AU2002315338B2 - Optical guidance system for invasive catheter placement - Google Patents

Optical guidance system for invasive catheter placement

Info

Publication number
AU2002315338B2
AU2002315338B2 AU2002315338A AU2002315338A AU2002315338B2 AU 2002315338 B2 AU2002315338 B2 AU 2002315338B2 AU 2002315338 A AU2002315338 A AU 2002315338A AU 2002315338 A AU2002315338 A AU 2002315338A AU 2002315338 B2 AU2002315338 B2 AU 2002315338B2
Authority
AU
Australia
Prior art keywords
catheter
light
patient
optical fiber
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2002315338A
Other versions
AU2002315338A1 (en
Inventor
Gregory J. Schears
David F. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
University of Pennsylvania Penn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pennsylvania Penn filed Critical University of Pennsylvania Penn
Publication of AU2002315338A1 publication Critical patent/AU2002315338A1/en
Application granted granted Critical
Publication of AU2002315338B2 publication Critical patent/AU2002315338B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

OPTICAL GUIDANCE SYSTEM FOR INVASIVE CATHETER PLACEMENT
GOVERNMENT SUPPORT
The present invention was supported by The U.S. National Institutes of Health under Grant No. NS-31465. The government may have certain rights in the invention.
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to U.S. Provisional Patent Application No. 60/299,299, filed June 19, 2001.
FIELD OF THE INVENTION
The present invention relates to an optical guidance system and a method for insertion of endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheters, central venous catheters, peripherally inserted central venous catheters, chest tubes plural catheters, and similar invasive catheters and tubes.
DESCRIPTION OF THE PRIOR ART
Determining the location of the end of a catheter inserted into patients for the purpose of providing nutrients or medications to specific locations within the body has been difficult. Currently, catheter placement is either done without visual guidance or, if the placement is particularly critical, it is done by x-ray, which can accurately determine the location of radio-opaque plastic materials used in making the tubing. However, multiple x- rays are often necessary. The necessity for multiple x-rays in order to locate the end of the inserted tubing is undesirable. An optical system that is convenient and easy to use and yet allows the end of the tubing to be quite accurately located without the use of x-rays is desired. Preferably, the position of the catheter tip may be directly observed during the insertion process and the position of the tip checked at any time thereafter.
Prior art catheter light delivery devices are known (e.g., Woodward et al; 5,947,958) that provide illumination of internal organs of a patient after insertion through, for example, the peritoneal wall. This illumination is to provide light for either imaging of the tissue surface or for delivering the light used in photodynamic therapy. Such devices are not used for catheter placement.
Other light guides, such as Fontenot; 5,423,321, have multiple light guiding fibers of different lengths that are inserted into internal organs or vessels during surgery. In the case of balloon catheters, such light guides are used to place the balloon catheter in positions where inflation of the balloon will occlude the vessel if that should become necessary. The light guide is an independent entity and observation is through the vessel wall such that visible light is sufficient, although near infra red light is indicated as decreasing the intensity of light that is required. A detection system is also described for determining when the surgical cutting tool approaches the vessel.
Vander Salm et al; 5,906,579 and Duhaylongsod et al; 6,113,588 similarly describe methods for visualizing balloon catheters through the vessel wall under surgical conditions. In these devices, the optical fiber is an independent entity and is preferably inserted through one lumen of a multilumen catheter. The disclosed devices are specifically disclosed for use in cardiothoracic surgery.
Such prior art light guides do not use a single fiber that is built into the structure of catheters with multiple different functions, are not directed primarily to localizing the tip of an inserted catheter during non-surgical procedures for endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheterization, central venous catheterization, peripherally inserted central venous catheterizations, chest tubes plural catheterization, or with similar invasive catheters and tubes, and such prior art devices do not use only near infrared light since the vessels are not surgically exposed and visible light (blue through orange) provides insufficient penetration of the tissue. Moreover, such prior art devices are relatively expensive and the optical components may require difficult FDA scrutiny since they may contact the patient. The present invention addresses these limitations in the prior art.
SUMMARY OF THE INVENTION
Light from a small laser diode is passed through an optical fiber that is either included in the lumen or incorporated into the wall of an invasive catheter tube during manufacture. The light is selected to be of a wavelength that is minimally absorbed by tissue, preferably in the range from about 620 nm to 1100 nm. In a preferred embodiment, 780 nm is used as this is where the tissue absorption is near a minimum. The light passes out the end of the fiber (at the distal end of the catheter) and through the tissue to the outside where it is measured. The light pattern is observed by night vision goggles that filter out light in other frequency ranges. The detected light allows location of the end of the fiber, the positional accuracy depending on the thickness of tissue between the fiber tip and the exterior of the body. The method is highly accurate for small children and for catheters near the skin surface of adults but may not be applicable to catheters placed within the body cavity of some large adults.
