AU2002309694A1 - Control system input apparatus and method - Google Patents

Control system input apparatus and method

Info

Publication number
AU2002309694A1
AU2002309694A1 AU2002309694A AU2002309694A AU2002309694A1 AU 2002309694 A1 AU2002309694 A1 AU 2002309694A1 AU 2002309694 A AU2002309694 A AU 2002309694A AU 2002309694 A AU2002309694 A AU 2002309694A AU 2002309694 A1 AU2002309694 A1 AU 2002309694A1
Authority
AU
Australia
Prior art keywords
panel
control system
touch
system interface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002309694A
Other versions
AU2002309694B2 (en
Inventor
David W. Caldwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TouchSensor Technologies LLC
Original Assignee
TouchSensor Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TouchSensor Technologies LLC filed Critical TouchSensor Technologies LLC
Priority claimed from PCT/US2002/014695 external-priority patent/WO2002091575A1/en
Publication of AU2002309694A1 publication Critical patent/AU2002309694A1/en
Application granted granted Critical
Publication of AU2002309694B2 publication Critical patent/AU2002309694B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description


  



   CONTROL SYSTEM INPUT APPARATUS AND METHOD
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority from United States Provisional Patent Application
Serial No. 60/289,225 filed on May 7,2001.



  BACKGROUND OF THE INVENTION   1.    Technical Field
The present invention relates generally to control system input apparatus and methods for making same. More particularly, the present invention relates to integration of electronic touch switches or sensors with shaped panels, such as decorative fascia and the like.



  2. The Prior Art
Conventional electrical control panels typically comprise one or more mechanical or membrane switches installed on flat, or planar, panels having substantially uniform thickness and/or cross section. One known type of control panel includes one or more mechanical switches mounted on a flat panel having one or more apertures for accommodating the one or more mechanical switches. Such control panels are commonly used in connection with a wide variety of equipment, including industrial machines, automobile dashboards, and all sorts of consumer products. Another known type of control panel includes one or more membrane switches mounted on a substantially flat substrate and covered with a thin, flexible plastic overlay. The overlay helps to protect the underlying switches and circuitry from spills and moisture.

   The overlay also may incorporate a decorative design, such as a mimic of the switch layout mimic, thereon. Such control panels commonly are used in connection with exercise equipment (such as rowing machines and treadmills), gas pumps, and all sorts of other apparatus. 



   Certain disadvantages are inherent in the foregoing types of control panels. For example, the apertures inherent to mechanical switch panels provide a path for fluids and contaminants to enter the rear portion of the control panel, increasing the potential for short circuits and damage to components within the panel. Further, the mechanical switches themselves typically are assemblies of several individual parts which are subject to moisture or fluid intrusion. As such, mechanical switch panels are less than ideal for use in harsh environments, unless peripheral protective enclosures are provided. Such enclosures are costly, unsightly, and make the switch panel inconvenient to use.



   Switch panels using membrane switches offer some protection to the elements by way of the flexible overlay. However, such overlays typically do not provide a complete barrier to moisture and fluids. Also, they are prone to damage resulting from ordinary use and cleaning.



  Further, they can become embrittled with age, particularly if used in harsh environments. The overlays can develop cracks, leading to failure of the moisture barrier.



   Mechanical switches generally are substantially rigid devices best suited for mounting on a flat surface or substrate. Although the contact mechanism in a membrane switch is inherently somewhat flexible, the overall switch package is substantially rigid and best suited for mounting on a flat surface or substrate. Neither mechanical nor membrane switches are particularly well-suited for use with any panel shape other than flat. Though attempts have been made to use such conventional switches in connection with shaped panels, such as curved panels, such attempts typically have not yielded elegant solutions. It would be desirable to provide a switch panel having a free-form design whose contours are not limited to planar surfaces. 



