AU2002231380B2 - Inflatable structure - Google Patents

Inflatable structure Download PDF

Info

Publication number
AU2002231380B2
AU2002231380B2 AU2002231380A AU2002231380A AU2002231380B2 AU 2002231380 B2 AU2002231380 B2 AU 2002231380B2 AU 2002231380 A AU2002231380 A AU 2002231380A AU 2002231380 A AU2002231380 A AU 2002231380A AU 2002231380 B2 AU2002231380 B2 AU 2002231380B2
Authority
AU
Australia
Prior art keywords
legs
structural elements
inflatable
tubes
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2002231380A
Other versions
AU2002231380A1 (en
Inventor
Etienne Visser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2002231380A1 publication Critical patent/AU2002231380A1/en
Application granted granted Critical
Publication of AU2002231380B2 publication Critical patent/AU2002231380B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/20Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/20Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
    • E04H2015/201Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure with inflatable tubular framework, with or without tent cover

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Tents Or Canopies (AREA)
  • Materials For Medical Uses (AREA)

Abstract

This invention comprises an inflatable structure that is constructed by combining polyhedron structural elements to form more complex geodesic structures. The structural elements are constructed out of straight inflatable tubes, in which the warp of the polyester reinforced fabric is aligned with the principal tube axis, giving it high resistance to bending. The complementary leg ends are connected at the vertices with connectors that comprise a slider and track formation, fixed along the axial angle at the end of each leg. Each leg end is shaped along the natural complimentary lines along the intersecting surfaces of the adjacent structural element. Once assembled, in combination with a fabric cover and groundsheet, the tent is stable and completely freestanding.