BRIEF DESCRIPTION OF THE DRAWINGS
An optical guidance system and method for insertion of endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheters, central venous catheters, peripherally inserted central venous catheters, chest tubes plural catheters, and similar invasive catheters and tubes in accordance with the invention is further described below with reference to the accompanying drawings, in which: Figure 1 illustrates a cross-section of a catheter with an integral optical fiber that is used in accordance with the invention to locate the tip of the inserted catheter.
Figure 2 illustrates a side view of the catheter of Figure 1.
Figure 3 illustrates the catheter of Figure 1 inserted into the body of a patient and the detection of the light from the tip of the catheter at the nearest spot of the patient's skin in accordance with the method of the invention.
DETAILED DESCRIPTION OF THE INVENTION
An optical guidance system in accordance with the invention includes a laser diode having a wavelength in the range of 620 nm to 1100 nm, preferably a 780 nm wavelength with an emission less than 2 nm wide and less than 5 mW in power that/ is carried through a 150 micron (or less) core glass optical fiber to an "ST" optical connector at a distal end. As shown in Figure 1, the glass optical fiber 10 is embedded in (i.e., partially or completely surrounded by) the wall 20 of a catheter 30 having a catheter lumen 40. The optical fiber 10 runs the entire length of the catheter 30, and the unterminated end of the optical fiber 10 at the distal end 50 of the catheter 30 is adapted to be inserted into the patient as shown in Figure 2. The proximal end 60 is terminated with an ST optical connector (not shown) appropriate for connecting the optical fiber 10 with the laser diode (not shown) . Conversely, the optical fiber 10 may be inserted into lumen 40 of the catheter 30 at its proximal end 60 and fed to the distal tip 50 of the catheter 30 and held in place so that light escapes from the distal end 50 once the catheter 30 is inserted into the patient.
The operator uses a detection system such as near infrared "night vision" goggles 70 watch the progress of the catheter 30 from the site of entry to the chosen location. The distal end 50 of the catheter 30 is treated as a single light source and the diffuse rays from this light source are detected. A narrow pass (<10 nm at half height is preferred, although wider bandpass filters could be used) interference filter 80 with a center wavelength of 780 nm (for a light source of 780 nm) is used to cover the detector surface of the goggles 70. In general, contribution of other ambient lighting increases with increasing width of the optical filter bandpass. The value of less than 10 nm is selected to allow some variation in the laser diode wavelength and yet to minimize the amount of light other than that from the laser diode that passes through to the detector of the goggles 70. Of course, if other wavelength light were used, an appropriate interference filter centered about the other wavelength would be used.
Figure 3 illustrates the catheter 30 of Figures 1 and 2 inserted into the body of a patient vie a nasogastric catheter 30 and the detection of the light from the tip 50 of the catheter 30 at the nearest spot of the patient's skin in accordance with the method of the invention. In the example illustrated in Figure 3, night vision goggles 70 with an appropriate interference filter 80 thereon allow the operator to see the infrared light through the skin outside of the patient's stomach.
Those skilled in the art will appreciate that other designs of the optical guidance system for catheters in accordance with the invention could be constructed using different light sources and light detectors. While 780 nm light is suitable since tissue absorption is near a minimum at that wavelength, it would be possible, for example, to use an LED as a light source as long as the light provided was of appropriate wavelength and energy. In this case, a wider bandpass filter may be required on the detector (an LED light output is broader than that of the laser diode). Similarly, different detectors could be used, including photodiodes, photomultipliers, avalanche photodiodes, and microchannel plates. When photodiodes or other single site detectors are used they could be moved over the surface of the tissue to detect the maximum in the specific light emitted from the optical fiber. The sensitivity of the measurement could be maximized by modulating the light at a specific frequency (such as 1000 Hz) and detecting only the photosignal of that frequency.
Another modification that would allow the operator to detect those cases in which the catheter had "doubled back" inappropriately would be to incorporate two optical fibers, one terminated about 5 centimeters before the tip and the other at the tip. The two could be distinguished by differences in modulation frequency and/or wavelengths of light.
In one variation of the detection system, the night vision goggle 70 could include a sensitive microchannel plate imager in a mini-display directly in front of one eye of the operator. This would allow the operator to look at either the patient or at the display as desired.
Although exemplary implementations of the invention have been described in detail above, those skilled in the art will readily appreciate that many additional modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Any such modifications are intended to be included within the scope of this invention as defined by the following exemplary claims.

