AU2001292548A1 - Methods for treating cell proliferative disorders and viral infections - Google Patents
Methods for treating cell proliferative disorders and viral infectionsInfo
- Publication number
- AU2001292548A1 AU2001292548A1 AU2001292548A AU2001292548A AU2001292548A1 AU 2001292548 A1 AU2001292548 A1 AU 2001292548A1 AU 2001292548 A AU2001292548 A AU 2001292548A AU 2001292548 A AU2001292548 A AU 2001292548A AU 2001292548 A1 AU2001292548 A1 AU 2001292548A1
- Authority
- AU
- Australia
- Prior art keywords
- cells
- hsp90
- compound
- cell
- ansamycin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 53
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims description 49
- 208000036142 Viral infection Diseases 0.000 title claims description 18
- 230000009385 viral infection Effects 0.000 title claims description 17
- 208000035475 disorder Diseases 0.000 title description 34
- 230000002062 proliferating effect Effects 0.000 title description 22
- MCAHMSDENAOJFZ-BVXDHVRPSA-N herbimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](OC)[C@@H](OC)C[C@H](C)[C@@H](OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-BVXDHVRPSA-N 0.000 claims description 62
- MCAHMSDENAOJFZ-UHFFFAOYSA-N Herbimycin A Natural products N1C(=O)C(C)=CC=CC(OC)C(OC(N)=O)C(C)=CC(C)C(OC)C(OC)CC(C)C(OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-UHFFFAOYSA-N 0.000 claims description 54
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 33
- 230000002950 deficient Effects 0.000 claims description 29
- 101710113864 Heat shock protein 90 Proteins 0.000 claims description 27
- ATEBXHFBFRCZMA-VXTBVIBXSA-N rifabutin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC(=C2N3)C(=O)C=4C(O)=C5C)C)OC)C5=C1C=4C2=NC13CCN(CC(C)C)CC1 ATEBXHFBFRCZMA-VXTBVIBXSA-N 0.000 claims description 21
- 229960000885 rifabutin Drugs 0.000 claims description 21
- 108700025701 Retinoblastoma Genes Proteins 0.000 claims description 14
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 claims description 11
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 claims description 9
- VYGYNVZNSSTDLJ-HKCOAVLJSA-N monorden Natural products CC1CC2OC2C=C/C=C/C(=O)CC3C(C(=CC(=C3Cl)O)O)C(=O)O1 VYGYNVZNSSTDLJ-HKCOAVLJSA-N 0.000 claims description 9
- AECPBJMOGBFQDN-YMYQVXQQSA-N radicicol Chemical compound C1CCCC(=O)C[C@H]2[C@H](Cl)C(=O)CC(=O)[C@H]2C(=O)O[C@H](C)C[C@H]2O[C@@H]21 AECPBJMOGBFQDN-YMYQVXQQSA-N 0.000 claims description 9
- 229930192524 radicicol Natural products 0.000 claims description 9
- 206010041067 Small cell lung cancer Diseases 0.000 claims description 6
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 6
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- 241000701806 Human papillomavirus Species 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 238000002560 therapeutic procedure Methods 0.000 claims description 4
- AYUNIORJHRXIBJ-TXHRRWQRSA-N tanespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCC=C)C(=O)C=C1C2=O AYUNIORJHRXIBJ-TXHRRWQRSA-N 0.000 claims 4
- 229950007866 tanespimycin Drugs 0.000 claims 4
- 210000004027 cell Anatomy 0.000 description 186
- 108090000623 proteins and genes Proteins 0.000 description 43
- 206010028980 Neoplasm Diseases 0.000 description 35
- 238000011282 treatment Methods 0.000 description 34
- 230000000694 effects Effects 0.000 description 30
- 230000011278 mitosis Effects 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 239000003481 heat shock protein 90 inhibitor Substances 0.000 description 25
- 230000014509 gene expression Effects 0.000 description 23
- 239000002246 antineoplastic agent Substances 0.000 description 22
- 201000011510 cancer Diseases 0.000 description 18
- 229940127089 cytotoxic agent Drugs 0.000 description 18
- 230000000394 mitotic effect Effects 0.000 description 18
- 108091000080 Phosphotransferase Proteins 0.000 description 17
- 102000020233 phosphotransferase Human genes 0.000 description 17
- 102000016736 Cyclin Human genes 0.000 description 16
- 108050006400 Cyclin Proteins 0.000 description 16
- -1 and 17-AAG Chemical compound 0.000 description 16
- 210000000349 chromosome Anatomy 0.000 description 16
