007 H H COMe
JR4051 H H COC(CH3)3
JR4047 H H COCH2(CH3)3
MP9047 H H COCH3
MP9048 H H C(O)N(CH3)2
MP9049 H H C(O)N(CH3)Et
MP9050 H H C(O)N(CH3)iPr
MP9051 H H C(O)N(CH3)iBu
MP9052 H H C(O)NH(CH3)
MP9053 H H C(O)NH(Et)
MP9054 H H C(O)NH(iPr)
MP9055 H H C(O)NH(iBu)
TX3261 OH H H
TX3259 OH H CO2tBu
TX3269 OH H CO2Et
TX4011 OH H CO2iBu
TX4009 OH H CO2iPr
TX4007 OH H COMe
TX4051 OH H COC(CH3)3
TX4047 OH H COCH2(CH3)3
TX9047 OH H COCH3
TX9048 OH H C(O)N(CH3)2
TX9049 OH H C(O)N(CH3)Et
TX9050 OH H C(O)N(CH3)iPr
TX9051 OH H C(O)N(CH3)iBu
TX9052 OH H C(O)NH(CH3)
TX9053 OH H C(O)NH(Et)
TX9054 OH H C(O)NH(iPr)
TX9055 OH H C(O)NH(iBu)
Compound n RJ R6
JR3135 1 OH H
JR3089 2 OH H
JR3205 2 NH2 H
JR3177A 2 OH 2-CH3
JR3227 2 OH 2-C(CH3)3
JR9876 2 OH 2-C6H5
JR3201B 2 OH 3-(CH3)2
MP9043 2 OH (R) 3-CH2CH3 (R)
MP9044 2 OH (S) 3-CH2CH3 (R)
MP9045 2 OH (R) 3-CH2CH3 (S)
MP9046 2 OH (S) 3-CH2CH3 (S)
JR3163 2 OH 3-(CH3)2, 5-(CH3)2
JR3203 2 OH 4-C(CH3)3
JR3161 2 OH 4-C6H5
Compound R1 Rz Rb
JR3213 H H CO2Et
JR3281 H H CO2tBu
JR3289 H H H
JR4025 H H cyclohexyl
JR4053 H H COMe
JR4049 H H CO2iBu
JR3283 H H 2-Pyrimidinyl
MP9029 H H COMe
MP9030 H H COC(CH3)3
MP9031 H H COCH2(CH3)3
MP9032 H H COCH3
MP9033 H H C(O)N(CH3)2
MP9034 H H C(O)N(CH3)Et
MP9035 H H C(O)N(CH3)iPr
MP9036 H H C(O)N(CH3)iBu
MP9037 H H C(O)NH(CH3)
MP9038 H H C(O)NH(Et)
MP9039 H H C(O)NH(iPr)
MP9040 H H C(O)NH(iBu) Table 5
Compound R R1 R2 R6
MP9021 NECA H H CH2OH
MP9022 NECA H H CO2H
JR3251 NECA H H CO2Me
JR3279 NECA H H CO2Et
MP9027 CH2OH H H C02Me
MP9028 NECA H H CO2MeCH2OAc
MP9015 CH2OH H H CH2OAc
MP9016 NECA H H CH2N(CH3)2
MP9017 NECA H H COOCH2CH2NHBoc
MP9018 NECA H H COOCH2CH2NH2
MP9019 NECA H H CONHCH2CH3
MP9020 NECA H H CONH2
MP9023 NECA H H CONHMe
MP9024 NECA H H CH2CH3
MP9026 NECA H H CHCH3(OH)
NECA = CH3CH2N(H)C(O)-
Table 6
Compound R R1 R2 R6
MP9001 NECA H H CH2OH
MP9002 NECA H H CO2H
JR3253 NECA H H CO2Me
MP9003 CH2OH H H CO2Me
MP9004 NECA H H CH2OAc
MP9005 CH2OH H H CH2OAc
MP9006 NECA H H CH2N(CH3)2
MP9007 NECA H H COOCH2CH2NHB0C
MP9008 NECA H H COOCH2CH2NH2
MP9009 NECA H H CONHCH2CH3
MP9011 NECA H H CONHMe
MP9014 NECA H H CHCH3(OH)
NECA = CH3CH2N(H)C(O)-
Table 7
Compound R Y Y' R6
RJ1111 NECA CH CH C02Me
RJ1112 NECA CH N C02Me
RJ1113 NECA N CH CO2Me RJ1114 NECA N N CO2Me
RJ1115 NECA CH CH CH2OH
RJ1116 NECA CH N CH2OH
RJ1117 NECA N CH CH2OH
RJ1118 NECA N N CH2OH
RJ1119 NECA CH CH CO2H
RJ1120 NECA CH N CO2H
RJ1121 NECA N CH CO2H
RJ1122 NECA N N CO2H
RJ1123 NECA CH CH CH2OAc
RJ1124 NECA CH N CH2OAc
RJ1125 NECA N CH CH2OAc
RJ1126 NECA N ' N CH2OAc
RJ1127 NECA CH CH CONH2
RJ1130 NECA N N CONH2
RJ1131 NECA CH CH CONHMe
RJ1132 NECA CH N CONHMe
RJ1133 NECA N CH CONHMe
RJ1134 NECA N N CONHMe
RJ1135 NECA CH CH CO2tBu
RJ1136 NECA CH N CO2tBu
P 1137 NECA N CH CO2tBu
RJ1138 NECA N N CO2tBu
RJ1139 NECA CH CH CO2Et
RJ1140 NECA CH N CO2Et
RJ1141 NECA N CH CO2Et
RJ1142 NECA N N CO2Et
RJ1143 NECA CH CH CO2iBu
RJ1144 NECA CH N CO2iBu
RJ1145 NECA N CH CO2iBu
RJ1146 NECA N N CO2iBu
RJ1147 NECA CH CH CO2iPr
RJ1148 NECA CH N CO2iPr
RJ1149 NECA N CH CO2iPr RJ1150 NECA N N CO2iPr
RJ1151 NECA CH CH COMe
RJ1152 NECA CH N COMe
RJ1153 NECA N CH COMe
RJ1154 NECA N N COMe
RJ1155 NECA CH CH COC(CH3)3
RJ1156 NECA CH N COC(CH3)3
RJ1157 NECA N CH COC(CH3)3
RJ1158 NECA N N COC(CH3)3
RJ1159 NECA CH CH COCH2(CH3)3
RJ1160 NECA CH N COCH2(CH3)3
RJ1161 NECA N CH COCH2(CH3)3
RJ1162 NECA N N COCH2(CH3)3
RJ1163 NECA CH CH C(O)N(CH3)2
RJ1164 NECA CH N C(O)N(CH3)2
RJ1165 NECA N CH C(O)N(CH3)2
RJ1166 NECA N N C(O)N(CH3)2
RJ1167 NECA CH CH C(O)N(CH3)Et
RJ1168 NECA CH N C(O)N(CH3)Et
RJ1169 NECA N CH C(O)N(CH3)Et
RJ1170 NECA N N C(O)N(CH3)Et
RJ1171 NECA CH CH C(O)N(CH3)iPr
RJ1172 NECA CH N C(O)N(CH3)iPr
RJ1173 NECA N CH C(O)N(CH3)iPr
RJ1174 NECA N N C(O)N(CH3)iPr
RJ1175 NECA CH CH C(O)N(CH3)iBu
RJ1176 NECA CH N C(O)N(CH3)iBu
RJ1177 NECA N CH C(O)N(CH3)iBu
RJ1178 NECA N N C(O)N(CH3)iBu
RJ1179 NECA CH CH C(O)NH(Et)
RJ1180 NECA CH N C(O)NH(Et)
RJ1181 NECA N CH C(O)NH(Et)
RJ1182 NECA N N C(O)NH(Et)
RJ1183 NECA CH CH C(O)NH(iPr)
RJ1184 NECA CH N C(O)NH(iPr)
RJ1185 NECA N CH C(O)NH(iPr) RJ1186 NECA N N C(O)NH(iPr)
RJ1187 NECA CH CH C(O)NH(iBu)
RJ1188 NECA CH N C(O)NH(iBu)
RJ1189 NECA N CH C(O)NH(iBu)
RJ1190 NECA N N C(O)NH(iBu)
RJ1191 NECA CH CH CH2OCOCH3
RJ1192 NECA N CH CH2OCOCH3
RJ1193 NECA CH CH CH2OCOEt
RJ1194 NECA N CH CH2OCOEt
RJ1195 NECA CH CH CT OCOiPr
RJ1196 NECA N CH CH2OCOiPr
RJ1197 NECA CH CH CH2OCOiBu
RJ1198 NECA N CH CH2OCOiBu
NECA = CH3CH2N(H)C(O)-
The following abbreviations have been used herein:
2-Aas 2-alkynyladenosines; 125I-ABA N6-(4-amino-3-125iodo-benzyl)adenosine APCI Atmospheric pressure chemical ionization ATL146e 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy- tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}cyclo- hexanecarboxylic acid methyl ester;
CCPA 2-chloro-N°-cyclopentyladenosine; CGS21680 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethyl- carboxamidoadenosine;
Cl-IB-MECA N -3-iodo-2-chlorobenzyladenosine-5'-N-methyluronamide;
CPA N°-cyclopentyladenosine
OMF dimethylformamide
PMSO dimethylsulfoxide
OMSO-d6 deuterated dimethylsulfoxide
EtOAc ethyl acetate eq equivalent
GPCR G protein coupled receptor; 1IA2AAR, Recombinant human
A2A adenosine receptor; IAPO 2-Iodoadenosine
125 I-APE, 2-[2-(4-amino-3-[125I]iodophenyl)ethylamino]adenosine; NECA, 5 ' -N-ethylcarboxamidoadenosine;
ΓB-MECA N^-S-iodobenzyladenosine-S'-N-methyluronamide; 2-Iodoadenosine 5-(6-amino-2-iodo-purin-9-yl)-3,4-dihydroxytetra- hydro-furan-2carboxylic acid ethylamide
HPLC high-performance liquid chromatography HRMS high-resolution mass spectrometry
125I-ZM241385, 125I-4-(2-[7-amino-2-[2-furyl][l,2,4]triazolo[2,3-α][l,3,5]- triazin-5-yl-amino]ethyl)phenol;
INECA 2-iodo-Ν-ethylcarboxamidoadenosine LC/MS liquid chromatography/mass spectrometry m.p. melting point MHz megahertz MRS 1220, N-(9-chloro-2-furan-2-yl-[l,2,4]triazolo[l,5-c]- quinazolin-5-yl)-2-phenylacetamide;
MS mass spectrometry
NECA N-ethylcarboxamidoadenosine
NMR nuclear magnetic resonance
RP-HPLC reversephase high-performance liquid chromatography
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
TBPMSC1 tert-butyldimethylsilylchloride
TEA triethylamine
TFA trifluoroacetic acid
THF tetrahydrofuan
TLC thin layer chromatography p-TSOH para-toluenesulfonic acid
XAC 8-(4-((2-a-minoethyl)aminocarbonyl-methyloxy)- phenyl)- 1 -3-dipropylxanthine;
Compounds of the invention can generally be prepared as illustrated in Schemes 1 A and IB below. Starting materials can be prepared by procedures described in these schemes, procedures described in the General methods below or by procedures that would be well known to one of ordinary skill in organic chemistry. The variables used in Schemes 1 A and Scheme IB are as defined herein or as in the claims.
The preparation of alkynyl cycloalkanols is illustrated in Scheme 1A. A solution of an appropriate cycloalkanone (where j is from 0-5) is prepared in a solvent such as THF. A solution of a suitable ethynylmagnesium halide compound in a solvent is added to the cycloalkanone. After additioin, the solution is allowed to stir at about 20°C for about 20 hours. The reaction is monitored via TLC until the starting material is consumed. The reaction is quenched with water, filtered over a plug of sand and silica, washed with a solvent, such as EtOAc, and evaporated to provide the product. Typically, two products are formed, the isomers formed by the axial/equatorial addition of the alkyne (where m is as defined above, and the sum of ml and m2 is from 0 to about 7) to the ketone. The compounds are purified via flash chromatography using EtOAc/Hexanes to provide the product.
Scheme 1A
General Route to Synthesis of Alkyne Precursors
The preparation of 2-alkynyladenosines is illustrated in Scheme IB. A flame-dried round bottom under nitrogen is charged with 5-(6-Amino-2-iodo- purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (NECA 2-Iodoadenosine) and a solvent such as OMF. The appropriate alkyne, wherein R is a -(CRιR2)mZ group, is dissolved in acetonitrile followed by TEA, 5 mole % Pd(PPh3)4, and Cul. All solvents are thoroughly degassed.
The solution is allowed to stir for about 24 hours at room temperature, and monitored until complete by HPLC. If the reaction is not complete after this time, additional catalyst, Cul, and TEA are added. After the reaction is complete, the solvents are removed under high- vacuum and the residue taken up in a small amount of PMF. This product is isolated using preparative silica TLC. The product is purified by RP-HPLC.
Scheme IB
General Coupling Scheme for the Synthesis of 2-alkynyl-adenosine.
2-iodo-adenosine 2-alkynyl-adenosine
Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, malate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, c-ketoglutarate, and c-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made. The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical or subcutaneous routes.
Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage foπn should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices. The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Pispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form must be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin. Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions. For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid, a liquid or in a dermato logical patch.
Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers. Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
Examples of useful dermatological compositions, which can be used to deliver the compounds of formula I to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).
Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949. Useful dosages of Type IV PPE inhibitors are known to the art. For example, see, U.S. Pat. No. 5,877,180, Col. 12.
Generally, the concentration of the compound(s) of formula (I) in a liquid composition, such as a lotion, will be from about 0.1-25% wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%. The amount of the compound, or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.
In general, however, a suitable dose will be in the range of from about 0.5 to about 100 /xg/kg, e.g., from about 10 to about 75 μg/kg of body weight per day, such as 3 to about 50 μg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 μg/kg/day, most preferably in the range of 15 to 60 μg/kg/day.
The compound is conveniently administered in unit dosage form; for example, containing 5 to 1000 μg, conveniently 10 to 750 μg, most conveniently, 50 to 500 μg of active ingredient per unit dosage form.
Ideally, the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.1 to about 10 nM, preferably, about 0.2 to 10 nM, most preferably, about 0.5 to about 5 nM. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1-100 μg of the active ingredient. Pesirable blood levels may be maintained by continuous infusion to provide about 0.01-5.0 μg/kg/hr or by intermittent infusions containing about 0.4-15 μglkg of the active ingredient(s).
The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye. For example, it is desirable to administer the present compositions intravenously over an extended period of time following the insult that gives rise to inflammation.
The ability of a given compound of the invention to act as an A2A adenosine receptor agonist (or antagonist) may be determined using pharmacological models which are well known to the art, or using tests described below.
The invention will be further described by reference to the following detailed examples, which are given for illustration of the invention, and are not intended to be limiting thereof.
DESCRIPTION OF PREFERRED EMBODIMENTS
All melting points were determined with a Thomas Hoover capillary melting point apparatus and are uncorrected. Nuclear magnetic resonance spectra for proton (1H NMR) were recorded on a 300 MHz GE spectrophotometer. The chemical shift values are expressed in ppm (parts per million) relative to tetramethylsilane. For data reporting, s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. Mass spectra were measured on a Finnigan LcQ Classic. High resolution mass spectrometry (HRMS) data was provided by the Nebraska Center for Mass Spectrometry. Analytical HPLC was done on a Waters 2690 Separation Module with a Waters Symmetry C8 (2.1 x 150 mm) column operated at room temperature. Compounds were eluted at 200 μL/min with 70:30 acetonitrile:water, containing 0.5% acetic acid, with UN detection at 214 nm using a Waters 486 Tunable Oetector. Preparative HPLC was performed on a Shimadzu Piscovery HPLC with a Shim-pack NP-OOS 8 (20 x 100 mm) column operated at room temperature. Compounds were eluted at 30mL/min with a gradient 20-80% of water (containing 0.1% TFA) to methanol over 15 minutes with UN detection at 214 nm using a SPP10A NP Tunable detector. All final compounds presented here were determined to be greater than 98%) pure by HPLC. Flash chromatography was performed on
Silicyle 60A gel (230-400 mesh) or using reusable chromatography columns and system from RT Scientific, Manchester ΝH. Analytical thin-layer chromatography was done on Merck Kieselgel 60 F254 aluminum sheets. Preparative thin-layer chromatography was done using 1000 micron Analtech Uniplate with silica gel. All reactions were done under a nitrogen atmosphere in flame-dried glassware unless otherwise stated. General method 1 : Preparation of alkynyl cyclohexanols
To a solution of about 10 mmol of the appropriate cyclohexanone in about 50 mL of THF is added to about 60 mL (30 mmol) of 0.5 M ethynylmagnesium bromide in THF. The solution is allowed to stir at about 20°C for about 20 hours. After the starting material had been consumed, monitored by TLC, the reaction is quenched with about 5 mL of water, filtered over a plug of sand and silica, washed with EtOAc, and evaporated to yield a yellow oil. Usually the oil contained two spots on TLC with 20% EtOAc/Hexanes, which are visualized with Nanillin. Usually these two products are the different isomers formed by the axial/equatorial addition of the alkyne to the ketone. The compounds are purified via flash chromatography using 10% EtOAc/Hexanes to provide clear oils or white solids in a yield of about 50-80 %.
General method 2: Preparation of propargyl piperadines/piperazines.
To a solution of of the appropriate piperazine/piperadine(about 10.0 mmol), in about 20 mL acetonitrile, is added about 12.0 mmol of propargyl bromide (80% stabilized in toluene) and about 50.0 mmol of anhydrous potassium carbonate. The reaction mixture is filtered, and evaporated to dryness. The resiude is taken up in about 50 mL of dichloromethane/water and the organic layers removed. The aqueous layer is washed with an additional 3 x 25 mL dichloromethane. The organic layer is dried using anhydrous sodium sulfate, filtered, and concentrated to provide the crude product, which is purified using column chromatography. General method 3: Preparation of modified piperadines/piperazines.
To about 100 mg of the appropriate Boc-protected piperazine/piperadine is added 2-4 mL of neat TFA. The solution is allowed to stir for 6 hours. The TFA is removed under reduced pressure to yield a yellow oil. This oil is taken up in about 10 mL of dichloromethane to which is added 10-fold excess of TEA and 3 equivalents of the appropriate acyl chloride. The yellow solution is allowed to stir at room temperature for about 12 hours, after which time the solvents are removed and the product purified using a 1.1x30 cm 14 g column from Robert Thompson Scientific with a 5%-30% gradient of ethyl acetate/hexanes.