  SUMMARY OF THE INVENTION
The present invention provides a novel control system input apparatus and a method for making same by integrating electronic touch switches and/or sensors (these terms are used interchangeably herein) with panels, such as decorative and/or functional fascia, having planar, curved, or complex surfaces. In a preferred embodiment, one or more touch switches are mated with the rear surface of a functional and/or decorative panel of an apparatus receiving control systems inputs from such touch switches. A corresponding touch surface is defined on the front surface of the panel opposite each such touch switch. In order to actuate one of the touch switches, a user simply introduces a stimulus, such as a finger or hand, in the proximity of the corresponding touch surface.



   A control system input apparatus, or control panel, according to the present invention can take nearly any form. For example, it can have any number of convex or concave surfaces, or it can be a substantially planar panel having raised portions   and/or    depressions, i. e., a non-uniform cross-section or thickness, for enabling a user to more easily locate a particular touch switch. The present invention is well-suited for providing control panels for use with controlled apparatus exercise equipment and for integrating control panels into the decorative fascia of products such as vending machines and beverage dispensers of the type commonly found in fast food outlets, movie theaters, and the like.



   A control panel according to the present invention preferably incorporates touch switches or sensors embodying technology covered by United States Patents No. 5,594,222,
No. 6,31, 611, and/or No. 6,320,282, the disclosures of which are hereby incorporated by reference. Such touch switches are available from TouchSensor Technologies   of Wheaton,   
Illinois. A touch switch according to the foregoing references can be fabricated on a wide variety of substrates. For example, such a touch switch can be fabricated on a flexible sheet, as well as on a rigid substrate. 



  BRIEF DESCRIPTION OF THE DRAWINGS
Fig.   1    is a plan view of a user interface for a piece of exercise equipment embodying the present invention;
Fig. 2 is a cross-sectional elevation view of an equipment panel according to a preferred embodiment of the present invention;
Fig. 3 is a cross-sectional elevation view of an equipment panel according to another preferred embodiment of the present invention;
Fig. 4 is a cross-sectional elevation view of an electronic switch panel integrated with an equipment panel according to a preferred embodiment of the present invention   ;   
Fig. 5 is a cross-sectional elevation view of an electronic switch panel integrated with an equipment panel according to another preferred embodiment of the present invention;

   and
Fig. 6 is a cross-sectional elevation view of electronic switch panel integrated with an equipment panel according to a further preferred embodiment of the present invention.



  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Fig.   1    illustrates a user interface 10 of a piece of exercise equipment, namely, a treadmill (not shown), embodying the present invention. User interface 10 includes a display 12 and a control panel 14. Control panel 14 is a substrate including a plurality of touch surfaces, such as display control touch surfaces 16 which control various functions of display 12, touch surfaces 18 for numerical input, touch surface 20 for resetting the treadmill's controls, touch surfaces 22 for adjusting the inclination of the treadmill's running surface, touch surface 24 for starting the treadmill, touch surfaces 26 for adjusting the treadmill's resistance, and touch surface 28 for indicating that data is to be entered to the treadmill's control system. 



   Control panel 14, as shown in Fig. 1, is generally planar. In other embodiments, control panel 14 can take any desired curved or angular shape. For example, control panel 14 can include convex, concave, and or angular elements.



   The front surface 30 of control panel 14 generally conforms to the contour of control panel 14. That is, in the Fig. 1 embodiment, control panel 14 is generally planar and front surface 30 thereof also is generally planar. Touch surfaces 18 are generally co-planar with front surface 30. However, portions of control panel 14, namely, touch surfaces 16,20,22, 26, and 28 are recessed from front surface 30. Another portion of control panel 14, namely, touch surface 24, is raised above front surface 30. These features, which are more easily seen with reference to Figs. 2 and 3, make it easier for a user to locate a particular touch surface through tactile means, in addition to or instead of visual means.

   Further, the switches or sensors (discussed further below) associated with raised touch surfaces, such as touch surface 24, are less likely to be adversely affected by contaminants (especially liquid contaminants) because it is difficult, if not impossible, for contaminants to pool or settle about a raised surface.



   The raised and recessed portions of front surface 30 can be achieved in various ways.



  For example, Fig. 2 shows an embodiment wherein control panel 14 has multiple thicknesses.



  In this embodiment, control panel 14 generally has a first thickness 34 between front surface 30 and rear surface 36 (which is generally planar). Control panel 14 also has a second, reduced thickness 32 in the regions corresponding to, for example, touch surfaces 20,22,26, and 28. Control panel 14 further has a third, greater thickness 33 in the region corresponding to touch surface 24. Fig. 3 shows an alternate embodiment wherein control panel 14 has a substantially uniform thickness 38, and wherein rear surface 36 generally conforms to front surface 30. Other embodiments can use any combination of the foregoing techniques or any other suitable technique. 



   Fig. 4 illustrates a sensor panel 50 attached to the control panel 14 embodiment illustrated in Fig. 2. Sensor panel 50 includes touch switches 40,42,44,46, and 48 formed onto substrate 52. Each touch switch 40,42,44,46, and 48 is connected to a control system, control interface or control logic (not shown). Substrate 52 is generally planar and generally conforms to rear surface 36 of control panel 14. In alternate embodiments, substrate 52 can be convex, concave, or take other shapes so as to be substantially conformable to rear surface 36. Substrate 52 is positioned relative to control panel 14 so that touch switches 40,42,44, 46, and 48 are aligned with corresponding touch surfaces 20,22,24,26, and 28. In the Fig. 4 embodiment, properly aligned substrate 52 is bonded to rear surface 36 of control panel 14 using an appropriate adhesive.

   In other embodiments, substrate 52 can be connected to rear surface 36 of control panel 14 by any other suitable means, such as mechanical fasteners.



  However, it is preferred that the attachment mechanism does not require perforation of control panel 14.



   Fig. 5 illustrates sensor panel 50 attached to the control panel 14 embodiment illustrated in Fig. 3. In this embodiment, substrate 52 generally conforms to the portions of rear surface 36 adjacent touch surfaces 20,22,26, and 28,   i.    e., the"high points"of rear surface 36. As in the Fig. 4 embodiment, substrate 52 is positioned relative to control panel 14 so that touch switches 40,42,44,46, and 48 are aligned with corresponding touch surfaces 20,22,24,26, and 28. Properly aligned substrate 52 preferably is bonded to rear surface 36 of control panel 14 using an appropriate adhesive. In other embodiments, substrate 52 can be connected to rear surface 36 of control panel 14 by any other suitable means, such as mechanical fasteners. However, it is preferred that the attachment mechanism does not require perforation of control panel 14.



   Fig. 6 shows a cross-sectional view of a curved control panel 100 embodying the present invention. Control panel 100 includes a number of touch surfaces 102. A switch panel 106 including a number of touch switches 104 on a substrate 108 is bonded to control panel 100 using a suitable adhesive 110. Control panel 100 generally has a first thickness 112, and it has a second, reduced thickness 114 in the regions adjacent touch surfaces 102.



  Alternatively, one or more regions of control panel 100 corresponding to one or more raised touch surfaces (not shown) could have increased thickness (not shown).



   In operation, each touch switch, for example, touch switch 40, sets up an electric field 60 in the proximity thereof. The introduction of a stimulus, for example, a user's finger (not shown), in the proximity of the electric field causes touch switch 40 to functionally change state and provide a corresponding input to an associated control system, control interface or control logic (not shown). This phenomenon is discussed more thoroughly in the foregoing
U. S. patents incorporated herein by reference.



   For example, if a user desired to start the treadmill whose control panel is shown in
Fig. 1, the user would touch or bring his/her finger close to touch surface 24. This action would disturb the electric field set up by corresponding touch switch 44. In response, touch switch 44 would provide an output signal to the treadmill's control logic (not shown), which in turn would cause the treadmill to start.



   The present invention allows integration of an electrical switching mechanism into an existing or custom-fabricated, functional   and/or    decorative panel, without the need to perforate the panel, as would be the case if conventional mechanical   and/or    membrane switches were to be used. For example, the decorative front panel of a vending machine or beverage dispenser (not shown) can be adapted for use as a control panel simply by defining touch surfaces at any desired location on the front of the decorative panel and providing associated touch switches at corresponding locations on the rear of the decorative panel, as described above. This allows for a novel and elegant solution to the problem of providing aesthetic and ergonomic control system   inclut    devices for all sorts of equipment. 



   The present invention thus has been described in terms of certain preferred embodiments. These embodiments are not to be construed as limiting the present invention, whose scope is defined by the claims appended hereto.

Claims (1)

  1. CLAIMS 1. A control system interface, comprising : a panel, at least a portion of which has a substantially continuous front surface and a substantially continuous rear surface; a first touch switch associated with said rear surface of said panel; a first touch surface associated with said front surface of said panel, said first touch surface corresponding to said first touch switch; wherein said first touch switch is responsive to the presence of a stimulus proximate said first touch surface.
    2. The control system interface of claim 1 wherein said panel is substantially rigid.
    3. The control system interface of claim 1 wherein said panel is of substantially nonuniform thickness.
    4. The control system interface of claim 1 wherein said panel is of substantially uniform thickness.
    5. The control system interface of claim 1 wherein at least a portion of said panel has a non planar surface.
    6. The control system interface of claim 1 wherein said first touch switch is mounted on a substrate.
    7. The control system interface of claim 6 wherein said substrate is rigid.
    8. The control system interface of claim 6 wherein said substrate is flexible.
    9. The control system interface of claim 6 wherein said substrate is integral with said panel.
    10. The control system interface of claim 6 wherein said substrate is bonded to said panel.
    11. The control system interface of claim 1 wherein said panel comprises at least a portion of an apparatus controlled by said first touch switch.
    12. A method for providing a control input to a control system of an apparatus, comprising the steps of : defining a touch surface on a front surface of a panel of said apparatus; and attaching a touch switch to a corresponding rear surface of said apparatus.
    13. The method of claim 12 further comprising the step of providing a control system interface between said touch switch and said control system.
AU2002309694A 2001-05-07 2002-05-06 Control system input apparatus and method Ceased AU2002309694B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28922501P 2001-05-07 2001-05-07
US60/289,225 2001-05-07
PCT/US2002/014695 WO2002091575A1 (en) 2001-05-07 2002-05-06 Control system input apparatus and method

Publications (2)

Publication Number Publication Date
AU2002309694A1 true AU2002309694A1 (en) 2003-05-01
AU2002309694B2 AU2002309694B2 (en) 2006-11-16

Family

ID=23110594

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002309694A Ceased AU2002309694B2 (en) 2001-05-07 2002-05-06 Control system input apparatus and method

Country Status (9)