Description

Description Inflatable structure This invention relates to an inflatable structure.
The applicant is the patentee in respect of SA patent no 97/ 5569 Inflatable tent frame which describes a frame comprising at least three tubular legs each constituting a separately sealed chamber that is capable of being inflated with a fluid such as air or gas to constitute a frame structure for a tent or canopy.
Conventionally, inflatable structures such as inflatable boats, inflatable life rafts and the like are manufactured from airtight fabrics. These fabrics conventionally consist of a polyvinyl chloride (PVC) fabric reinforced with woven polyester. The fabric is cut and welded, either with the use of heat welding or with adhesives, to obtain the desired shapes.
However, tubes that are relatively long and narrow tend to distort, particularly if they are unsupported. Thus for example to endeavour to deal with this problem large numbers of inflatable tubes are used in an arrangement as shown in French Patent No. 2697045 (A.S.
Semmel). This is complex and expensive.
This kind of problem normally does not arise with inflatable water craft since these craft utilise relatively short, large diameter tubes and normally include rigid or semi-rigid structures to which the tubes are attached.
In the known inflatable tent technology it is very difficult to construct a frame that is fully free standing, unsupported by anchors and anchor ropes. Stability is normally achieved by utilising relatively large diameter tubes combined with an anchoring system, making the tent relatively heavy and expensive, limiting the application potential to relative small-specialised market sectors. The arrangement of tubes in tetrahedron formation is disclosed in British Patent No. 2090622. Here the ends of all three tubes engage the ground. There is no learning that these tubes can be connected together.
Frame structures as typically utilised in a tent or canopy, utilise structural intersections that are typically too complex and difficult to manufacture with the current state of art in inflatable tube manufacturing.
In conventional tent construction where the frame is constructed out of solid structural elements such as metal tubing or spring steel rods, a fare amount of labour and knowledge and time is needed to construct the tent. These tents, even in their simplest form still comprise different parts that need assembly. In US Patent 3,502,091 (Corbin) there is shown a tent supporting frame comprising a ridge struts which arc hinged together and to side struts. In order for the frame to take up a support position, a complicated hub with an extendable rod therethrough is provided and cable system including lock means is provided to draw the ridge struts into the desired position.
In US Patent No. 2,938,526 (Harrison III, et al) there is described an inflatable shelter including an arrangement of tubes some of which are arranged in tetrahedron formation wherein a cap portion is provided to which twelve inflatable struts are connected.
Although this may seem to be theoretically possible, it is doubted whether this can be provided in practice. The cap portion is too complicated to be practically possible to manufacture. Furthermore the arrangement in this specification, ropes are required to connect the ends of the formations to permit the structure to be erect~ed. In addition there are provided spoke-like tubes between the formation leading to the cap portion. This will means that webbing members on either side of each spoke-like tube will he inclined to one another making for a comnplex internal shape.
It is an object of this invention to provide tubular structural elements that address these deficiencies and to provide structures that utilise such structural elements.
Statement of the invention.
According to this invention there is provided a structure comprising at least three structural units cach consisting of three inflatable legs, two of which constitute support legs and the third constituting an apical leg, each leg having a free end and an inner end, the inner ends of the three legs being joined at a centrepoint, the legs being arranged to define a tetrahedron with the three legs lying on three adjacent edges of the tetrahedron and with adjacent pairs of legs lying in planes of three sides of the tetrathedron, and the free ends of the legs define the fourth side of the tetrahedron; whercin the free ends of the units are closed and wherein the units are arranged each with one leg joined Lo corresponding legs of the other units at a join position.
The three legs of each unit are preferably of the same length although two of the legs are of the same length and the third leg is of a different length. Preferably each leg is straight. Each leg preferably comprises a plastic reinforced by a woven fabric. The warp of the fabric is conveniently aligned with the tube axis.
A connector unit is conveniently provided at the free end of at least one of thc legs whereby it may be connected to a similar leg of another structural unit.
Being polyhedral, the structural element of the invention will yield, in combination with similar structural elements, a variety of geodesic structures. In such structures, the apical legs of the structural elements may be secured to the apical legs of adjacent, similar structural elements. In the same way the support legs of the structural elements may be secured to the support legs of adjacent, similar structural elements.
The apical leg of each structural element may be provided with mating connector formations to permit easy connection and disconnection to the apical legs of adjacent structural elements. In the same. way the support legs of each structural element may be provided with mating connector formations to permit easy connection and disconnection to the support legs of adjacent structural elements.
In the preferred form of the invention, the connector constitutes the mating track and slider formations that can be inter engaged with one another to connect the structural elements together.
The tube ends of each structural element is geometrically shaped along the natural complimentary lines along the intersecting surfaces of the adjacent structural element. The connectors are fixed along their relative axial angles.
Connecting adjacent structural elements in this manner is simple yet it results in a very strong and supportive joint, utilising the inherent strength of the inflatable tube.
Structural elements connected together into a composite structure in this way form a very stable inflated structure.
Brief description of the drawings In the drawings: Figure 1 is a diagranmmatic isometric view of a tetrahedral structural element according to this invention; Figure 2 is a diagrammatic plan view of a simple inflatable structure made up of four of the structural elements of Figure 1; Figure 3 is a diagrammatic end elevation of the structure of Figure 2; Figure 4 is a diagrammatic plan view on the point of connection of the structural elements in the structure of Figures 2 and 3; Figure 5 is a diagrammatic sectional side elevation illustrating a novel lighting arrangement for structures according to the invention; Figures 6, 7 and 8 are diagrammatic plan view, end elevation and side elevation respectively of a structure that combines the structural element of Figure 1 with a number of similar and dissimilar units to provide a more complex geodesic dome structure than that illustrated in Figures 2 and 3.
Description of embodiments of the invention The inflatable structure of the invention is more of a construction system than a simple structure. The system relies on the use of an inflatable polyhedral structural element as its basic unit of construction. By combining such a structural element with similar structural elements or with similarly polyhedral structural elements, a large variety of structures can be created as will he illustrated below.
The structural element 10 illustrated in Figure 1 has ain essentially straight sided tetrahedral shape. A tetrahedron, being a polyhedron with four triangular sides, the structural element is made of three inflatable relatively narrow tubes 10.1, 10.2, 10.3, each lying on an edge of the tetrahedron. Three of the triangular sides of the tetrahedron are constituted by the triangular planes included between the three legs and the fourth triangular side is constituted by the plane defined by the free ends of the legs.
