AU2002256179A1 - Adjustable length punch assembly - Google Patents

Adjustable length punch assembly

Info

Publication number
AU2002256179A1
AU2002256179A1 AU2002256179A AU2002256179A AU2002256179A1 AU 2002256179 A1 AU2002256179 A1 AU 2002256179A1 AU 2002256179 A AU2002256179 A AU 2002256179A AU 2002256179 A AU2002256179 A AU 2002256179A AU 2002256179 A1 AU2002256179 A1 AU 2002256179A1
Authority
AU
Australia
Prior art keywords
punch
assembly
lock key
adjustable length
lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002256179A
Other versions
AU2002256179B2 (en
Inventor
Wayne F. Peloquin
Ronald G. Rosene
David M. Runk
Glen M. Shuldes
Richard L. Timp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilson Tool International Inc
Original Assignee
Wilson Tool International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/884,237 external-priority patent/US6755110B2/en
Application filed by Wilson Tool International Inc filed Critical Wilson Tool International Inc
Publication of AU2002256179A1 publication Critical patent/AU2002256179A1/en
Application granted granted Critical
Publication of AU2002256179B2 publication Critical patent/AU2002256179B2/en
Priority to AU2006252093A priority Critical patent/AU2006252093B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

ADJUSTABLE LENGTH PUNCH ASSEMBLY Field of the Invention
The present invention relates generally to metal working tools. More particularly, the present invention relates to punch assemblies used in punch presses. Background of the Invention.
Sheet metal may be economically fabricated into a wider range of useful products including chassis for appliances and electrical devices. Turret-type punch presses have found wide use in fabricating sheet metal. Turret-type punch presses employ an upper, generally cylindrical turret which holds a series of punch tools spaced circumferentially around its periphery, and a second, lower turret holding a series of dies circumferentially spaced about that turret's periphery, each turret being rotatable about a vertical axis to bring an appropriate punch and die pair into vertical alignment at a work station. By appropriately rotating the two turrets, an operator can bring a number of punches and dies sequentially into alignment at the work station to perform a series of sequential and different punching operations on a work piece. Repeated use of a punch assembly in a punch press operation results in the natural dulling and wear of the punch tip. Once the tip has become dull, the effectiveness of the punch assembly is reduced and the punch tip must be sharpened. Sharpening may be accomplished by grinding the end of the punch tip, and this results in shoitenmg the length of the punch. The length of the punch may then be adjusted to compensate for the ground-off portion.
The longitudinal axis of the punch assembly is typically placed in coaxial alignment with the axis of the ram. The ram of the punch press then strikes the punch with great force on it's impact surface. Summary of the Invention
The present invention relates generally to metal working tools. More particularly, the present invention relates to punch assemblies used in punch presses. An adjustable length punch assembly in accordance with the present invention may be used with a punch press including a tool holder adapted to receive the punch assembly and a ram adapted to move longitudinally along a ram axis. An adjustable length punch assembly in accordance with the present invention advantageously includes a punch body assembly disposed in threading engagement with a drive body assembly having a surface adapted to be struck by the ram of the punch press. The length of the punch assembly may be adjusted by the rotating of one body relative to the other body. The adjustable length punch assembly advantageously includes a lock mechanism for selectively preventing rotation of the punch body assembly relative to the drive body assembly. The lock mechanism advantageously features a lock shaft coupled to one of the bodies and a lock key slidingly coupled to the other of the bodies such that the lock key slides along a lock key path. The lock key path is advantageously disposed at an angle relative to the ram axis when the punch assembly is received by the tool holder. In one implementation, the adjustable length punch assembly features a lock mechanism having a lock shaft coupled to one of the bodies and a lock key slidingly coupled to the other of the bodies such that the lock key slides along a lock key path. The lock key path may be advantageously disposed at an angle relative to a longitudinal axis of the punch assembly. When the punch assembly is received by the tool holder of a punch press, the lock key path is advantageously disposed at an angle relative to the ram axis of the punch press.
In some implementations of the present invention, the angle between the lock key path and the longitudinal axis of the punch body assembly is a right angle. In other implementations, the angle between the lock key path and the longitudinal axis of the punch body assembly is an acute angle. In some implantations, the lock key path is generally parallel to the striking surface of the drive body assembly.
