AU2002305573A1 - Method of determining a chemotherapeutic regimen based on glutathione-s-transferase pi expression - Google Patents

Method of determining a chemotherapeutic regimen based on glutathione-s-transferase pi expression

Info

Publication number
AU2002305573A1
AU2002305573A1 AU2002305573A AU2002305573A AU2002305573A1 AU 2002305573 A1 AU2002305573 A1 AU 2002305573A1 AU 2002305573 A AU2002305573 A AU 2002305573A AU 2002305573 A AU2002305573 A AU 2002305573A AU 2002305573 A1 AU2002305573 A1 AU 2002305573A1
Authority
AU
Australia
Prior art keywords
gst
mrna
sample
tumor
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002305573A
Other versions
AU2002305573B2 (en
Inventor
Kathleen D. Danenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Response Genetics Inc
Original Assignee
Response Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/879,986 external-priority patent/US6686155B2/en
Application filed by Response Genetics Inc filed Critical Response Genetics Inc
Publication of AU2002305573A1 publication Critical patent/AU2002305573A1/en
Application granted granted Critical
Publication of AU2002305573B2 publication Critical patent/AU2002305573B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

METHOD OF DETERMINING A CHEMOTHERAPEUTIC
REGIMEN BASED ON GLUTATHIONE-S-TRANSFERASE Pi
EXPRESSION
FIELD OF THE INVENTION
[001] The present invention relates to prognostic methods which are useful in
medicine, particularly cancer chemotherapy. More particularly, the invention
relates to assessment of tumor cell gene expression in a patient. The resistance of tumor cells to chemotherapeutic agents that target DNA, especially agents that
damage DNA in the manner of platmating agents is assayed by examining the mRNA expressed from genes involved in DNA repair in humans.
BACKGROUND OF THE INVENTION
[002] Cancer arises when a normal cell undergoes neoplastic transformation and
becomes a malignant cell. Transformed (malignant) cells escape normal physiologic controls specifying cell phenotype and restraining cell proliferation. Transformed
cells in an individual's body thus proliferate, forming a tumor. When a tumor is
found, the clinical objective is to destroy malignant cells selectively while mitigating
any harm caused to normal cells in the individual undergoing treatment.
[003] Chemotherapy is based on the use of drugs that are selectively toxic
(cytotoxic) to cancer cells. Several general classes of chemotherapeutic drugs have
been developed, including drugs that interfere with nucleic acid synthesis, protein synthesis, and other vital metabolic processes. These generally are referred to as antimetabolite drugs. Other classes of chemotherapeutic drugs inflict damage on
cellular DNA. Drugs of these classes generally are referred to as genotoxic.
Susceptibility of an individual neoplasm to a desired chemotherapeutic drug or
'combination of drugs often, however, can be accurately assessed only after a trial
period of treatment. The time invested in an unsuccessful trial period poses a
significant risk in the clinical management of aggressive malignancies.
[004] The repair of damage to cellular DNA is an important biological process
carried out by a cell's enzymatic DNA repair machinery. Unrepaired lesions in a
cell's genome can impede DNA replication, impair the replication fidelity of newly synthesized DNA and/or hinder the expression of genes needed for cell survival.
Thus, genotoxic drugs generally are considered more toxic to actively dividing cells
that engage in DNA synthesis than to quiescent, nondividing cells. Normal cells of many body tissues are quiescent and commit infrequently to re-enter the cell cycle
and divide. Greater time between rounds of cell division generally is afforded for the
repair of DNA damage in normal cells inflicted by chemotherapeutic genotoxins. As a result, some selectivity is achieved for the killing of cancer cells. Many treatment regimens reflect attempts to improve selectivity for cancer cells by coadministering chemotherapeutic drugs belonging to two or more of these general classes.
[005] Because effective chemotherapy in solid tumors usually requires a
combination of agents, the identification and quantification of determinants of
resistance or sensitivity to each single drug has become an important tool to design individual combination chemotherapy. [006] Two widely used genotoxic anticancer drugs that have been shown to
damage cellular DNA are cisplatin (DDP) and carboplatin. Cisplatin and/or
carboplatin currently are used in the treatment of selected, diverse neoplasms of
epithelial and mesenchymal origin, including carcinomas and sarcomas of the
respiratory, gastrointestinal and reproductive tracts, of the central nervous system, and of squamous origin in the head and neck. Cisplatin in combination with other
agents is currently preferred for the management of testicular carcinoma, and in many instances produces a lasting remission. (Loehrer et al., 1984,100 Ann. Int.
Med. 704). Cisplatin (DDP) disrupts DNA structure through formation of intrastrand adducts. Resistance to platinum agents such as DDP has been attributed
to enhanced tolerance to platinum adducts, decreased drug accumulation, or
enhanced DNA repair. Although resistance to DDP is multifactoral, alterations in
DNA repair mechanisms probably play a significant role.
[007] The glutathione-S-transferase (GST) family of proteins is involved in
detoxification of cytotoxic drugs. By catalyzing the conjugation of toxic and
carcinogenic electrophilic molecules with glutathione the GST enzymes protect
cellular macromolecules from damage (Boyer et al., Preparation, characterization and properties of glutathione S-transferases. In: Zakim D, Vessey D (eds.)
Biochemical Pharmacology and Toxicology. New York, NY: John Wiley and Sons,
1985.). A certain isomeric type of these proteins, the glutathione S-transferase Pi
(GST-pi, also to be interchangeably refered to as GSTP1 or GST-π herein) is widely
expressed in human epithelial tissues and has been demonstrated to be over- expressed in several tumors (Terrier et al., Am J Pathol 1990; 137: 845-853;
Moscow et al, Cancer Res 1989; 49: 1422-1428). Increased GST-pi levels have been found in drug resistant tumors, although the exact mechanism remains unclear
(Tsuchida et al., Crit Rev Biochem Mol Biol 1992; 27: 337-384). Previous studies
have suggested that low expression of GST protein (not mRNA) is associated with
response to platinum-based chemotherapy (Nishimura et al., Cancer. Clin Cancer
Res 1996; 2:1859-1865; Tominaga, et al., Am. J. Gastro. 94:1664-1668, 1999; Kase,
et al., Acta Cytologia. 42: 1397-1402, 1998). However, these studies did not measure quantitative gene expression, but used a semi-quantitative
immunohistochemical staining method to measure protein levels. However, quantitative GST-pi gene expression measurements are needed to achieve a very
effective prognostication.
[008] Most pathological samples are routinely fixed and paraffin-embedded (FPE)
to allow for histological analysis and subsequent archival storage. Thus, most
biopsy tissue samples are not useful for analysis of gene expression because such studies require a high integrity of RNA so that an accurate measure of gene
expression can be made. Currently, gene expression levels can be only qualitatively monitored in such fixed and embedded samples by using immunohistochemical
staining to monitor protein expression levels.
[009] Until now, quantitative gene expression studies including those of GST-pi
expression have been limited to reverse transcriptase polymerase chain reaction
(RT-PCR) amplification of RNA from fresh or frozen tissue.
[010] The use of frozen tissue by health care professionals poses substantial
inconveniences. Rapid biopsy delivery to avoid tissue and subsequent mRNA degradation is the primary concern when planning any RNA-based quantitative
genetic marker assay. The health care professional performing the biopsy, must hastily deliver the tissue sample to a facility equipped to perform an RNA extraction
protocol immediately upon tissue sample receipt. If no such facility is available, the
clinician must promptly freeze the sample in order to prevent mRNA degradation.
In order for the diagnostic facility to perform a useful RNA extraction protocol prior
to tissue and RNA degradation, the tissue sample must remain frozen until it reaches
the diagnostic facility, however far away that may be. Maintenance of frozen tissue
integrity during transport using specialized couriers equipped with liquid nitrogen and dry ice, comes only at a great expense.
[011] Routine biopsies generally comprise a heterogenous mix of stromal and
tumorous tissue. Unlike with fresh or frozen tissue, FPE biopsy tissue samples are
readily microdissected and separated into stromal and tumor tissue and therefore,