General method 4: Preparation of 2-AAs (2-aIkynyladenosines).
A flame-dried 25 mL round bottom under nitrogen is charged with
5-(6-amino-2-iodo-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (2-Iodoadenosine) (about 40 mg) (X = CH3CH2NHC(O)-) and dissolved in about 2 mL of PMF. The appropriate alkyne (approx. 0.1 mL) is then added followed by about 4mL of acetonitrile and about O.lmL of TEA. All three solvents had been degassed with nitrogen for at least 24 hours. To this solution is added 5 mole percent Pd(PPh3)4 and 6 mole % copper iodide. The yellowish solution is allowed to stir for 24 hours at room temperature, or until complete by HPLC. If the reaction is not complete at this time, additional catalyst, Cul, and TEA are added. After the reaction is complete, the solvents are removed under high- vacuum and the red/black residue taken back up in a small amount of PMF. This solution is added to a preparative silica TLC plate (Analtech 1000 microns, 20cm x 20cm) and eluted first with 120 mL of 40% Hexanes/CH2C12, and then again after addition of 40 mL of MeOH. The UN active band (usually yellow in color) in the middle of the plate is collected, slowly washed with 4 x 25 mL 20% MeOH/CH2Cl2, and concentrated. This product is then purified by RP-HPLC.
Preparation 1 : [(2R,3R,4R,5R)-3,4-diacetyloxy-5-(2-amino-6-oxohyropurin- 9-yl)oxolan-2-yl] methyl acetate (6.2).
A suspension of 113 g (0.4 mol) of dry guanosine (6.1), acetic anhydride (240 mL, 2.5 mol), dry pyridine (120 mL) and dry PMF (320 mL) was heated for 3.75 hours at 75 °C without allowing the temperature to exceed 80 °C. The clear solution was then transferred to a 3L Erlemnyer flask and filled with 2-propanol. Upon cooling the solution to room temperature crystallization was initiated and allowed to proceed at 4 °C overnight. The white solid filtrate was filtered, washed with 2-propanol and recrystallized from 2-propanol to provide 6.2 (96%). 1H NMR (300 Mhz, CPC13) 8.20 (s, IH, H-8), 6.17 (d, J= 5.41 Hz, 1 H, H-1 ) 5.75 (t, J= 5.39 Hz, IH, H-2 ), 5.56 (t, J= 5.0, H-3 ), 4.41 (m, 3H, H-4,5 ), 2.14 (s, 3H, Ac), 2.11 (s, 3H, Ac), 2.10 (s, 3H, Ac). 13C NMR (300 MHz, CP3OD) 171.0, 170.3, 1702, 157.7, 154.8, 152.4, 136.7, 117.7, 85.5, 80.4, 73.0, 71.3, 64.0, 31.3, 21.2, 21.0. Preparation 2: [(2R,3R,4R,5R)-3,4-diacetyloxy-5-(2-amino-6-chloropurin-9- yI)oxolan-2-yl] methyl acetate (6.3).
To a 1 L flask was added 80 g (0.195 mol) [(2R,3R,4R,5R)-3-4-diacetyloxy-5-(2-amino-6-oxohyropurin-9-yl)oxolan-2-yl] methyl acetate (6.2), tetramethylammonium chloride (44 g, 0.4 mol), anhydrous acetonitrile (400 mL) and N,N-dimethlaniline (25 mL). The flask was placed in an ice salt bath and cooled to 2°C. To this solution was added dropwise POCl3 (107 mL 1.15 mol) at a rate that maintained the temperature below 5°C (45 minutes). The flask was then removed from the ice bath, outfitted with a condenser, placed in an oil bath and allowed to reflux for 10 minutes. The solution changed to a red/brown color. The solvent was removed under reduced pressure to yield an oily residue which was transferred to a beaker containing 1000 g of ice and 400 mL of CHC13 and allowed to stir for 1.5 hours to decompose any remaining POCl3. The organic phase was removed and the aqueous phase extracted with 3 x 50 mL of CHC13 and pooled with the organic phase. The pooled organic layeres were back extracted with 50 mL of water followed by stirring with 200 mL of saturated NaHCO3. The organic layer was further extracted with NaHCO3 until the aqueous extract was neutral (2X). The organic layer was finally extracted with brine and dried over MgSO4 for 16 hours. To the solution was added 800 mL of 2-propanol after which the solution was concentrated under reduced pressure. To the oily solid was added 200 mL of 2-propanol and the solution was refrigerated overnight. The crystalline product was filtered, washed, and allowed to dry overnight to give 6.3 (77%). 1H NMR (300 MHz, CP3OO) 8.31 (s, IH, H-8), 7.00 (s, 2H, NH2) 6.06 (d, J= 5.8 Hz, IH, H-1 ), 5.83 (t, J= 6.16 Hz, IH, H-2 ), 5.67 (m, IH, H-3 ), 4.29 (m, 3H, H-4,5 ), 2.07 (s, 3H, Ac), 1.99 (s, 3H, Ac), 1.98 (s, 3H, Ac). 13C NMR (300 MHz, CO3OP) 171.0, 170.4, 170.2, 160.8, 154.6, 150.8, 142.2, 124.5, 85.8, 80.6, 72.8, 71.2, 63.9, 21.4, 21.3, 21.1.
Preparation 3 : [(2R,3R,4R,5R)-3,4-diacetyloxy-5-(6-chloro-2-iodopurin-9- yl)oxolan-2-yl] methyl acetate (6.4).
Isoamyl nitrite (5 mL, 37 mmol) was added to a mixture of 5.12 g (12 mmol) [(2R,3R,4R,5R)-3-,4-diacetyloxy-5-(2-amino-6-chloropurin-9-yl)oxolan- 2-yl]methyl acetate (6.3), I2 (3.04 g, 12 mmol), CH2I2 (10 mL, 124 mmol), and Cul (2.4 g, 12.6 mmol) in THF (60 mL). The mixture was heated under reflux for 45 minutes and then allowed to cool to room temperature. To this solution was added 100 ml of saturated Na2S2O3. This step removed the reddish color. The aqueous layer was extracted 3X with chloroform, which was pooled, dried over MgSO , and concentrated under reduced pressure. The product was then purified over a silica gel column using CHCl3-MeOH (98:2) to collect
[(2R,3R,4R,5R)-3,4-diacetyloxy-5-(6-chloro-2-iodopurin-9-yl)oxolan-2-yl]meth yl acetate (6.4) (80% crystallized from EtOH). 1H NMR (300 MHz, COCl3) 8.20 (s, IH H-8), 6.17 (d, J = 5.41 Hz, IH, H-1 ), 5.75 (t, J= 5.39 Hz, IH, H-2 ), 5.56 (t, J= 5.40 Hz, IH, H-3 ), 4.38 (m, 3H, H-4,5 ), 2.14 (s, IH, Ac), 2.11 (s, lH, Ac), 2.10 (s, IH, Ac).
Preparation 4 : (4S,2R,3R,5R)-2-(6-ammo-2-iodopurm-9-yl)-5-(hydroxy- methyl)oxolane-3,4-diol (6.5).
To a flask containing 6.0 g (11.1 mmol) [(2R,3R,4R,5R)-3,4-diacetyloxy-5-(6-chloro-2-iodopurin-9-yl)oxolan-2-yl]meth yl acetate (6.4) was added 100 ml of liquid NH3 at -78°C and the solution was allowed to stir for 6 hours. After which time it was allowed to come to room temperature overnight with concurrent evaporation of the NH to yield a brown oil. The product was crystallized from hot isopropanol to provide 6.5 (80%), m.p. 143-145°C, r.f. = 0.6 in 20% MeOH/CHCl3. 1H NMR (300 MHz, OMSO-d6) 8.24 (s, IH), 7.68 (s, 2H), 5.75 (d, J= 6.16, IH), 5.42 (d, J= 5.40 Hz, IH), 5.16 (d, J= 4.62 Hz, IH), 4.99 (t, J= 5.39 Hz, IH), 4.67 (d, J= 4.81 Hz, IH), 4.06 (d, J= 3.37 Hz, IH), 3.89 (m, IH), 3.54 (m, 2H).
Preparation 5: [(lR,2R54R,5R)-4-(6-amino-2-iodopurin-9-yl)-7-7- dimethyl-3,6,8-trioxabicyclo[3.3.0]oct-2-yl]methan-l-ol (6.6).
To a solution of 2.0 g (5.08 mmol) (4S,2R,3R,5R)-2-(6-amino-2-iodopurin-9-yl)-5(hydroxymethyl)oxolane-3,4-diol (6.6) in 100 mL acetone was added 9.6 g of p-toluenesulfonic acid and 5 ml of dimethoxypropane. The reaction was stirred at room temperature for 1 hour. Solid NaHCO3, 15 g, was added to the solution. The slurry was stirred for an additional 3 hours. The residue was filtered and washed 2X with EtOAc. The filtrate was then concentrated under reduced pressure. The residue was chromatographed on a silica gel column with MeOH-CHCl3 (1 :99) to give 6.6 (72%) as a solid, m.p. 185-187°C. !H NMR (300 MHz, OMSO-d6) 8.22 (s, IH, H-8), 7.69 (s, 2H), NH2), 6.00 (d, J= 2.70 Hz, IH, H-1 ), 5.21 (m, IH, H-2 ), 5.07 (bs, IH, OH), 4.88 (m, IH, H-3 ), 4.13 (m, IH, H-4 ), 3.47 (m, 2H, H-5 ), 1.49 and 1.28 (s, 3H, C(CH3)2).
Preparation 6: (2S,lR,4R,5R)-4-(6-amino-2-iodopurin-9-yι)-7,7- dimethyl-3,6,8-trioxabicyclo[3.3.0] octane-2-carboxylic acid (6.7).
To a stirred solution of 1.6 g (3.7 mmol) of
[(lR,2R,4R,5R)-4-(6-amino-2-iodopurin-9-yl)-7-7-dimethyl-3,6,8-trioxabicyclo[ 3.3.0]oct-2-yl]methan-l-ol (6.6) in 200 mL of H2O was added 0.60 g of KOH and, dropwise, a solution of 1.70 g (10.8 mml) of KMnO4 in 50 mL of H2O. The mixture was placed in the dark at room temperature for 2-4 days. The reaction mixture was then cooled to 5-10 °C and decolorized by a solution of 4 mL of 30% H2O2 in 16 mL of water, while the temperature was maintained below 10 °C using an ice-salt bath. The mixture was filtered through Celite and the filtrate was concentrated under reduced pressure to about 10 mL and then acidified to pH 4 with 2N HC1. The resulting precipitate was filtered off and washed with ether to yield 6.7 (70%) after drying as a white solid, m.p. 187-190 C. 1H NMR (300 MHz, OMSO-d6) 8.11 (s, IH, H-8), 7.62 (s, 2H, NH2), 7.46 (s, IH, COOH), 6.22 (s, IH, H-1 ), 5.42 (d, J= 5.71 Hz, IH, H-2 ), 5.34 (d, J= 6.16 Hz, IH, H-3 ), 4.63 (s, IH, H-4 ), 1.46 and 1.30 (s, 3H, C(CH3)2). Preparation 7: (2S,3S,4R,5R)-5-(6-amino-2-iodopurin-9-yl)-3,4- dihydroxyoxolane-2-carboxylic acid (6.8).
A solution of 1.72 g (3.85 mmol) of (2S,lR,4R,5R)-4-(6-amino-2-iodopurin-9-yl)-7,7-dimethyl-3,6,8-trioxabicyclo[3 .3.0]octane-2-carboxylic acid (6.7) in 80 mL of 50% HCOOH was stirred at 80 °C for 1.5 hours. The reaction mixture was evaporated under reduced pressure, dissolved in H2O, and the solvent was evaporated again. This process was repeated until there was no odor of formic acid in the residue. Recrystallization from water provided 1.33 g (85%) 6.8 as a white solid, m.p. 221-223 °C, dec. 1H NMR (300 MHz, OMSO-d6) 8.31 (s, IH, H-8), 7.68 (s, 2H, NH2), 5.90 (d, J= 6.55 Hz, IH, H-1 ), 4.42 (m, IH, H-2 ), 4.35 ( d, J= 2.31 Hz, IH, H-4 ), 4.22 (m, IH, H-3 ).
Preparation 8: [(2S,3S,4R,5R)-5-(6-ammo-2-iodopurin-9-yl)-3,4- dihydroxyoxolan-2-yl]-N-ethylcarboxamide (6.9).
To a cooled (5 °C) and stirred solution of 1.29 g (3.17 mmol) of
(2S,3S,4R,5R)-5-(6-amino-2-iodopurin-9-yl)-3,4-dihydroxyoxolane-2-carboxyli c acid (6.8) in 150 mL of absolute ethanol was added dropwise 1.15 mL of ice-cooled SOCl2. The mixture was stirred at room temperature overnight and then brought to pH 8 with saturated aqueous NaHCO3. The mixture was filtered, and then the filtrate was concentrated under reduced pressure to yield a white solid which was dried and then redissolved in 20 mL of dry ethylamine at -
20 °C for 3 hours and then at room temperature overnight. The reaction mixture was diluted with absolute ethanol, and the precipitated product was filtered off and washed with dry ether to provide 530 mg (72%) of 6.9 as a pure solid, m.p. 232-234°C. 1H NMR (300 MHz, PMSO-d6) 8.34 (s, IH, H-8), 8.12 (t, IH, NH), 7.73 (s, 2H, NH2), 5.85, (d, J= 6.93 Hz, IH, H-1 ), 4.54 (m, IH, H-2 ), 4.25 (d, J= 1.92 Hz, IH, H-4 ), 4.13 (m, IH, H-3 ), 3.28 (m, 2H, CH2CH3), 1.00 (t, J= 7.2 Hz, 3H, CH2CH3).
Preparation 9: [4-(tert-Butyl-dimethyl-silanyloxymethyl)-cyclohexyl]-methanol (83).
^OH
To a 100 mL-flask containing 79 (4.0 g, 27.8 mmol) in PMF (40 mL) was added TBPMSC1 (3.56 g, 23.6 mmol) and imidazole (3.79 g, 55.6 mmol). The reaction was allowed to stir at 25 °C for lόhoursafter which time saturated aqueous LiBr (50 mL) was added and the reaction extracted with ether (2 x 50 mL). The ether layers were pooled and extracted again with LiBr (2 x 35 mL). The ether layer became clear. The ether layer was then concentrated in vacuo and the product purified by flash chromatography, on a silica gel column, eluting with 1 :2 ether/petroleum ether to yield 83 (3.80 g, 62%) as a homogenous oil. 1H NMR (CDC13) δ 3.46 (d, J = 6.2 Hz, 2 H), 3.39 (d, J = 6.2 Hz, 2 H), 1.95-1.72 (m, 4 H), 1.65 (m, 1 H), 1.40 (m, 1 H), 1.03 - 0.89 (m, 4 H), 0.88 (s, 9 H), 0.04 (s, 6 H); 13C NMR (CPC13) δ 69.2, 69.1, 41.2, 41.1, 29.5, 26.5, 18.9, -4.8;. APCI m/z (rel intensity) 259 (MH+, 100). Preparation 10: Toluene-4-sulfonic acid 4-(tert-butyl-dimethyl- silanyloxymethyl)-cyclohexylmethyl ester (84).
To a 100 mL-flask containing 83 (3.4 g, 13.2 mmol) in CHC13 (30 mL) was added tosyl chloride (3.26 g, 17.1 mmol) and pyidine (3.2 mL, 39.6 mmol). The reaction was allowed to stir at 25 °C for 14hoursafter which time the reaction was concentrated in vacua to yield a wet white solid. To this solid was added ether (50 mL) and the solid was filtered and subsequently washed with additional ether (2 x 50 mL). The ether layers were pooled, concentrated in vacuo to yield a clear oil which was purified by flash chromatography, on a silica gel column, eluting with 1 :4 ether/petroleum ether to yield 84 (4.5 g, 83 %) as a white solid. 1H NMR (CPC13) δ 7.78 (d, J = 7.7, 2 H), 7.33 (d, J = 7.7 Hz, 2 H), 3,81 (d, J = 6.2 Hz, 2H), 3.37 (d, J = 6.2, 2 H), 2.44 (s, 3 H), 1.95-1.72 (m, 4 H), 1.65 (m, 1 H), 1.40 (m, 1 H), 1.03 - 0.89 (m, 4 H), 0.88 (s, 9 H), 0.04 (s, 6 H); 13C NMR (CDC13) δ 145.1, 133.7, 130.3, 128.4, 75.8, 68.9, 40.7, 38.0, 29.1, 26.5, 22.1, 18.9, -4.9; APCI m/z (rel intensity) 413 (MH+, 100).
Preparation 11: (4-Prop-2-ynyl-cyclohexyl)-methanol (86).
A 3-neck 250 mL-flask equipped with a gas inlet tube and dry-ice condenser was cooled to -78 °C and charged with liquid ammonia (40 mL). To the reaction mixture was added lithium wire (600 mg, 86.4 mmol) generating a deep blue solution. The mixture was allowed to stir for lhour. Acetylene, passed through a charcoal drying tube, was added to the ammonia until all the lithium had reacted and the solution turned colorless, at which time the flow of acetylene was stopped, the acetylene-inlet tube and condenser removed and the flask outfitted with a thermometer. PMSO (20 mL) was added and the ammonia evaporated with a warm water bath until the mixture reached a temperature of 30 °C. The solution was stirred at this temperature for 2 hours until the solution stopped bubbling. The mixture was cooled to 5 °C and compound 84 (11.25 g, 27.3 mmol), in PMSO (10 mL), was added. The temperature was maintained at 5 °C. The mixture was allowed to stir at 5 °C for 0.5 hours. Then the solution was gradually wanned to room temperature and stirred for an additional 18 hours. The brown/black reaction mixture was poured slowly over ice (300 g) and extracted with ether (4 x 100 mL), dried with anhydrous sodium sulfate, and concentrated in vacuo to yield a yellow oil. The oil was subsequently dissolved in THF (200 mL) and changed to a brownish color upon addition of TBAF hydrate (11.20 g, 35.5mmol). The solution was allowed to stir for 24hoursunder N2 atmosphere. After stirring, the reaction was quenched with water (200 mL) and extracted with ether (3 x 100 mL). The ether extracts were combined and concentrated in vacuo. The crude product was purified by chromatography, on a silica gel column, eluting with 1:1 ether/petroleum ether to yield 86 (3.91 g, 93%) as a yellow oil. 1H NMR (COCl3) δ 3.45 (d, J = 6.2, 2 H), 2.10 (d, J = 6.2, 2 H), 1.9 (s, 1 H), 1.94 - 1.69 (m, 4 H), 1.52 - 1.34 (m, 2 H), 1.16 - 0.83 (m, 4 H); 13C NMR (CPC13) δ 83.8, 69.5, 69.0, 40.8, 37.7, 32.3, 29.7, 26.5.