Claims (16)

WE CLAIM
1. An optical guidance system for directing the placement of an invasive catheter within a patient, comprising: a catheter tube; an optical fiber inserted into said catheter tube and extending from a proximal end of said catheter tube to a distal end of said catheter tube; a light source arranged to insert light into said optical fiber at a distal end thereof, whereby the inserted light passes through the optical fiber to the distal end of the catheter when the catheter is inserted in a patient, and the light emitted from the distal end of the inserted catheter passes through the patient's tissue to the outside of the patient's body; and a detection device that receives and filters the light emitted outside of the patient's body to assist an operator of the detection device in determining the location of the distal end of the catheter in the patient's body.
2. An optical guidance system as in claim 1, wherein the light source comprises a laser diode that emits light in a wavelength range of 620 nm to 1100 nm.
3. An optical guidance system as in claim 2, wherein the laser diode emits light at a wavelength of approximately 780 nm.
4. An optical guidance system as in claim 1, wherein the detection device comprises night vision goggles having an interference filter over a detection surface thereof, the interference filter effectively blocking light in wavelength ranges outside of a narrow band including a wavelength range emitted by said light source.
5. An optical guidance system as in claim 4, wherein said goggles include a micro-channel plate imager in a mini-display directly in front of one eye of the operator.
6. An optical guidance system as in claim 1, wherein the optical fiber is embedded in a wall of the catheter tube.
7. An optical guidance system as in claim 1, wherein the optical fiber is inserted into a lumen of the catheter tube so as to extend to the distal end of the catheter tube and the optical fiber is held in place during insertion of the catheter tube into a patient.
8. A method of determining the location of a distal end of an invasive catheter inserted into a patient, comprising the steps of: inserting into a patient an invasive catheter having an optical fiber inserted therein so as to extend from a proximal to a distal end of the catheter; inserting narrowband light into the proximal end of the optical fiber, whereby the inserted light passes through the optical fiber to the distal end of the catheter when the catheter is inserted in a patient, and the light emitted from the distal end of the inserted catheter passes through the patient's tissue to the outside of the patient's body; detecting infrared light at a surface of the skin of the patient that has been emitted from the distal end of the catheter and passed through the patient's skin to the skin surface; and determining the location of the distal end of the catheter by filtering a detected light pattern at the surface of the patient's skin.
9. A method as in claim 8, wherein the light inserted into the proximal end of the optical fiber is in a wavelength range of 620 nm to 1100 nm.
10. A method as in claim 9, wherein the light inserted into the proximal end of the optical fiber has a wavelength of approximately 780 nm.
11. A method as in claim 8, wherein the detecting step includes the step of viewing the patient's body with night vision goggles having an interference filter over a detection surface thereof.
12. A method as in claim 11, wherein the determining step includes filtering light emitted by the patient through the interference filter so as to effectively block light in wavelength ranges outside of a wavelength range of the narrowband light inserted into said optical fiber.
13. A method as in claim 11, wherein the detecting step further comprises the step of providing a mini-display in front of one eye of the operator while wearing said goggles.
14. A method as in claim 8, wherein the optical fiber inserting step comprises the step of embedding the optical fiber in a wall of the catheter.
15. A method as in claim 8, wherein the optical fiber inserting step comprises the steps of inserting the optical fiber into a lumen of the catheter so as to extend to the distal end of the catheter and holding the optical fiber in place during insertion of the catheter into a patient.
16. A method as in claim 8, comprising the additional steps of inserting a second optical fiber into the catheter so that said second optical fiber terminates a predetermined distance short of said distal end of said catheter, inserting light into said second optical fiber that can be distinguished from light inserted into said optical fiber, detecting light emitted from the patient at the frequencies of each source of light inserted into the optical fibers, and determining whether the catheter has "doubled back" on itself during insertion based on the detected locations of light emitted from the patient.
AU2002315338A 2001-06-19 2002-06-19 Optical guidance system for invasive catheter placement Ceased AU2002315338B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60/299,299 2001-06-19

Publications (2)

Publication Number Publication Date
AU2002315338A1 AU2002315338A1 (en) 2003-05-15
AU2002315338B2 true AU2002315338B2 (en) 2007-03-08

Family

ID=

Similar Documents

Publication Publication Date Title
US7273056B2 (en) Optical guidance system for invasive catheter placement
US7992573B2 (en) Optically guided system for precise placement of a medical catheter in a patient
EP1931273B1 (en) Light-guided transluminal catheter
US8954134B2 (en) Light-guided transluminal catheter
US20040019280A1 (en) Infrared assisted monitoring of a catheter
CN101128151A (en) Optically guided system for precise placement of a medical catheter in a patient
WO2006049787A2 (en) Optically guided system for precise placement of a medical catheter in a patient
AU2008261798A1 (en) Three-dimensional optical guidance for catheter placement
AU2005301172B2 (en) Optically guided system for precise placement of a medical catheter in a patient
AU2002315338B2 (en) Optical guidance system for invasive catheter placement
AU2002315338A1 (en) Optical guidance system for invasive catheter placement