Seen differently, the structural element constitutes an inverted Y shaped support element.
The legs 10. 1 and 10. 2 l ie on the inverted arms o f the Y and constitute support le gs. The remaining leg 10.3 defines the stern of the Y, which is angled relatively to the legs 10. 1, 10. 2 to define a support beam in structures to be erected with the use of the structural element The tubes making up the legs 10, 1, 10.2, 10.3 of the structural support element are mnade from airtight PVC fabric reinforced with woven polyester.
The woven polyester reinforcing fabric is arranged with the warp thereof aligned longitudinally with the principal axis of each of the tubular legs 10.1, 10.2, 'and 10.3.
This gives the tubes a high resistance to bending.
If it is desired to permit curvature of the tubes to provide a more dome shaped tetrahedron, the polyester reinforcing fabric may be-arranged on the bias (with the warp at an angle to the tube axis) to a greater or lesser degree, depending on the curvature that will be permitted.
The airtight fabric is double welded along the length of each tube. In practice, the fabric is welded along axially extending seams with a separate strip of fabric welded internally along each of the seams to provide enhanced sealing.
The tubes making up the legs 10.1, 10.2 and 10.3 are interconnected at their inner ends 10.5 across a joint 12 through which the pressurising fluid can flow freely during inflation and deflation of the structural element 10. The closed end 10.4 of each leg 10.1, 10.2 and 10.3 is geometrically shaped along the natural complimentary lines along the intersecting surfaces of the adjacent structural element.
The structural element 10 is inflated and deflated by means of an inflation valve (illustrated diagrammatically at 14). The inflatable tubes are airtight and once it is filled with compressed gas to the desired pressure and sealed off, will maintain its rigidity and support strength without any further addition of compressed air.
The most convenient pressurising fluid would be compressed air obtained from a blower or compressor, or from a pressurised gas canister, but alternative pressurising fluids such as motor vehicle exhaust gas could also be used, provided the appropriate inflation fittings are used.
The structural element 10 of the invention can be combined into relatively complex structures that, because of the tetrahedral shape of the unit 10, will have the characteristics of geodesic domes.
The simple structure 100 illustrated in Figures 2 and 3 provides an example of the structure building capabilities of the basic structural element hTI the structure 100, four of the units 10 are interconnected to form a four-sided structural frame.
The apical legs 10.3 of the units 10 are connected to one another at the apex 102 of the structure 100 by means of connectors that will be described below. At the connection there are preferably valves leading into support legs 10. 1 and 10.2 near their lower closed ends. The valves of adjacent legs are connected by means of short hoses during inflation so that the entire structure can be inflated from a single inflation valve 14.
The support legs 10. 1 and 10. 2 of the structural elements 10 extend down to the ground and are connected to one another by means of connectors that will be described below.
The structure 100 may now be clad with a fabric cover (not shown).
Once the structure 100 is clad with a fabric cover and fastened to a groundsbeet, it is completely free standing and needs no pegs or anchor ropes to keep it stable. Very little experience or knowledge is now required to pitch the tent. The energy thadt pitches the tent is supplied by the compressed gas and the whole process is done in a fraction of the normal time.There, is also no assembly needed to pitch the tent. The unit only needs to be unfolded and inflated to pitch the tent. The same applies when putting the tent down.
The valves in the tubes are opened to let the compressed gas out and the whole structure collapses. It is then folded as a unit in the normal way. There is thus no poles or other stnictural elements to account for.- The structure 100 provides a high degree of wind resistance but, if required, the structure can be pegged to the ground.
It will be seen that the structure 100 is erected using four separate structural elements that are connected to one another.
Figure 4 illustrates two of the metal connectors 15 that are used to interconnect the structural element ends 10.4 of the structural elements 10 (the frec cnds of the legs 10.1, 10.2 and 10.3 of the structural elements 10). The ends 10.4 of the structural elements 10 are shaped complementary to permit interconnection of the structural elements along the axial angle of the completed structure. Each such leg end 10.4 is finished off with a flat end weld 13 that is double welded and inserted between thc flat strips of metal making up the connectors Each structural element 10 is provided, at its leg ends 10.4 with a connector 15 that comprises a slider 16 and track formation 18, the slider 16 being adapted to slide into the track 18 of an adjacent connector 15. The slider and track formations 16, 18 are dimensioned to provide a secure friction fit once interconnected. The connectors are fixed along their relative axial angles at the vertex of the polyhedron.
The utilisation of the connector 15 on each tube end has the advantage that two or more tube ends can be interconnected in a very strong and stable bond alleviating the need for a complex welded joint.
The entire connector 15 is riveted together with blind rivets, This has the advanitage that the connector formations 16, 1 8 can be removed to permit reopening of the tube ends and the servicing of the tubes.
In certain situations it might *be appropriate to insert a gasket within the sealing arrangement constituted by the connector 15 and the welded end of the tube in order to enhance the sealing effect.
The structure 100 illustrated in Figures 2 and 3 are a relatively simple structure that utilises only the basic structural element 10 illustrated in Figure 1. However, the basic structural unit 10 can be used in conjunction with similar yet slightly more complex structural elements to provide more complex structures as is illustrated in Figures 6, 7 and S.
The structure 200 shown in these drawings utilises three of thc basic structural elements 10 at each of its short ends.
The apex and long sides of the structure 200 are defined by a pair of opposed structural elements 204, each of which incorporates a pair of support legs 204.1 and a pair of apical legs 204.2 that extend upwardly towards an apical beam 206 that defines the apex of the structure 200. The apical legs 10.3 of the elements 10 at each end of the structure 200 are connected to the ends of the beam 206 by means as described above.
It will be noted that polyhedral, the structural element 10 will yield, in combination with similar structural elements, a variety of geodesic structures. In such structures, the apical legs of the structural elements mnay be secured to the apical legs of adjacent, similar structural elements- In the same way the support legs of the structural elements may be secured to the support legs of adjacent, similar structural element-;. If desired the basic structural elements 10 may be flanked by a slightly modified structural element, each of which differs from the basic structural element 10 only in the fact that it has an asymmetrical tetrahedral shape.
-11- The structures of the invention, being inflatable, lend themselves to novel uses. For instance, the structure could be internally lit using light fittings 20 fitted to the insides of the tubes making up the structural elements. In this kind of an application, the fabric of the tubes and (lie structure as a whole will be chosen for translucency to enhance the lighting effect.
In addition, the structures need not be confined to land. Being inflatable, the structures will float on water to provide a novel staging facility for events and advcrtising.

