AU2002310531A1 - Managanese oxide material for electrochemical cells - Google Patents

Managanese oxide material for electrochemical cells

Info

Publication number
AU2002310531A1
AU2002310531A1 AU2002310531A AU2002310531A AU2002310531A1 AU 2002310531 A1 AU2002310531 A1 AU 2002310531A1 AU 2002310531 A AU2002310531 A AU 2002310531A AU 2002310531 A AU2002310531 A AU 2002310531A AU 2002310531 A1 AU2002310531 A1 AU 2002310531A1
Authority
AU
Australia
Prior art keywords
zero
number greater
elements
manganese oxide
oxide material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2002310531A
Inventor
Peter George Bruce
Alastair Douglas Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of St Andrews
Original Assignee
University of St Andrews
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of St Andrews filed Critical University of St Andrews
Publication of AU2002310531A1 publication Critical patent/AU2002310531A1/en
Priority to AU2008203082A priority Critical patent/AU2008203082B2/en
Abandoned legal-status Critical Current

Links

Description

Title: Improvements in or Relating to Electrochemical Cells
Field of Invention
This invention concerns electrochemical cells and relates to material with a layered structure for use in such cells, a method for producing the layered materials, and a cell having the layered materials as the positive electrode.
Background to the Invention
Electrochemical cells generally have a negative electrode, a positive electrode, and an electrolyte placed between the electrodes. The electrolyte is chosen so that transfer of ions between the two electrodes occurs, thus producing an electrical current. One example of an electrochemical cell is a rechargeable battery. The use of layered materials such as lithium cobalt oxide, LiCo02, as the positive electrode in such a rechargeable battery is well established. The layered material consists of sheets of oxygen ions stacked one on top of the other. Between the first and second layers of oxygen are located the cobalt ions, with the lithium ions being located between the second and third oxygen layers. Use of LiCo02 in rechargeable batteries allows greater energy storage per unit weight and volume than is possible in conventional rechargeable batteries such as nickel-cadmium. However LiCo02 has disadvantages in that it is somewhat toxic, is less safe than is desirable, has limited energy storage capacity, and the cobalt containing materials from which it is produced are expensive and scarce.
Attempts have been made to use other compounds with a similar layered structure to that of, LiCo02, such as Li 02, and LiFe02. EP 0 017 400 discloses a range of compounds having layers of the α-NaCr02 structure. In an International Patent Application, Publication No. WO97/26683, we disclosed the synthesis and viability of materials of the form QqMnyMz02, where Q and M are each any element, y is any number greater than zero, and q and z are each any number greater than or equal to zero, and the material is a layered structure. It is one aim of the present invention to provide a further layered manganese oxide material which can be used in electrochemical cells.
Summary of the Invention
According to one aspect of the present invention, there is provided a manganese oxide material, wherein the material comprises a host material QqMnyMzOx, where Q and M are each any element, y is any number greater than zero, and q and z are each any number greater than or equal to zero, and at least one dopant substituted into the host material, the manganese oxide material having a layered structure. Any number of dopants may be substituted into the host material, with the number of simultaneously occurring dopants possible only being restricted by the requirement to retain a layered structure. Such a material may be written as QqMnyMzAaBbCc....γnOχ, where A, B, C ... γn are dopants. Typically for such a material the values of z, a, b, c,...,n will be chosen to sum equal to one.
A layered structure is one in which the ions are arranged in a series of generally planar layers, or sheets, stacked one on top of another. In general, each layer contains ions of one particular element. Thus, when z is equal to zero and q is greater than zero, the layering will consist of sheets of oxide ions which are separated by alternating layers of Q ions and Mn ions, i.e. the layers order as a layer of oxide ions, a layer of Mn ions, a layer of oxide ions, a layer of Q ions and a layer of oxide ions; this is repeated throughout the structure.