In one aspect of the present invention, the lock key is moveable between a first position in which the lock key engages the lock shaft and a second position in which the lock key disengages the lock shaft. The adjustable length punch assembly may advantageously include a means for biasing the key toward the first position. In one implementation of the present invention, the means for biasing the key toward the first position comprises a spring having a first end seated against the lock key and a second end seated against one of the bodies.
In one aspect of the present invention, the lock shaft has a first axial degree of freedom relative to the lock key. In an advantageous implementation of the present invention, the first axial degree of freedom is generally parallel to the longitudinal axis of the punch assembly. In one implementation of the present invention, the lock key includes an opening adapted to receive the lock shaft. The opening may be defined in part by a shaft engaging portion of the lock key. In some embodiments, the shaft engaging portion of the lock key advantageously includes at least one tooth. In other embodiments, the shaft engaging portion of the lock key advantageously includes at least one flat. Description of the Drawings.
Figure 1 is a cross sectional view of a punch set assembly in accordance with an exemplary embodiment of the present invention; Figure 2 is an enlarged plan view of the punch set assembly of figure 1;
Figure 3 is an additional enlarged plan view of the punch set assembly of figure 1 and figure 2;
Figure 4 is a perspective view of the lock shaft of the adjustable length punch assembly of figure 1, figure 2, and figure 3; Figure 5 is a plan view of an adjustable length punch assembly in accordance with an additional embodiment of the present invention;
Figure 6 is an additional plan view of the adjustable length punch assembly of figure 5; and
Figure 7 is a cross sectional view of a punch set assembly in accordance with an additional exemplary embodiment of the present invention. Detailed Description of the Preferred Embodiment
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements. All other elements employ that which is known to those of skill in the field of the invention. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that can be utilized. Figure 1 is a cross sectional view of a punch set assembly 100 in accordance with an exemplary embodiment of the present invention. Punch set assembly 100 includes a sleeve 104 and an adjustable length punch assembly 102 that is slidingly disposed within sleeve 104. Punch set assembly 100 may be used in a punch press including a tool holder 108 adapted to receive sleeve 104 and a ram 120 adapted to move longitudinally along a ram axis 122.
In the embodiment of figure 1, adjustable length punch assembly 102 includes a punch body assembly 124 disposed in threading engagement with a drive body assembly 126 having a striking surface 128 adapted to be struck by ram 120 of the punch press. The length of adjustable length punch assembly 102 may be adjusted by rotating of punch body assembly 124 and drive body assembly 126 relative to one another. Punch body assembly 124 comprises a punch blade 130, a male threaded member 132, and a lock shaft 134. As shown in figure 1, male threaded member 132 is attached to punch blade 130 by a relatively large cap screw 136 threaded axially into a threaded bore of punch blade 130. Also as shown in figure 1, lock shaft 134 is attached to male threaded member 132 with a plurality of pins 138 and a retaining ring.
Drive body assembly 126 of figure 1 comprises a drive cap 144 and a female threaded member 146. In the embodiment of figure 1, drive cap 144 is attached to female threaded member 146 by a plurality of cap screws 140, one of which is shown if figure 1. In figure 1 it may be appreciated that female threaded member 146 of drive body assembly 126 is disposed in threading contact with male threaded member 132 of punch body assembly 124.
As mentioned previously, the length of adjustable length punch assembly 102 may be adjusted by rotating of punch body assembly 124 and drive body assembly 126 relative to one another. In the embodiment of figure 1, adjustable length punch assembly 102 includes a lock mechanism 150 for selectively preventing rotation of punch body assembly 124 relative to drive body assembly 126. Lock mechanism 150 of figure 1 comprises lock shaft 134 of punch body assembly 124 and a lock key 148 that slidingly engages drive cap 144 of drive body assembly 126 such that lock key 148 slides along a lock key path 152. In the embodiment of figure 1, the path taken by lock key 148 is defined in part by a guiding surface 154 of drive cap 144 of drive body assembly 126. In figure 1 it may be appreciated that, lock key path 152 is disposed at an angle A relative to a longitudinal axis 156 of adjustable length punch assembly 102. In figure 1 it may also be appreciated that lock key path 152 is disposed at an angle B relative to ram axis 122 of ram 120 when adjustable length punch assembly 102 is received by tool holder 108. In a preferred embodiment, adjustable length punch assembly 102 and ram 120 are disposed in a generally coaxial relationship during punching.
In the embodiment of figure 1, angle A between lock key path and longitudinal axis 156 and angle B between lock key path 152 and ram axis 122 are both right angles. Embodiments of the present invention are possible in which, angle A and angle B are acute angles or obtuse angles. In the embodiment of figure 1 it may be noted that, lock key path 152 is generally parallel to striking surface 128 of drive body assembly 126.