Claims (1)

  1. Claims
    Claim 1
    According to this invention an inflatable structural unit comprises at least three inflatable tubes arranged in the form of a polyhedron. The inflatable tubes are airtight and once it is filled with compressed gas to the desired pressure and sealed off, will maintain its rigidity and support strength without any further addition of compressed air.
    In its simplest form, the structural unitAeneid comprises three inflatable tubes arranged in the form of a tetrahedron. In this arrangement, the three tubes are co-extensive with three edges of an imaginary tetrahedron.
    In this form of the invention, the structural element comprises three legs that radiate from a point of interconnection to define an inverted, Y-shaped element, the arms of the Y constituting support legs and the stem of the Y being angled relatively to the legs to complete the tetrahedral shape of the support unit and defining an apical leg that, in use in a structure will constitute a support beam.
    The inflatable tubes used in the support unit may be adapted to extend substantially straight under inflation pressure to obtain a conventional, straight-sided tetrahedron.
    Being polyhedral, the structural element of the invention will yield, in combination with similar structural elements, a variety of geodesic structures. In such structures, the apical legs of the structural elements may be secured to the apical legs of adjacent, similar structural elements. In the same way the support legs of the structural elements may be secured to the support legs of adjacent, similar structural elements.
    The tube ends of each structural element is geometrically shaped along the natural complimentary lines along the intersecting surfaces of the adjacent structural element. The connectors are fixed along their relative axial angles at the vertex of the polyhedron.
    Claim 2
    Being inflatable, the structures will float on water to provide a novel staging facility for events and advertising.
    Claim 3
    The structures of the invention, being inflatable, could be internally lit using light fittings fitted to the insides of the tubes making up the structural elements. In this kind of an application, the fabric of the tubes and the structure as a whole will be chosen for translucency to enhance the lighting effect.
AU2002231380A 2000-11-14 2001-11-14 Inflatable structure Ceased AU2002231380B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA2000/6289 2000-11-14
ZA200006289 2000-11-14
PCT/ZA2001/000175 WO2002064917A1 (en) 2000-11-14 2001-11-14 Inflatable structure

Publications (2)

Publication Number Publication Date
AU2002231380A1 AU2002231380A1 (en) 2003-02-20
AU2002231380B2 true AU2002231380B2 (en) 2006-09-07

Family

ID=25588963

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002231380A Ceased AU2002231380B2 (en) 2000-11-14 2001-11-14 Inflatable structure

Country Status (8)

Country Link
US (1) US20040031208A1 (en)
EP (1) EP1346119B1 (en)
AT (1) ATE317481T1 (en)
AU (1) AU2002231380B2 (en)
CA (1) CA2449262C (en)
DE (1) DE60117171T2 (en)
WO (1) WO2002064917A1 (en)
ZA (1) ZA200206637B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2581476A1 (en) * 2007-02-08 2008-08-08 Jean-Marc D. Turcot Inflatable structure for covering sport utility vehicles, boats and the like
US20090084043A1 (en) * 2007-08-13 2009-04-02 Drs Technical Services, Inc. Air support structures and methods of erecting same
DE202007015754U1 (en) * 2007-11-09 2009-03-26 Vector Foiltec Gmbh Foil cushion arrangement
FR2963631B1 (en) * 2010-08-03 2013-06-07 Komex SHELTER WITH INFLATABLE STRUCTURE
US9527261B1 (en) * 2012-09-14 2016-12-27 Hrl Laboratories, Llc Hollow polymer micro-truss structures containing pressurized fluids
US10465376B1 (en) * 2016-06-28 2019-11-05 Charles Hoberman Construction method for foldable polyhedral enclosures
WO2023064974A1 (en) * 2021-10-18 2023-04-27 Clinical Governance Australia Pty Ltd Inflatable sports net