Preparation 12: (4-prop-2-ynyIcyclohexyl) methyl acetate (87).
To a solution of 960 mg (6.31 mmol) of 86 in 6 mL PMF was added
0.62 mL (7.57 mmol) pyridine and 0.78 mL (8.27mmol) acetic anhydride. The reaction was allowed to stir overnight at room temperature. After 16 hours, starting material still remained. The reaction mixture was heated at 75 °C for 3 hours. The solvent was removed under reduced pressure to yield a yellow oil which was purified by flash chromatography, on silica gel, eluting with 1 :3 ether/petroleum ether to yield 1.12 g (91%) of 87 as an oil. 1H NMR (CPC13) δ3.87 (d, J = 6.2 Hz, 2 H), 2.06 (d, J = 4.3 Hz, 2 H), 2.03 (s, 3 H), 1.98 - 1.93 (m, 1 H), 1.92 - 1.83 (m, 2 H), 1.83 - 1.74 (m, 2 H), 1.63 - 1.36 (m, 2 H), 1.12 - 0.90 (m, 4 H); 13C NMR (CDC13) δ 171.7, 83.7, 69.9, 69.6, 37.4, 37.3, 32.1, 29.7, 26.5, 21.4; APCI m/z (rel intensity) 195 (M+, 30), 153 (M+, 70), 135 (M+, 100).
Preparation 13: 4-prop-2-ynyl-cyclohexanecarboxyIic acid (88).
A solution of chromium trioxide (600 mg, 6.0 mmol) in 1.5 M H2SO4
(2.6 mL, 150 mmol) was cooled to 5 °C and added to a solution of 86 (280 mg,
1.84 mmol) in acetone (15 mL). The mixture was allowed to warm to room temperature and allowed to stir overnight. Isopropanol (4 mL) was added to the green/black solution, which turned light blue after lhr. After adding water (15 mL), the solution was extracted with CHC13 (6 x 25 mL). The organic layers were pooled and concentrated in vacuo to yield a white solid. The solid was dissolved in ether (50 mL) and extracted with 1 M NaOH (2 x 30 mL). The basic extracts were pooled, acidified w/ 10% HCl, and re-extracted with ether (3 x 30mL). The ether layers were combined, dried with sodium sulfate and concentrated in vacuo to yield a white solid. The product was recrystallized from acetone/water to yield 88 (222 mg, 73%) as white needles: mp 84-85 °C; 1H NMR (CDC13) δ 2.30 -2.23 (m, 1 H), 2.17 - 2.11 (m, 2 H), 2.07-2.03 (m, 2 H), 1.97 - 1.91 (m, 3H), 1.51-1.39 (m, 3 H), 1.13- 1.01 (m, 2 H); 13C NMR (CDCI3) δ 182.5, 83.8, 69.6, 40.7, 37.7, 32.3, 29.6, 26.5; APCI m/z (rel intensity) 165 (M\ 100). Preparation 14: Methyl 4-prop-2-ynylcyclohexanecarboxyIate (89).
To a solution of 88 (240 mg, 1.45mmol) in 7:3 CH2Cl2:MeOH (10 mL) was added TMS Oiazomethane (2.0 M in hexanes) (0.9 mL, 1.8 mmol) in 0.2 ml aliquots until the color remained yellow. The reaction was allowed to stir for an additional 0.25 hours at room temperature. After stirring, glacial acetic acid was added dropwise until the solution became colorless. The reaction was concentrated in vacuo to an oil which was purified by flash chromatography on silica gel using ether:petroleum ether (1:9) to yield 89 (210 mg, 80%) as a clear oil. 1H NMR (CPC13) δ 3.60 (s, 3H), 2.25 - 2.13 (m, 1 H), 2.08 - 1.94 (m, 3 H), 1.95 - 1.90 (m, 2 H), 1.49 - 1.31 (m, 3 H), 1.10 - 0.93 (m, 2 H); 13C NMR (CPC13) δ 176.7, 83.3, 69.8, 51.9, 43.4, 36.7, 31.9, 29.2, 26.3; APCI m/z (rel intensity) 181 (MH+, 100).
Preparation 15: Trans[4-(l-Propargyl)cyclohexylmethyl] methyl carbonate (90).
Yield: 345 mg, 81%. 1H NMR (CPC13) δ 0.98-1.07, 1.40-1.52, 1.57-1.70, 1.78-1.93 (4 x m, 10H, cyclohexyl), 1.96 (t, IH, acetylene), 2.10 (dd, 2H, -C60CH2CCH), 3.78 (s, 3H, -OCH3), 3.96 (d, -C6Η10CH2O-). Preparation 16: Trans[4-(l-Propargyl)cyclohexylmethyl] iso-butyl carbonate (91).
Yield: 433 mg, 83%. 1H NMR (CDC13) δ 0.95 (d, 4H, -OCH2CH(CH3)2), 0.98-1.09, 1.40-1.51, 1.57-1.70, 1.78-1.93 (4 x m, 10Η, cyclohexyl), 1.94-2.04 (m, 1Η, -OCΗ2CH(CΗ3)2), 1.96 (t, IH, acetylene), 2.10 (dd, 2H, -C6Hi0CH2CCH), 3.91, 3.95 (2 x d, 4H, -OCH2CH(CH3)2, -C6H10CH2O- ).
Preparation 17: Trans[4-(l-Propargyl)cyclohexylmethyl] benzyl carbonate (92).
Yield: 340 mg, 69%. 1H NMR (CDCI3) δ 0.97-1.08, 1.40-1.49, 1.55-1.69, 1.77-1.93 (4 x m, 10H, cyclohexyl), 1.96 (t, IH, acetylene), 2.10 (dd, 2H, -C60CH2CCH), 3.98 (d, -C60CH2O-), 5.15 (s, 2Η, -OCH2Ph), 7.33-7.40 (m, 5Η, Ar). Preparation 18: 4-(Toluene-4-sulfonyloxymethyI)-piperidine-l-carboxylic acid tert-butyl ester (JR3215).
JR3215 A solution of N-Boc-4-piperidinemethanol, 5.0 g (23.2 mmol) in chloroform, 50 mL, was prepared. Toluene sulfonyl chloride, 5.75 g (30.2 mmol), in 5.6 mL of pyridine (69.6 mmol) was added. The solution was stirred under nitrogen allowed to stir for 24 hours. Standard workup and chromatographic purification provided the title compound. Yield 6.0g
Preparation 19: (R)-l-Ethynyl-(R)-3-methyl-cyclohexanol (JR3217A), (S)-l-Ethynyl-(R)-3-methyl-cyclohexanol (JR3217B).
To a solution of 1.0 g (8.9 mmol) (R)-(+)-3-methyl-cyclohexanone in
50 mL of THF was added 54 mL (26.7 mmol) of 0.5 M ethynylmagnesium bromide in THF. The solution was allowed to stir at 20 °C for 20 hours.
Analysis by TLC indicated that the starting material had been consumed. The reaction was quenched with 5 mL of water, filtered over a plug of sand and silica, washed with EtOAc, and evaporated to yield 1.15 g of a yellow oil containing two spots (r.f.'s 0.33 (minor, JR3217A) and 0.25 (major, JR3217B), 20%) EtOAc/Hexanes) which were visualized with Nanillin. The compound was purified via flash chromatography using 10%> EtOAc/Hexanes (225 mL silica) to provide JR3217A and JR3217B. Preparation 20: l-Prop-2-ynyI-piperidine-2-carboxyIic acid methyl ester (JR3249).
JR3249 The title compound was prepared starting with 4.0g (22.3 mmol) of methylpipecolinate hydrochloride according to general method 2.
Preparation 21: l-Prop-2-ynyl-piperidine-4-carboxylic acid methyl ester (JR3245).
JR3245 To a solution of methyl isonipecotate 3.5g (24.4 mmol, 3.30 mL) in
100 mL dichloromethane was added TEA (1.5 eq, 36.6 mmol, 5.1 mL), propargyl bromide (3.0eq, 73.2 mmol, 6.5 ml), at room temperature for 36 hrs.
The reaction was quenched with 35 mL water to yield to provide a clear solution.
The solution was extracted with dichloromethane 2x25 mL, dried with Na2SO4, and the solvent evaporated to provide a yellow oil. r.f. (40% EtOAc/Hexanes)
0.26 stains faint white with Nanillin, starting material r.f. 0.05 stains yellow with
Nanillin. The product appeared pure after extraction. Preparation 22: l-Prop-2-ynyl-piperidine-4-carboxylic acid ethyl ester (JR3271).
JR3271 The title compound was prepared starting with 2.0g (12.7 mmol) of ethyl isonipecotate according to general method 2.
Preparation 23: 4-Prop-2-ynyl-piperazine-l-carboxylic acid tert-butyl ester
(JR3275).
JR3275 To a solution of 10.0 g (54.8 mmol) of tert-butyl- 1 -piperazine carboxylate in 60 mL acetonitile was added 5.20 mL (60.4 mmol) propargyl bromide and 37.9 g (274 mmol) anhydrous potassium carbonate. Additional propargy bromide, 1.5mL, was added after stirring for 36 hours at room temperature. The residue was evaporated to dryness. Oichloromethane, 50 mL, and water, 50 mL, were added. The reaction mixture was extracted with CH2C12, 4 x 40 mL, dried over magnesium sulfate, and evaporate to provide a brown oil. The oil was dissolved in dichloromethane and purify with a RT Scientific system using hexane/ethyl acetate gradient to yield 5.5 g (46%) of yellow oil, which ultimately crystallized upon standing. Preparation 24: 4-Cyanomethyl-piperazine-l-carboxylic acid ethyl ester (JR3287).
JR3287 To a solution of 3g (19.0 mmol) of ethyl N-piperazinecarboxylate in 25 mL of CH3CN was added 1.57g (1.32 mL 20. Immol) of 2-chloroacetonitrile and 15.6g (95mmol) K2CO3«l1/2H2O. The suspension was stirred at room temperature for 16 hours. The reaction was analyzed using TLC (35% Ethyl acetate/Hexanes, product r.f. 0.38 vs. sm r.f. of 0.02). The analysis indicated the reaction was complete. The golden yellow solution was evaporated to dryness. The residue was extracted with CH2CI2/H2O, dried with MgSO , and concentrated.
Preparation 25: 5-Prop-2-ynyl-2,5-diaza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester (JR4013).
JR4013
The title compound was prepared starting with 500 mg (2.52mmol) of 2,5-Oiaza-bicyclo[2.2.1]heptane-2-carboxylic acid tert-butyl ester according to general method 2. Preparation 26: l-Cyclohexyl-4-prop-2-ynyl-piperazine (JR4019).
JR4019
The title compound was prepared starting with 3g (17.9 mmol) of
1-cyclohexylpiperazine according to general method 2
Preparation 27: l-Prop-2-ynyl-piperazine (JR4029).
JR4029
To a flame-dried 25 mL round bottom flask under nitrogen was added 2.1 g of 4-Prop-2-ynyl-piperazine- 1-carboxylic acid tert-butyl ester. To this solid was added 5 mL of 98%> TFA in 1 mL portions. The solution turned wine red, bubbled and smoked. The additional portions of TFA were added when this activity subsided. After the third portion of TFA had been added only minimal bubbling occurred. The solution was allowed to stir under nitrogen at room temperature for an additional hour and evaporated under reduced pressure to yield the product as a thick red syrup. Assumed quantitative yield of 1.16 g. The residue was suspended in 20 mL dichloromethane and used immediately without further purification for the preparation of compounds JR4031, JR4033, and JR4035. Preparation 28: 4-Prop-2-ynyl-piperazine-l-carboxylic acid methyl ester (JR4031).
JR4031
The title compound was prepared starting with 385 mg (3.1 mmol) of
JR4029 and using methylchloro formate according to general method 3.
Preparation 29: 4-Prop-2-ynyl-piperazine-l-carboxylic acid isobutyl ester (JR4035).
JR4035
The title compound was prepared starting with 385 mg (3.1 mmol) of JR4029 and using isobutylchloroformate according to general method 3.
Preparation 30: 3,3-Dimethyl-l-(4-prop-2-ynyl-piperidin-l-yl)-butan-l-one (JR4041).
The title compound was prepared starting with tert-butyl ester (JR3257) and using tert-butylacetylchloride according to general method 3.
Preparation 31: l-(4-Prop-2-ynyl-piperazin-l-yI)-ethanone (JR4043).
JR4043
The title compound was prepared starting with 385 mg (3.1 mmol) of JR4029 and using acetyl chloride according to general method 3.
Preparation 32: Piperidine-l,4-dicarboxylic acid mono-tert-butyl ester.
To a solution of piperidine-4-carboxylic acid (10 g, 77.5 mmol) and potassium carbonate (21.4 g, 155 mmol) in 150 mL of water was prepared. A solution of di-tert-butyl dicarbonate (16.9g, 77.5 mmol) in 40 mL of THF was added dropwise via addition funnel at 0 °C. The reaction was allowed to warm to room temperature gradually over 30 minutes and stirred for an additional 4 hours. The THF was removed under reduced pressure and the aqueous phase extracted with 50 mL of ether. The aqueous phase was then adjusted to pH 2 with 10 % HCl and extracted with EtOAc, 4 x 50 mL. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to yield 17.2 g (97%) of JR3183 as a white solid. Rf = 0.2 (35% EtOAc/Hexanes stained w/ vanillin). 1H NMR (CPC13) δ 11.83 (s, 1 H), 3.98 (d, J = 11.8 Hz, 2 H), 2.83 (t, J = 11.8, 2 H), 2.46 (m, 1 H), 1.88 (d, J = 12.9hz, 2 H), 1.2 (m, 2 H), 1.42 (s, 9 H). 13C NMR (CDC13) δ 180.0, 154.8, 79.8, 42.9, 40.8, 28.3, 27.7. APCI m/z (rel intensity) M" 228.2 (100). Preparation 33:
The following intermediate compounds are prepared using the general method 1 described herein and the appropriate starting materials.
(R)-l-Ethynyl-3-tert-butyI-cyclohexanoI (JR3255A), (S)-l-Ethynyl- 3-fert-butyl-cycIohexanol (JR3255B).
JR3225A JR3225B
Toluene-4-sulfonic acid 4-prop-2-ynyl-cyclohexylmethyl ester (JR3077).
l-Ethyl-4-prop-2-ynyl-cydohexane (JR3083).
JR3083 l-(4-Prop-2-ynyl-cyclohexyl)-ethanone (JR3115).
JR3115
l,l-Dicyclohexyl-prop-2-yn-l-ol (JR3127).
JR3127
l-Cyclohexyl-prop-2-yn-l-ol (JR3129).
JR3129
4-Ethyl-l-ethynyl-cyclohexanol (JR3143).
JR3143
l-EthynyI-3-methyl-cyclohexanol.
JR3147B
l-Ethynyl-3,3,5,5-tetramethyl-cyclohexanol (JR3151).
JR3151
l-Ethynyl-4-phenyl-cyclohexanol (JR3153).
JR3153
l-EthynyI-2-methyl-cyclohexanol (JR3167B)
JR3167B
4-tert-Butyl-l-ethynyl-cyclohexanol (JR3191).
JR3191
l-Ethynyl-3,3-dimethyl-cyclohexanol (JR3193).
Piperidine-l,4-dicarboxyIic acid 1-tert-butyl ester 4-methyl ester (JR3195).
JR3195
4-Hydroxymethyl-piperidine-l-carboxylic acid tert-butyl ester (JR3199).
JR3199 -Prop-2-ynyl-piperazine-l-carboxylic acid ethyl ester (JR3211).
JR3211
-Prop-2-ynyl-piperidine-l-carboxylic acid tert-butyl ester (JR3257).
-Prop-2-ynyl-piperidine-l-carboxylic acid ethyl ester (JR3267B).
JR3267B
2-(4-Prop-2-ynyI-piperazin-l-yI)-pyrimidine (JR3277).
JR3277
l-(4-Prop-2-ynyl-piperidin-l-yl)-ethanone (JR4037).
2,2-Dimethyl-l-(4-prop-2-ynyl-piperidin-l-yl)-propan-l-one (JR4039).
Example 1 : 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid (109).
The reaction of 110 with five equivalents of LiOH in THF/water for 6 hours gave 109 (7 mg, 72%) as a white solid which was crystallized from MeOH/H2O(0.1 % TFA) after purification by reverse phase HPLC. !H NMR (OMSO-d6) δ 8.70 (s, 1 H), 8.41 (s, 1 H), 7.62 (s, 2 H), 5.89 (d, J = 7.25 Hz, 1 H), 4.53 (m, 1 H), 4.27 (s, 1 H), 4.08 (d, J = 3.6 Hz, 1 H), 2.29 (d, J = 6.4 Hz, 2 H), 2.15-1.99 (m, 1 H), 1.92- 1.76 (m, 4 H), 1.52 -1.38 (m, 1 H), 1.38 - 1.19 (m, 2 H), 1.02 (t, J = 6.3 Hz 3 H); 13C NMR (PMSO-d6) 176.7, 169.2, 155.6, 148.9, 145.2, 141.6, 119.0, 87.7, 85.0, 84.6, 81.6, 73.1, 71.9, 43.2, 35.9, 33.3, 31.2, 28.3, 25.6, 15.0. HRMS (FAB) m/z 474.2196 [(M + H)+ cacld for C22H29N6O6 474.2182].
Example 2: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxytetrahydro- furan -2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (110).