Lock shaft 134 preferably has a first axial degree of freedom relative to lock key 148. In the embodiment of figure 1, lock shaft 134 is free to move along longitudinal axis 156 reative to lock key 148. This axial degree of freedom allows adjustments to be made in the length of adjustable length punch assembly 102.
Punch set assembly 100 also includes a spring assembly 158 comprising a plurality of belleville washers 160. A first end of spring assembly 158 is seated against drive cap 144 of drive body assembly 126. A second end of spring assembly 158 is seated against a spring support ring 162. Spring support ring 162 is in turn seated against a ledge 164 of sleeve 104.
During a punching operation, ram 120 strikes downwardly on striking surface 128 of drive body assembly 126 compressing spring assembly 158 and urging adjustable length punch assembly 102 downwardly until punch blade 130 protrudes below a lower face 166 of a stripper plate 168 of punch set assembly 100. The protruding punch blade 130 passes through a workpiece (not shown) to punch an item out of the workpiece having the desired shape. Punch set assembly 100 may be adaptable to a variety of punch blade shapes and matching stripper plates depending upon the shape desire to be removed from the workpiece.
Ram 120 may then be retracted, releasing the compressive force on the spring assembly 158. The spring assembly 158 then may act to draw punch blade 130 upward. When punch blade 130 is retracted upwardly through stripper plate 168 its sides may engage the workpiece which often sticks to the retreating punch blade 130. Stripper plate 168 may engage the top face of the workpiece to assist in separating it from punch blade 130.
Repeated use of a punch blade in a punch press operation results in the natural dulling and wear of the punch blade. Once the punch blade has become dull, the effectiveness of the punch assembly is reduced and the punch blade must be sharpened. Sharpening may be accomplished by grinding the end of the punch tip, and this results in shortening the length of the punch blade. The length of the punch assembly may then be adjusted to compensate for the ground-off portion of the punch blade. Generally, when sharpening of punch blade 130 is desired, the operator removes punch blade 130 from punch set assembly 100, for example by loosening large cap screw 136. Punch blade 130 may then be sharpened or replaced. After replacing or sharpening punch blade 130, appropriate changes in the overall length of adjustable length punch assembly 102 may be made by rotating punch body assembly 124 and drive body assembly 126 with respect to one another. Lock key 148 of lock mechanism 150 selectively engages lock shaft 134 to prevent inadvertent changes in the length of adjustable length punch assembly 102. The likelihood that changes in length will occur due to the force of ram 120 striking adjustable length punch assembly 102 is reduced when lock key path 152 of lock key 148 is disposed at an angle to ram axis 122.
Figure 2 is an enlarged plan view of punch set assembly 100 of figure 1. In figure 2 it may be appreciated that lock shaft 134 includes a plurality of teeth 170. In figure 2, it may also be appreciated that lock key 148 includes an opening 174 adapted to receive lock shaft 134. Lock key 148 is preferably moveable between a first position in which lock key 148 engages lock shaft 134 and a second position in which lock key disengages lock shaft 134. In the embodiment of figure 2, lock key 148 is shown in the first position.
Adjustable length punch assembly 102 of punch set assembly 100 preferably includes a mechanism for biasing lock key 148 toward the first position. In the embodiment of figure 2, adjustable length punch assembly 102 includes a spring 176 having a first end seated against a first seating surface 178 of lock key 148 and a second end seated against a second seating surface 180 of drive cap 144 of drive body assembly 126. Spring 176 preferably urges lock key 148 toward the first position. Figure 3 is an additional enlarged plan view of punch set assembly 100 of figure 1 and figure 2. As described previously, lock key 148 is preferably moveable between a first position in which lock key 148 engages lock shaft 134 and a second position in which lock key 148 disengages lock shaft 134. In the embodiment of figure 3, a force F is shown acting on lock key 148 and urging it into the second position.
In figure 3, it may be appreciated that opening 174 of lock key 148 is defined in part by a shaft engaging portion 182 of lock key 148. In the embodiment of figure 3, shaft engaging portion 182 of lock key 148 includes a plurality of mating teeth 172. Mating teeth 172 are preferably configured to intermesh with teeth 170 of lock shaft 134. It is to be appreciated that other embodiments of shaft engaging portion 182 are possible without deviating from the spirit and scope of the present invention. Figure 4 is a perspective view of lock shaft 134 of adjustable length punch assembly 102. In figure 4, it may be appreciated that lock shaft 134 includes a plurality of holes 184. Holes 184 are preferably adapted to accept screws, pins, or other fasteners for attaching lock shaft 134 to male threaded member 132 of punch body assembly 124. Teeth 170 of lock shaft 134 are also shown in figure 4. Figure 5 is a plan view of an adjustable length punch assembly 202 in accordance with an additional embodiment of the present invention. Adjustable length punch assembly 202 of figure 5 comprises a drive body assembly 226 including a drive cap 244 and punch body assembly 224 including a lock shaft 234. Lock shaft 234 of punch body assembly 224 has a plurality of fiats 286. As in the previous embodiment, punch body assembly 224 is preferably disposed in threading engagement with a drive body assembly 226. The length of adjustable length punch assembly 202 may be adjusted by rotating of punch body assembly 224 and drive body assembly 226 relative to one another.
In the embodiment of figure 5, lock shaft 234 of punch body assembly 224 and a lock key 248 form part of a lock mechanism 250 for selectively preventing rotation of punch body assembly 224 relative to drive body assembly 226. Lock key 248 slidingly engages drive cap 244 of drive body assembly 226 such that lock key 248 slides along a lock key path. In figure 5 it may be appreciated that lock key 248 includes an opening 274 adapted to receive lock shaft 234. Lock key 248 is preferably moveable between a first position in which lock key 248 engages lock shaft 234 and a second position in which lock key disengages lock shaft 234. In the embodiment of figure 5, lock key 248 is shown in the first position.
Adjustable length punch assembly 202 preferably includes a mechanism for biasing lock key 248 toward the first position. In the embodiment of figure 5, adjustable length punch assembly 202 includes a spring 276 having a first end seated against a first seating surface 278 of lock key 248 and a second end seated against a second seating surface 280 of drive cap 244 of drive body assembly 226.
Figure 6 is an additional enlarged plan view of adjustable length punch assembly 202 of figure 5. As described previously, lock key 248 is preferably moveable between a first position in which lock key 248 engages lock shaft 234 and a second position in which lock key disengages lock shaft 234. In the embodiment of figure 6, a force F is shown acting on lock key 248 and urging it into the second position.
In figure 6, it may be appreciated that opening 274 of lock key 248 is defined in part by a shaft engaging portion 282 of lock key 248. In the embodiment of figure 5, shaft engaging portion 282 of lock key 248 includes a plurality of mating flats 288. Also in the embodiment of figure 5, mating flats 288 are substantially similar in size and shape to flats 286 of lock shaft 234.
Figure 7 is a cross sectional view of a punch set assembly 300 in accordance with an additional exemplary embodiment of the present invention. Punch set assembly 300 includes a sleeve 304 and an adjustable length punch assembly 302 that is slidingly disposed within sleeve 304. In the embodiment of figure 7, adjustable length punch assembly 302 includes a punch body assembly 324 disposed in threading engagement with a drive body assembly 326 having a striking surface 328 adapted to be struck by the ram of punch press.
Punch body assembly 324 comprises a punch blade 330, a male threaded member 332, and a lock shaft 334. As shown in figure 7, male threaded member 332 is attached to punch blade 330 by a relatively large cap screw 336 threaded axially into a threaded bore of punch blade 330. Also as shown in figure 7, lock shaft 334 is attached to male threaded member 332 with a plurality of screws 338.
Drive body assembly 326 of figure 7 comprises a drive cap 344 and a female threaded member 346. In the embodiment of figure 7, drive cap 344 is attached to female threaded member 346 by a plurality of cap screws 340, one of which is shown if figure 7. In figure 7 it may be appreciated that female threaded member 346 of drive body assembly 326 is disposed in threading contact with male threaded member 332 of punch body assembly 324.
Punch set assembly 300 also includes a spring assembly 358 comprising a plurality of belleville washers 360. A first end of spring assembly 358 is seated against drive cap 344 of drive body assembly 326. A second end of spring assembly 358 is seated against a spring support ring 362. Spring support ring 362 is in turn seated against a ledge 364 of sleeve 304.
The length of adjustable length punch assembly 302 may be adjusted by rotating punch body assembly 324 and drive body assembly 326 relative to one another. In the embodiment of figure 7, adjustable length punch assembly 302 includes a lock mechanism 350 for selectively preventing rotation of punch body assembly 324 relative to drive body assembly 326. Lock mechanism 350 of figure 7 comprises lock shaft 334 of punch body assembly 324 and a lock key 348 that , slidingly engages drive cap 344 of drive body assembly 326 such that lock key 348 slides along a lock key path 352.
In the embodiment of figure 7, the path taken by lock key 348 is defined in part by a guiding surface 354 of drive cap 344 of drive body assembly 326. In figure 7 it may be appreciated that, lock key path 352 is disposed at an angle C relative to a longitudinal axis 356 of adjustable length punch assembly 302. In the embodiment of figure 7, angle C between lock key path 352 and longitudinal axis 356 is an acute angle.
Several forms of invention have been shown and described, and other forms will now be apparent to those skilled in art. It will be understood that embodiments shown in drawings and described above are merely for illustrative purposes, and are not intended to limit scope of invention defined claims which follow.

Claims (30)

What is Claimed is:
1. An adjustable length punch assembly for use with a punch press having a ram, comprising: a punch body assembly disposed in threading engagement with a drive body assembly, the drive body assembly having a strildng surface adapted to be struck by the ram of the punch press, a length of the punch assembly being adjustable in response to rotation of one body relative to other body; a lock mechanism for selectively preventing rotation of the punch body assembly relative to the drive body assembly; the lock mechanism comprising a lock shaft coupled to one of bodies and a lock key slidingly coupled to other of bodies such that the lock key slides along a lock key path; and the lock key path being disposed at an angle relative to a longitudinal axis of punch assembly.
2. The adjustable length punch assembly of claim 1 , wherein the angle between the lock key path and the longitudinal axis of the punch body assembly is a right angle.
3. The adjustable length punch assembly of claim 1 , wherein angle the between the lock key path and the longitudinal axis of the punch body assembly is an acute angle.
4. The adjustable length punch assembly of claim 1, wherein the lock key path is generally parallel to a striking surface of the drive body assembly.
5. The adjustable length punch assembly of claim 1 , wherein the lock key is moveable between a first position in which the lock key engages the lock shaft and a second position in which the lock key disengages the lock shaft.
6. The adjustable length punch assembly of claim 5, further including a means for biasing the lock key toward first position.
7. The adjustable length punch assembly of claim 6, wherein the means for biasing the lock key toward the first position comprises a spring having a first end seated against lock key and a second end seated against one of bodies.
8. The adjustable length punch assembly of claim 1 , wherein the lock shaft has a first axial degree of freedom relative to the lock key.
9. The adjustable length punch assembly of claim 8, wherein the first axial degree of freedom is generally parallel to the longitudinal axis of the punch assembly.
10. The adjustable length punch assembly of claim 1 , wherein the lock key includes an opening adapted to receive the lock shaft.
11. The adjustable length punch assembly of claim 10, wherein the opening is defined in part by a shaft engaging portion of the lock key.
12. The adjustable length punch assembly of claim 11 , wherein the shaft engaging portion of the lock key includes at least one tooth.
13. The adjustable length punch assembly of claim 11 , wherein the shaft engaging portion of the lock key includes at least one flat.
14. The adjustable length punch assembly of claim 11 , wherein the shaft is disposed within an opening defined by the lock key.
15. The adjustable length punch assembly of claim 14, wherein the lock key is moveable between a first position in which the engaging portion of the lock key engages the lock shaft and a second position in which the engaging portion of the lock key disengages the lock shaft.
16. The adjustable length punch assembly of claim 1 , wherein the lock shaft includes at least one tooth.
17. The adjustable length punch assembly of claim 1 , wherein the lock shaft includes at least one flat.
18. An adjustable length punch assembly for use with a punch press including a tool holder adapted to receive punch assembly and a ram adapted to move longitudinally along a ram axis, comprising: a punch body assembly disposed in threading engagement with a drive body assembly having a surface adapted to be struck by the ram of the punch press, a length of the punch assembly being adjustable in response to rotation of one body relative to the other body; a lock mechanism for selectively preventing rotation of the punch body assembly relative to the drive body assembly; the lock mechanism comprising a lock shaft coupled to one of the bodies and a lock key slidingly coupled to the other of the bodies such that the lock key slides along a lock key path; and the lock key path being disposed at an angle relative to the ram axis when the punch assembly is received by the tool holder.
19. The adjustable length punch assembly of claim 18, wherein the angle between the lock key path and the ram axis of the punch body assembly is a right angle.
20. The adjustable length punch assembly of claim 18, wherein the angle between the lock key path and the ram axis of the punch body assembly is an acute angle.
21. The adjustable length punch assembly of claim 18, wherein the striking surface of the drive body assembly is generally perpendicular to the ram axis when the punch assembly is received by the tool holder.
22. The adjustable length punch assembly of claim 18, wherein the lock key is moveable between a first position in which the lock key engages the lock shaft and a second position in which the lock key disengages the lock shaft.
23. The adjustable length punch assembly of claim 22, further including a means for biasing the lock key toward the first position.
24. The adjustable length punch assembly of claim 23, wherein means for biasing the lock key toward the first position comprises a spring having a first end seated against the lock key and a second ended seated against one of the bodies.
25. The adjustable length punch assembly of claim 1 , wherein the lock shaft has a first axial degree of freedom relative to the lock shaft.
26. The adjustable length punch assembly of claim 25, wherein the first axial degree of freedom is generally parallel to the ram axis when the punch assembly is received by the tool holder.
27. An adjustable length punch assembly for use with a punch press having a ram, comprising: a punch tip and a punch driver having a surface adapted to be struck by the ram of the punch press; a threaded coupling between the punch driver and the punch tip, a length of the punch assembly being adjustable axially in response to threading or unthreading of the threaded coupling; first and second elements rotatable with respect to each other to thread or unthread threaded coupling; and the first element having a splined shaft and the second element having a handle and a toothed surface moveable into engagement with and disengagement from the splined shaft in response to non- axial movement of the handle to enable and prevent, respectively, relative rotation between the first and second elements.
28. The adjustable length punch assembly of claim 27, further including a spring mechanism for urging the toothed surface of the first element into engagement with the splined shaft to prevent relative rotation between the first and second elements.
29. The adjustable length punch assembly of claim 27, wherein the second element includes an opening through which is received the splined shaft, the opening having a periphery including the toothed surface and being shaped to enable the toothed surface to disengage from the splined shaft upon movement of the handle.
30. The adjustable length punch assembly of claim 27, wherein the handle includes an exteriorly accessible pushbutton movable axially toward the axis of the punch assembly to disengage the toothed surface from the splined shaft.
AU2002256179A 2001-06-19 2002-04-12 Adjustable length punch assembly Expired AU2002256179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006252093A AU2006252093B2 (en) 2001-06-19 2006-12-14 Adjustable length punch assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/884,237 US6755110B2 (en) 2001-06-19 2001-06-19 Adjustable length punch assembly
US09/884,237 2001-06-19
PCT/US2002/011446 WO2002102528A1 (en) 2001-06-19 2002-04-12 Adjustable length punch assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2006252093A Division AU2006252093B2 (en) 2001-06-19 2006-12-14 Adjustable length punch assembly

Publications (2)

Publication Number Publication Date
AU2002256179A1 true AU2002256179A1 (en) 2003-05-15
AU2002256179B2 AU2002256179B2 (en) 2006-09-14

Family

ID=25384237

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2002256179A Expired AU2002256179B2 (en) 2001-06-19 2002-04-12 Adjustable length punch assembly
AU2006252093A Expired AU2006252093B2 (en) 2001-06-19 2006-12-14 Adjustable length punch assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2006252093A Expired AU2006252093B2 (en) 2001-06-19 2006-12-14 Adjustable length punch assembly

Country Status (12)

Country Link
US (3) US6755110B2 (en)
EP (1) EP1399279B1 (en)
JP (1) JP3795890B2 (en)
CN (1) CN1290637C (en)
AT (1) ATE344109T1 (en)
AU (2) AU2002256179B2 (en)
BR (1) BR0211022A (en)
CA (1) CA2454314C (en)
DE (1) DE60215809T2 (en)
HK (1) HK1069142A1 (en)
MX (1) MXPA03011900A (en)
WO (1) WO2002102528A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755110B2 (en) * 2001-06-19 2004-06-29 Wilson Tool International, Inc. Adjustable length punch assembly
US6799498B2 (en) * 2002-01-25 2004-10-05 Spiel Associates, Inc. Micro adjuster for paper punch die
US8312612B2 (en) * 2002-04-11 2012-11-20 Blue Sky Vision Partners, Llc Refurbished punch tip and method for manufacture and refurbishing
JP4641145B2 (en) * 2003-08-11 2011-03-02 カール事務器株式会社 Paper drilling equipment
US7698979B2 (en) * 2004-09-22 2010-04-20 Amada Tool America, Inc. Biasing assembly for a punching device
US8714065B2 (en) * 2004-11-19 2014-05-06 Amada Company, Limited Punching die
DE102005022757B3 (en) * 2005-05-18 2006-07-13 Audi Ag Punch assembly, for holes in flat sheet workpieces, has an adjustable system to set the die punch in its holder and the bush in its holder in all three dimension directions
US7802506B2 (en) * 2005-07-04 2010-09-28 Amada Company, Limited Upper tool device and punch therefor
US7658134B2 (en) * 2005-09-29 2010-02-09 Mate Precision Tooling, Inc. Punch with self-contained punch recess adjustment indexing
MX2008012902A (en) * 2006-04-07 2008-12-12 Wilson Tool Int Multi-tool technology.
US7726554B2 (en) * 2006-10-19 2010-06-01 Mate Precision Tooling Inc. Multiple punch and die assembly providing hand disassembly, punch length adjustment and replacement
CN101524733B (en) * 2008-03-07 2011-03-23 鸿富锦精密工业(深圳)有限公司 Die holder combining device
US7954404B2 (en) 2008-04-29 2011-06-07 Mate Precision Tooling, Inc. Punch device with adjustment subassembly as retrofit insert or as original equipment
US8327745B2 (en) 2008-11-06 2012-12-11 Wilson Tool International Inc. Punch assemblies and methods for modifying
US8408111B2 (en) * 2008-11-06 2013-04-02 Wilson Tool International Inc. Adjustable punch assemblies and associated adjustment methods
US8413561B2 (en) * 2009-11-10 2013-04-09 Mate Precision Tooling, Inc. Multiple punch and die assembly
US9321095B2 (en) * 2010-06-30 2016-04-26 General Electric Company Apparatuses and methods for cutting porous substrates
FR2972957B1 (en) * 2011-03-23 2014-02-21 Areva Nc IMPROVED MAINTENANCE PRESS
US8707841B2 (en) 2011-11-11 2014-04-29 Wilson Tool International Inc. Punch assemblies and universal punch therefor
US9409223B2 (en) 2011-11-11 2016-08-09 Wilson Tool International Inc. Punch assemblies and universal punch therefor
CA2797352A1 (en) * 2011-12-09 2013-06-09 Greenlee Textron Inc. Punch assembly
US10265756B2 (en) 2012-02-06 2019-04-23 Mate Precision Tooling, Inc. Punch assembly with steel punch point insert removably secured therein
DE102012014698B4 (en) * 2012-04-03 2014-07-03 Julia Vanderpool Stamp unit and system for constructing stamp units
CN103084487B (en) * 2013-02-04 2014-12-10 扬州恒德模具有限公司 Upper mold of free-keeping type numerical control turret punch press
US10646913B2 (en) 2015-02-09 2020-05-12 Mate Precision Tooling, Inc. Punch assembly with replaceable punch tip
CN104889263A (en) * 2015-06-10 2015-09-09 海安县金威机床有限公司 Bending machine C station mould
USD820328S1 (en) 2015-12-31 2018-06-12 Mate Precision Tooling, Inc. Punch insert
USD822725S1 (en) 2015-12-31 2018-07-10 Mate Precision Tooling, Inc. Punch insert
US10525610B2 (en) 2017-04-04 2020-01-07 Amanda Tool America, Inc. Adjustable punch body assembly
US11034046B2 (en) 2017-04-04 2021-06-15 Amada Tool America, Inc. Adjustable punch head assembly
CN110793486A (en) * 2019-11-15 2020-02-14 柳州上汽汽车变速器有限公司 Pad rechecking device
US11667051B2 (en) 2020-09-23 2023-06-06 Wilson Tool International Inc. Punch assemblies and toolless systems thereof for tip retention and release
CN112828133A (en) * 2020-12-31 2021-05-25 重庆市科诚电机制造有限公司 Annular hole forming device for motor end cover