Q is preferably chosen from Group I elements, i.e. K, Li, Rb, and in a particularly preferred material is Li so that the host material is of the form LiwMnyMzOx, where w is any number greater than zero.
Where z is not equal to zero, the M ions will occupy sites in the Mn layers, and if desired M within the host material can be viewed as a first dopant with at least one further dopant being substituted within the material.
Where z is not equal to zero, the element M is typically chosen from Group II elements, the transition elements or from Group III elements. Suitable elements include Be, Mg, Ca, Sc, Ti, N, Cr, Fe, Co, Νi, Cu, Zn, Al, Ga, P. However Group I elements such as Li may also be used as a dopant.
In a particularly preferred material according to the invention, Q is Li and M is either Co, Νi, Al, or Li.
Preferably at least one dopant is chosen from Group II elements, the transition elements or from Group III elements. Suitable elements include Νi, Al, Co, Mg, Zn and Cu.
Particularly preferred combinations of M and a dopant are Νi, Co; Al, Co; Li, Co; Li, Νi; Li, Mg; Li,Cu; Li,Al; and Li, Zn.
According to a further aspect of the invention, there is provided a method of preparing a manganese oxide material of the invention, comprising processing an intermediate material XxMnyMzAaBbOx (or any number of elements n additional to M, A and B), where X is a Group I element not being lithium, M, A and B are any element, a, x and y are each any number greater than zero, and z, and b are any number greater than or equal to zero, by an ion exchange reaction with a reactant containing lithium ions, so as to replace X with lithium and produce a material of the form LiwMnyMzAaBbOx, where w is any number greater than zero, and the material has a layered structure. If M is to be incorporated, then z is chosen to be greater than zero.
Preferably X is chosen to be Νa, so that the intermediate material is of the form ΝaxMnyMzAaBbOχ.
The reactant may be any suitable lithium salt, such as LiBr or LiCl. Preferably the ion exchange reaction is achieved by heating the reactant and intermediate material under reflux. Typically n-pentanol, n-hexanol, ethanol or n-octanol are used as the reflux agent, with the reflux period being 96 hours.
In a particularly preferred exchange reaction, the ion exchange occurs at room temperature and in water. According to a further aspect of the invention, there is provided a method of preparing a manganese oxide material of the invention, comprising processing a precursor material QqMnyMzAaBbOx, where Q and M are each any element, q and y are each any number greater than zero, z and b are any number greater than or equal to zero, and a is greater than zero by carrying out an ion removal reaction, so as to remove Q and produce a material of the form MnyMzAaBbO, with a layered structure.
Ion removal is conveniently achieved by electrochemical extraction, using the precursor material as the working electrode in an electrochemical cell. This is of particular advantage in preparation of materials of the form MnyMzAaBbOx. For preparation of these materials, Q is preferably chosen from the Group I or Group II elements, such as Na, K, Rb, Mg or Ca. The MnyMzAaBbOx may be subsequently processed to insert lithium so as to produce LiwMnyMzAaBbOx.
According to another aspect of the invention, there is provided an electrochemical cell, wherein the positive electrode is of the form LiqMnyMzAaBbOx where M, A and B are any elements, x, y, z and a are any number greater than zero, and q and b are each any number greater than or equal to zero. The use of the manganese in the electrode avoids the need for use of cobalt or nickel which is of advantage as manganese is less toxic, safer, more abundant and cheaper than cobalt and nickel.
A rechargeable battery is an example of an electrochemical cell with which the invention may be used.
The invention will now be described by way of example, and with reference to the accompanying Figures in which:
Figures 1(a) and 1(b) show the observed diffraction data of a material according to the invention, where M is Li and the dopant is Co, Figure 1(a) being an X-ray diffraction trace and Figure 1(b) a neutron diffraction trace;
Figure 2 shows the discharge capacity of a cell incorporating a further material according to the invention on successive discharge cycles, where M is Ni and the dopant Co; Figure 3 shows the discharge capacity of a cell incorporating a further material according to the invention on successive discharge cycles, where M is Co and the dopant Al; and Figure 4 shows the discharge capacity of a cell incorporating a further material according to the invention on successive discharge cycles, where M is Li and the dopant is either Cu or Al or Zn.
Description
The preparation of materials of the form QqMnyMz02 incorporating one or more dopants, and the experimental verification of the structure of such materials and their properties as an electrode for an electrochemical cell will be described. If desired, one can view QqMny02 as the base or host material into which M and or at least one other dopant are substituted, producing a double dopant system. However substitution is only limited by the requirement to have a layered structure, and multiple dopants can be substituted into the original structure.
Preparation
Preparation of the materials requires two stages:
1) The preparation of the intermediate material, sodium manganese oxide, NaMn02 combined with the dopants, i.e. of the form NaqMnyMzAaBbOx, where A is one additional dopant, and B is another additional dopant; and
2) Ion exchange reaction.
Stage 1
(a) Solid State Preparation
Appropriate quantities of the Na source such as Na2C0 , a Manganese oxide such as Mn203, MnO or Mn02 and oxides of the dopant elements are weighed out and intimately ground together with or without a dispersant such as acetone. As will be apparent to a person skilled in the art, NaOH, Na(CH3C02) or any other solid Na compound which decomposes on heating to yield the oxide can be used instead of Na2CO3, and any solid Mn source which decomposes on heating to yield the oxide can be used to provide a source of Mn. Any source of the elements M, A, B etc. which decomposes on heating to yield the oxide can be used to supply the dopants.
The resulting homogenous mixture of Na source, Mn source and dopant sources is heated in a furnace until a material of the form NaqMnyMzAaBbOx is produced. Whether an air, reducing or oxidising atmosphere is required within the furnace depends on the elements M, A, B and the furnace heating and cooling characteristics chosen will depend on M, A and B. Typically temperatures of between 250°C and 1500°C are chosen for anything between 1-96 hours and the samples may be furnace cooled or cooled more quickly.
The intermediate material can also be prepared from solution, and where required solution preparation is as follows.
(b) Solution Preparation
Suitable salts of Na, Mn, M, A, B etc. which are soluble in H20, ethanol, n-hexanol or similar solvents, for example Na2C03, NaCH3C02, Mn(CH3C02)2 and A(CH3C02)n, B(CH C02)s are weighed out and added to the solvent. After mixing, the solvent is removed by heating and if required using reduced pressure. The resulting homogenous mixture is then heated at a low temperature between 80-150°C for between 1-5 hours, and then at temperatures between 250-1500°C for 1-96 hours in air, or if appropriate depending on the combination of elements M, A, B in a more reducing or more oxidising atmosphere. As before the samples may be furnace cooled or cooled more quickly, such as by air cooling.
Stage 2
An excess, typically 8-15 fold of a Lithium salt such LiBr, LiCl or LiN03, is added to a solvent such as ethanol, butanol, n-hexanol, n-octanol, acetonitrile, water or a combination of some of these. To this mixture is added the intermediate material prepared either by solid state reaction or from solution as above, and the various constituents allowed to react for between 6 and 96 hours at a suitable temperature. Where the reaction is carried out at elevated temperatures, then a condenser is fitted permitting reflux. For example ion exchange in ethanol may be carried out by refluxing at 80°C or in the case of n-hexanol 160°C. Particularly of interest is that the ion exchange reaction is possible at room temperature and in water. After reaction the mixture is subjected to filtration under suction and then washed with a solvent used for exchange, typically alcohol or alcohol and water, before being dried.
Alternatively ion exchange is carried out in a molten salt containing a Lithium source. For this, the sample is mixed with the ion exchange medium and heated until the medium is molten. The temperature is maintained for 1-96 hours until exchange is complete. After cooling the ion exchange medium is removed by washing in H20, alcohol or other solvent. The resulting material is dried by heating under vacuum.
The structure of the resultant product was then examined by X-ray diffraction or by neutron diffraction. Determination of the structure by neutron diffraction requires the observed diffraction data from a representative sample of the product to be compared to theoretical diffraction data for a variety of structural models. The correct structural model produces the best fit between theoretical and observed data. Typically trial models are selected by looking at the structures of similar families of compounds, or from the structures of the compounds that formed the product.
Time-of-flight powder neutron diffraction data were collected on the POLARIS high intensity, medium resolution diffractometer at the ISIS pulsed source at the Rutherford Appleton Laboratory. Data from the highest resolution backscattering bank of detectors were used for structural analysis.
Figure 1(a) shows the X-ray diffraction pattern of LixMno.95Lio.o25Co0.o25O2, with thus M being Li and the additional dopant being Co and Figure 1(b) shows the neutron diffraction pattern of the same compound. Various other combinations of dopants have been investigated including the following (where the first element is equivalent to M in the general formula given above and the second element the additional dopant): Co, Ni; Co, Al; Li, Co; Li, Ni; Li, Al; Li, Mg; Li, Zn; Li, Cu.
The materials produced in accordance with the present invention have a layered structure in which the Mn, Li and O ions are arranged separately in a series of generally planar layers, or sheets, stacked one on top of another, with the dopants substituting into these layers. Generally the dopants substitute randomly into the Mn layers, although some of the dopant ions may be present in the Li layers. The layering will thus consist of sheets of oxide ions which are separated by alternating layers of Li ions and Mn ions, i.e. the layers order as a layer of oxide ions, a layer of Mn ions, a layer of oxide ions, a layer of Q ions and a layer of oxide ions; this is repeated throughout the structure.
The layered structure possesses a crystal symmetry lower than rhombohedral and is generally monoclinic. The monoclinic structure possesses one 2-fold axis and/or one plane of symmetry, its unit cell possessing three unequal axes, one axis being perpendicular to the other two axes which are inclined at an oblique angle. In such a structure the Mn ions are not equally spaced from all nearest neighbour oxide ions, i.e. the three oxide ions in the adjacent upper layer and the three oxide ions in the adjacent lower layer, but rather are distorted from equal spacing so that the Mn-0 bond distance varies. An equivalent view of this is that the layered structure comprises layers of Mn06 polyhedra separated by layers of other ions, for example lithium ions.
Lattice parameter data for selected materials are given below:
Table 1 : Lattice parameter data for LixMn1-yNiy/2Coy/2θ2 system
Table 2: Lattice parameter data for LixMn1-yLiy/2Niy/202 system
Table 4: Lattice parameter data for LixMn1-yLiy/2Mgy/202 system
The performance of various materials in accordance with the present invention in an electrochemical cell is shown in Figures 2 to 4. These Figures show the discharge capacity of the material used in an electrolytic cell during successive discharge cycles. The cell was cycled at 30° C at a constant current C of 0.5mAcm"2 between the potential limit 2.4 and 4.6 V to simulate the behaviour of a rechargeable battery. These Figures demonstrate that lithium can be chemically or electrochemically extracted from and reinserted into these materials, i.e. it is an intercalation/insertion electrode.
Figure 2 shows the discharge capacity in mAhg"1 over 150 cycles at C/8 and IC for LiχMn0.95Nio.o25Cθo.025θ2, i.e. where M is Ni and the additional dopant is Co.
Figure 3 shows the discharge capacity in mAhg"1 over 50 cycles at C/8 for LixMnι-yCoy/2Aly/2θ2, i.e. where M is Co and the additional dopant is Al, for varying percentages of Co and Al. The discharge capacity is similar for all three compositions shown and is similar to the discharge at C/8 for LixMn0.95Ni0.025Cθo.o25θ2.
Figure 4 shows the discharge capacity in mAhg"1 over 150 cycles at a rate of C/4/ 50mAg-l between voltage limits of 2.4-4.6N for LixMn0.95Mo.o25A0.o25θ2, i.e. where M is Li and the additional dopant A is Cu, or Al or Zn. Better discharge properties are seen for the materials having the dopant pairs Li, Cu and Li Al.

Claims (14)

Claims
1. A manganese oxide material, wherein the material comprises a host material QqMnyMzOx, where Q and M are each any element, y is any number greater than zero, and q and z are each any number greater than or equal to zero, and at least one dopant substituted into the host material, the manganese oxide material having a layered structure.
2. A manganese oxide material according to claim 1, wherein Q is chosen from Group I elements.
3. A manganese oxide material according to claim 2, wherein Q is Li and the host material is of the form LiwMnyMzOx, where w is any number greater than zero.
4. A manganese oxide material according to any of the preceding claims, wherein the element M is chosen from Group I, Group II elements, the transition elements or from Group III elements.
5. A manganese oxide material according to any of the preceding claims, wherein Q is Li and M is either Co, Ni, Al, or Li.
6. A manganese oxide material according to any of the preceding claims, wherein at least one dopant is chosen from Group II elements, the transition elements or from Group III elements.
7. A method of preparing a manganese oxide material comprising processing an intermediate material XxMnyM2AaBbOx (or any number of elements n additional to M, A and B), where X is a Group I element not being lithium, M, A and B are any element, a, x and y are each any number greater than zero, and z and b are any number greater than or equal to zero, by an ion exchange reaction with a reactant containing lithium ions, so as to replace X with lithium and produce a material of the form LiwMnyMzAaBbOx, where w is any number greater than zero, and the material has a layered structure.
8. A method according to claim 7, wherein X is Na, so that the intermediate material is of the form NaxMnyMzAaBbOx.
9. A method according to claim 7 or claim 8, wherein the ion exchange reaction is achieved by heating the reactant and intermediate material under reflux.
10. A method according to claim 9, wherein the ion exchange reaction occurs at room temperature and in water.
11. A method of preparing a manganese oxide material comprising processing a precursor material QqMnyMzAaBbOx, where Q and M are each any element, q and y are each any number greater than zero, z and b are any number greater than or equal to zero, and a is greater than zero by carrying out an ion removal reaction, so as to remove Q and produce a material of the form MnyMzAaBbO, with a layered structure.
12. A method according to claim 11, wherein ion removal is conveniently achieved by electrochemical extraction, using the precursor material as the working electrode in an electrochemical cell.
13. An electrochemical cell, wherein the positive electrode is of the form LiqMnyMzAaBbOx where M, A and B are any elements, x, y, z and a are any number greater than zero, and q and b are each any number greater than or equal to zero.
14. A rechargeable battery comprising an electrochemical cell according to claim 13.
AU2002310531A 2001-07-14 2002-06-26 Managanese oxide material for electrochemical cells Abandoned AU2002310531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2008203082A AU2008203082B2 (en) 2001-07-14 2008-07-11 Improvements in or relating to electrochemical cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0117235.2 2001-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2008203082A Division AU2008203082B2 (en) 2001-07-14 2008-07-11 Improvements in or relating to electrochemical cells

Publications (1)

Publication Number Publication Date
AU2002310531A1 true AU2002310531A1 (en) 2003-03-03

Family

ID=

Similar Documents

Publication Publication Date Title
US9260320B2 (en) Ceramic material and use thereof
US6322928B1 (en) Modified lithium vanadium oxide electrode materials and products
EP2872450B1 (en) Doped nickelate compounds
AU713144B2 (en) Improvements in or relating to electrochemical cells
CN103299456B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
EP2159867A1 (en) Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same
EP1855334A2 (en) Cathode material for manufacturing a rechargeable battery
US20110053002A1 (en) Ceramic material and preparation method therefor
EP2872452B1 (en) Doped nickelate compounds
EP2299524A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP2533334A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
EP2533333A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN110313086A (en) Sintered lithium complex oxide plate
US7686984B2 (en) Manganese oxide material for electrochemical cells
EP1233001B1 (en) Lithium-manganese complex oxide, production method thereof and use thereof
KR101494434B1 (en) A lithium-transition metal complex compounds having hierarchical structure, a method for preparing the same and a lithium battery comprising an electrode comprising the same
US9698430B2 (en) Lithium-lanthanum-titanium oxide sintered material, solid electrolyte containing the oxide, lithium air battery and all-solid lithium battery including the solid electrolyte, and method for producing the lithium-lanthanum-titanium oxide sintered material
CN114725346B (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
AU2008203082B2 (en) Improvements in or relating to electrochemical cells
CN110313087A (en) Sintered lithium complex oxide plate
US20130207032A1 (en) Lithium iron silicate cathode material and its production
AU2002310531A1 (en) Managanese oxide material for electrochemical cells
KR20220117907A (en) Cathode Materials and Methods
JPH11339805A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2000133265A (en) Positive active material of lithium secondary battery and manufacture of same