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502091A (en) * 1968-09-12 1970-03-24 Wendel V Goltermann Tent supporting frame
FR2697045A1 (en) * 1992-10-19 1994-04-22 Semmel Alain Modular shelter of inflatable tubes - comprises basic module of four identical structures each with one tube forming arch second tube behind bent to point connected to arch top

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938526A (en) * 1958-06-02 1960-05-31 Iii Richard Harrison Inflatable shelter
US3221464A (en) * 1961-03-17 1965-12-07 Alvin E Miller Tetrahelical structure
US3277479A (en) * 1963-09-25 1966-10-04 Jr Arthur D Struble Passive communications satellite
US3913105A (en) * 1971-04-05 1975-10-14 Trw Inc Collapsible self-erecting tubular frame structure and deployable electromagnetic reflector embodying same
US3994102A (en) * 1974-05-06 1976-11-30 Alley Friends Inflatable element and system
US4120024A (en) * 1976-10-18 1978-10-10 Julian Borisovich Aizenberg Lighting installation
GB2090622A (en) * 1980-11-13 1982-07-14 Williams Mervyn Ellis Emergency tent
US4723382A (en) * 1986-08-15 1988-02-09 Haresh Lalvani Building structures based on polygonal members and icosahedral
US4807405A (en) * 1987-08-20 1989-02-28 Borgquist Ronald B Geodesic inflatable structure, and methods of constructing and utilizing same
US4932169A (en) * 1989-11-01 1990-06-12 Robert Charbonneau Inflatable structure
US5007212A (en) * 1990-03-21 1991-04-16 Monty Fritts Inflatable shelter
US5311706A (en) * 1991-07-19 1994-05-17 Tracor Aerospace, Inc. Inflatable truss frame
DE9418076U1 (en) * 1994-11-11 1995-01-12 Festo Kg, 73734 Esslingen Structural engineering structure
US6061969A (en) * 1997-02-11 2000-05-16 Leary; Jeremiah E. Inflatable greenhouse
US5987822A (en) * 1997-09-18 1999-11-23 Cyrk, Inc. Inflatable tent
US5893237A (en) * 1998-02-26 1999-04-13 Ryon; Michael J. Inflatable tent construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502091A (en) * 1968-09-12 1970-03-24 Wendel V Goltermann Tent supporting frame
FR2697045A1 (en) * 1992-10-19 1994-04-22 Semmel Alain Modular shelter of inflatable tubes - comprises basic module of four identical structures each with one tube forming arch second tube behind bent to point connected to arch top

Also Published As

Publication number Publication date
CA2449262A1 (en) 2002-08-22
EP1346119A1 (en) 2003-09-24
US20040031208A1 (en) 2004-02-19
CA2449262C (en) 2008-03-18
DE60117171T2 (en) 2006-11-02
ATE317481T1 (en) 2006-02-15
DE60117171D1 (en) 2006-04-20
ZA200206637B (en) 2004-07-06
WO2002064917A1 (en) 2002-08-22
EP1346119B1 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
US7533681B2 (en) Collapsible structural frame
US5247768A (en) Inflatable structure
US3994102A (en) Inflatable element and system
CA2750824C (en) Collapsible shelters with and without a floating hub
US4241746A (en) Collapsible building structure
RU2076191C1 (en) Transformed inflatable vault
US20120131857A1 (en) Inflatable Enclosure
US4068418A (en) Collapsible shelter
US2934075A (en) Inflatable structure
US7562493B2 (en) Tensioned inflatable cover module
US4918877A (en) Inflatable tubular structure
AU2002231380B2 (en) Inflatable structure
US4676032A (en) Inflatable wall structure
AU597860B1 (en) Connector for tubular poles of a dome-type tent
US10704289B1 (en) Inflatable shelter
CA1272425A (en) Building structures
IL39226A (en) Portable shelter
AU2002231380A1 (en) Inflatable structure
US20020153033A1 (en) Collapsible structural frame strut with pop-in connector
GB2104934A (en) Tent having inflatable tubes
GB2126464A (en) Portable of lightweight enclosures
WO2017143671A1 (en) Tent support frame, tent, and usage thereof
GB2177737A (en) Inflatable frame
CN219974066U (en) Inflatable tent support frame and inflatable tent
KR100334333B1 (en) Fabricated Portable Swimming Pool

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE NAME OF THE APPLICANT/PATENTEE FROM ETIENNE VISSER TO ETIENNE DOUW VISSER

MK25 Application lapsed reg. 22.2i(2) - failure to pay acceptance fee
NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO GAIN ACCEPTANCE HAS BEEN EXTENDED TO 07 MAR 2007.

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired