AU2002248248A1 - Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer - Google Patents

Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer

Info

Publication number
AU2002248248A1
AU2002248248A1 AU2002248248A AU2002248248A AU2002248248A1 AU 2002248248 A1 AU2002248248 A1 AU 2002248248A1 AU 2002248248 A AU2002248248 A AU 2002248248A AU 2002248248 A AU2002248248 A AU 2002248248A AU 2002248248 A1 AU2002248248 A1 AU 2002248248A1
Authority
AU
Australia
Prior art keywords
radiation curable
ink
oligomer
viscosity
ink composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002248248A
Other versions
AU2002248248B2 (en
Inventor
Jeffrey T. Anderson
James G. Carlson
William J. Hunt
Jennifer L. Lee
Richard L. Severance
Ronald K. Thery
Dong Wu
Caroline M. Ylitalo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/711,346 external-priority patent/US6534128B1/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of AU2002248248A1 publication Critical patent/AU2002248248A1/en
Application granted granted Critical
Publication of AU2002248248B2 publication Critical patent/AU2002248248B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

INKS AND OTHER COMPOSITIONS INCORPORATING LOW VISCOSITY, RADIATION CURABLE, POLYESTER URETHANE OLIGOMER
The present invention relates to radiation curable printing inks. More specifically, the present invention relates to radiation curable printing inks of ink jettable viscosities that incorporate a radiation curable diluent and a radiation curable, polyester polyurethane oligomer having atypically low viscosity characteristics.
Inkjet imaging techniques have become very popular in commercial and consumer applications. Ink jet printers operate by ejecting ink onto a receiving substrate in controlled patterns of closely spaced ink droplets. By selectively regulating the pattern of ink droplets, ink jet printers can produce a wide variety of printed features, including text, graphics, images, holograms, and the like. Moreover, ink jet printers also are capable of forming three-dimensional objects as well, which is a capability suitable in applications such as rapid prototyping.
Thermal ink jet printers and piezo inkjet printers are the two main types of ink jet systems in widespread use today. For both approaches, inks must meet stringent performance requirements in order for the inks to be appropriately jettable and for the resultant printed features to have the desired mechanical, chemical, visual, and durability characteristics. In particular, inks must have relatively low viscosity when jetted, yet must be able to form accurate, durable images on the desired receiving substrate. For example, a typical ink for thermal ink jetting must typically have a viscosity in the range of 3 to 5 centipoise (0.003 to 0.005 Pa s) at 25°C, while piezo inks must typically have a viscosity in the range of 3 to 30 centipoise (0.003 to 0.03 Pa s) at the printhead temperature. The need to use low viscosity inks makes it challenging to obtain printed features with good mechanical, chemical, visual, and durability characteristics.
Solvent-based and water-based jettable inks are well known. A typical water-based ink generally comprises water, a colorant, which may be a dye and/or a pigment, one or more co-solvents, and one or more additives that are included to enhance the performance of the ink. Representative examples of such additives include one or more colorants, slip modifiers, thixotropic agents, foaming agents, antifoaming agents, flow or other rheology control agents, waxes, oils, plasticizers, binders, antioxidants, fungicides, bactericides, organic and/or inorganic filler particles, leveling agents, opacifiers, antistatic agents, dispersants, and the like. Water-based inks have drawbacks. For industrial applications, drying is energy and equipment intensive. Drying water also takes time, and the printed material needs to be handled carefully during the relatively lengthy drying period. Water-based inks are also compatible only with a limited range of substrates, typically those on which the water is absorbed to some degree. Images formed using water-based inks typically require a protective overlaminate for outdoor applications.
Instead of water, other solvent-based inks include relatively volatile, organic solvents. Such inks dry more rapidly and easily than aqueous inks. However, such solvents may be toxic, flammable, or the like, requiring careful handling. These inks also tend to be compatible with only a limited range of substrates. In order to avoid using a conventional solvent, ink compositions incorporating a radiation curable, polymerizable diluent have been developed. The diluent not only functions as a solvent, but also functions as a viscosity reducer, as a binder when cured, and as a crosslinking agent. In the uncured state, these compositions have a low viscosity and are readily jetted. However, the polymerizable monomers readily crosslink upon exposure to a suitable source of curing energy, for example, ultraviolet light, electron beam energy, and/or the like, to form a crosslinked polymer network. Depending upon the kind of monomers incorporated into the diluent, the resultant network may provide the printed features with durability, flexibility, elasticity, gloss, hardness, chemical resistance, stiffness, combinations of these, and the like. Reactive diluents formed from radiation polymerizable monomers have some drawbacks. First, printed features formed from these materials might have a tendency to shrink when cured. Further, the adhesion, weatherability, resilience, toughness, flexibility, dot gain, and the like also may not be as good as is desired. Accordingly, previous reactive diluents have incorporated radiation curable oligomers in attempts to improve one or more of these characteristics. The use of urethane oligomers, particularly polyester urethane oligomers would be greatly desired inasmuch as such urethane materials tend to have excellent durability, weatherability, resilience, adhesion compatibility with a wide range of substrates, flexibility, and/or the like. However, adding an oligomer to the reactive diluent tends to cause the viscosity of the reactive diluent to increase. Polyester urethane oligomers, in particular, tend to have relatively high viscosity characteristics that increase as the urethane content of the oligomer is increased. The high viscosity associated with these oligomers is a serious drawback for ink jetting applications, where low viscosity is critical to jettability. Other urethane oligomers, particularly those containing ether groups, might have low viscosity, but suffer from limited compatibility with different kinds of substrates and poor weatherability characteristics.
The present invention provides a low viscosity, radiation curable urethane oligomer, preferably a radiation curable polyester urethane oligomer, that can be incorporated into radiation curable ink compositions. Preferred embodiments are suitable for ink jetting applications. The ink jettable embodiments are particularly well-suited for use in piezo ink jet printers. The viscosity characteristics of the compositions are low enough so that conventional solvent is not required in order to satisfy the requisite low ink jet viscosity specifications.
The oligomers of the present invention also provide inks with good adhesion to a wide range of different substrates, including the commonly used, nonporous, polymeric substrates used for outdoor signing applications. Such substrates may be films based upon polyvinyl chloride, poly(mefh)acrylates, polyurethanes, polyolefins, alkyd resins, combinations of these, and the like. In particular, the oligomers provide good adhesion to polymethyl methacrylate substrates, which are typically difficult to adhere to, yet are highly desirable for outdoor applications. While not wishing to be bound by theory, it is believed that the polyester components, especially polycaprolactone ester components of the oligomers, helps both to reduce viscosity of the oligomer and to promote adhesion to these substrates. The combination of low viscosity, broad range compatibility with many substrates, and weatherability is atypical of conventional polyester urethane oligomers.
Preferred embodiments of the low viscosity, radiation curable urethane oligomers are transparent and colorless, making them readily compatible with colorants that might be incorporated into ink compositions of the present invention. Preferred embodiments may also be prepared from weatherable ingredients, making the oligomers and resultant ink compositions very well suited to outdoor applications. The oligomers also enhance the flexibility of cured ink compositions, allowing the inks to conform to irregular or moving surfaces. In addition to ink jet applications, the compositions of the present invention may also be used in a wide variety of other coating applications such as screen printing, clear coats, varnishes, paints, stains, and the like.
In one aspect, the present invention relates to a radiation curable ink jettable ink composition. The ink compositions includes an oligomer that is a reaction product of ingredients comprising an aliphatic polyisocyanate comprising two or more isocyanate groups; and a radiation curable alcohol comprising one or more radiation curable moieties, one or more hydroxyl moieties, and one or more polycaprolactone ester moieties.
In another aspect, the present invention relates to a printing ink with an ink jettable viscosity. The ink comprises a reactive diluent and a radiation curable polyester urethane oligomer. The oligomer is a reaction product of ingredients comprising a polyisocyanate and a radiation curable polyester alcohol. The alcohol comprises at least one radiation curable moiety, at least one hydroxyl group, and a polyester moiety comprising at least two ester groups. Preferably, the oligomer has a viscosity to mass index below about 25:1. In another aspect the present invention relates to a method of making a printing ink with an ink jettable viscosity. A radiation curable, polyester urethane oligomer is provided. Preferably, the oligomer has a viscosity to mass index below about 25: 1. The oligomer is a reaction product of ingredients comprising a polyisocyanate and a radiation curable polyester alcohol. The alcohol comprises at least one radiation curable moiety, at least one hydroxyl group, and a polyester moiety comprising at least two ester groups.
The oligomer is blended with ingredients comprising a sufficient amount of a reactive diluent such that the ink has an ink jettable viscosity.
In another aspect, the present invention relates to a printing method. A radiation curable ink is ink jetted onto a receiving substrate to form at least one printed feature. The radiation curable ink comprises a reactive diluent and a radiation curable, polyester urethane oligomer. The oligomer is a reaction product of ingredients comprising a polyisocyanate and a radiation curable polyester alcohol. Preferably, the oligomer has a viscosity to mass ratio below about 25:1. The printed feature is exposed to a curing amount of radiation. In another aspect, the present invention relates to a method of making a printing ink with an ink jettable viscosity. A radiation curable, polyester urethane oligomer is provided that is a reaction product of ingredients comprising an aliphatic polyisocyanate and a radiation curable alcohol. The alcohol includes one or more radiation curable moieties, one or more hydroxyl moieties, and one or more polycaprolactone moieties. The oligomer is blended with a sufficient amount of a reactive diluent and other optional ingredients if desired such that the ink has an ink jettable viscosity. In another aspect, the present invention relates to printing method. A radiation curable ink is ink jetted onto a receiving substrate to form at least one printed feature. The ink comprises a radiation curable, polyester urethane oligomer that is a reaction product of ingredients comprising an aliphatic polyisocyanate and a radiation curable alcohol. The alcohol includes one or more radiation curable moieties, one or more hydroxyl moieties, and one or more polycaprolactone moieties. A sufficient amount of a reactive diluent also is included such that the ink has an ink jettable viscosity. The printed feature is exposed to a curing amount of radiation.