Country Link
US (1) US6944018B2 (en)
EP (1) EP1393444A2 (en)
JP (1) JP4065412B2 (en)
CN (1) CN1278489C (en)
AU (1) AU2002309694B2 (en)
BR (1) BR0209493A (en)
CA (1) CA2446742C (en)
MX (1) MXPA03010226A (en)
WO (1) WO2002091575A1 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765095B1 (en) 2000-10-26 2010-07-27 Cypress Semiconductor Corporation Conditional branching in an in-circuit emulation system
US8160864B1 (en) 2000-10-26 2012-04-17 Cypress Semiconductor Corporation In-circuit emulator and pod synchronized boot
US8176296B2 (en) 2000-10-26 2012-05-08 Cypress Semiconductor Corporation Programmable microcontroller architecture
US8103496B1 (en) 2000-10-26 2012-01-24 Cypress Semicondutor Corporation Breakpoint control in an in-circuit emulation system
US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
US8078970B1 (en) 2001-11-09 2011-12-13 Cypress Semiconductor Corporation Graphical user interface with user-selectable list-box
US8042093B1 (en) 2001-11-15 2011-10-18 Cypress Semiconductor Corporation System providing automatic source code generation for personalization and parameterization of user modules
US7774190B1 (en) 2001-11-19 2010-08-10 Cypress Semiconductor Corporation Sleep and stall in an in-circuit emulation system
US8069405B1 (en) 2001-11-19 2011-11-29 Cypress Semiconductor Corporation User interface for efficiently browsing an electronic document using data-driven tabs
US6971004B1 (en) 2001-11-19 2005-11-29 Cypress Semiconductor Corp. System and method of dynamically reconfiguring a programmable integrated circuit
US7770113B1 (en) 2001-11-19 2010-08-03 Cypress Semiconductor Corporation System and method for dynamically generating a configuration datasheet
US7844437B1 (en) 2001-11-19 2010-11-30 Cypress Semiconductor Corporation System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US7361860B2 (en) * 2001-11-20 2008-04-22 Touchsensor Technologies, Llc Integrated touch sensor and light apparatus
US8103497B1 (en) 2002-03-28 2012-01-24 Cypress Semiconductor Corporation External interface for event architecture
US7308608B1 (en) 2002-05-01 2007-12-11 Cypress Semiconductor Corporation Reconfigurable testing system and method
US7761845B1 (en) 2002-09-09 2010-07-20 Cypress Semiconductor Corporation Method for parameterizing a user module
FR2861495B1 (en) * 2003-10-24 2006-06-23 Itt Mfg Enterprises Inc DRUM CONTROL DEVICE FOR AN ELECTRONIC APPARATUS
US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
JP2005346402A (en) * 2004-06-03 2005-12-15 Sony Corp Input device and electronic apparatus
US8286125B2 (en) 2004-08-13 2012-10-09 Cypress Semiconductor Corporation Model for a hardware device-independent method of defining embedded firmware for programmable systems
US8069436B2 (en) 2004-08-13 2011-11-29 Cypress Semiconductor Corporation Providing hardware independence to automate code generation of processing device firmware
US7332976B1 (en) 2005-02-04 2008-02-19 Cypress Semiconductor Corporation Poly-phase frequency synthesis oscillator
JP2006236774A (en) * 2005-02-24 2006-09-07 Toshiba Corp Electronic apparatus
US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
US8089461B2 (en) 2005-06-23 2012-01-03 Cypress Semiconductor Corporation Touch wake for electronic devices
US8085067B1 (en) 2005-12-21 2011-12-27 Cypress Semiconductor Corporation Differential-to-single ended signal converter circuit and method
US20070159454A1 (en) * 2006-01-09 2007-07-12 Wendeline Rodriguez Control panel for an electronic device
US8067948B2 (en) 2006-03-27 2011-11-29 Cypress Semiconductor Corporation Input/output multiplexer bus
US7920129B2 (en) 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
US20080242511A1 (en) * 2007-03-26 2008-10-02 Brunswick Corporation User interface methods and apparatus for controlling exercise apparatus
US7737724B2 (en) 2007-04-17 2010-06-15 Cypress Semiconductor Corporation Universal digital block interconnection and channel routing
US9564902B2 (en) 2007-04-17 2017-02-07 Cypress Semiconductor Corporation Dynamically configurable and re-configurable data path
US8026739B2 (en) 2007-04-17 2011-09-27 Cypress Semiconductor Corporation System level interconnect with programmable switching
US8092083B2 (en) 2007-04-17 2012-01-10 Cypress Semiconductor Corporation Temperature sensor with digital bandgap
US8516025B2 (en) 2007-04-17 2013-08-20 Cypress Semiconductor Corporation Clock driven dynamic datapath chaining
US8130025B2 (en) 2007-04-17 2012-03-06 Cypress Semiconductor Corporation Numerical band gap
US8040266B2 (en) 2007-04-17 2011-10-18 Cypress Semiconductor Corporation Programmable sigma-delta analog-to-digital converter
US9720805B1 (en) 2007-04-25 2017-08-01 Cypress Semiconductor Corporation System and method for controlling a target device
US8266575B1 (en) 2007-04-25 2012-09-11 Cypress Semiconductor Corporation Systems and methods for dynamically reconfiguring a programmable system on a chip
US8065653B1 (en) 2007-04-25 2011-11-22 Cypress Semiconductor Corporation Configuration of programmable IC design elements
US8063330B2 (en) * 2007-06-22 2011-11-22 Nokia Corporation Uniform threshold for capacitive sensing
TWI382158B (en) * 2007-08-07 2013-01-11 Alps Electric Co Ltd Electrostatic Capacitive Sensors
US8049569B1 (en) 2007-09-05 2011-11-01 Cypress Semiconductor Corporation Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
US20090174676A1 (en) 2008-01-04 2009-07-09 Apple Inc. Motion component dominance factors for motion locking of touch sensor data
US9448964B2 (en) 2009-05-04 2016-09-20 Cypress Semiconductor Corporation Autonomous control in a programmable system
KR20130051430A (en) * 2009-08-07 2013-05-20 메소드 일렉트로닉스 인코포레이티드 Assembly and method for illuminating through a circuit board
FR2949007B1 (en) 2009-08-07 2012-06-08 Nanotec Solution DEVICE AND METHOD FOR CONTROL INTERFACE SENSITIVE TO A MOVEMENT OF A BODY OR OBJECT AND CONTROL EQUIPMENT INCORPORATING THIS DEVICE.
US10223857B2 (en) * 2009-10-20 2019-03-05 Methode Electronics, Inc. Keyless entry with visual rolling code display
US9692411B2 (en) 2011-05-13 2017-06-27 Flow Control LLC Integrated level sensing printed circuit board
FR2976688B1 (en) 2011-06-16 2021-04-23 Nanotec Solution DEVICE AND METHOD FOR GENERATING AN ELECTRICAL POWER SUPPLY IN AN ELECTRONIC SYSTEM WITH A VARIABLE REFERENCE POTENTIAL.
FR2985049B1 (en) 2011-12-22 2014-01-31 Nanotec Solution CAPACITIVE MEASURING DEVICE WITH SWITCHED ELECTRODES FOR TOUCHLESS CONTACTLESS INTERFACES
US9336723B2 (en) 2013-02-13 2016-05-10 Apple Inc. In-cell touch for LED
KR101984443B1 (en) 2013-12-13 2019-05-30 애플 인크. Integrated touch and display architectures for self-capacitive touch sensors
WO2015175013A1 (en) 2014-05-16 2015-11-19 Wrostix Technologies Llc Structure for integrated touch screen
WO2015178920A1 (en) 2014-05-22 2015-11-26 Onamp Research Llc Panel bootstrapping architectures for in-cell self-capacitance
WO2016072983A1 (en) 2014-11-05 2016-05-12 Onamp Research Llc Common electrode driving and compensation for pixelated self-capacitance touch screen
CN107209602B (en) 2015-02-02 2020-05-26 苹果公司 Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10146359B2 (en) 2015-04-28 2018-12-04 Apple Inc. Common electrode auto-compensation method
US10386962B1 (en) 2015-08-03 2019-08-20 Apple Inc. Reducing touch node electrode coupling
CN109564485B (en) 2016-07-29 2022-04-01 苹果公司 Touch sensor panel with multi-power domain chip configuration
US10642418B2 (en) 2017-04-20 2020-05-05 Apple Inc. Finger tracking in wet environment
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464094A (en) * 1974-05-21 1977-02-09 Thorn Domestic Appliances Ltd Control panels for an electrical device
US4090092A (en) * 1976-07-16 1978-05-16 General Electric Company Shielding arrangement for a capacitive touch switch device
US4121204A (en) * 1976-12-14 1978-10-17 General Electric Company Bar graph type touch switch and display device
IL54597A (en) * 1978-04-30 1981-02-27 Wirguin J Heat storage in a thermal pond
US4495485A (en) * 1980-12-12 1985-01-22 General Electric Company Touch control arrangement for data entry
DE8033570U1 (en) * 1980-12-17 1982-05-27 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart CAPACITIVE TOUCH SWITCH FOR ELECTRICAL HOME APPLIANCES
US4561002A (en) * 1982-08-30 1985-12-24 General Electric Company Capacitive touch switch arrangement
US4498136A (en) * 1982-12-15 1985-02-05 Ibm Corporation Interrupt processor
GB2156993A (en) * 1984-03-31 1985-10-16 Glaverbel Proximity control switches
US5017030A (en) * 1986-07-07 1991-05-21 Crews Jay A Ergonomically designed keyboard
EP0478614B1 (en) 1989-06-21 1997-04-09 TAIT, David Adams Gilmour Finger operable control devices
US5239152A (en) * 1990-10-30 1993-08-24 Donnelly Corporation Touch sensor panel with hidden graphic mode
US5341036A (en) * 1991-12-11 1994-08-23 Square D Company Two hand operated machine control station using capacitive proximity switches
US5220521A (en) * 1992-01-02 1993-06-15 Cordata Incorporated Flexible keyboard for computers
CA2110327A1 (en) * 1992-11-30 1994-05-31 Brian E. Aufderheide Touch switch with coating for inhibiting increased contact resistance
FR2699349B1 (en) 1992-12-14 1995-02-24 Jaeger Regulation Keyboard for harsh environment and cooking appliance comprising such a keyboard.
FR2704332B1 (en) 1993-04-20 1995-06-02 Robert Carriere Digital keyboard with sensitive keys.
US5594222A (en) * 1994-10-25 1997-01-14 Integrated Controls Touch sensor and control circuit therefor
FR2739233B1 (en) 1995-09-25 1997-12-19 Jaeger Regulation WATERPROOF KEYBOARD AND COOKING APPLIANCE COMPRISING SUCH A KEYBOARD
CA2202789C (en) * 1996-04-15 2001-06-26 Miro Senk Padless touch sensor
DE69702958T2 (en) * 1997-02-07 2001-05-10 Jaeger Regulation S A Sealed keyboard and such a cooking device
ATE216541T1 (en) * 1997-02-17 2002-05-15 Ego Elektro Geraetebau Gmbh TOUCH SWITCH WITH SENSOR BUTTON
DE19710800A1 (en) * 1997-03-17 1998-10-01 Ideal Standard Electrically operated fitting
AU6063700A (en) * 1999-08-06 2001-03-05 Precor Incorporated Control panel

Similar Documents

Publication Publication Date Title
CA2446742C (en) Control system input apparatus and method
AU2002309694A1 (en) Control system input apparatus and method
WO2002091575A2 (en) Control system input apparatus and method
US8395587B2 (en) Haptic response apparatus for an electronic device
US6437238B1 (en) Laminated housing for a portable hand held device
JP4679226B2 (en) Cover sheet for pushbutton switch
US9563317B2 (en) Capacitive control panel
US4258096A (en) Composite top membrane for flat panel switch arrays
KR101479892B1 (en) A method of moulding
JP5371840B2 (en) Capacitance sensor and manufacturing method thereof
US20050042012A1 (en) Keypad assembly
US9247036B2 (en) Fascia assembly for a portable electronic device
US20130314347A1 (en) Touch panel and input device using same
US8503169B2 (en) Appliance control panel
JP5225178B2 (en) Capacitance sensor and manufacturing method thereof
US5934450A (en) Electronic device with holographic keypad
WO2020074869A1 (en) Button supply
US7427088B1 (en) Torsional multi-axis constraining latching system
US20200090885A1 (en) Interkey support for keyboards
US6572950B2 (en) Laminate key sheet
JP2004138416A (en) Pressure-sensitive fingerprint sensor
KR100874476B1 (en) Touch panel with mirror layer
CN210123543U (en) Key assembly and physical keyboard
JP2000251570A (en) Switch operating mechanism
EP0658910A1 (en) Improvements in membrane switch graphic assemblies