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2128116A (en) * 1937-09-21 1938-08-23 Arthur J Boone Quick change punch and punch holder
US3085812A (en) * 1960-10-26 1963-04-16 Loewy Eng Co Ltd Pressing tools
US3586344A (en) * 1968-06-11 1971-06-22 Omark Winslow Co Quick-change tool assembly
US3563124A (en) * 1968-12-16 1971-02-16 Dayton Progress Corp Punch and die retainers
US3848496A (en) 1973-01-15 1974-11-19 Dayton Progress Corp Die and spring assemblies having particular application to stripper plates
US3937113A (en) 1974-03-05 1976-02-10 Unipunch Products, Inc. Punching apparatus
AT334855B (en) * 1975-01-23 1977-02-10 Voest Ag DEVICE FOR CONNECTING THE CHISELS TO THE SCRAPING HEAD OF A DRAWING MACHINE OR DGL.
US3935771A (en) * 1975-02-10 1976-02-03 Houdaille Industries, Inc. Punch and stripping guide assembly
US3926082A (en) 1975-02-14 1975-12-16 Houdaille Industries Inc Punching device having adjustable guide retainer
US3964358A (en) 1975-05-07 1976-06-22 Unipunch Products, Inc. Punching apparatus with mechanically movable tool support arm
US4012975A (en) 1975-07-31 1977-03-22 Lalone Barry Grant High speed punching apparatus and tool therefor
US4031787A (en) 1976-07-28 1977-06-28 Houdaille Industries, Inc. Punch and stripper assembly
US4141264A (en) * 1977-06-02 1979-02-27 Unipunch Products, Inc. Adjustable high speed punch
US4375774A (en) 1979-12-26 1983-03-08 Wilson Tool Company Adjustable punch head
US4377957A (en) 1980-07-03 1983-03-29 The Boeing Company Joined blanking tool
US4440052A (en) * 1980-09-12 1984-04-03 Unipunch Products, Inc. Punch assembly with unitary stripper spring assembly
US5020407A (en) 1988-05-17 1991-06-04 Brinlee Charles P Adjustable form tool head
US4989484A (en) 1988-08-19 1991-02-05 Mate Punch & Die Company Punch and stripper assembly
US5054347A (en) 1988-08-19 1991-10-08 Mate Punch & Die Co. Punch assembly with improved disassembly features
US5056392A (en) 1988-08-19 1991-10-15 Mate Punch & Die Co. Punch assembly
US5081891A (en) 1988-08-19 1992-01-21 Mate Punch & Die Co. Punch assembly
US5131303A (en) * 1991-08-12 1992-07-21 Wilson Tool International Punch assembly
US5195413A (en) 1991-08-16 1993-03-23 Mate Punch & Die Co. Shearing tool for punch presses
US5329835A (en) * 1992-10-07 1994-07-19 Wilson Tool International, Inc. Adjustable length punch set assembly
US6311587B1 (en) * 1994-07-29 2001-11-06 Allen-Pal Llc Tool handle for holding multiple tools of different sizes during use
US5992285A (en) * 1994-11-21 1999-11-30 Talarico; Joe Floating punch holder
DE19505754C1 (en) * 1995-02-20 1996-05-02 Mate Punch And Die Gmbh Stamping unit with punch and drive unit
US5839341A (en) * 1996-04-12 1998-11-24 Mate Precision Tooling Punch unit
US5884546A (en) * 1997-02-21 1999-03-23 Mate Precision Tooling Inc. Punch unit
US5934165A (en) * 1997-03-19 1999-08-10 Strippit, Inc. Adjustable punch assembly
KR100265934B1 (en) * 1997-04-18 2000-09-15 윤종용 Apparatus and method for checking video bios of computer
US6082516A (en) * 1998-01-22 2000-07-04 Amada Engineering & Service Co., Inc. Variable height adjustable punch assembly having quick release stripper plate
US6047621A (en) * 1998-02-27 2000-04-11 Elba Electronetics, Inc. Quick change adjustable punch tool assembly and method of adjustment
JP3251546B2 (en) 1998-03-12 2002-01-28 株式会社アマダ Punch height adjustment method and punch mold
JP3291246B2 (en) 1998-05-26 2002-06-10 株式会社アマダ Punch head device and punch mold
JP3452491B2 (en) * 1998-08-04 2003-09-29 株式会社アマダ Punch holder device
US6311597B1 (en) * 1999-05-24 2001-11-06 Humdinger, Inc. Self-guiding punch and die set
US6182545B1 (en) * 1999-07-12 2001-02-06 Francis Richard Janek, Jr. Wedge-lockable removable punch and die bushing in retainer
JP4499221B2 (en) 1999-10-05 2010-07-07 株式会社アマダ Mold equipment
US6276247B1 (en) * 2000-03-03 2001-08-21 Strippit, Inc. Adjustable punch assembly with releasable locking
US6755110B2 (en) * 2001-06-19 2004-06-29 Wilson Tool International, Inc. Adjustable length punch assembly
US6895797B2 (en) * 2002-10-23 2005-05-24 Mate Precision Tooling Inc Punch assembly with feed gap maximization

Similar Documents

Publication Publication Date Title
US6755110B2 (en) Adjustable length punch assembly
AU2002256179A1 (en) Adjustable length punch assembly
JP2747115B2 (en) Adjustable punch set assembly
US10751781B2 (en) Punch assembly with replaceable punch tip
EP0739254B1 (en) Workpiece-deforming tool and die for use in a punch press
US3602974A (en) Pierce nut fastening means and method
EP0917916A1 (en) Forming method, forming tools and elastic punch
JP2658499B2 (en) Punch holder with stripper structure
US2108619A (en) Piercing die
KR101788480B1 (en) Base core fixing apparatus of pipe cutting device
US6823710B1 (en) Die button extractor
CN111185515A (en) Bar cutting die
CN212042213U (en) Stamping die capable of achieving one-step stamping forming
EP1050350A1 (en) Universal puncher holder adaptor for punching machines
SU1266609A2 (en) Readjustable multiple-die press tool
DE233025C (en)
SU1496871A1 (en) Compound dies
Chapman Using modular tooling to make sheet metal components
DE1524194U (en)