The above mentioned and other advantages of the present invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of the embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Fig. la is a schematic illustration of a one step reaction scheme for making an oligomer composition of the present invention.
Fig. lb is a specific embodiment of the reaction scheme of Fig. la. Fig. 2 is a schematic illustration of a two step reaction scheme for making an oligomer of the present invention.
The embodiments of the present invention described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present invention.
Prior to curing, fluid compositions of the present invention preferably have one or more of several desirable features. Firstly, radiation curable compositions of the present invention tend to have sufficiently low viscosity properties so that the fluid compositions advantageously may be applied to receiving substrates using ink jetting techniques. Preferably, fluid compositions of the present invention have a viscosity of below about
30 centipoise (0.03 Pa-s), preferably below about 25 centipoise (0.025 Pa s), and more preferably below about 20 centipoise (0.02 Pa s) at the desired ink jetting temperature (typically from ambient temperature up to about 65°C). However, the optimum viscosity characteristics for a particular composition will depend upon the jetting temperature and the type of ink jet system that will be used to apply the composition onto the substrate. For example, for piezo ink jet applications, a typical desired viscosity is 3 to 30 centipoise (0.003 to 0.03 Pa s) at the print head temperature. Generally, this means that the fluid compositions preferably have a viscosity at 25°C of up to about 50 centipoise (0.05 Pa s). Particularly preferred embodiments of the fluid composition described herein tend to have viscosities in this range of 10 to 16 centipoise (0.001 to 0.0016 Pa s) at moderate temperatures of 25°C to about 65°C. Such viscosity characteristics generally help to ensure that the composition will be jettable at the desired print head temperature. Due to potential volatility and reactivity of one or more constituents of radiation curable compositions, the fluid compositions preferably are jetted at temperatures no higher than about 65°C, and more preferably no higher than about 50°C. As another preferred characteristic that is desirable for ink jetting applications, fluid compositions of the present invention desirably have moderate to low surface tension properties. Preferred formulations have a surface tension in the range of from 20 dynes/cm to 50 dynes/cm (2 to 5 Pa), more preferably in the range of from 22 dynes/cm to 40 dynes/cm (2.2 to 4 Pa) at the printhead operating temperature. Most radiation curable, monomeric constituents (hereinafter referred to as the "reactive diluent") to be incorporated into the radiation curable component of the present invention already have surface tension characteristics in the preferred ranges. Therefore, formulating fluid compositions of the present invention with appropriate surface tension characteristics for ink jet applications is easily accomplished. Preferred fluid compositions of the present invention also have Newtonian or substantially Newtonian viscosity properties. A Newtonian fluid has a viscosity that is at least substantially independent of shear rate. As used herein, the viscosity of a fluid will be deemed to be substantially independent of shear rate, and hence at least substantially Newtonian, if the fluid has a power law index of 0.95 or greater. The power law index of a fluid is given by the expression
η = m γ n-l wherein η is the shear viscosity, γ is the shear rate in s"1, m is a constant, and n is the power law index. The principles of the power law index are further described in C.W. Macosko, "Rheology: Principles, Measurements, and Applications", ISBN # 1-56081-579-5, page 85.
Newtonian fluid compositions are especially preferred over non-Newtonian fluids that exhibit substantial shear thinning behavior. Typically, substantially shear thinning fluids are elastic. Elasticity of a fluid tends to cause extension thickening behavior, which is known to prevent jetting of inks even when the low viscosity requirement is satisfied. Another reason for using fluids with at least substantially Newtonian viscosity properties is that jetting is typically achieved at shear rates around 1x10 s" , while ink refill from the reservoir into the ink jet head channels takes place at 100-1000 s"1. A highly shear thinning ink will have much higher viscosity at the refill rate than at the jetting rate. This tends to slow refill, compromising printhead performance. Shear thinning fluids can be avoided by formulating fluid compositions that exhibit little or no elasticity. Elasticity is minimized by controlling the amount and weight average molecular weight of oligo/resins incorporated into the fluid composition, by selecting highly branched oligo/resins, and/or by manipulating the solubility of the higher molecular weight species in the formulation. Generally, formulations in which the oligo/resins are more soluble tend to be more elastic. Compositions of the present invention also preferably have one or more of several desirable features when cured. Firstly, preferred embodiments of the present invention are compatible with an extremely wide variety of porous and nonporous substrates. This is due, at least in part, to the combinations of oligo/resin and monomer(s) of the reactive diluent. The radiation curable fluid compositions also exhibit good adhesion to non-porous substrates, especially those used in retroreflective sheeting top films, when measured according to ASTM D 3359-95A Standard Test Methods for Measuring Adhesion by Tape Test, Method B.
Cured compositions of the present invention may have a wide range of elongation characteristics depending upon the intended use. For example, such compositions may be characterized by an elongation of at least about 1%, preferably at least about 20%, more preferably from more than 50% to 300% or more, as desired. Cured compositions with elongation characteristics greater than about 50% are beneficially used to reduce stress cracks, improve toughness, and improve weatherability. In the practice of the present invention, elongation of a cured material refers to the maximum elongation at break determined in accordance with ASTM Test Method D-3759.
Many embodiments of the radiation cured fluids of the present invention, excepting any containing opaque inorganic carbon black or organic black dye, are transparent when measured according to ASTM 810 Standard Test Method for Coefficient of Retroreflection of Retroreflective Sheeting. That is, when coated onto retroreflective substrates, the visible light striking the surface of such films is transmitted through to the retroreflective sheeting components. This property makes such inks particularly useful for outdoor signing applications, in particular traffic control signing systems. The radiation cured films of these liquid formulations are easily formulated and cured under conditions so as to exhibit tack-free surfaces when cured. This makes the printed images resistant to dirt build-up and the like.
In preferred embodiments, the cured films also resist marring when subjected to moderate abrasion. A useful method for evaluating abrasion resistance is ASTM D 4060,
Standard Test Method for Abrasion Resistance of Organic Coatings by Taber Abraser. When monitored by percent retention of gloss or retroreflectivity over the abraded surfaces, the cured films of preferred embodiments show excellent abrasion resistance relative to conventional screen printing ink standards. The radiation cured films of preferred embodiments also exhibit durability in outdoor applications, particularly when used as a system with retroreflective sheeting. Based upon direct comparison, these films exhibit comparable or improved durability relative to conventional screen printing ink standards.
Radiation curable compositions of the present invention incorporate (1) a radiation curable urethane oligomer that is an adduct of ingredients comprising a polyisocyanate component and a radiation curable alcohol, (2) a radiation curable reactive diluent, and (3) one or more optional adjuvants that are selected based upon the intended use of the compositions. Radiation curable, urethane oligomers of the present invention are generally characterized by atypically low viscosity characteristics, have a relatively high urethane content, are very economical to manufacture, show good adhesion to a wide range of substrates, and are compatible with a wide range of substrates. For purposes of adhesion and mechanical properties such as toughness and abrasion resistance, it is desirable to incorporate at least about 10%, preferably 20% to 40% of the radiation curable oligomer into an ink jet ink.
The radiation curable, polyester urethane oligomers of the present invention have a much lower viscosity to mass ratio as compared to conventional radiation curable polyester urethane oligomers that are adducts of a polyester polyol component, for example, hydroxyethyl acrylate, and a polyisocyanate. Preferred embodiments of oligomers of the present invention, for example polyester urethane oligomers, are characterized by viscosity to mass ratios of less than about 25: 1, more preferably less than about 10: 1. As a consequence, relatively greater amounts of oligomers of the present invention may be readily incorporated into ink jettable compositions for which low viscosity is critical. In contrast, many conventional radiation curable polyester urethane oligomers may tend to have much higher viscosity to mass ratios, for example, as high as about 50: 1 or more. Substantially lesser amounts of such oligomeric materials can be incorporated into ink compositions before the viscosity of the resultant ink would become too high to be used for ink jetting. Other kinds of conventional polyurethane oligomers, such as those containing polyether segments might have low viscosity to mass ratios, but unfortunately fail to show good adhesion to a wide range of substrates. Such materials also tend to lack outdoor durability.
In the practice of the present invention, the viscosity to mass ratio (VMI) of a material is given by the expression
VMI = ηB/ Mn wherein T|B is the Brookfield viscosity in centipoise of the material at a temperature of 25°C, and Mn is the number average molecular weight of the material in grams per mole. Oligomers of the present invention may have number average molecular weights and Brookfield viscosities within a wide range, depending upon the intended use.
For ink jetting applications, oligomers are formulated such that the number average molecular weight and viscosity are generally relatively low. Preferred ink jettable compositions of the present invention have number average molecular weights in the range of from 500 to 10,000, preferably 900 to 2,500, and have a Brookfield viscosity (centipoise) of preferably up to about 50,000 (50 Pa s), more preferably from 1,000 to
40,000 (1 to 40 Pa-s), and most preferably from 1,000 to 15,000 (1 to 15 Pa s). Incorporating a urethane oligomer into a composition such as an ink is very desirable, because urethane oligomers, particularly polyester urethane oligomers, provide such compositions with flexibility, toughness, resiliency, durability, low shrinkage, weatherability, good mechanical properties, better adhesion, and/or the like. However, the viscosity of such a composition tends to increase with increasing urethane content of the oligomer. A particular advantage of oligomers of the present invention is that these oligomers may incorporate a relatively high level of urethane content without as dramatic an increase in viscosity as might be expected. This allows the oligomers to be incorporated into formulations to obtain urethane-type properties in applications, such as ink jet printing, for which maintaining low viscosity is critical.
The weight percent of urethane nitrogen is a direct measure of the amount of urethane content in a material. Higher weight percents of urethane nitrogen indicate a proportionally higher level of urethane content, and lower weight percents of urethane nitrogen indicate a proportionally lower level of urethane content. For ink jetting applications in which low viscosity is critical, preferred oligomers incorporate 0.5 to 5, preferably 2 to 4 weight percent urethane nitrogen. For other printing applications, for example, screen printing or the like, in which viscosity is much less critical, the weight percent of urethane nitrogen may vary over a much broader range, for example, 0.5 to 10 weight percent urethane nitrogen. In practical effect, the oligomer adducts of the present invention may be viewed as the reaction product resulting from end-capping a particular class of polyisocyanate materials either directly or indirectly with one or more radiation curable polyester alcohols. An alternative, conventional approach for forming radiation curable oligomers involves end capping a polyol component, for example, a diol, with a radiation curable isocyanate, for example, isocyanatoethyl methacrylate (commonly known as IEM). This alternative, conventional approach also can provide urethane oligomers having low viscosity to mass ratios below about 25:1. However, as compared to oligomers of the present invention, IEM capped polyols are much more expensive to manufacture, and tend to have lower urethane content for comparable viscosity performance. Preferred polyisocyanates are liquids at room temperature and are readily soluble in the reactive diluent. When incorporated into a urethane oligomer, the resultant urethane oligomer tends to have surprisingly lower viscosity characteristics than would be conventionally expected.
The polyisocyanate component preferably comprises one or more polyfunctional isocyanates that respectively comprise two or more NCO groups and that preferably are aliphatic. A preferred class of polyfunctional isocyanates may be represented by the formula
W-(NCO)m wherein W is an m-valent moiety. Preferably, W is aliphatic. W may be straight, branched, or cyclic and has a backbone comprising 3 to 100 carbon atoms. W optionally may comprise N, S, and/or O hetero atoms. Additionally, m is 2 or more, preferably 2 to 5, more preferably 2 to 3.
In one preferred embodiment, m is 2 and W is a divalent moiety having a backbone of 5 to 10 carbon and/or hetero atoms and containing one or more substituents other than H to provide W with a branched structure. Representative substituents include lower alkyl groups of 1 to 4 carbon atoms, lower alkoxy groups of 1 to 4 carbon atoms, nonaromatic cyclic moieties, combinations of these and the like. Of these, nonpolar moieties such as lower alkyl groups of 1 to 4 carbon atoms are preferred substituents. One or more of — CH and/or — CH2CH3 are preferred substituents.
Representative, preferred polyisocyanates includes the following diisocyanates:
which is 2, 2, 4-trimethylhexamethylene diisocyanate; and
which is 2,4,4-trimethylhexamethylene diisocyanate. These two diisocyanates are commercially available as a mixture that is commonly referred to as "TMDI". Another example of a suitable diisocyanate is isophorone diisocyanate, commonly referred to as "IPDI" and sold for example under the tradename "Desmodur I" by Bayer Corporation. Another example of a suitable diisocyanate is 4,4'-methylenebis(cyclohexyI isocyanate) commonly referred to as "Hι2MDI" and sold for example under the tradename "Desmodur W" by Bayer Corporation. In an alternate embodiment, m is 3 and W comprises an isocyanurate moiety coupled to at least three NCO moieties by appropriate linking groups such as alkylene groups of 2 to 20 carbon atoms, ether containing moieties of 2 to 20 carbon atoms, ester containing moieties of 2 to 20 carbon atoms, urethane containing moieties of 2 to 20 carbon atoms, combinations of these, and the like. One class of preferred polyisocyanates incorporating an isocyanurate ring have the formula (Such compounds may be referred to hereinafter as the isocyanurate triisocyanate, or "ITI". ):
wherein each R is independently an n+1 valent moiety that may be straight, branched or cyclic. Each R independently is preferably divalent, preferably aliphatic, and preferably comprising 2 to 20 carbon atoms. Each R preferably is -CH2 CH2 CH2 CH2
CH2 CH2-, because such triisocyanate functional isocyanurate compounds are commercially available and liquids at room temperature. Some commercially available materials of this type such as "Tolonate HDT" from Rhodia Corporation and "Desmodur N-3300" from Bayer Corporation contain significant amounts of oligomeric species, that is, where one or more of the NCO groups in the above structure forms part of the nucleus of another isocyanurate ring. It is preferred, but not required, for purposes of this invention, that the quantity of these oligomeric species be minimized, since they add to viscosity. Commercially available grades which have relatively low amounts of these oligomers and low viscosity include "Tolonate HDT-LV" from Rhodia Corporation and
"Desmodur N-3600" from Bayer Corporation. In other embodiments the polyisocyanate comprises a biuret of an aliphatic diisocyanate such as hexamethylene diisocyanate biuret sold for example under the tradenames "Tolonate HDB" and "Tolonate "HDB-LV" from Rhodia Corporation, or "Desmodur N-100" and "Desmodur N-3300" from Bayer Corporation. Other polyisocyanates useful in the current invention include aliphatic diisocyanates containing uretdione (dimer) groups, mixtures of dimer and trimer groups (for example, "Desmodur N-3400 from Bayer Corp.), and allophanate groups. Another useful polyisocyanate is "Desmodur TPLS 2294" and the like which comprises an asymmetric trimer group having the following structure:
In other embodiments, the polyisocyanate optionally may comprise mixtures of two or more isocyanate functional compounds. For example, one such mixture may comprise at least two of TMDI, ITI, and/or IPDI. In one such embodiment, the mixture may comprise, on a relative basis, 1 to 19 parts by weight TMDI and 1 to 19 parts by weight of IPDI. In another such embodiment, the mixture may comprise, on a relative basis, 1 to 19 parts by weight TMDI and 1 to 19 parts by weight of ITI. In another such embodiment, the mixture may comprise, on a relative basis, 1 to 19 parts by weight IPDI and 1 to 19 parts by weight of ITI. In another such embodiment, the mixture may comprise, on a relative basis, 1 to 19 parts by weight TMDI, 1 to 19 parts by weight of IPDI, and 1 to 19 parts by weight of ITI.
The radiation curable alcohol component of the oligomer adduct may be any one or more compounds respectively comprising one or more OH groups, one or more polycaprolactone ester moieties, and one or more radiation curable moieties. In the practice of the present invention, "radiation curable" refers to functionality directly or indirectly pendant from a monomer, oligomer, or polymer backbone (as the case may be) that participate in crosslinking reactions upon exposure to a suitable source of curing energy. Such functionality generally includes not only groups that crosslink via a cationic mechanism upon radiation exposure but also groups that crosslink via a free radical mechanism. Representative examples of radiation crosslinkable groups suitable in the practice of the present invention include epoxy groups, (meth)acrylate groups, olefinic carbon-carbon double bonds, allyloxy groups, alpha-methyl styrene groups, (meth)acrylamide groups, cyanate ester groups, vinyl ethers groups, combinations of these, and the like. The term "(meth)acryl", as used herein, encompasses acryl and/or methacryl. The energy source used for achieving crosslinking of the radiation curable functionality may be actinic (for example, radiation having a wavelength in the ultraviolet or visible region of the spectrum), accelerated particles (for example, electron beam radiation), thermal (for example, heat or infrared radiation), or the like. Preferably, the energy is actinic radiation or accelerated particles, because such energy provides excellent control over the initiation and rate of crosslinking. Additionally, actinic radiation and accelerated particles can be used for curing at relatively low temperatures. This avoids degrading components that might be sensitive to the relatively high temperatures that might be required to initiate crosslinking of the radiation curable groups when using thermal curing techniques. Suitable sources of actinic radiation include mercury lamps, xenon lamps, lasers, electron beam, carbon arc lamps, tungsten filament lamps, sunlight, and the like. Ultraviolet radiation, especially from medium pressure mercury lamps, is most preferred.
Radiation curable alcohols comprising a single OH group, one or more radiation curable moieties and one or more ester moieties are preferred inasmuch as such materials promote good adhesion and lower viscosity. Representative examples of radiation curable, polyester alcohols suitable in the practice of the present invention include the hydroxy functional polycaprolactone ester (meth)acrylates having the formula
wherein n has a range from 1-25, preferably from 2 to 5 such that the radiation curable alcohol is soluble in a reactive diluent; and R is a monovalent substituent, preferably hydrogen or a lower alkyl or cycloalkyl group of 1 to 4 carbon atoms, more preferably hydrogen or a methyl group. The radiation curable alcohol has a number average molecular weight in the range of 200 to 3,000. Materials having this structure will be hereafter referred to as "polycaprolactone (meth)acrylates" even if n = 1. An embodiment of an alcohol functional polycaprolactone (meth)acrylate for which n is about 2 is commercially available under the trade designation "TONE M-100" from Union Carbide Corp.
A particularly preferred radiation curable polyester urethane oligomer is a reaction product resulting from reacting at least substantially a stoichiometric amount of TMDI and radiation curable, caprolactone containing, alcohol functional (meth)acrylate such as the M-100 compound identified above. The amount of the radiation curable alcohol to be incorporated into the oligomer may vary within a wide range, depending upon factors such as whether the oligomer will incorporate a polyol component, the desired end use of the oligomer, the desired number average molecular weight of the oligomer, and the like. In embodiments in which no polyol component will be used, the radiation curable alcohol preferably is generally present in at least a stoichiometric amount relative to the polyisocyanate component so that substantially no unreacted NCO moieties remain in the oligomer after the two ingredients are reacted with each other. Generally, to make sure that all NCO groups react, a slight excess of OH moieties, for example, 1% to 5%, relative to NCO moieties is desired. If a polyol component will be used, the polyisocyanate component is preferably present in a stoichiometric excess relative to the radiation curable alcohol to ensure that at least some NCO moieties are available for reaction with the polyol component.
Optionally, the oligomer may further incorporate a polyol component comprising one or more mono-ols, diols, triols, tetrols, higher functional alcohols, combinations of these, and/or the like. These polyol materials may be monomers, oligomers, and/or polymers. Polyol oligomers are defined herein as comprising between 2 and 20 monomers and having a number average molecular weight of between 400 and 10,000. Polyol polymers are defined as comprising 21 or more monomers. The use of triol and/or tetrol monomers is preferred in that these materials provide the oligomer with a branched structure. Branching is desirable, because branched oligomers tend to be more soluble and have less of a tendency to crystallize when blended with the reactive diluent. Branched oligomers also tend to have a lower viscosity than straight-chained embodiments of comparable molecular weight. Branched oligomers furthermore allow for more radiation curable terminal groups per molecule which can give improved cure rates.
A particularly preferred embodiment of the polyol component comprises a polycaprolactone diol, triol, and/or tetrol. Most preferably, the polyol component comprises a polycaprolactone triol. Polycaprolactone materials advantageously are compatible with the reactive diluent, are compatible with hydroxy functional polycaprolactone (meth)acrylates, and tend to be characterized by favorable, narrow molecular weight distributions. A particularly preferred polycaprolactone triol has a weight average molecular weight of about 550 and is commercially available under the trade designation "TONE 0305" from Union Carbide Corp.
The amount of optional polyol component incorporated into the oligomer may vary within a wide range. Generally, using greater amounts of polyol component tends to provide oligomers with greater adhesion and solubility in the reactive diluent, yet tends to lead to oligomers with higher viscosity. For ink jetting applications for which desirable branching and viscosity characteristics are generally balanced for optimum performance, up to' about 50%, more preferably up to about 40%, more preferably up to about 30% of OH groups incorporated into the oligomer may come from one or more polyols.
Radiation curable, urethane oligomers of the present invention may be prepared in a variety of ways. According to one approach, the oligomer can be prepared in a single step reaction in which the polyisocyanate component, the radiation curable alcohol component, and the optional polyol component (if any) are combined and allowed to react in the presence of a suitable catalyst under conditions effective to form an oligomer composition. Alternatively, the oligomer can be prepared in a multistep reaction in which the polyisocyanate is first reacted with one of the radiation curable alcohol or the polyol component in a first step and then with the other in a second step.
A one-step preparation reaction is preferred when the oligomer is prepared without a polyol component. This approach 10 is shown schematically in Fig. la in which, on a stoichiometric basis, one mole of diisocyanate 12 is reacted with two moles (or preferably slightly more than about 2 moles) of a radiation curable polyester alcohol 14 having one OH group, two polycaprolactone ester moieties 16 and one radiation curable moiety 18. The oligomer 16 is a linear molecule with two urethane linkages 20 and one radiation curable radiation moiety 18 at each end. The reaction preferably is carried out such that there is sufficient OH on the alcohol 14 to ensure that all of the NCO groups 15 on diisocyanate 12 are reacted when the oligomer 16 is formed. Accordingly, alcohol 14 is present in a slight stoichiometric excess relative to diisocyanate 12. However, it is generally desirable not too have too much excess unreacted polyol present in the reaction product compositions. Accordingly, it is generally preferred if there is about a 1% to 5% excess of OH groups relative to NCO groups when carrying out the reaction.
Urethane forming reactions of the present invention such as that depicted in Fig. la generally may be carried out in the absence of solvent at a suitable temperature in the presence of a catalyst that facilitates reaction between OH and NCO groups. Suitable reaction temperatures are in the range from 50°C up to 100°C. A reaction temperature in the range of 50°C to 80°C is preferred. Representative catalysts include dibutyltin dilaurate, other organotin, organobismuth and organozirconium compounds, combinations of these, and the like. Reaction mixtures of the present invention generally include a catalytic amount of such materials, preferably 50 parts per million to about 0.1 weight percent of the reactants. The reaction is deemed to be complete when IR analysis of a reaction mixture sample cannot detect any unreacted isocyanate.
Fig. lb shows how the reaction scheme of Fig. la is carried out when the diisocyanate is TMDI and the radiation curable alcohol is an alcohol functional polycaprolactone acrylate for which n is about 2. The reaction product shown in Fig. lb is a linear, radiation curable oligomer having a weight average molecular weight of about 900.
It is also an option to use a multistep reaction to prepare the oligomer when the oligomer incorporates a polyisocyanate component, a radiation curable alcohol component, and a polyol component. For illustration purposes, a preferred multistep reaction scheme 30 is shown in Fig. 2 wherein an oligomer composition 32 is formed in two steps from a diisocyanate 34, a radiation curable alcohol 36 having a single OH group 38 and a single radiation curable group 40, and a triol 42. In a first step 31, the radiation curable alcohol 36 is reacted with a stoichiometric excess of the diisocyanate 34 to form an intermediate reaction product 44 that tends to comprise a mixture of radiation curable, urethane oligomer 48 and radiation curable, NCO-functional urethane oligomer 50. Generally, the relative molar amounts of diisocyanate 34 and radiation curable alcohol 36 may vary within a wide range. As general guidelines, using a molar ratio of diisocyanate 34 to radiation curable alcohol 36 in the range of 0.6: 1 to 1: 1, preferably 0.6:1 to 0.8: 1 would be suitable for preparing an oligomer composition suitable for ink jetting applications.
Still referring to Fig. 2, in second reaction step 33, the intermediate reaction product 44 is reacted with a stoichiometric amount of the triol 42 to form oligomer composition 32 comprising urethane oligomer 48 (which tends not to undergo any reaction in the second step and remains in the reaction mixture from the first step) and chain extended, radiation curable, urethane oligomer 52. The reaction preferably is carried out such that there is sufficient OH on the triol 42 to ensure that all of the NCO groups on radiation curable, NCO-functional urethane oligomer 50 are reacted when chain extended, radiation curable, urethane oligomer 52 is formed. Accordingly, triol 42 is present in an amount such that OH groups of triol 42 are present at a slight stoichiometric excess relative to reactive NCO groups that are present. However, it is generally desirable not to have too much excess unreacted triol 42 present in the reaction product compositions. Accordingly, it is generally preferred if there is about a 1 to 10% excess of OH groups relative to NCO groups when carrying out the second reaction step 33.
Fig. 2 represents an idealized view of the multistep reaction scheme. In actual practice, some side reactions may occur that result generally in higher oligomeric reaction products. For example, some unreacted diisocyanate may be present as a product of the first reaction step. This unreacted material will be present in the second step to react with available hydroxyl functionality, either on the triol and/or other species containing hyrdroxyl functionality such as hydroxyl functional, intermediate reaction species. The reactive diluent preferably comprises one or more radiation curable monomers, oligomers, and/or polymers. Subject to desired performance standards, any radiation curable monomer, oligomer, and/or polymer, or combinations thereof, may be incorporated into the reactive diluent. Accordingly, the present invention is not intended to be limited to specific kinds of radiation curable monomers, oligomers, and polymers so long as these processing conditions are satisfied. However, for ink jetting applications, such monomers, oligomers, and/or polymers, at least in combination, preferably exist as a liquid of ink jettable viscosity at the desired ink jet head temperature. The term "monomer" as used herein refers to a single, one unit molecule capable of combination with itself or other monomers to form oligomers or polymers. The term "oligomer" refers to a compound that is a combination of 2 to 20 monomer units. The term "polymer" refers to a compound that is a combination of 21 or more monomer units. As used herein, the term "oligo/resin" shall be used to refer collectively to oligomers and polymers. Preferred oligo/resins have a number average molecular weight below about 100,000, preferably from 500 to 30,000, and more preferably from 700 to 10,000.
Aromatic materials generally tend to have poor weatherability and/or poor resistance to sunlight. Accordingly, for outdoor applications, aromatic materials are preferably limited and more preferably excluded from the reactive diluents of the present invention. The monomers, oligomers, and/or polymers of the reactive diluent may comprise mono-, di-, tri- and/or tetra-functionality (in terms of radiation curable moieties). One or more monomers are preferred, especially for ink jetting applications. These monomers function as diluents or solvents for the oligomer and other components (if any), as viscosity reducers, as binders when it is cured, and as crosslinking agents. The amount of such monomers to be incorporated into the reactive diluent can vary within a wide range depending upon the intended use of the resultant composition. As general guidelines, the reactive diluent may comprise from 25 to 100, preferably 45 to 100, more preferably 70 to 100 weight percent of such monomers.
Representative examples of monofunctional, radiation curable monomers suitable for use in the reactive diluent include styrene, alpha-methylstyrene, substituted styrene, vinyl esters, vinyl ethers, N-vinyl-2-pyrrolidone, (meth)acrylamide, N-substituted (meth)acrylamide, octyl (meth)acrylate, iso-octyl (meth)acrylate, nonylphenol ethoxylate (meth)acrylate, isononyl (meth)acrylate, ethyl diglycol (meth)acrylate, isobornyl (meth)acrylate, 2-(2-ethoxyethoxy)ethyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, butanediol mono(meth)acrylate, β-carboxyethyl (meth)acrylate, isobutyl (meth)acrylate, cycloaliphatic epoxide, α-epoxide, 2-hydroxyethyl (meth)acrylate, (meth)acrylonitrile, maleic anhydride, itaconic acid, isodecyl
(meth)acrylate, dodecyl (meth)acrylate, n-butyl (meth)acrylate, methyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic acid, N-vinylcaprolactam, stearyl (meth)acrylate, hydroxy functional polycaprolactone ester (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxymethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxyisopropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyisobutyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, combinations of these, and the like.
Multifunctional radiation curable materials may also be incorporated into the reactive diluent to enhance one or more properties of the reactive diluent, including crosslink density, hardness, curing rate, or the like. If present, the reactive diluent may comprise up to 1 to 20 weight percent of such materials. Examples of such higher functional, radiation curable monomers include ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, glycerol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and neopentylglycol di(meth)acrylate, combinations of these, and the like.
Representative examples of preferred reactive diluent embodiments found to be suitable in the practice of the present invention include the reactive diluent embodiments described in Assignee's co-pending U.S. Patent Application No. 09/711,345, titled INKS AND OTHER COMPOSITIONS INCORPORATING LIMITED QUANTITIES OF
SOLVENT ADVANTAGEOUSLY USED IN INK JETTING APPLICATIONS in the names of Ylitalo et al., filed November 9, 2000; and also in Assignee's co-pending U.S. Patent Application No. 09/711,336, titled WEATHER RESISTANT, INK JETTABLE, RADIATION CURABLE, FLUID COMPOSITIONS PARTICULARLY SUITABLE FOR OUTDOOR APPLICATIONS in the names of Lee et al., filed November 9, 2000.
The relative amounts of reactive diluent and radiation curable, urethane oligomer may vary within a wide range depending upon the intended use of the resultant composition. For example, ink jettable compositions of the present invention preferably include an amount of reactive diluent effective to provide the composition with an ink jettable viscosity. For piezo ink jet applications, a typical desired viscosity is 10 to 30 centipoise at 25°C. Such viscosity characteristics generally ensures that the composition will be jettable at the desired print head temperature, which is commonly in the range of from 20°C to 60°C. As practical guidelines, compositions may contain 0.1 to 50, preferably 5 to 20, weight percent of the oligomer.
In addition to the oligomer and the reactive diluent, one or more other additives may be incorporated into compositions of the present invention in accordance with conventional practices. Typically 0.5 to 15%, preferably 0.5 to 10% of an inorganic or organic pigment may be dispersed into the ink. Other optional additives include one or more solvents, photoinitiators, colorants, slip modifiers, thixotropic agents, foaming agents, antifoaming agents, flow or other rheology control agents, waxes, oils, plasticizers, binders, antioxidants, photoinitiator stabilizers, fungicides, bactericides, organic and/or inorganic filler particles, leveling agents, opacifiers, antistatic agents, dispersants, and the like.
The compositions of the present invention are made by mixing together the desired ingredients using any suitable technique. For example, in a one step approach, all of the ingredients are combined and blended, stirred, milled, or otherwise mixed to form a homogeneous composition. As another alternative, the oligomer and reactive diluent may be blended together in a first step. Then, in one or more additional steps, one or more additives may be incorporated into the composition via blending, milling, or other mixing technique.
The compositions of the present invention may be applied in any suitable fashion onto a receiving substrate such as retroreflective substrates, metal, paper, woven or nonwoven fabrics, resin-coated paper, foil, polymer articles, polymer films, and the like. Representative examples of coating techniques include screen printing, spraying, ink jetting, gravure coating, knife coating, roll coating, brushing, curtain coating, flexographic printing, offset printing, and the like. The compositions of the present invention may be used to form graphic elements, text items, continuous layers, bar codes, three-dimensional structures, or other features. Compositions of the present invention are highly compatible with both porous and nonporous substrates. The compatibility with nonporous materials allows these compositions to be applied onto a wide range of nonporous polymer films, including polybutylene terephthalate, polyethylene terephthalate, other polyester, polyolefin, polymethyl (meth)acrylate, vinyl acetate, ABS, polyvinyl, polystyrene, high impact polystyrene, polycarbonate, polyurethane, epoxy, polyimide, polyamide, polyamideimide, polyacrylate, polyacrylamide, combinations of these, and the like. Because radiation curing generates little heat, the compositions of the present invention may be used on heat sensitive substrates. After being coated, the compositions may be cured using a suitable fluence and type of curing energy. The amount of curing energy to be used for curing depends upon a number of factors, such as the amount and the type of reactants involved, the energy source, web speed, the distance from the energy source, and the thickness of the material to be cured. Generally, the rate of curing tends to increase with increased energy intensity. The rate of curing also may tend to increase with increasing amounts of photocatalyst and/or photoinitiator being present in the composition. As general guidelines, actinic radiation typically involves a total energy exposure from 0.1 to 10 J/cm2, and electron beam radiation typically involves a total energy exposure in the range from less than 1 Mrad to 100 Mrads or more, preferably 1 to 10 Mrads. Exposure times may be from less than about 1 second up to 10 minutes or more. Radiation exposure may occur in air or in an inert atmosphere such as nitrogen.
Because the oligomer of the present invention has such low viscosity characteristics, compositions of the present invention that incorporate these oligomers may be easily formulated to have low viscosities suitable for ink jetting without the need for any solvent. Accordingly, these compositions may be loaded into the selected ink jet system at 100% solids (that is, neat), jetted onto the desired substrate in the desired pattern, and then radiation cured.
The present invention will now be further described with reference to the following illustrative examples. The following abbreviations are used throughout the examples:
THFFA tetrahydrofurfuryl acrylate;
IBOA isobornyl acrylate; EEEA 2-(2-ethoxyethoxy)ethyl acrylate;
HDDA hexanediol diacrylate;
NVC N-vinylcaprolactam;
IPTX isopropylthioxanthone commercially available under the trade designation SPEEDCURE ITX from Aceto Coφ. of
New Hyde Park, NY;
The following additional materials were used in the examples:
TΓNUVTN 292 is a trade designation for a stabilizer available from Ciba Specialty
Chemicals of Tarrytown, NY.
IRGACURE 819 is a trade designation for bis(2,4,6- trimethylbenzoyl)phenylphosphine oxide, IRGACURE 651 is a trade designation for
2,2-dimethoxy-l,2-diphenylethan-l-one, and IRGACURE 369 is a trade designation for 2-benzyl-2-dimethylamino-l-(4-moφholinophenyl)butan-l-one, all available from Ciba
Specialty Chemicals of Tarrytown, NY.
SOLSPERSE 32000 is a trade designation for a dispersant available from Avecia Inc. of Wilmington, DE.
EBECRYL 8800 is a trade designation for an aliphatic urethane acrylate diluted 10% with ethoxyethoxyethyl acrylate available from UCB Chemicals of Smyrna, GA.
Pigment Red 179 and Pigment Red 224 trade designations for red pigments available from Bayer Coφ. of Pittsburgh, PA.
Tetrahydrofurfuryl acrylate (THFFA), isobornyl acrylate (IBOA), 2-(2- ethoxyethoxy)ethyl acrylate (EEEA), hexanediol diacrylate (HDDA), isooctyl acrylate (IOA) and N-vinylcaprolactam (NVC) are available from Sartomer Co. of Exton, PA.
3M Diamond Grade sheeting refers to DIAMOND GRADE LDP REFLECTIVE SHEETING SERIES 3970 retroreflective film (polymethyl methacrylate) available from Minnesota Mining and Manufacturing Company, St. Paul, MN.
3M High Intensity Sheeting refers to 3M SCOTCHLITE HIGH INTENSITY SHEETING SERIES 3870 retroreflective film (polymethyl methacrylate) available from
Minnesota Mining and Manufacturing Company, St. Paul, MN. Example 1 Reaction product of TMDI with PolycaprolactoneAcrylate
To 281.3 g polycaprolactone acrylate ("Tone M-100", Union Carbide Coφ., 0.818 equivalents) was added 40mg 2,6-di-tert-butyl-4-methyl phenol (BHT) and 1 drop dibutyltin dilaurate (Aldrich Chemical Co.). This was heated under an atmosphere of dry air to 90°C and 84.2g "Vestanat" TMDI (a mixture of 2,2,4-trimefhyl hexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate, 0.8 eq., Creanova Inc.) was added slowly, controlling the exotherm to under 100°C with a water bath. The reaction was held at 90°C for 8 hours, whereupon the IR spectrum showed no residual isocyanate. The Brookfield viscosity of the product was determined to be 2,500 centipoise (2.5 Pa-s).
The calculated molecular weight of this material is 875.
Example 2 Reaction Product of TMDI with 89% Polycaprolactone Acrylate, 11% Other Polyols
To 60 g polycaprolactone acrylate (molecular weight 344, 0.174 eq., Aldrich Chemical Co.) was added 200mg BHT and 1 drop dibutyltin dilaurate. This was heated under an atmosphere of dry air to 45°C and 24.78 g "Vestanat" TMDI (0.236 eq.) was added slowly, controlling the exotherm to under 55°C. After a 2 hour hold at 50°C, 11.1 g "Tone" 0305 polycaprolactone triol (550 molecular weight, 0.062 eq., Union Carbide Coφ) was added along with 2 drops dibutyltin dilaurate. The reaction was held at 50°C for 48 hours, adding 2 drops of dibutyltin dilaurate at the 24 hour mark. After this the IR spectrum showed a small amount of residual isocyanate which was consumed by adding 1 g ethanol and holding for 2 hours. The Brookfield viscosity of the product was determined to be 9,000 centipoise (9 Pa s). Calculated molecular weight data: Mn = 1250, Mw = 2100. GPC molecular weight data: Mn = 1380, Mw = 2480. Example 3
Reaction Product of TMDI With 82% Polycaprolactone Acrylate, 18% Other Polyols
To 52 g M-100 polycaprolactone acrylate 0.152 eq.) and 17.6 g Tone 0305 polycaprolactone triol (0.098 eq.) was added 50mg BHT and 1 drop dibutyltin dilaurate. This was heated under an atmosphere of dry air to 50°C and 26.15 g "Vestanat" TMDI (0.249 eq.) was added slowly, controlling the exotherm to under 65°C. After a 48 hour hold at 50°C, the infrared spectrum showed a small amount of residual isocyanate which was consumed by adding 1 g ethanol and holding for 2 hours. The Brookfield viscosity of the product was determined to be 19,500 centipoise (19.5 Pa s). Calculated molecular weight data: Mn = 1600, Mw = 5000. GPC molecular weight data: Mn = 1430, Mw = 4090.
Example 4 Reation Product of TMDI With 79 % Polycaprolactone Acrylate, 21 % Other Polyols
To 48.6 g "Tone M-100" polycaprolactone acrylate 0.141 eq.) and 20.5 g Tone
0305 polycaprolactone triol (0.114 eq.) was added 50 mg BHT and 1 drop dibutyltin dilaurate. This was heated under an atmosphere of dry air to 50°C and 26.78 g "Vestanat"
TMDI (0.255 eq.) was added slowly, controlling the exotherm to under 65°C. After a 48 hour hold at 50°C, the infrared spectrum showed a small amount of residual isocyanate which was consumed by adding 1 g ethanol and holding for 2 hours. The Brookfield viscosity of the product was determined to be 40,000 centipoise (40 Pa s). Calculated molecular weight data: Mn = 1850, Mw = 10000. GPC molecular weight data: Mn = 1440, Mw = 5670. Example 5
Reaction Product of IPDI and 90% Polycaprolactone Acrylate, 10% Other Polyols To 464.2 g "Tone M-100" polycaprolactone acrylate (1.349 eq.) and 84.2 g Tone 0305 polycaprolactone triol (0.468 eq.) was added 100 mg BHT and 3 drops dibutyltin dilaurate. This was heated under an atmosphere of dry air to 50°C and 201.7 g "Vestanat" TMDI (1.815 eq.) was added slowly, controlling the exotherm to under 65°C. After a 60 hour hold at 50°C, the infrared spectrum showed a small amount of residual isocyanate which was consumed by adding 0.5 g ethanol and holding for 3 hours. The Brookfield viscosity of the product was determined to be 47,000 centipoise (47 Pa s). Calculated molecular weight data: Mn = 1255, Mw = 2100. GPC molecular weight data: Mn = 1260, Mw = 2440.
Example 6 Reaction Product of 50/50 IPDI/TMDI with 89% Polycaprolactone Acrylate,
11% Other Polyols
To 464.2 g "Tone M-100" polycaprolactone acrylate (1.349 eq.) and 84.2 g Tone 0305 polycaprolactone triol (0.468 eq.) was added 100 mg BHT and 3 drops dibutyltin dilaurate. This was heated under an atmosphere of dry air to 50°C and 201.7 g "Vestanat"
TMDI (1.815 eq.) was added slowly, controlling the exotherm to under 65°C. After a 60 hour hold at 50°C, the infrared spectrum showed a small amount of residual isocyanate which was consumed by adding 0.5 g ethanol and holding for 3 hours. The Brookfield viscosity of the product was determined to be 11,500 centipoise (11.5 Pa s). Calculated molecular weight data: Mn = 1255, Mw = 2100. GPC molecular weight data: Mn = 1260, Mw = 2440.
Example 7 Reaction Product of Desmodur N-3300 and Polycaprolactone Acrylate To 106.8 g (0.56 equivalents) of "Desmodur N-3300" hexamethylene diisocyanate trimer from Bayer Coφoration was added 0.2 g dibutyltin dilaurate followed by 0.1 g BHT and 193.2 g (0.56 equivalents) of Sartomer SR-495 polycaprolactone acrylate.
Temperature was controlled to below 65 °C with an ice bath under an atmosphere of dry air. The reaction was held at 50°C for 7 hours and found to be complete by the infrared spectrum of the product. Its molecular weight was calculated as 1614.
Example 8 Reaction Product of Rhodia "HDT-LV" and Polycaprolactone Acrylate
To 260.4 g (1.42 equivalents) of "HDT-LV" hexamethylene diisocyanate trimer from Rhodia Coφoration was added 0.2 g dibutyltin dilaurate and 0.1 g BHT followed by 490 g (1.42 equivalents) of Tone M-100 polycaprolactone acrylate. Temperature was controlled under an atmosphere of dry air to below 85°C with an ice bath. The reaction was held at 70°C for 4 hours and found to be complete by the infrared spectrum of the product. Its molecular weight was calculated to be 1581. Its viscosity was measured at
24,000 centipoise (24 Pa-s).
Comparative Example A Reaction Product of TMDI and 50% Polycaprolactone Acrylate, 50% Other Polyols To 210 g (0.61 equivalents) of Tone M-100 polycaprolactone acrylate was added
500.7 g (1.214 equivalents) Tone 0210 polycaprolactone diol, 0.1 g dibutyltin dilaurate and 0.1 g BHT. The mixture was heated under an atmosphere of dry air to 50°C and 189.6 g Vestanat TMDI (1.805 equivalents) was added so as to maintain the exotherm below 95°C. The reaction was held for 16 hours at 80°C whereupon another 0.05 g dibutyltin dilaurate was added and the temperature raised to 85°C. After 24 hours at 85°C,
9 g of methanol was added. In another hour, no residual isocyanate was seen by infrared. Its molecular weight is calculated to be: Mn = 2900 Mw = 5000. Its viscosity was initially found to be greater than 100,000 centipoise (100 Pa s) but it could not be measured accurately because the material crystallized to a solid on standing. Inks prepared from it had viscosities that were unacceptably high.
Comparative Example B Reaction Product of TMDI and 55% Polycaprolactone Acrylate, 45% Other Polyols
To 47.7 g (0.139 equivalents) of Tone M-100 polycaprolactone acrylate was added
114 g (0.228 equivalents) Priplast 3193 polyester diol from Uniqema, 0.1 g dibutyltin dilaurate, and 0.1 g BHT. The mixture was heated under an atmosphere of dry air to 50°C and 38.15 g Vestanat TMDI (0.363 equivalents) was added so as to maintain the exotherm below 95 °C. The reaction was held for 16 hours at 80°C whereupon another 0.05 g dibutyltin dilaurate was added and the temperature raised to 85°C. After 24 hours at 85°C,
2 g of methanol was added. In another hour, no residual isocyanate was seen by infrared.
Its molecular weight is calculated to be: Mn = 2800 Mw = 5000. Its viscosity was found to be greater than 100,000 centipoise (100 Pa s). Inks prepared from it had viscosities that were unacceptably high.
Comparative Example C Reaction Product of TMDI and 51% Polycaprolactone Acrylate, 49% Other Polyols
To 86.9 g (0.253 equivalents) of Tone M-100 polycaprolactone acrylate was added 20 g (0.44 equivalents) butanediol and 13.1 g (0.73 equivalents) Tone 0305 polycaprolactone triol. 0.1 g dibutyltin dilaurate and 0.1 g BHT were added and the mixture was heated under an atmosphere of dry air to 50°C. Through an addition funnel was added 80 g Vestanat TMDI (0.76 equivalents) so as to maintain the exotherm below 65°C. The reaction was held for 48 hours at 50°C whereupon no residual isocyanate was seen by infrared. Its molecular weight is calculated to be: Mn = 1700 Mw = 2500. Its viscosity was found to be 210,000 centipoise (210 Pa s). Inks prepared from it had viscosities that were unacceptably high.
Comparative Examples D Hydroxy Acrylate Not Containing Polycaprolactone
To 234 g (1.614 equivalents) of hydroxybutyl acrylate was added 0.1 g dibutyltin dilaurate and 0.1 g BHT. The mixture was heated under an atmosphere of dry air to 60°C and 166 g Vestanat TMDI (1.581 equivalents) was added so as to maintain the exotherm below 80°C. The reaction was held for 24 hours at 80°C whereupon no residual isocyanate was seen by infrared. Its molecular weight is calculated to be: Mn = 500
Mw = 500. Its viscosity was found to be 2,000 centipoise (2 Pa s). While inks prepared from it had acceptable viscosities, adhesion was poor in the absence of polycaprolactone acrylate. Comparative Example E
Hydroxy Acrylate Not Containing Polycaprolactone Acrylate To 68.5 g (0.591 equivalents) of hydroxyethyl acrylate was added 44.5 g (0.247 equivalents) Tone 0305 polycaprolactone triol, 0.1 g dibutyltin dilaurate, and 0.1 g BHT. The mixture was heated under an atmosphere of dry air to 50°C and 87 g Vestanat TMDI (0.829 equivalents) was added so as to maintain the exotherm below 80°C. The reaction was held for 48 hours at 50°C whereupon no residual isocyanate was seen by infrared. Its molecular weight is calculated to be: Mn = 775 Mw = 2100. Its viscosity was found to be
51,000 centipoise (51 Pa s). While inks prepared from it had acceptable viscosities, adhesion was marginal in the absence of polycaprolactone acrylate. Comparative Example F
Polycaprolactone Triol Endcapped with IEM
To 1984 g Tone 0305 polycaprolactone triol (10.75 equivalents) were added 0.7 g dibutyltin dilaurate, and 1.75 g BHT. The mixture was heated to 50°C and 1516 g (9.78 equivalents) Isocyanatoethyl methacrylate were added slowly with cooling so that the temperature did not exceed 65 °C. After 18 hours at 50°C and 8 hours at 60°C there was no residual isocyanate seen in the infrared spectrum. Its molecular weight is calculated to be: Mn = 975. Its viscosity was found to be 19,000 centipoise (19 Pa s). While inks prepared from it had acceptable viscosities, the inks'cure and adhesion were poor.
Example 9 Peformance Data
The adhesion characteristics of Samples 1-8 and Comparative Samples A-E to 3M High Intensity Sheeting and to Diamond Grade Sheeting were determined and the results are reported in the following tables. Clear coatings were prepared by mixing 30 parts by weight oligomer with 70 parts by weight tetrahydrofurfuryl acrylate and 4 parts Irgacure 651, a photoinitiator available from CIBA. Samples were coated using a #8 Meyer rod
(R. D. Specialties, Webster, NY). Curing was carried out using a UV processor using medium pressure mercury lamps at about 200 to 240 mj/cm2, 50 ft mn (15.2 m/min), using an RPC UV processor (RPC Industries, Plainfield, IL), normal/normal settings, nitrogen purge. Adhesion was measured by a standard Crosshatch adhesion test, ASTM D3359- 95 A Standard Test Methods for Measuring Adhesion by Tape Test, Method B. Mn, Mw, and % urethane nitrogen values are calculated from stoichiometry. Viscosity of the oligomers was measured at 25°C on a Brookfield viscometer model LVT.
Table lb: Performance Data for Samples 1-8
Table 2a: Performance Data for Comparative Examples A-E
Table 2b: Performance Data for Comparative Examples A-E
Example 10
A yellow millbase (Millbase 10) was prepared by combining 40 parts BAYER YELLOW Y5688, 25 parts SOLSPERSE 32000, and 35 parts THFFA. To prepare the millbase, the SOLSPERSE 32000 was dissolved in a mixture of the monomers. The pigment then was added to the solution and incoφorated by mixing with a rotor-stator mixer. The dispersion was milled using a Netszch Mini-Zeta bead mill (available from
Netzsch Inc. of Exton, PA) containing 0.5 mm zirconia media. The dispersion was processed for 45 minutes in the mill.
Oligomer A was prepared according to the following procedure: 281.3 g TONE M-100 polycaprolactone acrylate, available from Union Carbide Coφ. of Danbury, CT, (0.818 equivalents) was added to 0.040 g 2,6-di-tert-butyl-4-methyl phenol (BHT) and 1 drop dibutyltin dilaurate (both available from Aldrich Chemical Co. of Milwaukee, WI). This was heated with stirring under an atmosphere of dry air to 90°C. 84.2 g VESTANAT TMDI mixture of 2,2,4-trimethyl hexamethylene diisocyanate and 2,4,4- trimethylhexamethylene diisocyanate (0.80 equivalents), available from Creanova Inc. of Somerset, NJ, was added slowly, controlling the exotherm to under 100°C with a water bath. The reaction was held at 90°C for 8 hours, whereupon the IR spectrum showed no residual isocyanate. The Brookfield viscosity of the product was determined to be
2500 centipoise (2.5 Pa s). The calculated molecular weight of this material was 875.
A yellow ink (Ink 10) was prepared from 20 parts Millbase 10, 30 parts Oligomer A, 33 parts THFFA (tetrahydrofurfuryl acrylate), 30 parts IBOA (isobornyl acrylate), 30 parts EEEA (2-(2-ethoxyethoxy)ethyl acrylate), 20 parts NVC (N-vinyl caprolactam), 10 parts HDDA (hexanediol diacrylate), 4 parts TINUVIN 292, 1.8 parts STABAXOL I, 0.2 parts IRGANOX 1035, 12 parts IRGACURE 819, 4 parts IRGACURE 651, 4 parts IRGACURE 369, 2 parts IPTX. To 25 parts of the above Ink 4 was added 0.1 grams of SF96-100 flow agent to reduce the surface viscosity to 17.6 centipoise (0.0176 Pa-s) and surface tension to 23.5 dynes/cm (2.35 Pa).
The ink was printed using the x-y table using an MIT 30pL printhead (currently available as XAAR XJ 128-360 from XAAR Limited. A test pattern was printed at 317 x 285 dpi resolution onto Minnesota Mining and Manufacturing Company's 180-10 vinyl film and Minnesota Mining and Manufacturing Company's Diamond Grade (DG) sheeting. All films were cured using an RPC UV Processor (RPC Industries of Plainfield,
IL) containing two 12" medium pressure mercury bulbs under the following conditions:
Normal/Normal settings, 50 feet/min (15.2 m/min), nitrogen purge, 200-240 mJ/cm2. The cured ink showed 100% adhesion on both substrates. Dot diameters of 122 micrometers on 180-10 vinyl and 160 micrometers on DG sheeting were observed.
Example 11 Pigment Red 179 dispersion was prepared by blending 33 parts CI. Pigment Red
179, 11 parts SOLSPERSE 32000, 28 parts EEEA and 28 parts IBOA. Pigment Red 224 dispersion was prepared by blending 26 parts CI. Pigment Red
224, 8.7 parts SOLSPERSE 32000, 32.65 parts EEEA and 32.65 IBOA. The two dispersion were milled using a Netszch Mini-Zeta bead mill (available from Netzsch Inc. of Exton, PA) containing 0.5 mm zirconia media..
Pigment Red 179 dispersion (6.44 parts), 8.17 parts Pigment Red 224 dispersion,
10 parts of the oligomer prepared in Example 8, 5 parts EBECRYL 8800, 5 parts THFFA, 5 parts HDDA, 1.25 parts EEEA, 1.25 parts IBOA, 4 parts NVC, 1 part TINUVIN 292,
1.5 parts IRGACURE 819, 0.75 parts IRGACURE 651, 0.35 parts IRGACURE 369 and 0.25 parts IPTX were mixed and allowed to turn on rollers until well blended.
The resulting ink had shear viscosity of 144.2 centipoise (0.1442 Pa-s) as measured using the cup and bob geometry on a SR200 controlled stress rheometer (from Rheometric Scientific, Piscataway, NJ). The ink had power law index of 0.98, and surface tension of
34.2 dynes/cm (3.42 Pa).
The ink was coated on CONTROLTAC PLUS GRAPHIC SYSTEM 180-10 film (available from Minnesota Mining and Manufacturing Company, St. Paul, MN) at about
11 micrometer wet thickness and cured in air using medium pressure mercury lamp at a dose of 297 mJ/cm2.
The resulting prints show 100% adhesion with good mar resistance and excellent gloss.
Other embodiments of this invention will be apparent to those skilled in the art upon consideration of this specification or from practice of the invention disclosed herein. Various omissions, modifications, and changes to the principles and embodiments described herein may be made by one skilled in the art without departing from the true scope and spirit of the invention which is indicated by the following claims.

Claims (26)

What is Claimed is:
1. A radiation curable ink jettable ink composition, comprising an oligomer that is a reaction product of ingredients comprising:
(a) an aliphatic polyisocyanate comprising two or more isocyanate groups; and
(b) a radiation curable alcohol comprising one or more radiation curable moieties, one or more hydroxyl moieties, and one or more polycaprolactone ester moieties.
2. The ink composition of claim 1, further comprising a sufficient amount of a radiation curable reactive diluent such that the composition has an ink jettable viscosity.
3. The ink composition of claim 2, wherein the ink composition comprises at least 60 to 90 percent by weight of the reactive diluent and 1 to 40 percent by weight of the oligomer.
4. The ink composition of claim 2, wherein the ink composition comprises at least 20 percent by weight of the oligomer.
5. The ink composition of claim 1, wherein the molar ratio of hydroxyl groups of the radiation curable alcohol to the isocyanate groups of the polyisocyanate is at least 1.
6. The ink composition of claim 1, wherein the ingredients of the oligomer further comprise one or more polyols in an amount such that at least 75% of the hydroxyl groups incoφorated into the oligomer are from the radiation curable alcohol.
7. The ink composition of claim 1, wherein the radiation curable alcohol has the formula
wherein n has a range from 1-10, preferably from 2 to 5 such that the radiation curable alcohol is soluble in a reactive diluent; and R is a monovalent substituent.
8. The ink composition of claim 1, wherein n is 2.
9. The ink composition of claim 1, wherein the polyisocyanate comprises 2, 2, 4-trimethylhexamethylene diisocyanate.
10. The ink composition of claim 1, wherein the polyisocyanate comprises 2, 4, 4- trimethylhexamethylene diisocyanate.
11. The ink composition of claim 1 , wherein the polyisocyanate comprises a mixture of 2, 2, 4-trimethylhexamethylene diisocyanate and 2, 4,
4-trimethylhexamethylene diisocyanate.
12. The ink composition of claim 1, wherein the polyisocyanate comprises isophorone diisocyanate.
13. The ink composition of claim 1, wherein the polyisocyanate is a mixture comprising, on a relative basis, (a) 1 to 19 parts by weight of at least one of 2, 2, 4-trimethylhexamethylene diisocyanate and 2, 4, 4-trimethylhexamethylene diisocyanate and (b) 1 to 19 parts by weight of at least one of isophorone diisocyanate and/or an isocyanate functional isocyanurate.
14. The ink composition of claim 1, wherein the polyisocyanate comprises an isocyanurate moiety.
15. The ink composition of claim 1, wherein the polyisocyanate comprises a compound of the formula
π(OCN
,(NCO)n
wherein each R is independently an n+1 valent moiety and each n independently is 1 to 3.
16. The ink composition of claim 1, wherein the composition when cured has an elongation in the range of 50% to 300%.
17. The ink composition of claim 1, wherein the composition has a surface tension in the range of 22 to 40 dynes/cm (2.2 to 4 Pa).
18. The ink composition of claim 1, wherein the radiation curable, polyester urethane oligomer has a viscosity to mass index below 25:1.
19. A printing ink with an ink jettable viscosity, said fluid comprising a reactive diluent and a radiation curable polyester urethane oligomer, wherein the oligomer is a reaction product of ingredients comprising a polyisocyanate and a radiation curable, polyester alcohol, said alcohol comprising at least one radiation curable moiety, at least one hydroxyl group, and a polyester moiety comprising at least two ester groups.
20. The printing ink of claim 19, wherein the radiation curable polyester urethane oligomer has a viscosity to mass index below 25: 1.
21. A method of making a printing ink with an ink jettable viscosity, comprising the steps of:
(a) providing a radiation curable, polyester urethane oligomer of claim 19 of having a viscosity to mass index below 25: 1 ; and
(b) blending the oligomer with ingredients comprising a sufficient amount of a reactive diluent such that the ink has an ink jettable viscosity.
22. The method of claim 21, wherein the radiation curable polyester urethane oligomer has a viscosity to mass index below 25: 1.
23. A printing method, comprising the steps of: (a) ink jetting a radiation curable ink onto a receiving substrate to form at least one printed feature, wherein the radiation curable ink comprises a reactive diluent and a radiation curable, polyester urethane oligomer, wherein the oligomer is a reaction product of ingredients comprising a polyisocyanate and a radiation curable polyester alcohol; and (b) exposing the printed feature to a curing amount of radiation.
24. The method of claim 23, wherein the radiation curable polyester urethane oligomer has a viscosity to mass index below 25: 1.
25. A method of making a printing ink with an ink jettable viscosity, comprising the steps of:
(a) providing a radiation curable, polyester urethane oligomer of claim 1; and
(b) blending the oligomer with a sufficient amount of a reactive diluent such that the ink has an ink jettable viscosity.
26. A printing method, comprising the steps of: (a) ink jetting a radiation curable ink of claim 2 onto a receiving substrate to form at least one printed feature; and
(b) exposing the printed feature to a curing amount of radiation.
AU2002248248A 2000-11-09 2001-10-25 Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer Ceased AU2002248248B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/711,346 US6534128B1 (en) 2000-11-09 2000-11-09 Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer
US09/711,346 2000-11-09
PCT/US2001/050308 WO2002061002A2 (en) 2000-11-09 2001-10-25 Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer

Publications (2)

Publication Number Publication Date
AU2002248248A1 true AU2002248248A1 (en) 2003-02-20
AU2002248248B2 AU2002248248B2 (en) 2006-06-22

Family

ID=24857726

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002248248A Ceased AU2002248248B2 (en) 2000-11-09 2001-10-25 Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer

Country Status (11)

Country Link
US (1) US6534128B1 (en)
EP (1) EP1337596B1 (en)
JP (1) JP2004518787A (en)
KR (1) KR100828061B1 (en)
CN (1) CN1250660C (en)
AT (1) ATE340831T1 (en)
AU (1) AU2002248248B2 (en)
BR (1) BR0115174A (en)
DE (1) DE60123462T2 (en)
ES (1) ES2273924T3 (en)
WO (1) WO2002061002A2 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038688A2 (en) * 2000-11-09 2002-05-16 3M Innovative Properties Company Weather resistant, ink jettable, radiation curable, fluid compositions particularly suitable for outdoor applications
US6558753B1 (en) * 2000-11-09 2003-05-06 3M Innovative Properties Company Inks and other compositions incorporating limited quantities of solvent advantageously used in ink jetting applications
US7288591B2 (en) * 2001-09-25 2007-10-30 3M Innovative Properties Company Curable dispersants
GB0205151D0 (en) * 2002-03-05 2002-04-17 Sericol Ltd An ink-jet ink printing process and ink-jet inks used therein
US7037952B2 (en) * 2002-08-02 2006-05-02 Seiren Co., Ltd. Ultraviolet ray curable ink, ink composition for ink jet and process for preparing ink jet printed matter using the same
JP2004090223A (en) * 2002-08-29 2004-03-25 Konica Minolta Holdings Inc Inkjet printer and image recording method
US6857737B2 (en) 2002-12-23 2005-02-22 3M Innovative Properties Company UV ink printed graphic article
US6958189B2 (en) * 2003-03-31 2005-10-25 Exatec, Llc Ink for a polycarbonate substrate
ATE313603T1 (en) * 2003-05-16 2006-01-15 Tetenal Ag & Co Kg PIGMENT PREPARATION
US7064153B2 (en) * 2003-09-25 2006-06-20 Jetrion, L.L.C. UV cure ink jet ink with low monofunctional monomer content
JP2005118769A (en) * 2003-10-15 2005-05-12 Rohm & Haas Electronic Materials Llc Pattern formation
GB0324749D0 (en) * 2003-10-23 2003-11-26 Avecia Ltd Compositions
US7294656B2 (en) * 2004-01-09 2007-11-13 Bayer Materialscience Llc UV curable coating composition
MY144221A (en) * 2004-03-03 2011-08-15 Polynovo Biomaterials Pty Ltd Biocompatible polymer compositions for dual or multistaged curing.
DE102004012903A1 (en) * 2004-03-17 2005-10-06 Bayer Materialscience Ag Low-viscosity allophanates with actinically curable groups
US7220303B2 (en) * 2004-04-13 2007-05-22 Hewlett-Packard Development Company, L.P. Pigmented inks having different particle sizes and/or morphologies and distinct chemical dispersions
US7732041B2 (en) * 2004-08-02 2010-06-08 Exatec Llc Decorative ink for automotive plastic glazing
US7135505B2 (en) * 2004-10-25 2006-11-14 Bayer Materialscience Llc Radiation curable coatings based on uretdione polyisocyanates
US20060142415A1 (en) * 2004-12-29 2006-06-29 3M Innovative Properties Company Method of making and using inkjet inks
US20060199007A1 (en) * 2005-03-01 2006-09-07 Sivapackia Ganapathiappan Urethane polymer containing latex particles
US7956098B2 (en) * 2005-04-12 2011-06-07 Bayer Materialscience Llc Coating compositions containing ethylenically unsaturated polyurethanes as binders
JP4815852B2 (en) * 2005-04-15 2011-11-16 東洋インキScホールディングス株式会社 Active energy ray-curable inkjet ink composition
US20060293484A1 (en) * 2005-06-24 2006-12-28 Bayer Materialscience Llc Low viscosity, ethylenically-unsaturated polyurethanes
CA2614887A1 (en) 2005-07-25 2007-02-01 Toyo Ink Mfg. Co., Ltd. Active energy beam-curable ink for injet printing
JP5145629B2 (en) * 2005-07-29 2013-02-20 Dic株式会社 Clear ink composition for energy ray curable ink jet recording
KR101062819B1 (en) * 2005-08-06 2011-09-07 최용순 Photocurable coating composition comprising a hyperbranched prepolymer, a method of manufacturing the same, and a product manufactured using the same
US20070116311A1 (en) * 2005-11-16 2007-05-24 Henkel Corporation High strength curable compositions for the solid freeform fabrication of hearing aids
US7674842B2 (en) * 2005-11-30 2010-03-09 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds and phase change inducing components
US7541406B2 (en) * 2005-11-30 2009-06-02 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds
US7449515B2 (en) * 2005-11-30 2008-11-11 Xerox Corporation Phase change inks containing compounds derived from isocyanate, unsaturated alcohol, and polyol
TW200801136A (en) 2006-02-17 2008-01-01 Toyo Ink Mfg Co Active energy ray curing type inkjet ink composition
JP5236171B2 (en) * 2006-02-27 2013-07-17 富士フイルム株式会社 INK COMPOSITION, INKJET RECORDING METHOD, PRINTED MATERIAL, AND METHOD FOR PRODUCING A lithographic printing plate
JP2007262178A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Ink composition, inkjet recording method, printed matter and process for producing planographic printing plate
US20080045618A1 (en) * 2006-06-27 2008-02-21 Nagvekar Devdatt S Low viscosity UV curable ink formulations
JP5189258B2 (en) * 2006-07-28 2013-04-24 富士フイルム株式会社 INK COMPOSITION, INKJET RECORDING METHOD, PRINTED MATERIAL, AND METHOD FOR PRODUCING A lithographic printing plate
JP5159097B2 (en) * 2006-09-22 2013-03-06 富士フイルム株式会社 Ink composition, ink jet recording method and printed matter
WO2008048533A2 (en) * 2006-10-13 2008-04-24 Hexion Specialty Chemicals, Inc. Ink compositions and methods of use thereof
JP5340549B2 (en) * 2007-02-19 2013-11-13 富士フイルム株式会社 Ink composition, inkjet recording method, and printed matter
GB0705878D0 (en) 2007-03-27 2007-05-02 Fujifilm Sericol Ltd A printing ink
KR20080092839A (en) * 2007-04-12 2008-10-16 칫소가부시키가이샤 Ink-jet ink
US7547105B2 (en) * 2007-07-16 2009-06-16 3M Innovative Properties Company Prismatic retroreflective article with cross-linked image layer and method of making same
US20090181182A1 (en) * 2008-01-10 2009-07-16 Sloan Donald D Multipurpose digital ink
US8399534B2 (en) * 2008-02-01 2013-03-19 Sun Chemical Corporation EC coating and inks having improved resistance
US8402096B2 (en) * 2008-06-24 2013-03-19 Microsoft Corporation Automatic conversation techniques
JP6085078B2 (en) * 2008-08-19 2017-02-22 日立マクセル株式会社 Energy ray curable inkjet ink composition
EP2361396A4 (en) * 2008-12-08 2018-01-24 3M Innovative Properties Company Prismatic retroreflective article bearing a graphic and method of making same
KR102103414B1 (en) * 2008-12-08 2020-04-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Protective overlay bearing a graphic and retroreflective articles comprising the overlay
JP5171794B2 (en) 2009-03-11 2013-03-27 東洋インキScホールディングス株式会社 Ink composition and cured product using the same
JP5349097B2 (en) 2009-03-19 2013-11-20 富士フイルム株式会社 Ink composition, inkjet recording method, printed matter, and method for producing molded printed matter
US9701802B2 (en) 2009-04-08 2017-07-11 Allnex Ip S.A.R.L. Reinforced UV-A curable composite compositions and methods
WO2011061226A1 (en) * 2009-11-18 2011-05-26 Oce-Technologies B.V. Radiation curable ink composition
JP5887116B2 (en) * 2011-11-30 2016-03-16 富士フイルム株式会社 Ink jetting ink containing alginic acid having a specific Newtonian viscosity coefficient and / or salt thereof, method of forming hydrogel using the ink jet discharging ink, and hydrogel formed using the ink jet discharging ink
EP2644664B1 (en) * 2012-03-29 2015-07-29 Fujifilm Corporation Actinic radiation-curing type ink composition, inkjet recording method, decorative sheet, decorative sheet molded product, process for producing in-mold molded article, and in-mold molded article
ES2546257T3 (en) * 2012-06-06 2015-09-22 Agfa Graphics N.V. Inkjet printing methods
EP2703459B1 (en) * 2012-08-31 2015-01-21 Hewlett-Packard Industrial Printing Ltd. Process for curing photo-curable ink compositions
EP2703458B1 (en) * 2012-08-31 2015-07-08 Hewlett-Packard Industrial Printing Ltd. Photo-curable ink composition
US20140275320A1 (en) 2013-03-14 2014-09-18 Allnex IP S.à.r.I. Methods for making elastomers, elastomer compositions and related elastomers
RU2654485C2 (en) 2013-05-27 2018-05-21 Басф Се Method for producing urethane(meth)acrylates
FR3011840B1 (en) * 2013-10-14 2016-10-28 Arkema France ACRYLATE URETHANES FOR RETICULABLE COATINGS
JP6020524B2 (en) 2013-11-14 2016-11-02 株式会社リコー Active energy ray-curable inkjet ink, ink container, inkjet discharge device, cured product, and decorative body
KR102185745B1 (en) * 2014-04-02 2020-12-02 성균관대학교산학협력단 Thixotropic oligomer composition for stereolithography and three dimensional article prepared therefrom
US9873180B2 (en) * 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US9676962B2 (en) * 2014-11-07 2017-06-13 Xerox Corporation Anti-wetting, low adhesion coatings for aqueous ink printheads
CN107848285B (en) * 2015-07-10 2021-02-09 三井化学株式会社 Polyurethane gel and method for producing same
US10883014B2 (en) * 2018-02-27 2021-01-05 Sdc Technologies, Inc. Visible light curable coating compositions, articles, and processes of coating articles
WO2019212457A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Non-aqueous ink compositions
WO2019212454A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Non-aqueous ink compositions
AT521316A1 (en) * 2018-06-07 2019-12-15 All Bones Gmbh Polymer mixture and its use in 3D printing
US20220033678A1 (en) 2018-09-24 2022-02-03 Basf Se Photocurable composition for use in 3d printing
WO2020131185A2 (en) 2018-09-26 2020-06-25 Dvorchak Enterprises Llc One component uv curable compositions and methods for making same
CN114729209A (en) * 2019-12-26 2022-07-08 株式会社理光 Active energy ray-curable composition, ink set, composition storage container, image forming apparatus, image forming method, and printed matter
WO2022130278A1 (en) * 2020-12-18 2022-06-23 3M Innovative Properties Company Laminate comprising plasticizer-containing layer and ink layer, and radiation curable ink

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700643A (en) * 1970-09-02 1972-10-24 Union Carbide Corp Radiation-curable acrylate-capped polycaprolactone compositions
USRE30212E (en) * 1974-09-05 1980-02-12 Union Carbide Corporation Coating and ink compositions
US4188472A (en) 1978-10-06 1980-02-12 Ppg Industries, Inc. Curable lactone derived resins
US4303924A (en) 1978-12-26 1981-12-01 The Mead Corporation Jet drop printing process utilizing a radiation curable ink
US4264757A (en) * 1979-06-26 1981-04-28 Union Carbide Corporation Radiation-curable allyl- or vinyl capped polycaprolactone compositions
US4340497A (en) 1980-03-21 1982-07-20 Union Carbide Corporation (N-Substituted carbamoyloxy) alkanoyloxyalkyl acrylate esters
US4618635A (en) * 1983-06-30 1986-10-21 Union Carbide Corporation Coating compositions prepared from lactone-acrylate adduct, polyol and isocyanate
US4555449A (en) * 1984-02-09 1985-11-26 Union Carbide Corporation Magnetic recording medium
US4874799A (en) 1985-05-17 1989-10-17 M&T Chemicals Inc. Aqueous akaline developable, UV curable urethane acrylate compounds and compositions useful for forming liquid 100 percent solids, solvent-free solder mask coatings
US5179183A (en) 1987-06-30 1993-01-12 Union Carbide Chemicals & Plastics Technology Corporation Curable compositions based on (N-substituted carbamoyloxy)alkanoyloxyalkyl acrylate polymers
US4847329A (en) 1987-06-30 1989-07-11 Union Carbide Corporation (N-substituted carbamoyloxy)alkanoyloxyalkyl acrylate polymers and compositions made therefrom
US5115025A (en) 1987-06-30 1992-05-19 Union Carbide Chemicals & Plastics Technology Corporation (N-substituted carbamoyloxy)alkanoyloxyalkyl acrylate polymers and compositions made therefrom
US4978969A (en) 1989-07-05 1990-12-18 Hewlett-Packard Company Method for printing using ultra-violet curable ink
GB9123070D0 (en) 1991-10-30 1991-12-18 Domino Printing Sciences Plc Ink
GB9014299D0 (en) 1990-06-27 1990-08-15 Domino Printing Sciences Plc Ink composition
US5275646A (en) 1990-06-27 1994-01-04 Domino Printing Sciences Plc Ink composition
JP2849240B2 (en) 1991-07-01 1999-01-20 早川ゴム株式会社 Active energy ray-curable oligomer for antifogging composition
JP3123195B2 (en) 1992-04-15 2001-01-09 ミノルタ株式会社 Inkjet recording liquid
JPH05320287A (en) 1992-05-27 1993-12-03 Nippon Kayaku Co Ltd Resin composition and cured material thereof
GB2270917A (en) 1992-09-23 1994-03-30 Sericol Ltd Urethane(meth)acrylates
ES2121136T3 (en) 1993-12-14 1998-11-16 Canon Kk INK, METHOD FOR THE PRINTING OF INKS AND INSTRUMENT USING THE SAME.
US5703141A (en) 1995-09-25 1997-12-30 Tarkett Ag UV curable coatings
GB9603667D0 (en) 1996-02-21 1996-04-17 Coates Brothers Plc Ink composition
US5981113A (en) 1996-12-17 1999-11-09 3M Innovative Properties Company Curable ink composition and imaged retroreflective article therefrom
JPH1143627A (en) 1997-07-30 1999-02-16 Jsr Corp Radiation-curable resin composition
GB9725928D0 (en) 1997-12-05 1998-02-04 Xaar Plc Radiation curable ink jet ink compositions
GB9725929D0 (en) 1997-12-05 1998-02-04 Xaar Plc Radiation curable ink jet ink compositions
EP1561792B1 (en) 1998-10-29 2006-08-30 Agfa-Gevaert New ink compositions for ink jet printing

Similar Documents

Publication Publication Date Title
AU2002248248B2 (en) Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer
AU2002248248A1 (en) Inks and other compositions incorporating low viscosity, radiation curable, polyester urethane oligomer
US6558753B1 (en) Inks and other compositions incorporating limited quantities of solvent advantageously used in ink jetting applications
EP1355999B1 (en) Weather resistant, ink jettable, radiation curable, fluid compositions particularly suitable for outdoor applications
EP1432750B1 (en) Curable dispersants
EP0853650B1 (en) Hot melt ink jet vehicle
JP4923523B2 (en) Active energy ray curable ink for ink jet
WO2008045517A2 (en) Radiation curable and jettable ink compositions
JP2007056232A (en) Active energy ray-curable ink for inkjet
JPH11286641A (en) Phase change ink composition
JP2000219720A (en) Urethane resin
JPWO2007055333A1 (en) Active energy ray curable inkjet ink
JP6828273B2 (en) Method for manufacturing curable composition for stereolithography, photocurable product, and molded product
JPH11286639A (en) Phase change ink carrier composition
JP2002167537A (en) Ultraviolet-curing ink-jet ink composition
JP3119282B2 (en) UV-curable printing ink composition