offer andvantage over the use of fresh or frozen tissue. However, isolation of RNA
from fixed tissue, and especially fixed and paraffin embedded tissue, results in
highly degraded RNA, which is generally not applicable to gene expression studies.
[012] A number of techniques exist for the purification of RNA from biological
samples, but none is reliable for isolation of RNA from FPE samples. For example, Chomczynski (U.S. Pat. No. 5,346,994) describes a method for purifying RNA from tissues based on a liquid phase separation using phenol and guanidine
isothiocyanate. A biological sample is homogenized in an aqueous solution of
phenol and guanidine isothiocyanate and the homogenate thereafter mixed with
chloroform. Following centrifugation, the homogenate separates into an organic
phase, an interphase and an aqueous phase. Proteins are sequestered in the organic
phase, DNA in the interphase, and RNA in the aqueous phase. RNA can be precipitated from the aqueous phase. Unfortunately, this method is not applicable to fixed and paraffin-embedded (FPE) tissue samples.
[013] Other known techniques for isolating RNA typically utilize either guanidine
salts or phenol extraction, as described for example in Sambrook, J. et al, (1989) at
pp. 7.3-7.24, and in Ausubel, F. M. et al, (1994) at pp. 4.0.3-4.4.7. Again, none of
the known methods provides reproducible quantitative results in the isolation of
RNA from paraffin-embedded tissue samples.
[014] Techniques for the isolation of RNA from paraffin-embedded tissues are thus
particularly needed for the study of gene expression in tumor tissues, since
expression levels of certain receptors or enzymes can be used to determine the likelihood of success of a particular treatment.
[015] There is a need for a method of quantifying GST-pi mRNA from paraffinized
tissue in order to provide an early prognosis for proposed genotoxic cancer therapies.
As a result, there has been a concerted yet unsuccessful effort in the art to obtain a quantification of GST-pi expression in fixed and paraffinized (FPE) tissue.
Accordingly, it is the object of the invention to provide a method for assessing GST- pi levels in tissues fixed and paraffin-embedded (FPE) and prognosticate the probable resistance of a patient's tumor to treatment with DNA damaging agents,
creating the type of lesions in DNA that are created by DNA platinating agents, by
examination of the amount of GST-pi mRNA in a patient's tumor cells and comparing it to
a predetermined threshold expression level. SUMMARY OF THE INVENTION [016] In one aspect of the invention there is provided a method for assessing levels
of expression of GST-pi mRNA obtained from fixed and paraffin-embedded (FPE)
fixed and paraffin-embedded (FPE) tumor cells.
[017] In another aspect of the invention there is provided a method of quantifying
the amount of GST-pi mRNA expression relative to an internal control from a fixed and paraffin-embedded (FPE) tissue sample. This method includes isolation of total
mRNA from said sample and determining the quantity of GST-pi mRNA relative to the quantity of an internal control gene's mRNA.
[018] In an embodiment of this aspect of the invention, there are provided
oligonucleotide primers having the sequence of GST-F (SEQ ID NO: 1) or GST-R
(SEQ ID NO:2) and sequences substantially identical thereto. The invention also
provides for oligonucleotide primers having a sequence that hybridizes to SEQ ID
NO: 1 or SEQ ID NO:2 or their complements under stringent conditions.
[019] In yet another aspect of the invention there is provided a method for
determining a chemotherapeutic regimen for a patient, comprising isolating RNA from a fixed and paraffin-embedded (FPE) tumor sample; determining a gene
expression level of GST-pi in the sample; comparing the GST-pi gene expression
levels in the sample with a predeterimined threshold level for the GST-pi gene; and
determining a chemotherapeutic regimen based on results of the comparison of the
GST-pi gene expression level with the predetermined threshold level.
[020] The invention further relates to a method of normalizing the uncorrected
gene expression (UGE) of GST-pi relative to an internal control gene in a tissue sample analyzed using TaqMan® technology to known GST-pi expression levels relative to an internal control from samples analyzed by pre-TaqMan® technology.
BRIEF DESCRIPTION OF THE DRAWING
[021] Figure 1 shows and association between survival and GST-pi corrected
relative mRNA expression in patients with esophagocardiac adenocarcinoma treated
with 5-FU and cisplatin. Patients with GST-pi values above the median/threshold value had a survival advantage compared to those with patients with values below the median/threshold. Censored values are denoted by a tick.
[022] Figure 2 is a graph showing survival analysis confined to patients with TNM
Stage II esophagocardiac adenocarcinoma
[023] Figure 3 is a graph showing survival analysis confined to patients with Stage
IN esophagocardiac adenocarcinoma
[024] Figure 4 is a chart illustrating how to calculate GST-pi expression relative to
an internal control gene. The chart contains data obtained with two test samples, (unknowns 1 and 2), and illustrates how to determine the uncorrected gene
expression data (UGE). The chart also illustrates how to normalize UGE generated
by the TaqMan® instrument with known relative GST-pi values determined by pre- TaqMan® technology. This is accomplished by multiplying UGE to a correction
factor KGST_pi. The internal control gene in the figure is β-actin and the calibrator
RΝA is Human Liver Total RΝA (Stratagene, Cat. #735017).
[025], Figure 5 shows the oligonucleotide primers used in the present invention. DETAILED DESCRIPTION OF THE INVENTION
[026] The present invention resides in part in the finding that the amount of GST-pi
mRNA is correlated with increased sensitivity to DNA platinating agents. Tumors
expressing high levels of GST-pi mRNA are considered likely to be sensitive to
platinum-based chemotherapy. Conversely, those tumors expressing low amounts of GST-pi mRNA are likely to be insensitive to platinum-based chemotherapy. A
patient's relative expression of tumor GST-pi mRNA is judged by comparing it to a predetermined threshold expression level. Such sensitivity or lack thereof to DNA
platinating agents is determined by a patient's survivability.
[027] The invention relates to a method of quantifying the amount of GST-pi
mRNA expression in fixed and paraffin-embedded (FPE) tissue relative to gene
expression of an internal control. The present inventors have developed
oligonucleotide primers that allow accurate assessment of GST-pi expression in
tissues that have been fixed and embedded. The invention oligonucleotide primers,
GST-F (SEQ ID NO: 1), GST-R (SEQ ID NO: 2), or oligonucleotide primers substantially identical thereto, preferably are used together with RNA extracted from fixed and paraffin embedded (FPE) tumor samples. This measurement of GST-pi
gene expression may then be used for prognosis of platinum-based chemotherapy.
[028] This embodiment of the invention involves first, a method for reliable
extraction of RNA from an FPE sample and second, determination of the content of
GST-pi mRNA in the sample by using a pair of oligonucleotide primers, preferably
oHgionucleotide primer pair GST-F (SEQ ID NO: 1) and GST-R (SEQ ID NO: 2), or oligonucleotides substantially identical thereto, for carrying out reverse transcriptase
polymerase chain reaction. RNA is extracted from the FPE cells by any of the methods for mRNA isolation from such samples as described in US Patent
Application No. 09/469,338, filed December 20, 1999, now U.S. Patent Number
6,248,535, and is hereby incorporated by reference in its entirety.
[029] The present method can be applied to any type of tissue from a patient. For
examination of sensitivity of tumor tissue, it is preferable to examine the tumor
tissue, h a preferred embodiment, a portion of normal tissue from the patient from which the tumor is obtained, is also examined.
[030] The methods of the present invention can be applied over a wide range of
tumor types. This allows for the preparation of individual "tumor expression profiles" whereby expression levels of GST-pi are determined in individual patient
samples and response to various chemotherapeutics is predicted. Preferably, the
methods of the invention are applied to solid tumors, most preferably
esophogocardiac rumors. For application of some embodiments of the invention to
particular tumor types, it is preferable to confirm the relationship of GST-pi gene expression levels to clinical resistance by compiling a data-set that enables
correlation of a particular GST-pi expression and clinical resistance to platinum- based chemotherapy.
[031] A "predetermined threshold level", as defined herein, is a level of GST-pi
expression above which it has been found that tumors are likely to be sensitive to a
platinum-based chemotherapeutic regimen. Expression levels below this threshold
level are likely to be found in tumors insensitive to platinum-based
chemotherapeutic regimen. The range of corrected relative expression of GST-pi,
expressed as a ratio of GST-pi : β-actin, among tumors responding to a platinum-
based chemotherapeutic regimen is more than about 1.0 x 10"3. Tumors that do not respond to a platinum-based chemotherapeutic regimen have relative expression of
GST-pi : β-actin ratio below about 1.0 x 10"3. Figure 1. However, the present
invention is not limited to the use of β-actin as an internal control gene.
[032] In performing the method of this embodiment of the present invention, tumor
cells are preferably isolated from the patient. Solid or lymphoid tumors or portions
thereof are surgically resected from the patient or obtained by routine biopsy. RNA
isolated from frozen or fresh samples is extracted from the cells by any of the methods typical in the art, for example, Sambrook, Fischer and Maniatis, Molecular
Cloning, a laboratory manual, (2nd ed.), Cold Spring Harbor Laboratory Press, New York, (1989). Preferably, care is taken to avoid degradation of the RNA during the
extraction process.
[033] However, tissue obtained from the patient after biopsy is often fixed, usually
by formalin (formaldehyde) or gluteraldehyde, for example, or by alcohol
immersion. Fixed biological samples are often dehydrated and embedded in paraffin or other solid supports known to those of skill in the art. Non-embedded, fixed tissue
may also be used in the present methods. Such solid supports are envisioned to be removable with organic solvents for example, allowing for subsequent rehydration of preserved tissue.
[034] RNA is extracted from the FPE cells by any of the methods as described in
US Patent Application No. 09/469,338, filed December 20, 1999, which is hereby
incorporated by reference in its entirety. Fixed and paraffin-embedded (FPE) tissue
samples as described herein refers to storable or archival tissue samples. RNA may be isolated from an archival pathological sample or biopsy sample which is first deparaffinized. An exemplary deparaffmization method involves washing the
paraffinized sample with an organic solvent, such as xylene, for example.
Deparaffinized samples can be rehydrated with an aqueous solution of a lower
alcohol. Suitable lower alcohols, for example include, methanol, ethanol, propanols,
and butanols. Deparaffinized samples may be rehydrated with successive washes with lower alcoholic solutions of decreasing concentration, for example.
Alternatively, the sample is simultaneously deparaffinized and rehydrated. RNA is then extracted from the sample.
[035] For RNA extraction, the fixed or fixed and deparaffinized samples can be
homogenized using mechanical, sonic or other means of homogenization.
Rehydrated samples may be homogenized in a solution comprising a chaotropic
agent, such as guanidinium thiocyanate (also sold as guanidinium isothiocyanate).
Homogenized samples are heated to a temperature in the range of about 50 to about 100 °C in a chaotropic solution, which contains an effective amount of a chaotropic
agent, such as a guanidinium compound. A preferred chaotropic agent is guanidinium thiocyanate.
[036] An "effective concentration of chaotropic agent" is chosen such that at an
RNA is purified from a paraffin-embedded sample in an amount of greater than
about 10-fold that isolated in the absence of a chaotropic agent. Chaotropic agents
include: guanidinium compounds, urea, foπnamide, potassium iodiode, potassium
thiocyantate and similar compounds. The preferred chaotropic agent for the methods
of the invention is a guanidinium compound, such as guanidinium isothiocyanate
(also sold as guanidinium thiocyanate) and guanidinium hydrochloride. Many anionic counterions are useful, and one of skill in the art can prepare many guanidinium salts with such appropriate anions. The effective concentration of
guanidinium solution used in the invention generally has a concentration in the range
of about 1 to about 5M with a preferred value of about 4M. If RNA is already in
solution, the guanidinium solution may be of higher concentration such that the final
concentration achieved in the sample is in the range of about 1 to about 5M. The
guanidinium solution also is preferably buffered to a pH of about 3 to about 6, more
preferably about 4, with a suitable biochemical buffer such as Tris-Cl. The chaotropic solution may also contain reducing agents, such as dithiothreitol (DTT) and β-mercaptoethanol (BME). The chaotropic solution may also contain RNAse
inhibitors.
[037] Homogenized samples may be heated to a temperature in the range of about
50 to about 100 °C in a chaotropic solution, which contains an effective amount of a
chaotropic agent, such as a guanidinium compound. A preferred chaotropic agent is guanidinium thiocyanate.
[038] RNA is then recovered from the solution by, for example, phenol chloroform
extraction, ion exchange chromatography or size-exclusion chromatography. RNA
may then be further purified using the techniques of extraction, electrophoresis, chromatography, precipitation or other suitable techniques.
[039] The quantification of GST-pi mRNA from purified total mRNA from fresh,
frozen or fixed is preferably carried out using reverse-transcriptase polymerase chain
reaction (RT-PCR) methods common in the art, for example. Other methods of
quantifying of GST-pi mRNA include for example, the use of molecular beacons and other labeled probes useful in multiplex PCR. Additionally, the present invention envisages the quantification of GST-pi mRNA via use of PCR-free systems employing, for example fluorescent labeled probes similar to those of the Invader®
Assay (Third Wave Technologies, Inc.). Most preferably, quantification of GST-pi
cDNA and an internal control or house keeping gene (e.g. β-actin) is done using a
fluorescence based real-time detection method (ABI PRISM 7700 or 7900 Sequence
Detection System [TaqMan®], Applied Biosystems, Foster City, CA.) or similar
system as described by Heid et al., (Genome Res 1996;6:986-994) and Gibson et α .(Genome Res 1996;6:995-1001). The output of the ABI 7700 (TaqMan® Instrument) is expressed in Ct's or "cycle thresholds". With the TaqMan® system, a
highly expressed gene having a higher number of target molecules in a sample
generates a signal with fewer PCR cycles (lower Ct) than a gene of lower relative
expression with fewer target molecules (higher Ct).
[040] As used herein, a "house keeping" gene or "internal control" is meant to
include any constitutively or globally expressed gene whose presence enables an
assessment of GST-pi mRNA levels. Such an assessment comprises a determination
of the overall constitutive level of gene transcription and a control for variations in RNA recovery. "House-keeping" genes or "internal controls" can include, but are
not limited to the cyclophilin gene, β-actin gene, the transferrin receptor gene,
GAPDH gene, and the like. Most preferably, the internal control gene is β-actin
gene as described by Eads et al, Cancer Research 1999; 59:2302-2306.
[041] A control for variations in RNA recovery requires the use of "calibrator
RNA." The "calibrator RNA" is intended to be any available source of accurately pre-quantified control RNA. Preferably, Adult Colon, Disease Human Total RNA,
(Cat. No. #735263) from Stratagene, is used. [042] "Uncorrected Gene Expression (UGE)" as used herein refers to the numeric
output of GST-pi expression relative to an internal control gene generated by the
TaqMan® instrument. The equation used to determine UGE is shown in Example 3,
and illustrated with sample calculations in Figure 4.
[043] A further aspect of this invention provides a method to normalize
uncorrected gene expression (UGE) values acquired from the TaqMan® instrument with "known relative gene expression" values derived from non-TaqMan®
technology. Preferably, the known non-TaqMan® derived relative GST-pi : β-actin
expression values are normalized with TaqMan® derived GST-pi UGE values from a tissue sample.
[044] "Corrected Relative GST-pi Expression" as used herein refers to normalized
GST-pi expression whereby UGE is multiplied with a GST-pi specific correction
factor (KGST_pl), resulting in a value that can be compared to a known range of GST-pi expression levels relative to an internal control gene. Example 3 and Figure 4
illustrate these calculations in detail. These numerical values allow the determination of whether or not the "Corrected Relative GST-pi Expression" of a
particular sample falls above or below the "predetermined threshold" level. The
predetermined threshold level of Corrected Relative GST-pi Expression to β-actin
level is about 1.0 x 10"3. KGST i specific for GST-pi, the internal control β-actin and
calibrator Adult Colon, Disease Human Total RNA, (Cat. No. #735263) from
Stratagene, is 7.28 x 10-3.
[045] "Known relative gene expression" values are derived from previously
analyzed tissue samples and are based on the ratio of the RT-PCR signal of a target gene to a constitutively expressed internal control gene (e.g. β-Actin, GAPDH, etc.).
Preferably such tissue samples are formalin fixed and paraffin-embedded (FPE)
samples and RNA is extracted from them according to the protocol described in
Example 1 and in US Patent Application No. 09/469,338, filed December 20, 1999,
now U.S. Patent No. 6,248,535, which is hereby incorporated by reference in its
entirety. To quantify gene expression relative to an internal control standard
quantitative RT-PCR technology known in the art is used. Pre-TaqMan® technology PCR reactions are run for a fixed number of cycles (i.e., 30) and
endpoint values are reported for each sample. These values are then reported as a
ratio of GST-pi expression to β-actin expression. See U.S. Patent No. 5,705,336 to
Reed et al.
[046] KGsrmaY De determined for an internal control gene other than β-actin
and/or a calibrator RNA different than Adult Colon, Disease Human Total RNA,
(Cat. No. #735263) from Stratagene. To do so, one must calibrate both the internal
control gene and the calibrator RNA to tissue samples for which GST-pi expression levels relative to that particular internal control gene have already been determined (i.e., "known relative gene expression"). Preferably such tissue samples are formalin
fixed and paraffin-embedded (FPE) samples and RNA is extracted from them
according to the protocol described in Example 1 and in US Patent Application No.
09/469,338, filed December 20, 1999, which is hereby incorporated by reference in
its entirety. Such a determination can be made using standard pre-TaqMan®,
quantitative RT-PCR techniques well known in the art. Upon such a determination,
such samples have "known relative gene expression" levels of GST-pi useful in the determining a new KGST_pi specific for the new internal control and/or calibrator RNA
as described in Example 3.
[047] The methods of the invention are applicable to a wide range of tissue and
tumor types and so can be used for assessment of clinical treatment of a patient and
as a diagnostic or prognostic tool for a range of cancers including breast, head and
neck, lung, esophageal, colorectal, and others. In a preferred embodiment, the
present methods are applied to prognosis of esophagocardiac adenocarcinoma.
[048] Pre-chemotherapy treatment tumor biopsies are usually available only as
fixed paraffin embedded (FPE) tissues, generally containing only a very small amount of heterogeneous tissue. Such FPE samples are readily amenable to
microdissection, so that GST-pi gene expression may be determined in tumor tissue
uncontaminated with stromal tissue. Additionally, comparisons can be made
between stromal and tumor tissue within a biopsy tissue sample, since such samples
often contain both types of tissues.
[049] Generally, any oligonucleotide pair that flanks a region of GST-pi gene may
be used to carry out the methods of the invention. Primers hybridizing under stringent conditions to a region of the GST-pi gene for use in the present invention will amplify a product between 20-1000 base pairs, preferably 50-100 base pairs,
most preferably less than 100 base pairs.
[050] The invention provides specific oligonucleotide primers pairs and
oligonucleotide primers substantially identical thereto, that allow particularly accurate assessment of GST-pi expression in FPE tissues. Preferable are
oligonucleotide primers, GST-F (SEQ ID NO: 1) and GST-R (SEQ ID NO: 2), (also referred to herein as the oligonucleotide primer pair GST) and oligonucleotide primers substantially identical thereto. The oliogonucleotide primers GST-F (SEQ
ID NO: 1) and GST-R, (SEQ ID NO: 2) have been shown to be particularly effective
for measuring GST-pi mRNA levels using RNA extracted from the FPE cells by any
of the methods for mRNA isolation, for example as described Example 1 and in US
Patent Application No. 09/469,338, filed December 20, 1999, now U.S. Patent No.
6,248,535, which is hereby incorporated by reference in its entirety.
[051] "Substantially identical" in the nucleic acid context as used herein, means
hybridization to a target under stringent conditions, and also that the nucleic acid
segments, or their complementary strands, when compared, are the same when properly aligned, with the appropriate nucleotide insertions and deletions, in at least
about 60% of the nucleotides, typically, at least about 70%, more typically, at least
about 80%, usually, at least about 90%, and more usually, at least, about 95-98% of
the nucleotides. Selective hybridization exists when the hybridization is more
selective than total lack of specificity. See, Kanehisa, Nucleic Acids Res., 12:203- 213 (1984).
[052] This invention includes substantially identical oligonucleotides that
hybridize under stringent conditions (as defined herein) to all or a portion of the oligonucleotide primer sequence of GST-F (SEQ ID NO: 1), its complement or
GST-R (SEQ ID NO: 2), or its complement.
[053] Under stringent hybridization conditions, only highly complementary, i.e.,
substantially similar nucleic acid sequences hybridize. Preferably, such conditions prevent hybridization of nucleic acids having 4 or more mismatches out of 20
contiguous nucleotides, more preferably 2 or more mismatches out of 20 contiguous nucleotides, most preferably one or more mismatch out of 20 contiguous
nucleotides.
[054] The hybridizing portion of the nucleic acids is typically at least 10 (e.g., 15)
nucleotides in length. The hybridizing portion of the hybridizing nucleic acid is at
least about 80%, preferably at least about 95%, or most preferably about at least 98%, identical to the sequence of a portion or all of oligonucleotide primer GST-F
(SEQ ID NO: 1), its complement or GST-R (SEQ ID NO: 2), or its complement.
[055] Hybridization of the oligonucleotide primer to a nucleic acid sample under
stringent conditions is defined below. Nucleic acid duplex or hybrid stability is
expressed as a melting temperature (Tm), which is the temperature at which the probe dissociates from the target DNA. This melting temperature is used to define the
required stringency conditions. If sequences are to be identified that are
substantially identical to the probe, rather than identical, then it is useful to first
establish the lowest temperature at which only homologous hybridization occurs
with a particular concentration of salt (e.g. SSC or SSPE). Then assuming that 1% mismatching results in a 1°C decrease in Tm, the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if sequences having >95% identity with the probe are sought, the final wash temperature is decrease by
5° C). In practice, the change in Tm can be between 0.5°C and 1.5°C per 1% mismatch.
[056] Stringent conditions involve hybridizing at 68° C in 5x SSC/5x Denhart's
solution 1.0% SDS, and washing in 0.2x SSC/0.1% SDS at room temperature.
Moderately stringent conditions include washing in 3x SSC at 42° C. The parameters of salt concentration and temperature be varied to achieve optimal level of identity between the primer and the target nucleic acid. Additional guidance
regarding such conditions is readily available in the art, for example, Sambrook,
Fischer and Maniatis, Molecular Cloning, a laboratory manual, (2nd ed.), Cold
Spring Harbor Laboratory Press, New York, (1989) and F. M. Ausubel et al eds.,
Current Protocols in Molecular Biology, John Wiley and Sons (1994).
[057] Oligonucleotide primers disclosed herein are capable of allowing accurate
assessment of GST-pi gene expression in a fixed or fixed and paraffin embedded tissue, as well as frozen or fresh tissue. This is despite the fact that RNA derived
from FPE samples is more fragmented relative to that of fresh or frozen tissue. Thus, the methods of the invention are suitable for use in assaying GST-pi
expression levels in FPE tissue where previously there existed no way to assay GST-
pi gene expression using fixed tissues.
[058] From the measurement of the amount of GST-pi mRNA that is expressed in
the tumor, the skilled practitioner can make a prognosis concerning clinical resistance of a tumor to a particular genotoxin, preferably a platinum-based
chemotherapy, or to a chemotherapy inducing a similar type of DNA damage. Platinum-based chemotherapies cause a "bulky adduct" of the DNA, wherein the primary effect is to distort the three-dimensional conformation of the double helix.
Such compounds are meant to be administered alone, or together with other
chemotherapies such as gemcitabine (Gem) or 5-Fluorouracil (5-FU).
[059] Many compounds are commonly given with platinum-based chemotherapy
agents. For example, BEP (bleomycin, etoposide, cisplatin) is used for testicular
cancer, MNAC (methotrexate, vinblastine, doxorubicin, cisplatin) is used for bladder cancer, MNP (mitomycin C, vinblastine, cisplatin) is used for non-small cell lung cancer treatment. Many studies have documented interactions between platinum-
containing agents. Therapeutic drug synergism, for example, has been reported for
many drugs potentially included in a platinum based chemotherapy. A very short list
of recent references for this include the following: Okamoto et al., Urology 2001;
57:188-192.; Tanaka et al., Anticancer Research 2001; 21:313-315; Slamon et al.,
Seminars in Oncology 2001; 28:13-19; Lidor et al, Journal of Clinical Investigation 1993; 92:2440-2447; Leopold et al., NCI Monographs 1987;99-104; Ohta et al.,
Cancer Letters 2001; 162:39-48; van Moorsel et al., British Journal of Cancer 1999; 80:981-990.
[060] Platinum-based genotoxic chemotherapies comprises heavy metal
coordination compounds which form covalent DNA adducts. Generally, these heavy
metal compounds bind covalently to DNA to form, in pertinent part,
cis-l,2-intrastrand dinucleotide adducts. Generally, this class is represented by
cis-diamminedichloroplatinum (II) (cisplatin), and includes cis-diammine-
(l,l-cyclobutanedicarboxylato) platinum(π) (carboplatin), cis-diammino - (1,2-cyclohexyl) dichloroplatinum(π), and cis-(l,2-ethylenediammine)
dichloroplatinum(JJ). Platinum first agents include analogs or derivatives of any of the foregoing representative compounds.
[061] Tumors currently manageable by platinum coordination compounds include
testicular, endometrial, cervical, gastric, squamous cell, adrenocortical and small cell
lung carcinomas along with medulloblastomas and neuroblastomas.
Trans-Diamminedichloroplatinum (H) (trans-DDP) is clinically useless owing, it is thought, to the rapid repair of its DNA adducts. The use of trans-DDP as a
chemotherapeutic agent herein likely would provide a compound with low toxicity in nonselected cells, and high relative toxicity in selected cells, hi a preferred
embodiment, the platinum compound is cisplatin.
[062] The invention being thus described, practice of the invention is illustrated by
the experimental examples provided below. The skilled practitioner will realize that
the materials and methods used in the illustrative examples can be modified in
various ways. Such modifications are considered to fall within the scope of the
present invention.
EXAMPLES EXAMPLE 1
RNA Isolation from FPE Tissue
[063] RNA is extracted from paraffin-embedded tissue by the following general
procedure.
A. Deparaffinization and hydration of sections:
[064] (1) A portion of an approximately 10 μM section is placed in a 1.5 mL
plastic centrifuge tube.
[065] (2) 600 μL, of xylene are added and the mixture is shaken vigorously for
about 10 minutes at room temperature (roughly 20 to 25 °C).
[066] (3) The sample is centrifuged for about 7 minutes at room temperature at the
maximum speed of the bench top centrifuge (about 10-20,000 x g).
[067] (4) Steps 2 and 3 are repeated until the majority of paraffin has been
dissolved. Two or more times are normally required depending on the amount of
paraffin included in the original sample portion. [068] (5) The xylene solution is removed by vigorously shaking with a lower
alcohol, preferably with 100% ethanol (about 600 μL) for about 3 minutes.
[069] (6) The tube is centrifuged for about 7 minutes as in step (3). The
supernatant is decanted and discarded. The pellet becomes white.
[070] (7) Steps 5 and 6 are repeated with successively more dilute ethanol
solutions: first with about 95% ethanol, then with about 80% and finally with about 70% ethanol.
[071] (8) The sample is centrifuged for 7 minutes at room temperature as in step
(3). The supernatant is discarded and the pellet is allowed to dry at room
temperature for about 5 minutes.
B. RNA Isolation with Phenol-Chloroform
[072] (1) 400 μL guanidine isothiocyanate solution including 0.5% sarcosine and 8
μL dithiothreitol is added.
[073] (2) The sample is then homogenized with a tissue homogenizer (Ultra-
Turrax, IKA- Works, fric, Wilmington, NC) for about 2 to 3 minutes while gradually increasing the speed from low speed (speed 1) to high speed (speed 5).
[074] (3) The sample is then heated at about 95 °C for about 5-20 minutes. It is
preferable to pierce the cap of the tube containing the sample with a fine gauge
needle before heating to 95 °C. Alternatively, the cap may be affixed with a plastic
clamp or with laboratory film.
[075] (4) The sample is then extracted with 50 μL 2M sodium acetate at pH 4.0
and 600 μL of phenol/chloroform/isoamyl alcohol (10:1.93:0.036), prepared fresh by
mixing 18 mL phenol with 3.6 mL of a 1 :49 isoamyl alcoho chloroform solution. The solution is shaken vigorously for about 10 seconds then cooled on ice for about
15 minutes.
[076] (5) The solution is centrifuged for about 7 minutes at maximum speed. The
upper (aqueous) phase is transferred to a new tube.
[077] (6) The RNA is precipitated with about 10 μL glycogen and with 400
μL isopropanol for 30 minutes at -20 °C.
[078] (7) The RNA is pelleted by centrifugation for about 7 minutes in a benchtop
centrifuge at maximum speed; the supernatant is decanted and discarded; and the
pellet washed with approximately 500 μL of about 70 to 75% ethanol.
[079] (8) The sample is centrifuged again for 7 minutes at maximum speed. The
supernatant is decanted and the pellet air dried. The pellet is then dissolved in an
appropriate buffer for further experiments (e.g., 50 pi. 5mM Tris chloride, pH 8.0).
EXAMPLE 2
mRNA Reverse Transcription and PCR
[080] Reverse Transcription: RNA was isolated from microdissected or non-
microdissected formalin fixed paraffin embedded (FPE) tissue as illustrated in
Example 1 and as previously described in U.S. Application No. 09/469,338 filed
December 20, 1999, now U.S. Patent No. 6,248,535, which is hereby incorporated
by reference in its entirety. After precipitation with ethanol and centrifugation, the
RNA pellet was dissolved in 50 ul of 5 mM Tris/Cl at pH 8.0. M-MLN Reverse
Transcriptase will extend an oligonucleotide primer hybridized to a single-stranded
RΝA or DΝA template in the presence of deoxynucleotides, producing a complementary strand. The resulting RΝA was reverse transcribed with random hexamers and M-MLN Reverse Transcriptase from Life Technologies. The reverse
transcription was accomplished by mixing 25 μl of the RΝA solution with 25.5 μl
of "reverse transcription mix" (see below). The reaction was placed in a
thermocycler for 8 min at 26° C (for binding the random hexamers to RΝA), 45 min
at 42° C (for the M-MLN reverse transcription enzymatic reaction) and 5 min at 95°
C (for heat inactivation of DΝAse).
[081] "Reverse transcription mix" consists of 10 ul 5X buffer (250 mM Tris-HCl,
pH 8.3, 375 mM KC1, 15 mM MgC12), 0.5 ul random hexamers (50 O.D. dissolved
in 550 ul of 10 mM Tris-HCl pH 7.5) 5 ul 10 mM dΝTPs (dATP, dGTP, dCTP and
dTTP), 5 ul 0.1 M DTT, 1.25 ul BSA (3mg/ml in 10 mM Tris-HCL, pH 7.5), 1.25 ul RΝA Guard 24,800U/ml (RΝAse inhibitor) (Porcine #27-0816, Amersham
Pharmacia) and 2.5 ul MMLV 200U/ul (Life Tech Cat #28025-02).
[082] Final concentrations of reaction components are: 50 mM Tris-HCl, pH 8.3,
75 mM KC1, 3 mM MgC12, 1.0 mM dΝTP, 1.0 mM DTT, 0.00375. mg/ml BSA,
0.62 U/ul RΝA Guard and 10 U/ ul MMLN.
[083] PCR Quantification of mRΝA expression. Quantification of GST-pi cDΝA
and an internal control or house keeping gene (e.g., β-actin) cDΝA was done using a
fluorescence based real-time detection method (ABI PRISM 7700 or 7900 Sequence
Detection System [TaqMan®], Applied Biosystems, Foster City, CA.) as described
by Heid et al, (Genome Res 1996;6:986-994); Gibson et al, (Genome Res
1996;6:995-1001). In brief, this method uses a dual labelled fluorogenic TaqMan®
oligonucleotide probe, (GST-219T (SEQ ID NO: 3), Tm = 69° C), that anneals specifically within the forward and reverse primers. Laser stimulation within the capped wells containing the reaction mixture causes emission of a 3 'quencher dye
(TAMRA) until the probe is cleaved by the 5' to 3'nuclease activity of the DNA
polymerase during PCR extension, causing release of a 5' reporter dye (6FAM).
Production of an an plicon thus causes emission of a fluorescent signal that is
detected by the TaqMan® 's CCD (charge-coupled device) detection camera, and the
amount of signal produced at a threshold cycle within the purely exponential phase
of the PCR reaction reflects the starting copy number of the sequence of interest. Comparison of the starting copy number of the sequence of interest with the starting
copy number of theintemal control gene provides a relative gene expression level. TaqMan® analyses yield values that are expressed as ratios between two absolute
measurements (gene of interest/internal control gene).
[084] The PCR reaction mixture consisted 0.5μl of the reverse transcription
reaction containing the cDNA prepared as described above 600 nM of each oligomicleoride primer (GST-F (SEQ ID NO:l), Tm = 59° C and GST-R (SEQ JD
NO: 2), Tm = 59° C ), 200 nM TaqMan® probe (SEQ ID NO:3), 5 U AmpliTaq Gold
Polymerase, 200 μM each dATP, dCTP, dGTP, 400 μM dTTP, 5.5 mM MgCl2, and
1 x TaqMan® Buffer A containing a reference dye, to a final volume of less than or
equal to 25 μl (all reagents Applied Biosystems, Foster City, CA). Cycling
conditions were, 95 °C for 10 min, followed by 45 cycles at 95 °C for 15s and 60 °C
for 1 min. Ohgonucleotides used to quantify internal control gene β-Actin were β-
Actin TaqMan® probe (SEQ ID NO: 4), β-Actin-592F (SEQ ID NO: 5) and β-
Actin-651R (SEQ ID NO: 6).
[085] The oligonucleotide primers GST-F (SEQ ID NO: 1) and GST-R (SEQ ID NO: 2), used in the above described reaction will amplify a 72 bp product.
EXAMPLE 3
Determining the Uncorrected Gene Expression (UGE) for GST-pi
[086] Two pairs of parallel reactions are carried out, i.e., "test" reactions and the
"calibration" reactions. The GST-pi amplification reaction and the β-actin internal
control amplification reaction are the test reactions. Separate GST-pi and β-actin
amplification reactions are performed on the calibrator RNA template and are
referred to as the calibration reactions. The TaqMan® instrument will yield four
different cycle threshold (Ct) values: Ct^j^,- and Ctp.actin from the test reactions and
CtGST i and Ctp.actin from the calibration reactions. The differences in Ct values for
the two reactions are determined according to the following equation:
ΔCttert = Ct5ff?|. - Ctβ.actin (From the "test" reaction)
ΔCtcalibrator= CtG5r_p(. - Ctβ.actin (From the "calibration" reaction)
[087] Next the step involves raising the number 2 to the negative ΔCt, according to the following equations.
2-ΔCt test (From the "test" reaction)
2"ΔCt Caiibrator (From the "calibration" reaction)
[088] In order to then obtain an uncorrected gene expression for GST-pi from the
TaqMan® instrument the following calculation is carried out:
Uncorrected gene expression (UGE) for GST-pi = 2"ΔCt test / 2" •ΔCt calibrator
Normalizing UGE with known relative GST-pi expression levels
[089] The normalization calculation entails a multiplication of the UGE with a correction factor (KGS7^,) specific to GST-pi and a particular calibrator RNA. A
corcection factor KGST_pi can also be determined for any internal control gene and any
accurately pre-quantified calibrator RNA. Preferably, the internal control gene β-
actin and the accurately pre-quantified calibrator Adult Colon, Disease Human Total
RNA, (Cat. No. #735263) from Stratagene, are used. Given these reagents correction
factor KGST i equals 7.28 x 10"3.
[090] Normalization is accomplished using a modification of the ΔCt method
described by Applied Biosystems, the TaqMan® manufacturer, in User Bulletin #2 and described above. To carry out this procedure, the UGE of 6 different test
tissues was analyzed for GST-pi expression using the TaqMan® methodology
described above. The internal control gene β-actin and the calibrator RNA,Adult
Colon, Disease Human Total RNA, (Cat. No. #735263) from Stratagene was used.
[091] The known relative GST-pi expression level of each sample 14-1, 14-5, 14-
8, 13-24, 13-25 was divided by its corresponding TaqMan® derived UGE to yield an
unaveraged correction factor K.
Kunaveraged = KnOWn Values / UGE
[092] Next, all of the K values are averaged to determine a single KGST.pi correction
factor specific for GST-pi, Adult Colon, Disease Human Total RNA, (Cat. No.
#735263) from Stratagene from calibrator RNA and β-actin.
[093] Therefore, to determine the Corrected Relative GST-pi Expression in an
unknown tissue sample on a scale that is consistent with pre-TaqMan® GST-pi
expression studies, one merely multiplies the uncorrected gene expression data (UGE) derived from the TaqMan® apparatus with the K^, specific correction
factor, given the use of the same internal control gene and calibrator RNA.
Corrected Relative GST-pi Expression = UGE x KGST_pi
[094] A KGST.pi may be determined using any accurately pre-quantified calibrator
RNA or internal control gene. Future sources of accurately pre-quantified RNA can
be calibrated to samples with known relative GST-pi expression levels as described
in the method above or may now be calibrated against a previously calibrated calibrator RNA such as Adult Colon, Disease Human Total RNA, (Cat. No.
#735263) from Stratagene described above.
[095] For example, if a subsequent KGST_pi is determined for a different internal
control gene and/or a different calibrator RNA, one must calibrate both the internal
control gene and the calibrator RNA to tissue samples for which GST-pi expression
levels relative to that particular internal control gene have already been determined.
Such a determination can be made using standard pre-TaqMan®, quantitative RT- PCR techniques well known in the art. The known expression levels for these
samples will be divided by their corresponding UGE levels to determine a K for that sample. K values are then averaged depending on the number of known samples to
determine a new K^.^ specific to the different internal control gene and/or calibrator RNA.
EXAMPLE 4
GST-pi Expression Correlates with survivability
[096] Total mRNA was isolated from microdissected FPE pretreatment tumor
samples, and Corrected Relative GST-pi Expression was measured using quantitative RT-PCR as described in Examples 2 and 3. A method for mRNA
isolation from such samples is described in Example 1 and in US Patent Application
No. 09/469,338, filed December 20, 1999, now U.S. Patent No. 6,248,535, and is
hereby incorporated by reference in its entirety.
[097] The values of the gene expressions were correlated with clinical outcome
using appropriate statistical methods. Survival was estimated according to Kaplan
and Meier (Kaplan et al., J Am Stat Assoc 1958; 53: 187-220). Univariate analysis was performed with the log-rank test (Mantel, Chemother Rep 1966; 50: 163-170).
The level of significance was set to P<0.05. All P values reported were based on
two-sided tests.
[098] A total of 31 esophageal or gastroesophageal junction (esophagocardiac)
adenocarcinoma tumor specimens from 31 patients were analysed for GST-pi mRNA
expression analysis. Thirty (97%) of the patients were male, the median age was 64
years (mean 60.9 years, range 36-78 years). The ethnic background of this group included 29 Caucasians, 1 Asian, and 1 African- American. Using TNM clinical
staging criteria, 2 (6.5%) of the patients had Stage I disease, 22 (71%) had Stage π disease, 1 (3.2%) had Stage m disease, and 6 (19.4%) patients had Stage IN disease.
Overall survival was assessable for all patients. The median overall survival was
17.17 months (mean 24.8 months, range 3.8-156.7 months). Twelve (38.7%) of the patients had died and 19 (61.3%) were alive.
[099] The treatment consisted of all patients receiving two cycles of 5-FU given as
800 mg/m2 per day for 5 days or 1000 mg/m2 per day for 4 days plus 75 mg/m2 cisplatin with concurrent 45 Gy radiation, followed by operative resection. For entry
into the study, each patient had to have completed the chemotherapy regimen and the prescribed radiotherapy, undergone a gross complete resection, and lived at least 30
days after surgery.
[100] The influence of tumor stage was accounted for by pooling the data over the
TNM stage strata. Survival curves and log-rank statistics were generated for Stage JJ
and Stage IN disease patients only because of the very small numbers of patients in
the other stages. The median corrected relative GST-pi mRΝA expression level was
1.0 x 10"3 (mean 0.51 x 10"3, range 0.0-16.1 x 10'3, all values GST-pi x 10'3/β-actin).
An analysis of survival according to GST-pi values showed that patients whose tumors had a relative GST-pi gene expression level higher than the median value had
a statistically significant survival benefit compared to those with levels below the
median value (P=0.0073, log-rank test). Accordingly, the median corrected relative GST-pi mRΝA was assigned to be a threshold value. This association is shown
graphically in Figure 1. The relationship was independent of stage. Figures 2 and 3 show that the association was present if the analysis was confined only to those with
Stage II or Stage IN disease.
[101] GST-pi mRΝA expression is a significant prognostic factor for patients with
esophagocardiac adenocarcinoma who are treated with a cisplatin-containing regimen.

Claims (16)

What is claimed is:
1. A method for determining a platinum-based chemotherapeutic regimen for
treating a tumor in a patient comprising:
(a) obtaining a tissue sample of the tumor and fixing the sample, to obtain a fixed tumor sample;
(b) isolating mRNA from the fixed tumor sample;
(c) subj ecting the mRNA to amplification using a pair of oligonucleotide primers that hybridize under high stringency conditions to a region of the
GST-pi gene, to obtain an amplified sample;
(d) determining the amount of GST-pi mRNA in the amplified sample;
(e) comparing the amount of GST-pi mRNA from step (d) to an amount of mRNA of an internal control gene; and
(f) determining a platinum-based chemotherapeutic regimen based on the
amount of GST-pi mRNA in the amplified sample and a predetermined threshold level for GST-pi gene expression.
2. The method of claim 1 wherein the pair of oligonucleotide primers consist of
SEQ ID NO:l or an oligonucleotide primer substantially identical thereto and
SEQ ID NO:2 or an oligonucleotide primer substantially identical thereto.
3. The method of claim 1 wherein, the tumor is a non-small-cell lung cancer
(NSCLC) tumor.
4. The method of claim 1 wherein, the threshold level of GST-pi gene
expression is about 1.0 x 10"3 times internal control gene expression level.
5. A method of treating a tumor with a platinum-based chemotherapeutic
regimen comprising:
(a) obtaining a tissue sample of the tumor and fixing the sample,
to obtain a fixed tumor sample;
(b) isolating mRNA from the fixed tumor sample;
(c) subjecting the mRNA to amplification using a pair of oligonucleotide primers that hybridize under stringent
conditions to a region of the GST-pi gene, to obtain an
amplified sample;
(d) determining the amount of GST-pi mRNA in the amplified
sample;
(e) comparing the amount of GST-pi mRNA from step (d) to an
amount of mRNA of an internal control gene;
(f) providing a platinum-based chemotherapeutic regimen comprising a cytotoxic agent when the determined gene
expression level for GST-pi gene is below a predetermined
threshold value.
6. The method of claim 5 wherein, the tumor is an esophagocardiac
adenocarcinoma tumor.
7. The method of claim 5 wherein, the cytotoxic agent is 5-FU or cisplatin or a
combination thereof.
8. A method for determining the level of GST-pi expression in a fixed paraffin
emedded tissue sample comprising;
(a) deparaffinizing the tissue sample; to obtain a deparaffinized sample;
(b) isolating mRNA from the deparaffinized sample in the presence of an
effective amount of a chaotropic agent;
(c) subj ecting the mRNA to amplification using a pair of oligonucleotide
primers that hybridize under stringent conditions to a region of the GST-pi gene, to obtain an amplified sample;
(d) determining the quantity of GST-pi mRNA relative to the quantity of
an internal control gene's mRNA.
9. The method of claim 8 wherein, the pair of oligonucleotide primers consists of the oligonucleotide primer pair GST or a pair of oligonucleotide primers
substantially similar thereto.
10. The method of claim 8 wherein, the internal control gene is β-actin.
11. The method of claim 8 wherein, mRNA isolation is carried out by
(a) heating the tissue sample in a solution comprising an effective
concentration of a chaotropic compound to a temperature in the range of about 75 to about 100 °C for a time period of about 5 to about 120 minutes;
and
(b) recovering said mRNA from said chaotropic solution.
12. An oligonucleotide primer having the sequence of SEQ ID NO: 1 or and an
oligonucleotide substantially identical thereto.
13. An oligonucleotide primer having the sequence of SEQ JD NO: 2 or and an oligonucleotide substantially identical thereto.
14. A kit for detecting expression of a GST-pi gene comprising, oHgionucleotide pair GST or an oligonucleotide pair substantially identical thereto.
15. The method of claim 1 wherein, step (b) comprises the step of heating the fixed tumor sample the in the presence of an effective concentration of a
chaotropic agent wherein the heating occurs at a temperature from about 50°C to about 100°C.
16. The method of claim 1 wherein, the tumor is an esophageal adenocarcinoma
tumor.
AU2002305573A 2001-06-14 2002-05-15 Method of determining a chemotherapeutic regimen based on glutathione-s-transferase pi expression Ceased AU2002305573B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/879,986 US6686155B2 (en) 2001-06-14 2001-06-14 Method of determining a chemotherapeutic regimen based on glutathione-S-transferase pi expression
US09/879,986 2001-06-14
PCT/US2002/015203 WO2002103055A1 (en) 2001-06-14 2002-05-15 METHOD OF DETERMINING A CHEMOTHERAPEUTIC REGIMEN BASED ON GLUTATHIONE-S-TRANSFERASE Pi EXPRESSION

Publications (2)

Publication Number Publication Date
AU2002305573A1 true AU2002305573A1 (en) 2003-05-15
AU2002305573B2 AU2002305573B2 (en) 2009-01-08

Family

ID=25375288

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002305573A Ceased AU2002305573B2 (en) 2001-06-14 2002-05-15 Method of determining a chemotherapeutic regimen based on glutathione-s-transferase pi expression

Country Status (15)

Country Link
US (4) US6686155B2 (en)
EP (1) EP1407047B1 (en)
JP (2) JP4303104B2 (en)
KR (2) KR20090060380A (en)
CN (2) CN100494398C (en)
AR (1) AR034342A1 (en)
AU (1) AU2002305573B2 (en)
CA (1) CA2450257C (en)
ES (1) ES2457077T3 (en)
HK (1) HK1070921A1 (en)
IL (2) IL159301A0 (en)
MX (1) MXPA03011632A (en)
NZ (1) NZ530520A (en)
TW (1) TWI338049B (en)
WO (1) WO2002103055A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040204435A1 (en) * 2003-04-09 2004-10-14 Joachim Liehr Alternating treatment with topoisomerase I and topoisomerase II inhibitors
WO2005100606A2 (en) * 2004-04-09 2005-10-27 Genomic Health, Inc. Gene expression markers for predicting response to chemotherapy
US20060115827A1 (en) * 2004-07-01 2006-06-01 University Of Southern California Genetic markers for predicting disease and treatment outcome
AU2006243782A1 (en) * 2005-05-04 2006-11-09 University Of South Florida Predicting treatment response in cancer subjects
US20070059753A1 (en) * 2005-09-15 2007-03-15 Tatiana Vener Detecting gene methylation
WO2008157353A1 (en) * 2007-06-15 2008-12-24 University Of South Florida Methods of diagnosing and treating cancer
US8632984B2 (en) * 2009-02-16 2014-01-21 Atlas Antibodies Ab RBM3 as a marker for malignant melanoma prognosis
JP5361488B2 (en) * 2009-03-24 2013-12-04 オリンパス株式会社 Fluorescence observation equipment
JP5680442B2 (en) * 2011-02-24 2015-03-04 シスメックス株式会社 Method for determining sensitivity of cancer cell to taxane anticancer agent, and computer program and apparatus for realizing the method
GB201316027D0 (en) * 2013-09-09 2013-10-23 Almac Diagnostics Ltd Molecular diagnostic test for oesophageal cancer
CN113577290B (en) * 2014-12-26 2023-10-24 日东电工株式会社 Cell death inducing agent, cell proliferation inhibiting agent, and pharmaceutical composition for treating diseases caused by abnormal cell proliferation
CN112321489B (en) * 2020-10-15 2022-04-19 中山大学 Electrophilic molecular probe based on active sulfydryl and report ions and preparation method and application thereof

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830969A (en) 1981-08-31 1989-05-16 The Research Foundation Of State University Of New York Process for the rapid and simple isolation of nucleic acids
US4843155A (en) * 1987-11-19 1989-06-27 Piotr Chomczynski Product and process for isolating RNA
US5128247A (en) 1989-08-14 1992-07-07 Board Of Regents, The University Of Texas System Methods for isolation of nucleic acids from eukaryotic and prokaryotic sources
US5942389A (en) * 1990-10-19 1999-08-24 Board Of Trustees Of The University Of Illinois Genes and genetic elements associated with sensitivity to cisplatin
US5204241A (en) * 1990-10-22 1993-04-20 Oxi-Gene Inc. Glutathione-S-transferase mu as a measure of drug resistance
US5654179A (en) 1990-11-14 1997-08-05 Hri Research, Inc. Nucleic acid preparation methods
US5620852A (en) 1990-11-14 1997-04-15 Hri Research, Inc. Nucleic acid preparation methods
US5284940A (en) * 1990-11-14 1994-02-08 Hri Research, Inc. Preparation for nucleic acid samples
US5346994A (en) * 1992-01-28 1994-09-13 Piotr Chomczynski Shelf-stable product and process for isolating RNA, DNA and proteins
US5502166A (en) * 1992-02-26 1996-03-26 Mitsubishi Chemical Corporation NMDH receptor proteins and genes encoding the same
WO1994018156A1 (en) * 1993-02-01 1994-08-18 University Of Iowa Research Foundation Quartenary amine surfactants and methods of using same in isolation of rna
US5637687A (en) 1993-08-31 1997-06-10 Wiggins; James C. Methods and compositions for isolating nucleic acids
WO1995028489A1 (en) 1994-04-13 1995-10-26 The Uab Research Foundation Dihydropyrimidine dehydrogenase compositions and methods of use
US5643767A (en) * 1994-05-02 1997-07-01 The Rockefeller University Process for isolating cellular components
CA2153215A1 (en) * 1994-07-06 1996-01-07 Lu Wang Treatment of paraffin embedded tissue for gene analysis
US6136605A (en) * 1994-08-26 2000-10-24 Wisconsin Alumni Research Foundation Glutathione S-transferase isoforms
US5707802A (en) * 1995-01-13 1998-01-13 Ciba Corning Diagnostics Corp. Nucleic acid probes for the detection and identification of fungi
US5777099A (en) * 1995-02-24 1998-07-07 Biotecx Laboratories, Inc. RNA separation
US5945515A (en) 1995-07-31 1999-08-31 Chomczynski; Piotr Product and process for isolating DNA, RNA and proteins
DE29601618U1 (en) * 1996-01-31 1996-07-04 Invitek Gmbh Multiple simultaneous isolation device
EP0791654A1 (en) * 1996-02-21 1997-08-27 Jürgen A. Dr. Richt Polypeptides corresponding to the amino acid sequences of proteins p57 or p9.5 of Borna disease virus, nucleic acid fragments coding therefore and their use for diagnostic and immunization purposes
KR0177890B1 (en) * 1996-03-05 1999-04-01 이병언 Polymerase Chain Reaction Tube with Improved Reaction Specificity
ES2185002T3 (en) 1996-03-20 2003-04-16 Us Gov Health & Human Serv METHODS AND COMPOSITIONS TO DETECT MUTATIONS BY EMPALME OF DIHYDRO-PYRIMIDINE DEHYDROGENASE.
CA2253937A1 (en) * 1996-05-10 1997-11-20 Phylomed Corporation Methods for oxidizing disulfide bonds using ozone
US5968737A (en) * 1996-11-12 1999-10-19 The University Of Mississippi Method of identifying inhibitors of glutathione S-transferase (GST) gene expression
EP0973935A2 (en) 1997-03-20 2000-01-26 Variagenics, Inc. Target genes for allele-specific drugs
US6248535B1 (en) * 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
AU2002220012A1 (en) * 2000-12-01 2002-06-11 Response Genetics, Inc. Method of determining a chemotherapeutic regimen by assaying gene expression in primary tumors
US7618793B2 (en) * 2004-10-20 2009-11-17 The Regents Of The University Of Washington Identifying agents for decreasing cellular toxicity associated with huntingin polypeptide
US7618777B2 (en) * 2005-03-16 2009-11-17 Agilent Technologies, Inc. Composition and method for array hybridization
US7615729B2 (en) * 2007-12-10 2009-11-10 Aptina Imaging Corporation Apparatus and method for resonant lens focusing

Similar Documents

Publication Publication Date Title
EP1364054B1 (en) Method of determining a chemotherapeutic regimen based on ercc1 expression
US7560543B2 (en) Method of determining a chemotherapeutic regimen based on ERCC1 and TS expression
AU2002249768A1 (en) Method of determining a chemotherapeutic regimen based on ERCC1 expression
JP4308309B2 (en) Method for determining chemotherapy based on glutathione S-transferase Pi expression
AU2002246504A1 (en) Method of determining a chemotherapeutic regimen based on ERCC1 and TS expression
AU2002305573A1 (en) Method of determining a chemotherapeutic regimen based on glutathione-s-transferase pi expression
US6573052B2 (en) Method of determining a chemotherapeutic regimen based on ERCCI expression
AU2007203027A1 (en) Method of determining a chemotherapeutic regimen based on ERCC1 and TS expression