The reaction of 89 with 2-IodoNECA under the general conditions described above provided 110 (74 mg, 60%) as a white solid. 1H NMR (CO3OO) δ 8.23 (s, 1 H), 5.92 (d, J = 7.7 Hz, 1 H), 4.69 - 4.65 (dd, J = 7.7 Hz, 4.6 Hz, 1 H), 4.40 (s, 1 H), 4.24 (d, J = 4.6 Hz, 1 H), 3.59 (s, 3 H), 3.49 -3.31 (m, 2 H), 2.31 (d, J = 6.6 Hz, 2 H), 2.10 - 2.09 (m, 1 H), 2.01 -1.89 ( , 4 H), 1.61 - 1.32 (m, 5 H), 1.13 (t, J = 7.3 Hz, 3 H); 13C NMR (CP3OO) δ 177.1, 171.1, 156.3, 149.3, 146.7, 142.4, 119.7 89.6, 86.0, 85.5, 81.6, 74.0, 72.2, 51.2, 43.2, 36.8, 34.2, 31.8, 28.9, 26.2, 14.4; HRMS (FAB) m/z 487.2325 [(M + H)+ cacld for C23H31N6O6 487.2305].
Example 3: Acetic acid 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4- dihydroxy- tetrahydrofuran -2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexylmethyl ester
(HI).
The reaction of 87 with 2-IodoNECA under the general conditions described above gave 111 (78 mg, 62%) as a white solid. 1H NMR (CO3OP) δ 8.22 (s, 1 H), 5.92 (d, J = 8.1 Hz, 1 H), 4.70 - 4.66 (dd, J = 8.1 Hz, 4.6 Hz, 1 H), 4.40 (d, J = 1.2 Hz, 1 H), 4.25 - 4.23 (dd, J = 4.6 Hz, 1.2 Hz, 1 H), 3.83 (d, J = 6.5, 2 H), 3.53 - 3.31 (m, 2 H), 2.29 (d, J = 6.5 Hz, 2 H), 1.97 (s, 3 H), 1.93 - 1.89 (m, 2 H), 1.79 - 1.75 (m, 2 H), 1.64 - 1.42 (m, 2 H), 1.12 (t, J = 7.3 Hz, 3 H), 1.09 - 0.91 (m, 4 H); 13C NMR (CP3OO) δ 172.0, 171.2, 156.2, 149.3, 146.7, 142.5, 119.7, 89.6, 86.3, 85.5, 81.5, 74.0, 72.2, 69.6, 37.4, 37.2, 34.2, 32.1, 29.4, 26.4, 19.9, 14.5; HRMS (FAB) m/z 501.2469 [(M + H)+ cacld for C24H33N6O6 501.2462].
Example 4: 5-{6-Amino-2-[3-(4-hydroxymethyl-cyclohexyl)-prop-l-ynyl]- purin-9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(112).
The reaction of 86 (30 mg, 0.2 mmol) with 2-IodoNECA (28 mg, 0.07 mmol) under the general conditions described above gave 112 (7 mg, 24%) as a white solid. 1H NMR (CO3OO) δ 8.22 (s, 1 H), 5.92 (d, J = 7.7 Hz, 1 H), 4.70 - 4.66 (dd, J = 7.7 Hz, 4.8 Hz, 1 H), 4.40 (d, J = 1.2 Hz, 1 H), 4.25 - 4.23 (dd, J - 4.8 Hz, 1.2 Hz, 1 H), 3.51 - 3.37 (m, 2 H), 3.31 (d, J = 6 Hz, 2 H), 2.30 (d, J = 6.8 Hz, 2 H), 1.94 - 1.89 (m, 2 H), 1.83 - 1.78 (m, 2 H), 1.64 - 1.42 (m, 2 H), 1.12 (t, J = 7.3 Hz, 3 H), 1.09 - 0.91 (m, 4 H); 13C NMR (CP3OP) δ 170.3, 155.4, 148.5, 146.0, 141.6, 118.8, 88.7, 85.5, 84.6, 80.6, 73.1, 71.3, 66.8, 39.6, 36.9, 33.3, 31.5, 28.6, 25.6, 13.5; HRMS (FAB) m/z 459.2373 [(M + H)+ cacld for C22H3ιN6O5 459.2356].
Example 5: 5-{6-Amino-2-[3-(4-ethylcarbamoyl-cyclohexyl)- prop-1-ynyl]- purin -9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3037).
To a sealed tube containing 5 mL of freshly distilled ethylamine was added 10 mg (0.02 mmol) of ATL146e. The flask was sealed and allowed to stir at 60°C for 80hours. After this time the reaction was only about 50% complete by HPLC. The vessel was cooled to 0°C, opened, and the ethylamine was removed in vacuo to yield 4.5 mg (73%>) of JR3037 as a white solid and the recovery of 4.0 mg of starting material after the residue was purified by RP-HPLC. 1H NMR (CO3OO-d4) δ. 13C NMR (CP3OO-d4) δ. APCI m z (rel intensity) 500.8 (MH+, 100), 327.4(3).
Example 6: 5-{6-Amino-2-[3-(4-carbamoyl-cyclohexyl)- prop-l-ynyϊ]purin -9-yI}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3055).
To a sealed tube containing 10 mL of saturated MeOH/NH3 solution was added 5 mg (0.01 mmol) of ATL146e. The flask was sealed and allowed to stir at 25°C for 48hours. The vessel was cooled to 0°C, opened, and the ammonia removed by bubbling N2 for 1 hour. The remaining solvent was then removed in vacuo to yield 4.0 mg (83%) of JR3055 as a white solid after the residue was purified by RP-HPLC. 1H NMR (CD3OD-d4) δ 8.41 (s, 1 H), 5.98 (d, J = 7.2 Hz, IH), 4.65 (dd, J = 7.3 Hz, 4.8 Hz, 1 H), 4.41 (d, J = 2.0 Hz, 1 H), 4.28 (dd, J = 4.6 Hz, 2.0 Hz, 1 H), 3.35 (m, 2 H), 2,37 (d, J= 6,4 Hz, 2 H) 2.10 (m, 1 H), 1.90 (m, _ H), 1.53 (m, _ H_), 1.23 (m, _ H), 1,12 (t, J = 7.3 Hz, 3 H). 13C NMR (CP3OO-d4) δ. APCI m/z (rel intensity) 472.3 (MH+, 100), 299.4(10).
Example 7: 5-{6-Amino-2-[3-(4-methylcarbamoyl-cyclohexyl)- prop- l-ynyl]purin -9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxy lie acid ethylamide (JR3065).
To a sealed tube containing 10 mL 2.0 M methylamine in methanol was added 16.5 mg (0.03 mmol) of ATL146e. The flask was sealed and allowed to stir at 70°C for 120hours. The vessel was cooled to 0°C, opened, and the solvent was removed in vacuo to yield 8.0 mg (48%) of JR3065 as a white solid after the residue was purified by RP-HPLC. 1H NMR (CO3OO-d4) δ. 13C NMR (CPsOO-c ) δ. APCI m/z (rel intensity) 486.3 (MH+, 100), 313.4(35).
Example 8: 5-[6-Amino-2-(l-hydroxy-cyclopentylethynyl)-purin-9-yl]-
3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3135).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.48 (s, 1 H), 6.04 (d, J = 6.9 Hz, 1 H), 4.72 (dd, J = 6.9 Hz, J = 4.4 Hz, 1 H), 4.46 (d, J = 2.3 Hz, 1 H), 4.33 (dd, J = 4.6 Hz, J = 1.9 Hz, 1 H), 3.42 (m, 2 H), 2.04 (m, 4 H), 1.83, (m, 4 H), 1.16 (t, J = 7.3 Hz, 3 H). 13C NMR (CP3OP-d4) δ 171.9, 155.3, 150.0, 144.3, 120.6, 95.4, 90.6, 89.5, 86.2, 79.9, 74.9, 74.0, 70.5, 42.9, 35.3, 24.4, 15.3. APCI m/z (rel intensity) 417.2 (MH+, 100), 399.4(85), 244.3(15), 26.5(25). HRMS M+ actual 417.18864, observed 417.18880.
Example 9:
5-[6-Amino-2-(3,3-dicyclohexyl-3-hydroxy-prop-l-ynyl)-purin-9-yl]- 3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3139).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.57 (s, 1 H), 6.09 (d, J = 6.6 Hz, 1 H), 4.77 (dd, J = 6.7, Hz, J = 4.8 Hz, 1 H), 4.46 (d, J - 2.3 Hz, 1 H), 4.37 (dd, J = 4.6 Hz, J = 2.3 Hz, 1 H), 3.42 (m, 2 H) 1.80 (m, 13 H), 1.28 (m, 9 H), 1.13 (t, J = 7.3 Hz, 3 H). 13C NMR (CP3OO-d4) δ. APCI m/z (rel intensity) 527.3 (MH4, 60), 509.5(100), 354.4(5), 336.5(5), 279.5(8). HRMS M+ actual 527.29819, observed 527.29830
Example 10: 5-[6-Amino-2-(4-ethyl-l-hydroxy-cyclohexylethynyl)-purin-9-yl]-
3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3149).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.51 (s, 1 H), 6.06 (d, J = 7.0 Hz, 1 H), 4.75
(dd, J = 6.4 Hz, J = 4.9 Hz, 1 H), 4.46 (d, J = 1.9 Hz, 1 H), 4.34 (dd, J = 4.9 Hz, J
= 2.1 Hz, 1 H), 3.42 (m, 2 H), 2.12 (d, J = 11.9 Hz, 2 H), 1.80 (d, J = 11.9 Hz, 2 H), 1.58 (t, J = 12.1 Hz, 2 H), 1.28 (m, 4 H), 1.15 (t, J = 7.1 Hz, 3 H), 0.91 (t, J =
7.1 Hz, 3 H). 13C NMR (CP3OO-d4) δ 171.9, 155.4, 150.0, 144.2, 143.8, 120.6,
94.5, 90.5, 86.1, 81.8, 74.9, 74.1, 70.3, 40.5, 39.8, 35.3, 31.0, 30.2, 15.2, 12.0.
APCI m/z (rel intensity) 459.4 (MH+, 100), 441.4(60), 268.4(10). HRMS M+ actual 459.23559, observed 459.23550.
Example 11: 5-[6-Amino-2-(l-hydroxy-4-phenyI-cyclohexylethynyI)-purin-9-yl]-
3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3161).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.45 (s, 1 H), 7.26 (m, 4 H), 7.14 (m, 1 H), 6.05 (d, J = 7.3 Hz, 1 H), 4.80 (dd, J = 7.3 Hz, J = 4.8 Hz, 1 H), 4.46 (d, J = 1.6 Hz, 1 H), 4.34 (dd, J = 4.7 Hz, J = 1.8 Hz, 1 H), 3.44 (m, 2 H), 2.58 (m, 1 H), 2.23 (d, J = 11.7 H, 2 H), 1.92 (m, 4 H), 1.78, (m, 2 H), 1.15 (t, J = 7.2 Hz, 3 H). 13C NMR (CP3OP-d4) δ. APCI m/z (rel intensity) 507.3 (MH+, 100) 489.4(70), 334.3(5), 316.5(8). HRMS M+ actual 507.23559, observed 507.23580.
Example 12:
5-[6-Amino-2-(l-hydroxy-3,3,5,5-tetramethyl-cyclohexylethynyl)purin-9-yl]- 3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3163).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.54 (s, 1 H), 6.04 (d, J = 6.9 Hz, 1 H), 4.74
(dd, J = 6.9 Hz, J = 5.0 Hz, 1 H), 4.46 (d, J = 1.9 Hz, 1 H), 4.34 (dd, J = 4.7 Hz, J
= 1.9 Hz, 1 H), 3.44 (m, 2 H), 1.74 (s, 4 H), 1.13 (m, 17 H). APCI m/z (rel intensity) 487.3 (MH+, 75), 469.4(100), 296.4 (10). Example 13: 5-[6-Amino-2-(l-hydroxy-2-methyl-cyclohexylethynyϊ)- purin-9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3177A, JR3177B).
The reaction of l-Ethynyl-2-methyl-cyclohexanol (JR3169B) (100 mg,
0.72 mmol) with 2-iodo-NECA (25 mg, 0.06 mmol) under the general coupling conditions gave JR3177A (8.0 mg) and JR3177B (8.2 mg) (overall yield 65%) as white solids after purification by a silica plug and RP-HPLC. JR3177A: 1H NMR (CDsOD-dj) δ 8.47 (s, 1 H), 6.05 (d, J = 6.9 Hz, 1 H), 4.77 (dd, J = 6.9 Hz, J = 4.9 Hz, 1 H), 4.45 (d, J = 1.9 Hz, 1 H), 4.34 (dd, J = 4.6 Hz, J = 2.1 Hz, 1 H), 3.41 (m, 2 H), 2.13 (d, J = 12.7 Hz, 2 H), 1.65 (m, 5 H), 1.32 (m, 2 H), 1.14 (t, J = 7.0 Hz, 3 H), 1.13 (d, J = 6.6 Hz, 3 H).. 13C NMR (CP3OP-d4) δ. APCI m/z (rel intensity) 445.3 (MH+, 100), 427.4(80), 254.4(14). 1H NMR (CP3OP-d4) δ 8.49 (s, 1 H), 6.05 (d, J = 6.9 Hz, 1 H), 4.78 (dd, J = 6.4 Hz, J = 4.9 Hz, 1 H), 4.45 (d, J = 1.9 Hz, 1 H), 4.34 (dd, J = 4.6 Hz, J = 1.6 Hz, 1 H), 3.42 (m, 2 H), 2.12 (d, J = 12.3 Hz, 2 H), 1.65 (m, 4 H), 1.35 (m, 4 H), 1.14 (t, J = 7.3 Hz, 3 H), 1.12 (d, J = 6.6 Hz, 3 H). 13C NMR (CDsOD-ά ) δ. APCI m/z (rel intensity) 445.7 (MH+, 100), 427.3(35), 254.4(3.5).
Example 14: 5-[6-Amino-2-(l-hydroxy-3-methyl-cyclohexylethynyl)- purin-9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3179).
The reaction of l-Ethynyl-3-methyl-cyclohexanol (JR3149B) (100 mg, 0.72 mmol) with 2-iodo-NECA (25 mg, 0.06 mmol) under the general coupling conditions gave JR3179 (15.0 mg, 59%) as a white solid after purification by a silica plug and RP-HPLC. 1H NMR (CO3OO-d4) δ 8.49 (s, 1 H), 6.06 (d, J - 6.9 Hz, 1 H), 4.75 (dd, J = 6.4 Hz, J = 4.9 Hz, 1 H), 4.46 (d, J = 1.9 Hz, 1 H), 4.34 (dd, J = 4.9 Hz, J = 2.1 Hz, 1 H), 3.42 (m, 2 H), 2.09 (d, J = 12.3 Hz, 2 H), 1.73 (m, 4 H), 1.46 (m, 1 H), 1.23 (m, 1 H), 1.16 9 (t, J = 7.1 Hz, 3 H), 0.95 (d, J = 6.2 Hz, 3 H), 0.89 (m, 1 H). 13C NMR (CP3OO-d4) δ. APCI m/z (rel intensity) 445.3 (MH+, 100), 427.4(40), 254.4(4).
Example 15: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan -2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperazine-l-carboxyIic acid ethyl ester (JR3213).
The title compound was prepared using the appropriate starting materials and procedures described herein. The results are as follows:
1H NMR (CP3OO-d4) δ 8.48 (s, 1 H), 6.00 (d, J = 6.9 Hz, 1 H), 4.67 (dd, J = 6.5 Hz, J = 5.0 Hz, 1 H), 4.42 (d, J = 1.9 Hz, 1 H)), 4.39 (s, 2 H), 4.35 (dd, J = 4.7 Hz, J = 1.9 Hz, 1 H), 4,13 (q,) 3.42 (m, 2 H),. 13C NMR (CP3OO-d4) δ. APCI m/z (rel intensity) 503.4 (MH+, 100), 330.3 (6). Example 16: 5-[6-Amino-2-(3-hydroxy-2-oxo-azepan-3-ylethynyl)purin-9- yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3243A, R3243B).
JR3243 35 mg (0.081 mmol) IodoNECA (62mg alkyne, 0.41mmol), 2ml PMF, 4ml Acetonitrile, 0.2ml TEA, d(PPH3)4, Cul. Stirred overnight at room temperature (11/29/01). Rxn is tan w/ brown precipitate. TLC (20%MeOH/CH2C12) indicates rxn complete (r.f. INECA = 0.67, r.f. product = 0.45). Filtered mixture through celite, washed with 3x2mL PMF, and evaporated under vacuum to brown oil. (solid precipitates out upon the addition of MeOH, thus used PMF to load on prep plate).
The following compounds can be prepared by following the general method 4 described herein and the appropriate intermediate compounds described herein.
Example 17: N-Ethyl 2-{3-[trans-4-(methoxycarbonyIoxamethyl)- cyclohexyl]-l-propyn-l-yl}adenosine-5'-uronamide (ATL214) :
Yield 3.4 mg, 10%. 1H NMR (CP3OO) δ 1.18 (t, 3H, -NHCH2CH3), 1.03-1.20, 1.51-1.70, 1.79-1.85, 1.94-2.01 (4 x m, 10Η, cyclohexyl), 2.35 (d, 2Η, -C60CH2CC-), 3.46 (m, 2Η, -NHCH2CH3), 3.73 (s, 3H, -OCH3), 3.94 (d, 2Η, -C60CH2O-), 4.29 (dd, 1Η, 3'-Η), 4.45 (d, IH, 4'-H), 4.72 (dd, IH, 2'-H), 5.97 (d, IH, l'-H), 8.27 (s, IH, 8-H). APCI m/z 517.4 (M+H+).
Example 18: N-Ethyl 2-{3-[trans-4-(isobutoxyoxycarbonyloxamethyl)- cycIohexyl]-l-propyn-l-yl}adenosine-5'-uronamide (ATL215) :
Yield 8.5 mg, 30%. 1H NMR (CO3OO) δ 0.94 (d, 4H, -OCH2CH(CH3)2), 1.18 (t, 3Η, -NHCH2CH3), 1.04-1.24, 1.54-1.72, 1.79-2.03 (3 x m, 11Η, cyclohexyl, -OCΗ2CH(CΗ3)2), 2.38 (d, 2H, -C6H10CH2CC-), 3.43 (m, 2Η, -NHCH2CH3), 3.89, 3.94 (2 x d, 4H, -C60CH2O-, -OCH2CΗ(CΗ3)2), 4.30 (dd, IH, 3'-H), 4.46 (d, IH, 4'-H), 4.71 (dd, IH, 2'-H), 6.00 (d, IH, l'-H), 8.37 (br s, IH, 8-H). APCI m/z 559.5 (M+H+).
Example 19: N-Ethyl 2-{3-[trans-4-(benzoxycarbonyloxamethyl)- cyclohexyl]-l-propyn-l-yl}adenosine-5'-uronamide (ATL216):
Yield 1.0 mg, 3%. 1H NMR (CO3OO) δ 1.17 (t, 3H, -NHCH2CH3), 1.03-1.23, 1.52-1.71, 1.78-1.86, 1.93-2.02 (4 x m, 10Η, cyclohexyl), 2.35 (d, 2Η, -C60CH2CC-), 3.45 (m, 2Η, -NHCH2CH3), 3.97 (d, 2H, -C6H10CH2O-), 4.29 (dd, 1Η, 3'-Η), 4.45 (d, IH, 4'-H), 4.72 (dd, IH, 2'-H), 5.13 (s, 2H, -OCH2Ph), 5.97 (d, 1Η, l'-Η), 7.33-7.37(m, 5Η, Ar), 8.30 (br s, IH, 8-H). APCI m/z 593.3 (M+H ). Example 20:
4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cycIohexanecarboxyIic acid 2-tert- butoxycarbonylamino-ethyl ester.
Example 21 : 5-{6-Amino-2-[3-(4-dimethylaminomethyl-cyclohexyl)-prop-l- ynyl]-purin-9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR2023).
Example 22:
4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydrofuran-2-yl)- 9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid 2-aminoethyl ester (JR3033).
Example 23 : 4-{3-[6-Amino-9-(5-ethylcarbamoyI-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-l-methyl-cyclohexanecarboxylic acid methyl ester (JR3067A).
Example 24: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-l-methyl-cyclohexanecarboxylic acid methyl ester (JR3067B).
Example 25: 5-{6-Amino-2-[3-(4-ethyI-cyclohexyl)-prop-l-ynyI]-purin- 9-yl}-3,4- dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3087)
Example 26: 5-{2-[3-(4-Acetyl-cyclohexyl)-prop-l-ynyl]-6-aminopurin- 9-yl}-3,4- dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3119).
Example 27: 5-(6-Amino-2-{3-[4-(l-hydroxy-ethyl)-cyclohexyl]-prop- l-ynyl}-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-carboxy lie acid ethylamide.
Example 28: 5-[6-Amino-2-(l-hydroxy-2-methyl-cyclohexylethynyl)-purin- 9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3181A, JR3181B).
Example 29: 5-[6-Amino-2-(l-hydroxy-3,3-dimethylcyclohexyI- ethynyI)-purin-9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxy lie acid ethylamide (JR3201B).
Example 30: 5-[6-Amino-2-(4-tert-butyl-l-hydroxycyclohexylethynyl)- purin-9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3203).
Example 31 : 5-[6-Amino-2-(l-hydroxy-3-methylcycIohexylethynyl)purin- 9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3221).
Example 32: 5-[6-Amino-2-(l-hydroxy-3-methylcyclohexylethynyI)purin- 9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3223).
Example 33 : 5-[6-Amino-2-(2-tert-butyI-l-hydroxycyclohexylethynyl)- purin-9-yl]-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide
(JR3227).
JR3227
Example 34: l-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-4-carboxylic acid methyl ester (JR3251).
Example 35: l-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-2-carboxylic acid methyl ester (JR3253).
Example 36: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-l-carboxylic cid tert-butyl ester (JR3259).
JR3259
Example 37: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4- dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-l-carboxylic acid ethyl ester (JR3269).
Example 38: l-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-4-carboxylic acid ethyl ester (JR3279).
Example 39: 4-{3-[6-Amino-9-(5-ethyIcarbamoyl-3,4- dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperazine-l-carboxy lie acid tert-butyl ester (JR3281).
Example 40: 5-{6-Amino-2-[3-(4-pyrimidin-2-yl-piperazin- l-yl)-prop-l-ynyl]purin-9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3283).
Example 41 : 5-[6-Amino-2-(3-piperazin-l-yl-prop-l-ynyl)purin-9-yl]- 3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR3289).
Example 42: l-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-4-carboxy lie acid (JR3291).
Example 43: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-l-carboxy lie acid methyl ester (JR4007).
Example 44: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-l-carboxylic acid isopropyl ester (JR4009).
Example 45: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-l-carboxylic acid isobutyl ester (JR4011).
Example 46: 5-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]prop-2-ynyl}-2,5-diazabicyclo[2.2.1]heptane- 2-carboxylic acid tert-butyl ester (JR4015).
Example 47: 5-(6-Amino-2-{3-[l-(3,3-dimethyl-butyryl)-piperidin-4-yl]- prop-l-ynyl}purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR4047).
Example 48: 5-(6-Amino-2-{3-[l-(2,2-dimethyl-propionyI)-piperidin-4-yl]- prop-l-ynyl}-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR4051).
Example 49: 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydro- furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperazine-l-carboxylic acid isobutyl ester (JR4049).
Example 50: 5-{2-[3-(4-Acetyl-piperazin-l-yl)-prop-l-ynyl]-6-amino- purin-9-yl}-3,4-dihydroxytetrahydrofuran-2-carboxylic acid ethylamide (JR4053).
Example 51 :
The following compounds can be prepared by following the general methods described herein and the appropriate intermediate compounds:
Example 52: Cell culture and membrane preparation.
Sf9 cells were cultured in Grace's medium supplemented with 10% fetal bovine serum, 2.5 μg/ml amphotericin B and 50 μg/ml gentamycin in an atmosphere of 50% N2/50% O2. Viral infection was performed at a density of 2.5xl06 cells/mL with a multiplicity of infection of two for each virus used. Infected cells were harvested 3 days post-infection and washed twice in insect PBS (PBS pH 6.3). Cells were then resuspended in lysis buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 3mM MgCl2, lmM β-mercaptoethanol (BME), 5μg/mL leupeptin, 5μg/mL pepstatin A, 1 μg/mL aprotinin, and O.linM PMSF) and snap frozen for storage at - 80°C. Cells were thawed on ice, brought to 30 mL total volume in lysis buffer, and burst by N2 cavitation (600 psi for 20 minutes). A low-speed centrifugation was performed to remove any unlysed cells (1000 x g for 10 minutes), followed by a high-speed centrifugation (17,000 x g for 30 minutes). The pellet from the final centrifugation was homogenized in buffer containing 20 mM HEPES pH 8, lOOmM NaCl, 1% glycerol, 2 μg/mL leupeptin, 2 μg/mL pepstatin A, 2 μg/mL Aprotinin, 0.1 mM PMSF, and 10 μM GOP using a small glass homogenizer followed by passage through a 26 gauge needle. Membranes were aliquoted, snap frozen in liquid N2, and stored at -80°C. Membranes from cells stably expressing the human At AR (CHO Kl cells) or A3 AR (HEK 293 cells) were prepared as described (Robeva et al, 1996).
Example 53:Radioligand Binding Assays.
Radioligand binding to recombinant human A2A receptors in Sf9 cell membranes was performed using either the radiolabeled agonist, 125I- APE
(Luthin et al, 1995) or the radiolabeled antagonist, 125I-ZM241385 (125I-ZM).
To detect the high affinity, GTPγS-sensitive state of Ai and A3 AR, we used the agonist, 125J- ABA (Linden et al, 1985;Linden et α/., 1993). Binding experiments were performed in triplicate with 5 μg (A2A) or 25 μg (Ai and A3) membrane protein in a total volume of 0. ImL HE buffer (20 mM HEPES and 1 mM EPTA) withl U/mL adenosine deaminase and 5 mM MgCl2 with or without
50 μM GTPγS. Membranes were incubated with radio ligands at room temperature for three hours (for agonists) or two hours (for antagonists) in Millipore Multiscreen® 96-well GF/C filter plates and assays were terminated by rapid filtration on a cell harvester (Brandel, Gaithersburg, MP) followed by 4 x 150 μl washes over 30 seconds with ice cold 10 mM Tris-HCl, pH 7.4, 10 mM MgCl2. Nonspecific binding was measured in the presence of 50 μM NECA. Competition binding assays were performed as described (Robeva et al, 1996) using 0.5-1 nM 125I-APE, 125I-ZM241385, or 125I-ABA. We found that it was sometimes important to change pipette tips following each serial dilution to prevent transfer on tips of potent hydrophobic compounds. The Kt values for competing compound binding to a single site were derived from IC5o values with correction for radioligand and competing compound depletion as described previously (Linden, 1982).
Linden J (1982) Calculating the Pissociation Constant of an Unlabeled Compound From the Concentration Required to Pisplace Radiolabel Binding by 50%. J Cycl Nucl Res 8: 163-172. Linden J, Patel A and Sadek S (1985) [125I]Aminobenzyladenosine, a
New Radioligand With improved Specific Binding to Adenosine Receptors in Heart. Circ Res 56: 279-284.
Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS and Reppert SM (1993) Molecular Cloning and Functional Expression of a Sheep A3 Adenosine Receptor With Widespread Tissue Oistribution. Mol Pharmacol 44: 524-532.
Luthin PR, Olsson RA, Thompson RP, Sawmiller PR and Linden J (1995) Characterization of Two Affinity States of Adenosine A2A Receptors With a New Radioligand, 2-[2-(4-Amino-3- [125I]Iodophenyl)Ethylamino] Adenosine. Mol Pharmacol 47: 307-313.
Robeva AS, Woodard R, Luthin PR, Taylor HE and Linden J (1996) Pouble Tagging Recombinant Ai- and A2A- Adenosine Receptors With Hexahistidine and the FLAG Epitope. Pevelopment of an Efficient Generic Protein Purification Procedure. Biochem Pharmacol 51: 545-555. Chemiluminescence Methods: Luminol enhanced chemiluminescence, a measure of neutrophil oxidative activity, is dependent upon both superoxide production and mobilization of the granule enzyme myeloperoxidase. The light is emitted from unstable high-energy oxygen species such as hypochlorous acid and singlet oxygen generated by activated neutrophils.
Purified human neutrophils (2 X 106/ml) suspended in Hanks balanced salt solution containing 0.1 %> human serum albumin (HA), adenosine deaminase (lU/mL) and rolipram (100 nM) were incubated (37C) in a water bath for 15 min with or without rhTNF(10U/ml). Following incubation 100 L aliquots of the PMN were transferred to wells (White walled clear bottom 96 well tissue culture plates Costar #3670; 2 wells /condition) containing 501 HA and luminol (final concentration 100M) with or without adenosine agonist (final agonist concentrations 0.01-lOOOnM). The plate was incubated 5 min (37C) and then fMLP (50 1 in HA; final concentration 1M) was added to all wells.
Peak chemiluminescence was determined with a Victor 1420 Multilabel Counter in the chemiluminescence mode using the Wallac Workstation software. Pata are presented as peak chemiluminescence as percent of activity in the absence of an adenosine agonist. The EC50 was detennined using PRISM software. All compounds were tested with PMNs from three separate donors. The results are summarized in Table 8.
Table 8 Binding Affinity And Selectivity For A2A Agonists
Agonist A2A±SEM AI±SEM A3±SEM A1/ A2A A3/ A2A PMN PMN oxid +roli oxid(-log (-log
EC50) EC50)
ATL-146a 29.6 ± 1.2 189±19 29±10 6.4 1.0 6.04 7.72 ATL-146e 0.5 ± 0.04 77.0±12 45.0+15 154.0 90.0 8.45 9.33
ATL-193 1.1 ±0.2 71.0±14 231.0±91 64.5 210.0 8.51 9.46
ATL-2037 1.5±0.01 19.0+1 76.0±6 12.6 50.3 7.49 8.7
NECA 2.0±0.4 2.0±1.4 32.0±9 1.0 16.0 7.82 8.95
CCPA 11.0±1.9 0.3±0.1 65.0±6 0.0 5.9 5.37 7.26
CGS-21680 4.9±0.3 316.0±59 82.0±18 64.5 16.7 7.52 8.55
CI-IBMECA 18.3±3.2 33.0±9 2.4±0.3 1.8 0.1 4.34 7.49
CPA 19.8±3.2 0.4±0.1 93.0±7 0.02 4.7 4.03 7.06
z σ> ιo
__ o O a. LU
CΛ O oo I-- CD oo O co
O) oo LO o CD 1^ r^ I^ cd CD 1^ 1^ z o m
S S ϋ a. " o UI
CM o o CM CM CD
CM o co od co o co co M LO σ> CM o
5 CO cq co CM CO
T— cq h- CM σ>
LU d 1^ co co 1 +1 +ι +1 d
+1 +1 +i +ι (0 +1 +ι + q LO o o σ +ι o M-
1^ 1^ CO O ^ CO- LO co M co
10 < LO - --- --- co - CO r-
'tf ~
"Ξ ϋ CM CM CM CO CO co o LU O O O o o o
CM CM CM co co CO CO co co _≥ CQ G_
~5 ά —3. 0.
-3 ά —i. ά. c —3 ά —). ά -.. c -t.
o _. +
Ό o σι o o O
Q. «i- LU en LO co cn co en co oo co α> o cn CD r^ CD f- oό oci
O
"O LO
'S o o LU
2 CO CD CM CO CD
CD LO LOr^ o co LO
3 co LO
CD o (35 co CM co cq o d d O O d
CM d L co d d CM
s oo CM ι oo M co oo oo d o co
LU d d d CO +ι o +1 d o
+1 +ι +ι +ι d o +ι +! +J co
CM- CO co co o +ι en LO co
w LO co LO - - en LO LO CO CD CD CD 1^ CO CO c o O o O O O o o o o co CO CO co co O co CO co
C_ CC 0. _t CL
< -. -. ct ά —3.
o
+ J
"x o ^-fc. z D) o
Έ O o
0. Tj LU
o o - co n- CM LO CO co oo cd CO r^ CM rf CD d cd oo <
Ε LO CD CO CD CM o
LU LO O +1 +1 o CM +ι ^~ ; +1 +1 CO rt- +1 +1 +1
CM O q o +1 rt
1^ o
3 CD LO od coco co
|-~- cn co LO r- n oo oo o o CM co oo co rl-
"Ξ o o ^- o O co co co CO CO co co co co t t ct ct ct Ct Ct
< ά. t c
—) —> - ά.. —ϊ —3 co rt- cn co LO cq co co cq o rf q CD cri cri d cri r^ cri cri d od cri
α
X o ^_^ z o> o s o O a. LU
z
S a.
LO n- CM cn - h-;
LU q co o o CM o d CO +1 o o +ι +ι d +1 d +1 co +1 +1 cn o +1 +1 +1 cn o rr +1 LO
I^~ cn c LO d CM oo cd cd T r
< CO cn cn cn < cn < CQ
,w n ^-- co r^- h- cn
^ LO- LO τ— co O N- ^—- " ι^~-" O O
Έ o CO co O co CO co co co co co
S Ct Ct __
~3 —3 —3 ct t Ct Ct ά. ά. ct
o
+
D x
O z cn o m
S ϋ
Q. ^ LU
z
W α.
E 00 co rf oo CM LO cq cq LU d d d d CM d d +1 +1 +1 +1 +1 CO +1 +1 +1 +1 rf cn oo CM oq ^~ c +J cn cd ^ o d LO v- d CM CM
CO co CO cn - < co
.2 O o o CM CM M CM rf 'Ξ CM CM CM CM CM CM CM o CO CO co co CO CO co CO CO
Ct Ct ct ct Ct ct Ct ct ct -— LO CM cn o rf od od
o
+ 1_
73 x
O - z n o m
5 o
Q. — ϋ
LU
CM CD rf co LO cq rr cn ^3 o f- r^ _,
Z o
"D w
_§= "x ϋ a. o LU
< co q
3! co cn CM cq c cq cn CO
• _
^ LO r^ rf CM cd o cd c rf o
CM
cri
+ ε
T3
X O
00
* °_r o LU CD c rt- rt- rf cn cn cq o c od z 3 m __ ° a. CO
O LU CM
< LO o en q o co d cd
<
<
2 rf o co d o cn o
co co
LU CM
CO d
+1 LO +1 +1 co CD cn oo
< o rf
Ξ rf LO cn CM
LU --- cd 00 cn
CO +1 +! +1
+1 CO +1
T— rf ι*-
CD O c LO
< CO O f- _
Agonist A2A+.SEM AAII±±SSEEMM AA33±±SSEEMM AA11// AA22AA AA33// AA22AA PPMMNN PPMMNN ooxxiidd ++rrooiiii oxid(-log (-log
EC50) EC50)
AB-5 5.48±1.1 55.4±4.8 12.5±5.7 10.1 2.3 7.8 8.83
AB-6 5.8±1.6 25.9±3.5 11.1±1.72 4.5 1.9 7.53 8.51
AB-8 1.20±0.05 36.9±6.1 11.9±1.86 30.8 9.9 7.76 8.72
PMN oxid(-log EC50) = human neutrophil experiment as described in Example 54 w/o Rolipram
PMN oxid +roli(-log EC50) = human neutrophil experiment as described in Example 54 w/ Rolipram
Example 54: Effect of A2A Agonists on Neutrophil Oxidative Activity
A. Materials. f-met-leu-phe (fMLP), luminol, superoxide dismutase, cytochrome C, fibrinogen, adenosine deaminase, and trypan blue were obtained from Sigma Chemical. FicoU-hypaque was purchased from ICN (Aurora, OH), and Cardinal Scientific (Santa Fe, NM) and Accurate Chemicals and Scientific (Westerbury, NY), endotoxin (lipopolysaccharide; E. coli K235) was from List Biologicals (Campbell, CA). Hanks balanced salt solution (HBSS), and limulus amebocyte lysate assay kit were from Bio ittaker (Walkersville, MD). Human serum albumin (HSA) was from Cutter Biological (Elkhart, IN). Recombinant human tumor necrosis factor-alpha was supplied by Dianippon Pharmaceutical Co. Ltd. (Osaka, Japan). ZM241385 (4-(2-[7-amino-2-(2-furyl)[l,2,4]- triazolo[2,3-a][l,3,5]triazin-5-yl amino] ethyl)phenol) was a gift from Simon Poucher, Zeneca Pharmaceuticals, Cheshire, UK. Stock solutions (1 mM and 10 mM in DMSO) were made and stored at -20°C.
B. Human neutrophil preparation
Purified neutrophils (-98% neutrophils and >95% viable by trypan blue exclusion) containing <1 platelet per 5 neutrophils and < 50 pg/ml endotoxin (limulus amebocyte lysate assay) were obtained from normal heparinized (10 U/ml) venous blood by a one step Ficoll-hypaque separation procedure (A. Ferrante et al., J. Immunol. Meth., 36, 109 (1980)).
C. Release of inflammatory reactive oxygen species from primed and stimulated human neutrophils Chemiluminescence
Luminol-enhanced chemiluminescence, a measure of neutrophil oxidative activity, is dependent upon both superoxide production and mobilization of the lysosomal granule enzyme myeloperoxidase. The light is emitted from unstable high-energy oxygen species generated by activated neutrophils. Purified neutrophils (5-10 x 105/ml) were incubated in Hanks balanced salt solution containing 0.1% human serum albumin (1 ml) with the tested A2A agonist with or without rolipram and with or without tumor necrosis factor-alpha (1 U/ml) for 30 minutes at 37°C in a shaking water bath. Then luminol (1 x 10"4 M) enhanced f-met-leu-phe (1 mcM) stimulated chemiluminescence was read with a Chronolog® Photometer (Crono-log Corp., Havertown, PA) at 37°C for 2-4 minutes. Chemiluminescence is reported as relative peak light emitted (= height of the curve) compared to samples with tumor necrosis factor-alpha and without agonist or rolipram. Example 55. In vivo rat blood pressure experiments. Sprague-Dawley rats (mean weights, 250-300 grams) were anthesthetized and jugular and carotid catheters are implanted ipsilaterally and the animals are allowed to recover 24-48 hours. Prior to each experiment a baseline blood pressure reading is established for 30 minutes with each drug injection being preceeded by a vehicle control. Drugs are injected bolus IN. through a jugular catheter in a 200 microliter volume of saline and the catheter is flushed with an additional 300 microliters of saline. To measure blood pressure, a central line from the carotid catheter is attached to the pressure transducer of a Digi-Med Blood Pressure Analyzer. Systolic pressure, diastolic pressure, mean pressure, and heart rate are all recorded in real time at 30-60 second intervals. Data is recorded until mean blood pressure has returned to baseline and remained constant for 20 minutes. The data is presented as a fraction of the mean blood pressure averaged over the 10 minutes immediately prior to drug injection. The blood pressures are recorded and plotted over time as a means of determining potency of the compounds as well as biological half-life. The results are illustrated in Figures 1-6.
EXAMPLE 56. In vivo Coronary Dog Flow Experiments
Fasted, adult mongrel dogs (mean weight, 24.8+0.6 kg; range, 20.9 to 28.2 kg) were anaesthetized with sodium pentobarbital (30 mg-kg"1), tracheally intubated, and mechanically ventilated with room air on a respirator (model 613, Harvard Apparatus) with positive end-expiratory pressure of 5 cm H2O. The surgical preparation and instrumentation of the animals has been thoroughly described previously (Glover D.K. et al, Circulation 1996, 94, pages 1726-1732). Throughout each experiment, heart rate, mean arterial and left atrial pressures, ultrasonically measured LCx flow, and dP/dt were continuously monitored and recorded on a 16-channel thermal array chart recorder (K2-G, Astro-med, Inc) and digitised and stored on an IBM-compatible personal computer. All experiments were performed with the approval of the University of Virginia Animal Care and Use Committee and were in compliance with the position of the American Heart Association on the use of research animals. The compounds tested were intravenously administered by bolus injection and the parameters above were measured and recorded.
The results are illustrated in Figures 7 - 16. Example 57: Liver I R injury protocol.
Mice were anesthetized by intraperitoneal injection of ketamine 100 mg/kg and xylazine 10 mg/kg. Glycopyrrolate (Robinul-V) 0.05 mg/kg was delivered subcutaneously before the operation. The ambient temperature was controlled in the range of 24°C to 26°C. Mice were placed on a 37°C heat pad with their core temperature monitored by a TH-8 Thermalert Monitoring Thermometer (Physitemp) and maintained at 36-37°C by a TCAT-1 A Temperature Control and Alarm Unit (Physitemp) during the entire procedure. After midline laparotomy, a microaneurysm clip was applied to the hepatic triad above the bifurcation to clamp the flow of the hepatic artery, portal vein, and bile duct. The peritoneum was closed after superfusion of 200 μl of warm saline. After 60 minutes of ischemia, the peritoneum was reopened and the microaneurysm clip was removed. Immediately after reperfusion was initiated, each mouse received a loading dose of ATL-146e (1 ug/kg) or vehicle in 200 uL warm saline, and a primed Alzet osmotic minipump was placed intraperitoneally. The surgical wound was closed with metal staples. Mice were maintained on the heat pad to monitor and maintain body temperature until the anesthetic wore off. Drug Administration.
Alzet osmotic minipumps (model 1003D; Alza Corp., Palo Alto, CA, USA) were primed according to the manufacture's instruction in order to release compounds shortly after implantation. A solution containing ATL146e was prepared in normal saline and placed in osmotic minipumps to deliver 10 ng/kg/min. Minipumps containing vehicle or ATL146e were implanted during operation.
Example 58: Serum enzyme determination
Serum GPT (ALT) levels were measured using a Transaminase kit (505, Sigma). Briefly, 20 μL serum sample was mixed with 100 (L pre-heated Alanine-α-KG substrate and incubated in a 37 °C water bath for 30 minutes. Then we added 100 (L Sigma Color Reagent to the reaction and left it at room temperature for 20 minutes. We stopped the reaction with 1.0 ml 0.4N sodium hydroxide solution. Absorbance of each sample at 505 nm was measured and converted into SF unit/ml.
Example 59: Tissue myeloperoxidase measurement
Mouse livers were removed after 24 hours reperfusion. The tissue was immediately submerged in 10 volumes of ice-cold 50 mM KPO4 buffer, pH 7.4 and homogenized with a Tekmar tissue grinder. The homogenate was centrifuged at 15,000 x g for 15 minutes at 4oC, and the supernatant was discarded. The pellet was washed twice, resuspended in 10 volumes of ice-cold 50 mM KPO4 buffer pH 7.4 with 0.5% hexadecyltrimethylammonium bromide and then sonicated. The suspension was subjected to three freeze/thaw cycles. Samples were sonicated for 10 seconds, and centrifuged at 15,000 x g for 15 minutes at 4oC. The supernatant was added to an equal volume of a solution consisting of o-dianisidine (lOmg/ml), 0.3% H2O2, and 50 mM KPO4, pH 6.0. Absorbance was measured at 460 nm over a period of five minutes.
Figure 17 illustrates the longer duration of action of JR3223 vs. a control compound and ATL146e for liver tissue protection after an ischemia/reperfusion injury. The test compounds were administered 6 hours prior to I/R injury. Tissue protection is measured by amount of Serum GPT present in the in a serum sample 24 hours later, with smaller GPT concentrations indicating better liver function.
All publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
Ill

Claims (78)

Claims
1. A compound having formula (I) :
(I) wherein
Z is CR3R4R5 orNR4R5; each R1 is independently hydrogen, halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, C3.8cycloalkyl, heterocycle, hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-5 -OCO2Ra, RaRbNC(=O)O-, R OC(=O)N(Ra)-, RaRbN-, R^^C^O)-, RaC(=O)N(Rb)-, RaRbNC(=O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O>, RaS(=O)2-, -N=NRa, or -OPO2Ra; each R2 is independently hydrogen, halo, (Cι-C8)alkyl, (C3-C8)cycloalkyl, heterocycle, heterocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, or heteroaryl(Cι-C8)alkylene-; or
R1 and R2 and the atom to which they are attached is C=O, C=S or C=NRC. R4 and R5 together with the atoms to which they are attached form a saturated or partially unsaturated, mono-, bicyclic- or aromatic ring having 3, 4, 5, 6, 7, 8, 9 or 10 ring atoms optionally comprising 1, 2, 3, or 4 heteroatoms selected from non-peroxide oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (-S(O)2-) or amine (-NR3-) in the ring; wherein any ring comprising R4 and R5 is substituted with from 1 to 14 R6 groups; wherein each R6 is independently halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (Cι-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, heterocycle or hetrocycle (Cι-C8)alkylene-, aryl, aryl (Cι-Cs)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, Rl^ST-, RaR NC(=O)-, RaC(=O)N(R )-, RaRbNC(=O)N(R )-, RaR NC(=S)N(Rb)-5 -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)-, -NNRa,-OPO2Ra, or two R6 groups and the atom to which they are attached is C=O, C=S or; two R6 groups together with the atom or atoms to which they are attached can form a carbocyclic or heterocyclic ring
R3 is hydrogen, halo, -ORa, -SRa, (Cι-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, heterocycle, hetrocycle(Cι-C8)alkylene-, aryl, aryl(Cι-C8)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaRbN-, RaR NC(=O)-, RaC(=O)N(R )-, RaR NC(=O)N(Rb)-, RaR NC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-5 RaC(=S)-, -SSRa, RaS(=O)-, RaS(=O)2-, -NNRa, -OPO2Ra; or if the ring formed from CR4R5 is aryl or hetreroaryl or partially unsaturated then R3 can be absent; each R is independently hydrogen, (Cι-C8)alkyl, (C3-C8)cycloalkyl, aryl or aryl(Cι-C8)alkylene, heteroaryl, heteroaryl(Cι-C8)alkylene-;
X is -CH2ORa, -CO2Ra, -OC(O)Ra, -CH2OC(O)Ra, -C(O)NRaR , -CH2SRa, -C(S)ORa, -OC(S)Ra, -CH2OC(S)Ra or C(S)NRaR or -CH2N(Ra)(Rb); wherein any of the alkyl, cycloalkyl, heterocycle, aryl, or heteroaryl, groups of R , R , R , R and R is optionally substituted on carbon with one or more (e.g. 1, 2, 3, or 4) substituents selected from the group consisting of halo, -ORa, -SRa, (C1-C8)alkyl, cyano, nitro, trifluoromethyl, trifluoromethoxy, (C3-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, heterocycle or hetrocycle(Cι-C8)alkylene-, aryl, aryloxy, aryl (Cι-Cs)alkylene-, heteroaryl, heteroaryl(Cι-C8)alkylene-, -CO2Ra, RaC(=O)O-, RaC(=O)-, -OCO2Ra, RaRbNC(=O)O-, RbOC(=O)N(Ra)-, RaR N-, RaRbNC(=O)-, RaC(=O)N(Rb)-, RaRbNC(=O)N(Rb)-, RaRbNC(=S)N(Rb)-, -OPO3Ra, RaOC(=S)-, RaC(=S)-, -SSRa, RaS(=O)p-, RaRbNS(O)p-5 N=NRa, and -OPO2Ra; wherein any (Cι-C8)alkyl, (C3-C8)cycloalkyl, (C6-Cι2)bicycloalkyl, (Cι-Cg)alkoxy, (Cι-C8)alkanoyl, (Cι-C8)alkylene, or heterocycle, is optionally partially unsaturated;
Ra and R are each independently hydrogen, (Cι-C8)alkyl, or (Cι-C8)alkyl substituted with 1-3 (Cι-C8)alkoxy, (C3-C8)cycloalkyl, (Cι-C8)alkylthio, amino acid, aryl, aryl(Cι-C8)alkylene, heteroaryl, or heteroaryl(Cι-C8)alkylene; or Ra and Rb, together with the nitrogen to which they are attached, form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring; and Rc is hydrogen or (Cι-C6)alkyl; m is 0 to about 8 and p is 0 to 2; provided that when CR4R5 is a carbocyclic ring then at least one of R1, R2, or R is a group other than hydrogen or at least one R group is a group other than -CH2OH, -CO2Ra, RaC(=O)O-, - RaC(=O)OCH2- or RaRbNC(=O)-; provided that m is at least 1 when Z is NR4R5; or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1, wherein R1 is hydrogen, -OH, -CH2OH, -OMe,
-OAc, -NH2, -NHMe, -NMe2 or -NHAc.
3. The compound of claims 1 or 2, wherein R1 is hydrogen, -OH, -OMe, -OAc, -NH2, -NHMe, -NMe2 or -NHAc.
4. The compound of claims 1, 2, or 3, wherein R1 is hydrogen, OH, OMe, or NH2.
5. The compound of claims 1, 2 or 3, wherein R1 is hydrogen, OH, or NH2.
6. The compound of any of claims 1-5, wherein R1 is hydrogen or OH.
7. The compound of any of claims 1-6, wherein R2 is hydrogen, (Cι-C8)alkyl, cyclopropyl, cyclohexyl or benzyl.
8. The compound of any of claims 1-7, wherein R2 is hydrogen, methyl, ethyl or propyl.
9. The compound of any of claims 1-8, wherein R2 is hydrogen or methyl.
10. The compound of any of claims 1 -9, wherein R2 is hydrogen.
11. The compound of claim 1 , wherein R1, R2 and the carbon atom to which they are attached is carbonyl (C=O).
12. The compound of any of claims 1-11, wherein R3 is hydrogen, OH, OMe, OAc, NH2, NHMe, NMe2 or NHAc.
13. The compound of any of claims 1-12, wherein R3 is hydrogen, OH, OMe, orNH2.
14. The compound of any of claims 1-13, wherein R3 is hydrogen, OH, or NH2.
15. The compound of any of claims 1-14, wherein R3 is hydrogen or OH.
16. The compound of any of claims 1-15, wherein the ring comprising R4, R5 and the atom to which they are connected is cyclopentane, cyclohexane, piperidine, dihydro-pyridine, tetrahydro-pyridine, pyridine, piperazine, decaline, tetrahydro-pyrazine, dihydro-pyrazine, pyrazine, dihydro-pyrimidine, tetrahydro-pyrimidine, hexahydro-pyrimidine, pyrazine, imidazole, dihydro-imidazole, imidazolidine, pyrazole, dihydro-pyrazole, and. pyrazolidine.
17. The compound of claim 16, wherein the ring comprising R4, R5 and the atom to which they are connected is cyclopentane, cyclohexane, piperidine, dihydro-pyridine, tetrahydro-pyridine, pyridine, piperazine,
. tetrahydro-pyrazine, dihydro-pyrazine, pyrazine, dihydro-pyrimidine, tetrahydro-pyrimidine, hexahydro-pyrimidine, pyrazine, imidazole, dihydro-imidazole, imidazolidine, pyrazole, dihydro-pyrazole, and. pyrazolidine.
18. The compound of any of claims 1-17, wherein the ring comprising R4 and
R5 and the atom to which they are connected is, cyclohexane, piperidine or piperazine.
19. The compound of any of claims 1-18, wherein R6 is (Cι-C8)alkyl, or substituted (d-C8)alkyl, -ORa, -CO2Ra, RaC(=O , RaC(=O)O-, RaR N-, RaR NC(=O)-, or aryl.
20. The compound of any of claims 1-19, wherein R6 is (Cι-C8)alkyl, -ORa, -CO2Ra, RaC(=O>, RaC(=O)O-, R'R , RaRbNC(=O)-, or aryl.
21. The compound of any of claims 1 -20, wherein R6 is methyl, ethyl, butyl, OH, ORa, -CO2R\ RaC(=O)-, OC(=O)CH2CH3, -CONRaR , NRaRb or phenyl.
22. The compound of any of claims 1-21, wherein R6 is OH, OMe, methyl, ethyl, t-butyl, -CO2Ra, -CONRaRb, OAc, NH2, NHMe, NMe2, NHEt or N(Et)2.
23. The compound of any of claims 1-22, wherein R6 is methyl, ethyl, t-butyl, phenyl, -CO2Ra -CONRaRb, or -(=O)CRa.
24. The compound of any of claims 1-23, wherein R6 is methyl, ethyl, -CO2Ra -CONRaRb, or OAc.
25. The compound of any of claims 1-18, wherein R6 is-(CH2)ι_2ORa, -(CH2)1.2C(=O)ORa, -(CH2)!.2OC(=O)Ra, -(CH2)!_2C(=O)Ra, -(CH2)!.2OCO2Ra, -(CH2)ι.2NHRa, -(CH2)ι.2NRaR , -(CH2)1.2OC(=O)NHRa, or -(CH2)ι-2OC(=O)NRaR .
26. The compound of claim 25, wherein R6 is -CH2OH, -CH2OAc, -CH2OCH3, -CH2C(=O)OCH3, -CH2OC(=O)CH3, -CH2C(=O)CH3, -CH2OCO2CH3, -CH2NH(CH3), or-(CH2)1.2N(CH3)2.
27. The compound of claim 26, wherein R6 is -CH2OH, -CH2OAc, -C(=O)OCH3, -C(=O)CH3, OCO2CH3 -OCO2CH3, -CH2NH(CH3), or -(CH2)!.2N(CH3)2.
28. The compound of any of claims 1-27, wherein number of R6 groups substituted on the R4R5 ring is from 1 to about 4.
29. The compound of any of claims 1-28, wherein Ra and Rb are hydrogen, (Cι-C )alkyl, aryl or aryl(Cι-C8)alkylene.
30. The compound of any of claims 1-29, wherein R and R are hydrogen, methyl or ethyl, phenyl or benzyl.
31. The compound of any of claims 1-30, wherein Ra is (C ι -C8)alkyl.
32. The compound of any of claims 1-31, wherein Ra is methyl, ethyl, propyl or butyl.
33. The compound of any of claims 1-32, wherein Ra is, methyl, ethyl, i-propyl, i-butyl or tert-butyl.
34. The compound of any of claims 1-33, wherein Ra and R is a ring.
35. The compound of any of claims 1-34, wherein R7 is hydrogen, alkyl, aryl or aryl(Cι-C8)alkylene.
36. The compound of any of claims 1-35, wherein R7 is hydrogen, methyl or ethyl, phenyl or benzyl.
37. The compound of any of claims 1-36, wherein R7 is H, or methyl.
38. The compound of any of claims 1-37, wherein N(R7)2 is amino, methylamino, dimethylamino; ethylamino; pentylamino, diphenylethylamino, pyridylmethylamino, diethylamino or benzylamino.
39. The compound of claim 38, wherein -N(R7)2 is amino, methylamino, dimethylamino; ethylamino; diethylamino or benzylamino.
40. The compound of any of claims 1-39, wherein N(R7)2 is amino, or methylamino.
41. The compound of any of claims 1-40, wherein X is -CH2ORa, -CO2Ra, -OC(0)Ra, -CH2OC(O)Ra, -C(O)NRaR .
42. The compound of any of claims 1-41, wherein X is -CH2ORa or -C(O)NRaRb.
43. The compound of any of claims 1 -42, wherein X is -CH2OH or -C(O)NHCH2CH3.
44. The compound of any of claims 1-43, wherein m is 0, 1, or 2.
45. The compound of any of claims 1 -44, wherein m is 0, or 1.
46. The compound of any of claims 1-45, wherein the rings comprising R4, R5 and the atom to which they are connected are selected from the group consisting of:
47. The compound of any of claims 1-46, wherein the rings comprising R4, R5 and the atom to which they are connected are selected from the group consisting of:
48. The compound of any of claims 1-47, wherein the ring comprising -
C(R3)R4R5 is 2-methylcyclohexane, 2,2-dimethylcyclohexane, 2-phenyl- cyclohexane, 2-ethylcyclohexane, 2,2-diethylcyclohexane, 2-tert-butyl- cyclohexane, 3-methylcyclohexane, 3,3-dimethylcyclohexane, 4-methyl- cyclohexane, 4-ethylcyclohexane, 4-phenyl cyclohexane, 4-tert-butyl- cyclohexane, 4-carboxymethyl cyclohexane, 4-carboxyethyl cyclohexane,
3,3,5,5-tetramethyl cyclohexane, 2,4-dimethyl cyclopentane. 4-cyclohexanecarboxyic acid, 4-cyclohexanecarboxyic acid esters, or 4-methyloxyalkanoyl-cyclohexane.
49. The compound of any of claims 1 -48, wherein the ring comprises -C(R3)R4R5 is 4-piperidine, 4-piperidene- 1-carboxylic acid, 4-piperidine-
1-carboxylic acid methyl ester, 4-piperidine- 1-carboxylic acid ethyl ester, 4-piperidine- 1-carboxylic acid propyl ester, 4-piperidine- 1-carboxylic acid tert-butyl ester, 1 -piperidine, l-piperidine-4-carboxylic acid methyl ester, l-piperidine-4-carboxylic acid ethyl ester, l-piperidine-4-carboxylic acid propyl ester, l-piperidine-4-caboxylic acid tert-butyl ester , 1-piperidine-
4-carboxylic acid methyl ester, 3-piperidine, 3 -piperidene- 1-carboxylic acid, 3-piperidine-l-carboxylic acid methyl ester, 3-piperidine- l-carboxylic acid tert-butyl ester, 1, 4-piperazine, 4-piperazine- 1-carboxylic acid, 4-piperazine- 1-carboxylic acid methyl ester, 4-piperazine- 1-carboxylic acid ethyl ester, 4-piperazine- 1-carboxylic acid propyl ester,
4-piperazine- 1-carboxylic acid tert-butylester, 1,3-piperazine,
3-piperazine-l-carboxylic acid, 3-piperazine-l-carboxylic acid methyl ester, 3-piperazine-l-carboxylic acid ethyl ester, 3-piperazine-l-carboxylic acid propyl ester, 3-piperidine-l-carboxylic acid tert-butylester, l-piperidine-3-carboxylic acid methyl ester, l-piperidine-3-carboxylic acid ethyl ester, l-piperidine-3-carboxylic acid propyl ester or 1-piperidine- 3-caboxylic acid tert-butyl ester.
50. The compound of any of claims 1 -49, wherein the ring comprising R4 and R5 is 2-methyl cyclohexane, 2,2-dimethylcyclohexane, 2- phenyl cyclohexane, 2-ethylcyclohexane, 2,2-diethylcyclohexane, 2-tert-butyl cyclohexane, 3-methyl cyclohexane, 3,3-dimethylcyclohexane, 4-methyl cyclohexane, 4-ethylcyclohexane, 4-phenyl cyclohexane, 4-tert-butyl cyclohexane, 4-carboxymethyl cyclohexane, 4-carboxyethyl cyclohexane, 3,3,5,5-tetramethyl cyclohexane, 2,4-dimethyl cyclopentane, 4-piperidine-
1-carboxylic acid methyl ester, 4-piperidine- 1-carboxylic acid tert-butyl ester 4-piperidine, 4-piperazine-l-carboxylic acid methyl ester, 4-piperidine- 1-carboxylic acid tert-butylester, l-piperidine-4-carboxylic acid methyl ester, l-piperidine-4-caboxylic acid tert-butyl ester , tert- butylester, l-piperidine-4-carboxylic acid methyl ester, or l-piperidine-4-caboxylic acid tert-butyl ester, 3-piperidine-l-carboxylic acid methyl ester, 3-piperidine-l-carboxylic acid tert-butyl ester, 3-piperidine, 3-piperazine-l-carboxylic acid methyl ester, 3-piperidine-l-carboxylic acid tert-butylester, l-piperidine-3-carboxylic acid methyl ester, l-piperidine-3-caboxylic acid tert-butyl ester.
51. A compound of claim 1 , having the formula:
52. A compound of claim 1, having the formula: 53. A compound of claim 1 , having the formula:
54. A compound of claim 1, having the formula:
55. A compound of claim 1, having the formula:
56. A compound of claim 1 , having the formula:
57. A compound of claim 1, having the formula:
58. A compound of claim 1, having the formula:
59. A compound of claim 1, having the formula:
60. A compound of claim 1, having the formula:
61. A compound of claim 1 , having the formula:
62. A therapeutic method to inhibit an inflammatory response comprising administering to a mammal in need of said therapy, an effective anti- inflammatory amount of a compound of any of claims 1-61.
63. A therapeutic composition comprising a compound of any of claims 1-61, in combination with a pharmaceutically acceptable carrier.
64. The composition of claim 63, further comprising a Type IN phosphodiesterase inhibitor.
65. The composition of claim 64, wherein the inhibitor is rolipram.
66. The composition of any of claims 63 — 65, wherein the carrier is a liquid carrier.
67. The composition of any of claims 63- 66, which is adapted for parenteral, aerosol or transdermal administration.
68. A method for preventing or treating a pathological condition or symptom in a mammal, wherein the activity of A2A adenosine receptors is implicated and agonism of such activity is desired, comprising administering to said mammal an effective amount of a compound of any of claims 1-61.
69. The method of claim 68, wherein the mammal is a human.
70. The method of claim 68 or 69, wherein the medical therapy further comprises the use of a Type IN phosphodiesterase inhibitor.
71. A compound of any of claims 1-61, for use in medical therapy.
72. A compound of any of claims 1-61, wherein the medical therapy is inhibition of an inflammatory response.
73. The compound of claim 72, wherein the inflammatory response due to a pathological condition or symptom in a mammal, wherein the activity of
A2A adenosine receptors is implicated and agonism of such activity is desired.
74. Use of a compound of claims 1 -61 , to prepare a medicament useful for treating an inflammatory response.
75. The use of claim 74, wherein the medicament comprises a Type IN phosphodiesterase inhibitor.
76. The use of claim 75, wherein the phosphodiesterase inhibitor is rolipram.
77. The use of claim 76, wherein the medicament comprises a liquid carrier.
78. The use of any of claims 74-77, wherein the medicament is adapted for parenteral, aerosol or transdermal administration.
AU2002362443A 2001-10-01 2002-10-01 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof Ceased AU2002362443B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32651701P 2001-10-01 2001-10-01
US60/326,517 2001-10-01
US38320002P 2002-05-24 2002-05-24
US60/383,200 2002-05-24
PCT/US2002/031383 WO2003029264A2 (en) 2001-10-01 2002-10-01 2-propynyl adenosine analogs having a2a agonist activity and compositions thereof

Publications (2)

Publication Number Publication Date
AU2002362443A1 true AU2002362443A1 (en) 2003-06-26
AU2002362443B2 AU2002362443B2 (en) 2008-05-15

Family

ID=26985440

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002362443A Ceased AU2002362443B2 (en) 2001-10-01 2002-10-01 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof

Country Status (8)

Country Link
US (3) US7214665B2 (en)
EP (1) EP1434782A2 (en)
JP (2) JP4514452B2 (en)
AU (1) AU2002362443B2 (en)
CA (1) CA2460911C (en)
NZ (3) NZ545787A (en)
SG (1) SG176313A1 (en)
WO (1) WO2003029264A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427606B2 (en) * 1999-02-01 2008-09-23 University Of Virginia Patent Foundation Method to reduce inflammatory response in transplanted tissue
US7378400B2 (en) * 1999-02-01 2008-05-27 University Of Virginia Patent Foundation Method to reduce an inflammatory response from arthritis
US6232297B1 (en) * 1999-02-01 2001-05-15 University Of Virginia Patent Foundation Methods and compositions for treating inflammatory response
WO2002009701A1 (en) * 2000-08-01 2002-02-07 University Of Virginia Patent Foundation Use of selective adenosine a1 receptor agonists, antagonists and allosteric enhancers to manipulate angiogenesis
WO2003029264A2 (en) * 2001-10-01 2003-04-10 University Of Virginia Patent Foundation 2-propynyl adenosine analogs having a2a agonist activity and compositions thereof
EP1492516A2 (en) * 2002-04-03 2005-01-05 Novartis AG Use of mob-5 in pain
ATE381336T1 (en) * 2002-04-10 2008-01-15 Univ Virginia USE OF A2A ADENOSINE RECEPTOR AGONIST AND ANTIPATHOGENE CONTAINING COMBINATIONS FOR THE TREATMENT OF INFLAMMATORY DISEASES
US20050033044A1 (en) 2003-05-19 2005-02-10 Bristol-Myers Squibb Pharma Company Methods for preparing 2-alkynyladenosine derivatives
EP1740587A4 (en) * 2004-04-02 2009-07-15 Adenosine Therapeutics Llc Selective antagonists of a-2a- adenosine receptors
US7396825B2 (en) * 2004-05-03 2008-07-08 University Of Virginia Patent Foundation Agonists of A2A adenosine receptors for treatment of diabetic nephropathy
AR049384A1 (en) 2004-05-24 2006-07-26 Glaxo Group Ltd PURINA DERIVATIVES
DK1758596T3 (en) 2004-05-26 2010-07-26 Inotek Pharmaceuticals Corp Purine derivatives as adenosine A1 receptor agonists and methods for their use
WO2006028618A1 (en) * 2004-08-02 2006-03-16 University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs with modified 5'-ribose groups having a2a agonist activity
EP1778712B1 (en) * 2004-08-02 2013-01-30 University Of Virginia Patent Foundation 2-propynyl adenosine analogs with modified 5'-ribose groups having a2a agonist activity
WO2006023272A1 (en) * 2004-08-02 2006-03-02 University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs having a2a agonist activity
GT200500281A (en) * 2004-10-22 2006-04-24 Novartis Ag ORGANIC COMPOUNDS.
GB0500785D0 (en) 2005-01-14 2005-02-23 Novartis Ag Organic compounds
GB0514809D0 (en) 2005-07-19 2005-08-24 Glaxo Group Ltd Compounds
CA2627319A1 (en) 2005-11-30 2007-06-07 Prakash Jagtap Purine derivatives and methods of use thereof
WO2007092936A2 (en) * 2006-02-08 2007-08-16 University Of Virginia Patent Foundation Method to treat gastric lesions
US8178509B2 (en) 2006-02-10 2012-05-15 University Of Virginia Patent Foundation Method to treat sickle cell disease
US20100048501A1 (en) 2006-03-21 2010-02-25 Heinrich-Heine-Universitat Dusseldorf Phosphorylated A2A Receptor Agonists
GB0607950D0 (en) 2006-04-21 2006-05-31 Novartis Ag Organic compounds
KR20080110925A (en) 2006-04-21 2008-12-19 노파르티스 아게 Purine derivatives for use as adenosin a2a receptor agonists
US7589076B2 (en) * 2006-05-18 2009-09-15 Pgx Health, Llc Substituted aryl piperidinylalkynyladenosines as A2AR agonists
US8188063B2 (en) * 2006-06-19 2012-05-29 University Of Virginia Patent Foundation Use of adenosine A2A modulators to treat spinal cord injury
EP1889846A1 (en) 2006-07-13 2008-02-20 Novartis AG Purine derivatives as A2a agonists
US7985754B2 (en) * 2006-07-17 2011-07-26 Trovis Pharmaceuticals, Llc Selective antagonists of A2A adenosine receptors
EP1903044A1 (en) 2006-09-14 2008-03-26 Novartis AG Adenosine Derivatives as A2A Receptor Agonists
US20080219927A1 (en) * 2007-01-18 2008-09-11 Thakur Ajit B Adenosine derivative formulations for medical imaging
JP2008266143A (en) * 2007-04-16 2008-11-06 Santen Pharmaceut Co Ltd Glaucoma remedy containing adenosine derivative as active ingredient
US20080262001A1 (en) * 2007-04-23 2008-10-23 Adenosine Therapeutics, Llc Agonists of a2a adenosine receptors for treating recurrent tumor growth in the liver following resection
CA2694987A1 (en) * 2007-07-17 2009-01-22 Combinatorx, Incorporated Combinations for the treatment of b-cell proliferative disorders
AU2008276451A1 (en) * 2007-07-17 2009-01-22 Zalicus Inc. Treatments of B-cell proliferative disorders
US8058259B2 (en) * 2007-12-20 2011-11-15 University Of Virginia Patent Foundation Substituted 4-{3-[6-amino-9-(3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid esters as A2AR agonists
US8293720B2 (en) * 2007-12-20 2012-10-23 Dogwood Pharmaceuticals, Inc. Substituted 4-{3-[6-amino-9-(3, 4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid esters as A2AR agonists
US20090181920A1 (en) * 2008-01-09 2009-07-16 Pgxhealth, Llc Intrathecal treatment of neuropathic pain with a2ar agonists
US20110064671A1 (en) 2008-03-10 2011-03-17 Cornell University Modulation of blood brain barrier permeability
WO2009151569A2 (en) * 2008-06-09 2009-12-17 Combinatorx, Incorporated Beta adrenergic receptor agonists for the treatment of b-cell proliferative disorders
US20100003193A1 (en) 2008-07-03 2010-01-07 University Of Virginia Patent Foundation Unit dosage of apadenoson
US8263762B2 (en) 2009-06-30 2012-09-11 Dogwood Pharmaceuticals, Inc. Alkoxy-carbonyl-amino-alkynyl-adenosine compounds and derivatives thereof as A2AR agonists
SG10201502588UA (en) 2010-01-11 2015-05-28 Inotek Pharmaceuticals Corp Combination, kit and method of reducing intraocular pressure
MX2012010724A (en) 2010-03-26 2012-11-12 Inotek Pharmaceuticals Corp Method of reducing intraocular pressure in humans using n6 -cyclopentyladenosine (cpa), cpa derivatives or prodrugs thereof.
US20130109645A1 (en) 2010-03-31 2013-05-02 The united States of America,as represented by Secretary,Dept.,of Health and Human Services Adenosine receptor agonists for the treatment and prevention of vascular or joint capsule calcification disorders
US9278991B2 (en) 2012-01-26 2016-03-08 Inotek Pharmaceuticals Corporation Anhydrous polymorphs of [(2R,3S,4R,5R)-5-(6-(cyclopentylamino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)} methyl nitrate and processes of preparation thereof
US9822141B2 (en) 2012-08-01 2017-11-21 Lewis And Clark Pharmaceuticals, Inc. N-alkyl 2-(disubstituted)alkynyladenosine-5-uronamides as A2A agonists
EP2879683B1 (en) 2012-08-01 2020-01-22 Lewis and Clark Pharmaceuticals, Inc. N-alkyl-alkynyladenosine-5-uronamide compounds as agonists of a2a receptor
CN105188714A (en) 2013-03-15 2015-12-23 伊诺泰克制药公司 Ophthalmic formulations
WO2019105388A1 (en) * 2017-11-29 2019-06-06 苏州科睿思制药有限公司 Crystal form of a3 adenosine receptor agonist drug, and preparation method therefor and use thereof
JP2024502068A (en) * 2020-12-29 2024-01-17 チョーチヤン ビムグリーン ファーマシューティカルズ、リミテッド A3 adenosine receptor agonist and its preparation method and use

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US737840A (en) * 1902-03-10 1903-09-01 William H Hollar Electric lock.
US3892777A (en) 1968-05-01 1975-07-01 Hoffmann La Roche Substituted benzylethylenedicarbamates
CH608236A5 (en) 1974-01-22 1978-12-29 Wuelfing J A Fa
DE2413935A1 (en) 1974-03-20 1975-10-16 Schering Ag 4- (POLYALCOXY-PHENYL) -2-PYRROLIDONE
US4193926A (en) 1974-03-20 1980-03-18 Schering Aktiengesellschaft 4-(Polyalkoxy phenyl)-2-pyrrolidones
US4448721A (en) * 1982-09-20 1984-05-15 Wisconsin Alumni Research Foundation Hydroxyvitamin D2 compounds and process for preparing same
US4559157A (en) * 1983-04-21 1985-12-17 Creative Products Resource Associates, Ltd. Cosmetic applicator useful for skin moisturizing
LU84979A1 (en) * 1983-08-30 1985-04-24 Oreal COSMETIC OR PHARMACEUTICAL COMPOSITION IN AQUEOUS OR ANHYDROUS FORM WHOSE FATTY PHASE CONTAINS OLIGOMER POLYETHER AND NEW OLIGOMER POLYETHERS
DK159431C (en) 1984-05-10 1991-03-18 Byk Gulden Lomberg Chem Fab 6-PHENYL-3 (2H) -PYRIDAZINONES, METHOD OF PREPARING THEREOF, PHARMACEUTICALS CONTAINING THESE AND USING THE COMPOUNDS FOR THE PREPARATION OF MEDICINAL PRODUCTS
GB8510758D0 (en) 1985-04-27 1985-06-05 Wellcome Found Compounds
US4824660A (en) 1985-06-06 1989-04-25 Paul S. Angello Method of determining the viability of tissue in an organism
US5231086A (en) 1985-09-24 1993-07-27 Item Development Aktiebolag Continuous administration adenosine to increase myocardial blood flow
DE3537228A1 (en) 1985-10-19 1987-04-23 Huels Chemische Werke Ag METHOD FOR PRODUCING CYCLOHEXYL COMPOUNDS
JPS6299395A (en) 1985-10-25 1987-05-08 Yamasa Shoyu Co Ltd 2-alkinyladenosine and antihypertensive
US5272153A (en) 1986-12-31 1993-12-21 Hoechst-Roussel Pharmaceuticals, Inc. Method of inhibiting the activity of leukocyte derived cytokines
US4965271A (en) 1986-12-31 1990-10-23 Hoechst Roussel Pharmaceuticals, Inc. Method of inhibiting the activity of leukocyte derived cytokines
US5096906A (en) 1986-12-31 1992-03-17 University Of Virginia Alumni Patents Foundation Method of inhibiting the activity of leukocyte derived cytokines
US4968697A (en) 1987-02-04 1990-11-06 Ciba-Geigy Corporation 2-substituted adenosine 5'-carboxamides as antihypertensive agents
US4820508A (en) * 1987-06-23 1989-04-11 Neutrogena Corporation Skin protective composition
US5593973A (en) * 1987-09-04 1997-01-14 Hemispherx Biopharma Inc. Treatment of viral hepatitis with mismatched dsRNA
US4992478A (en) * 1988-04-04 1991-02-12 Warner-Lambert Company Antiinflammatory skin moisturizing composition and method of preparing same
US5298508A (en) 1988-07-19 1994-03-29 The United States Of America As Represented By The Department Of Health And Human Services Irreversible inhibitors of adenosine receptors
US5070877A (en) 1988-08-11 1991-12-10 Medco Research, Inc. Novel method of myocardial imaging
US4938949A (en) 1988-09-12 1990-07-03 University Of New York Treatment of damaged bone marrow and dosage units therefor
GB9000644D0 (en) 1990-01-11 1990-03-14 Erba Carlo Spa New ureido derivatives of poly-4-amino-2-carboxy-1-methyl compounds
US5140015A (en) 1990-02-20 1992-08-18 Whitby Research, Inc. 2-aralkoxy and 2-alkoxy adenosine derivatives as coronary vasodilators and antihypertensive agents
USRE36494E (en) 1990-02-20 2000-01-11 Discovery Therapeutics, Inc. 2-aralkoxy and 2-alkoxy adenosine derivatives as coronary vasodilators and antihypertensive agents
US6004945A (en) 1990-05-10 1999-12-21 Fukunaga; Atsuo F. Use of adenosine compounds to relieve pain
US5124455A (en) 1990-08-08 1992-06-23 American Home Products Corporation Oxime-carbamates and oxime-carbonates as bronchodilators and anti-inflammatory agents
ES2095960T3 (en) 1990-09-25 1997-03-01 Rhone Poulenc Rorer Int COMPOUNDS THAT HAVE ANTI-HYPERTENSIVE AND ANTI-ISCHEMICAL PROPERTIES.
US5561134A (en) 1990-09-25 1996-10-01 Rhone-Poulenc Rorer Pharmaceuticals Inc. Compounds having antihypertensive, cardioprotective, anti-ischemic and antilipolytic properties
US5189027A (en) 1990-11-30 1993-02-23 Yamasa Shoyu Kabushiki Kaisha 2-substituted adenosine derivatives and pharmaceutical compositions for circulatory diseases
US5294419A (en) 1990-11-30 1994-03-15 Masakatsu Hiraoka Method for removing nitrogen oxides and organic chlorine compounds from combustion waste gas
ZA923640B (en) 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
JP3025557B2 (en) * 1991-06-28 2000-03-27 ヤマサ醤油株式会社 2-alkynyl adenosine derivatives
IL99368A (en) 1991-09-02 1996-01-19 Teva Pharma Compositions for topical treatment of psoriasis and atopic dermatitis comprising a xanthine derivative
SG50624A1 (en) * 1991-12-30 1998-07-20 Neurex Corp Methods of producing analgesia and enhancing opiate analgesia
US5278150A (en) 1992-04-24 1994-01-11 Whitby Research, Inc. 2-hydrazoadenosines and their utility for the treatmeat of vascular conditions
IT1254915B (en) 1992-04-24 1995-10-11 Gloria Cristalli ADENOSINE DERIVATIVES FOR ACTIVITY A2 AGONIST
AU6516494A (en) 1993-04-15 1994-11-08 New York University Adenosine receptor agonists for the promotion of wound healing
JPH06299330A (en) 1993-04-15 1994-10-25 Matsushita Electric Ind Co Ltd Method and device for depositing thin dielectric film
US5665754A (en) 1993-09-20 1997-09-09 Glaxo Wellcome Inc. Substituted pyrrolidines
US5446046A (en) 1993-10-28 1995-08-29 University Of Florida Research Foundation A1 adenosine receptor agonists and antagonists as diuretics
WO1995011681A1 (en) 1993-10-29 1995-05-04 Merck & Co., Inc. Human adenosine receptor antagonists
US5691188A (en) * 1994-02-14 1997-11-25 American Cyanamid Company Transformed yeast cells expressing heterologous G-protein coupled receptor
US5877180A (en) 1994-07-11 1999-03-02 University Of Virginia Patent Foundation Method for treating inflammatory diseases with A2a adenosine receptor agonists
US6514949B1 (en) 1994-07-11 2003-02-04 University Of Virginia Patent Foundation Method compositions for treating the inflammatory response
US6448235B1 (en) 1994-07-11 2002-09-10 University Of Virginia Patent Foundation Method for treating restenosis with A2A adenosine receptor agonists
GB9414193D0 (en) 1994-07-14 1994-08-31 Glaxo Group Ltd Compounds
US5661153A (en) 1994-07-19 1997-08-26 Japan Energy Corporation 1-arylpyrimidine derivatives and pharmaceutical use thereof
GB9415529D0 (en) 1994-08-01 1994-09-21 Wellcome Found Phenyl xanthine derivatives
US5561111A (en) 1994-12-23 1996-10-01 The University Of Virginia Patent Foundation Stable glutamine derivatives for oral and intravenous rehydration and nutrition therapy
FR2754260B1 (en) 1996-10-04 1998-10-30 Adir NOVEL SUBSTITUTED DERIVATIVES OF BIPHENYL OR PHENYLPYRIDINE, PROCESS FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US5854081A (en) 1996-06-20 1998-12-29 The University Of Patent Foundation Stable expression of human A2B adenosine receptors, and assays employing the same
US6332771B1 (en) 1997-01-22 2001-12-25 Bic Corporation Utility lighter
CN1253502A (en) 1997-04-18 2000-05-17 G·D·西尔公司 Method of using cyclooxygenase-2 inhibitors in prevention of cardiovascular disorders
EP1014995A4 (en) 1997-06-18 2005-02-16 Aderis Pharmaceuticals Inc Compositions and methods for preventing restenosis following revascularization procedures
US5998386A (en) 1997-09-19 1999-12-07 Feldman; Arthur M. Pharmaceutical compositions and method of using same for the treatment of failing myocardial tissue
US6034089A (en) 1997-10-03 2000-03-07 Merck & Co., Inc. Aryl thiophene derivatives as PDE IV inhibitors
US6020339A (en) 1997-10-03 2000-02-01 Merck & Co., Inc. Aryl furan derivatives as PDE IV inhibitors
GB9723589D0 (en) 1997-11-08 1998-01-07 Glaxo Group Ltd Chemical compounds
GB9723566D0 (en) 1997-11-08 1998-01-07 Glaxo Group Ltd Chemical compounds
CA2315736A1 (en) * 1998-01-05 1999-07-15 Eisai Co., Ltd. Purine compounds and adenosine a2 receptor antagonist as preventive or therapeutic for diabetes mellitus
CA2317093A1 (en) 1998-01-08 1999-07-15 Joel M. Linden A2a adenosine receptor agonists
YU44900A (en) 1998-01-31 2003-01-31 Glaxo Group Limited 2-(purin-9-yl)-tetrahydrofuran-3,4-diol derivatives
CO4990969A1 (en) 1998-02-14 2000-12-26 Glaxo Group Ltd DERIVATIVES OF 2- (PURIN-9-IL) -TETRAHYDROFURAN-3,4-DIOL
US6117878A (en) 1998-02-24 2000-09-12 University Of Virginia 8-phenyl- or 8-cycloalkyl xanthine antagonists of A2B human adenosine receptors
US6303619B1 (en) 1998-03-12 2001-10-16 University Of Virginia Meta-substituted acidic 8-phenylxanthine antagonists of A3 human adenosine receptors
JPH11335302A (en) 1998-05-26 1999-12-07 Toa Eiyo Ltd Stable medicinal composition
US6060481A (en) 1998-05-28 2000-05-09 The Penn State Research Foundation Method for improving insulin sensitivity using an adenosine receptor antagonist
PL204628B1 (en) 1998-06-02 2010-01-29 Osi Pharmaceuticals PYRROLO[2,3d]PYRIMIDINE COMPOSITIONS AND THEIR USE
EP1011608A4 (en) 1998-06-08 2002-05-15 Epigenesis Pharmaceuticals Inc Composition and method for prevention and treatment of cardiopulmonary and renal failure or damage associated with ischemia, endotoxin release, ards or brought about by administration of certain drugs
GB9813535D0 (en) 1998-06-23 1998-08-19 Glaxo Group Ltd Chemical compounds
DE69910213T2 (en) 1998-06-23 2004-07-01 Glaxo Group Ltd., Greenford 2- (PURIN-9-YL) -TETRAHYDROFURAN-3,4-DIOL DERIVATIVES
GB9813540D0 (en) 1998-06-23 1998-08-19 Glaxo Group Ltd Chemical compounds
GB9813565D0 (en) 1998-06-23 1998-08-19 Glaxo Group Ltd Chemical compounds
JP2002173427A (en) 1998-09-01 2002-06-21 Yamasa Shoyu Co Ltd Medicine composition for treating eye disease
BR9914526A (en) 1998-10-16 2001-07-03 Pfizer Adenine derivatives
US7427606B2 (en) * 1999-02-01 2008-09-23 University Of Virginia Patent Foundation Method to reduce inflammatory response in transplanted tissue
AU778870B2 (en) 1999-02-01 2004-12-23 University Of Virginia Patent Foundation Compositions for treating inflammatory response
US6232297B1 (en) * 1999-02-01 2001-05-15 University Of Virginia Patent Foundation Methods and compositions for treating inflammatory response
US7378400B2 (en) * 1999-02-01 2008-05-27 University Of Virginia Patent Foundation Method to reduce an inflammatory response from arthritis
WO2000072912A1 (en) 1999-05-26 2000-12-07 Impulse Dynamics Nv Local cardiac motion control using applied electrical signals and mechanical force
AU5294100A (en) 1999-05-27 2000-12-18 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
US6545002B1 (en) 1999-06-01 2003-04-08 University Of Virginia Patent Foundation Substituted 8-phenylxanthines useful as antagonists of A2B adenosine receptors
US6199773B1 (en) * 1999-06-11 2001-03-13 Commercial Vehicle Systems, Inc. Fluid and air nozzle for headlight cleaning
US6322771B1 (en) 1999-06-18 2001-11-27 University Of Virginia Patent Foundation Induction of pharmacological stress with adenosine receptor agonists
US6214807B1 (en) * 1999-06-22 2001-04-10 Cv Therapeutics, Inc. C-pyrazole 2A A receptor agonists
US6180615B1 (en) 1999-06-22 2001-01-30 Cv Therapeutics, Inc. Propargyl phenyl ether A2A receptor agonists
GB9924363D0 (en) 1999-10-14 1999-12-15 Pfizer Central Res Purine derivatives
US7160890B2 (en) 1999-12-02 2007-01-09 Osi Pharmaceuticals, Inc. Compounds specific to adenosine A3 receptor and uses thereof
GB0003960D0 (en) 2000-02-18 2000-04-12 Pfizer Ltd Purine derivatives
US20030186925A1 (en) 2000-02-29 2003-10-02 Palmer Peter Albert Farnesyl protein transferase inhibitor combinations with anti-tumor nucleoside derivatives
TWI227240B (en) 2000-06-06 2005-02-01 Pfizer 2-aminocarbonyl-9H-purine derivatives
US6753322B2 (en) 2000-06-06 2004-06-22 Pfizer Inc 2-aminocarbonyl-9H-purine derivatives
US6921753B2 (en) 2000-06-27 2005-07-26 Pfizer Inc Purine derivatives
WO2002009701A1 (en) 2000-08-01 2002-02-07 University Of Virginia Patent Foundation Use of selective adenosine a1 receptor agonists, antagonists and allosteric enhancers to manipulate angiogenesis
WO2002020539A1 (en) * 2000-09-08 2002-03-14 Toa Eiyo Ltd. Adenosine derivatives and use thereof
GB0022695D0 (en) 2000-09-15 2000-11-01 Pfizer Ltd Purine Derivatives
US6670334B2 (en) 2001-01-05 2003-12-30 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
US20030013675A1 (en) 2001-05-25 2003-01-16 Boehringer Ingelheim Pharma Kg Combination of an adenosine A2A-receptor agonist and tiotropium or a derivative thereof for treating obstructive airways and other inflammatory diseases
EP1395287A1 (en) 2001-05-25 2004-03-10 Pfizer Inc. An adenosine a2a receptor agonist and an anticholinergic agent in combination for treating obstructive airways diseases
US7157440B2 (en) 2001-07-13 2007-01-02 Cv Therapeutics, Inc. Partial and full agonists of A1 adenosine receptors
US20030078232A1 (en) 2001-08-08 2003-04-24 Elfatih Elzein Adenosine receptor A3 agonists
WO2003029264A2 (en) 2001-10-01 2003-04-10 University Of Virginia Patent Foundation 2-propynyl adenosine analogs having a2a agonist activity and compositions thereof
ATE381336T1 (en) 2002-04-10 2008-01-15 Univ Virginia USE OF A2A ADENOSINE RECEPTOR AGONIST AND ANTIPATHOGENE CONTAINING COMBINATIONS FOR THE TREATMENT OF INFLAMMATORY DISEASES
US7307079B2 (en) * 2002-05-30 2007-12-11 Solvay Pharmaceuticals, B.V. 1,3,5-Triazine derivatives as ligands for human adenosine-A3 receptors
HU2517U (en) 2002-08-08 2003-05-28 Schatz Balazs Dr Protective device for drink containers
WO2004033484A2 (en) 2002-10-11 2004-04-22 University Of Virginia Patent Foundation Use of stable glutamine derivatives to improve drug absorption
US20040229246A1 (en) 2002-10-21 2004-11-18 Can-Fite Biopharam Ltd. Diagnostic markers for therapeutic treatment
WO2004089279A2 (en) 2003-04-08 2004-10-21 Yeda Research And Development Co. Ltd. Long-acting derivatives of pyy agonists
US20050004221A1 (en) 2003-07-01 2005-01-06 Medtronic, Inc. Intrathecal gabapentin compositions
CN1894250B (en) 2003-08-25 2010-06-09 PGx健康有限责任公司 Substituted 8-heteroaryl xanthines
BRPI0508488A (en) 2004-03-05 2007-07-31 Cambridge Biotechnology Ltd therapeutic compounds
EP1740587A4 (en) 2004-04-02 2009-07-15 Adenosine Therapeutics Llc Selective antagonists of a-2a- adenosine receptors
US7396825B2 (en) * 2004-05-03 2008-07-08 University Of Virginia Patent Foundation Agonists of A2A adenosine receptors for treatment of diabetic nephropathy
WO2006009698A2 (en) 2004-06-17 2006-01-26 The Regents Of The University Of California Antagonizing an adenosine a2a receptor to amelioriate one or more components of addictive behavior
WO2006023272A1 (en) 2004-08-02 2006-03-02 University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs having a2a agonist activity
WO2006028618A1 (en) * 2004-08-02 2006-03-16 University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs with modified 5'-ribose groups having a2a agonist activity
EP1778712B1 (en) 2004-08-02 2013-01-30 University Of Virginia Patent Foundation 2-propynyl adenosine analogs with modified 5'-ribose groups having a2a agonist activity
US7863253B2 (en) * 2004-09-20 2011-01-04 Inotek Pharmaceuticals Corporation Purine Derivatives and methods of use thereof
WO2006091896A2 (en) 2005-02-25 2006-08-31 Adenosine Therapeutics, Llc Pyridyl substituted xanthines
GB0514809D0 (en) * 2005-07-19 2005-08-24 Glaxo Group Ltd Compounds
US20070032450A1 (en) 2005-08-02 2007-02-08 Rieger Jayson M New compositions and methods for the treatment of inflammation
WO2007092936A2 (en) 2006-02-08 2007-08-16 University Of Virginia Patent Foundation Method to treat gastric lesions
US8178509B2 (en) * 2006-02-10 2012-05-15 University Of Virginia Patent Foundation Method to treat sickle cell disease
US7589076B2 (en) 2006-05-18 2009-09-15 Pgx Health, Llc Substituted aryl piperidinylalkynyladenosines as A2AR agonists
US8188063B2 (en) * 2006-06-19 2012-05-29 University Of Virginia Patent Foundation Use of adenosine A2A modulators to treat spinal cord injury
US7985754B2 (en) * 2006-07-17 2011-07-26 Trovis Pharmaceuticals, Llc Selective antagonists of A2A adenosine receptors
EP1903044A1 (en) * 2006-09-14 2008-03-26 Novartis AG Adenosine Derivatives as A2A Receptor Agonists
US20080312160A1 (en) * 2007-04-09 2008-12-18 Guerrant Richard L Method of treating enteritis, intestinal damage, and diarrhea from c. difficile with an a2a adenosine receptor agonist
US20080262001A1 (en) * 2007-04-23 2008-10-23 Adenosine Therapeutics, Llc Agonists of a2a adenosine receptors for treating recurrent tumor growth in the liver following resection
US8153781B2 (en) * 2007-06-29 2012-04-10 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Dendrimer conjugates of agonists and antagonists of the GPCR superfamily
WO2009061516A1 (en) * 2007-11-08 2009-05-14 New York University School Of Medicine Medical implants containing adenosine receptor agonists and methods for inhibiting medical implant loosening
US8058259B2 (en) * 2007-12-20 2011-11-15 University Of Virginia Patent Foundation Substituted 4-{3-[6-amino-9-(3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid esters as A2AR agonists
US8293720B2 (en) * 2007-12-20 2012-10-23 Dogwood Pharmaceuticals, Inc. Substituted 4-{3-[6-amino-9-(3, 4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid esters as A2AR agonists
US20090181920A1 (en) * 2008-01-09 2009-07-16 Pgxhealth, Llc Intrathecal treatment of neuropathic pain with a2ar agonists

Similar Documents

Publication Publication Date Title
AU2002362443B2 (en) 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof
AU2002362443A1 (en) 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof
AU2005267706B2 (en) 2-propynyl adenosine analogs with modified 5&#39;-ribose groups having A2A agonist activity
RU2442789C2 (en) Substituted arylpiperidinylalkynyl adenosines as a2ar agonists
WO2006028618A1 (en) 2-polycyclic propynyl adenosine analogs with modified 5&#39;-ribose groups having a2a agonist activity
KR100668006B1 (en) Compositions for Treating Inflammatory Response
WO2006023272A1 (en) 2-polycyclic propynyl adenosine analogs having a2a agonist activity
ZA200402402B (en) 2-propynyl adenosine analogs having A2A agonist activity and compositions thereof.