- 239000003814 drug Substances 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 230000005855 radiation Effects 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- NOFOAYPPHIUXJR-APNQCZIXSA-N aphidicolin Chemical compound C1[C@@]23[C@@]4(C)CC[C@@H](O)[C@@](C)(CO)[C@@H]4CC[C@H]3C[C@H]1[C@](CO)(O)CC2 NOFOAYPPHIUXJR-APNQCZIXSA-N 0.000 description 11
- SEKZNWAQALMJNH-YZUCACDQSA-N aphidicolin Natural products C[C@]1(CO)CC[C@]23C[C@H]1C[C@@H]2CC[C@H]4[C@](C)(CO)[C@H](O)CC[C@]34C SEKZNWAQALMJNH-YZUCACDQSA-N 0.000 description 11
- 230000022131 cell cycle Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 108050002653 Retinoblastoma protein Proteins 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 230000036456 mitotic arrest Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 8
- 229930193320 herbimycin Natural products 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000010186 staining Methods 0.000 description 8
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 238000001959 radiotherapy Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- 102000002554 Cyclin A Human genes 0.000 description 5
- 108010068192 Cyclin A Proteins 0.000 description 5
- 108010006519 Molecular Chaperones Proteins 0.000 description 5
- 108700020796 Oncogene Proteins 0.000 description 5
- 230000018199 S phase Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000007859 condensation product Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 239000003765 sweetening agent Substances 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 4
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 102000005431 Molecular Chaperones Human genes 0.000 description 4
- 201000000582 Retinoblastoma Diseases 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000031016 anaphase Effects 0.000 description 4
- 229940034982 antineoplastic agent Drugs 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 4
- 229960005542 ethidium bromide Drugs 0.000 description 4
- 238000000684 flow cytometry Methods 0.000 description 4
- 235000013355 food flavoring agent Nutrition 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 210000003953 foreskin Anatomy 0.000 description 4
- 238000000021 kinase assay Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000375 suspending agent Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 108091060290 Chromatid Proteins 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 102000001301 EGF receptor Human genes 0.000 description 3
- 108060006698 EGF receptor Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000043276 Oncogene Human genes 0.000 description 3
- 108010058765 Oncogene Protein pp60(v-src) Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 208000035269 cancer or benign tumor Diseases 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000004756 chromatid Anatomy 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000002510 keratinocyte Anatomy 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000012139 lysis buffer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102000003910 Cyclin D Human genes 0.000 description 2
- 108090000259 Cyclin D Proteins 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108010033152 HSP90 Heat-Shock Proteins Proteins 0.000 description 2
- 102000007011 HSP90 Heat-Shock Proteins Human genes 0.000 description 2
- 101150065069 Hsp90b1 gene Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 2
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003476 anti-centromere Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940045696 antineoplastic drug podophyllotoxin derivative Drugs 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 210000002230 centromere Anatomy 0.000 description 2
- 208000019065 cervical carcinoma Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 239000012133 immunoprecipitate Substances 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 2
- 239000003600 podophyllotoxin derivative Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000030788 protein refolding Effects 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 230000020347 spindle assembly Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 102000005969 steroid hormone receptors Human genes 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- AADVCYNFEREWOS-UHFFFAOYSA-N (+)-DDM Natural products C=CC=CC(C)C(OC(N)=O)C(C)C(O)C(C)CC(C)=CC(C)C(O)C(C)C=CC(O)CC1OC(=O)C(C)C(O)C1C AADVCYNFEREWOS-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- MCEHFIXEKNKSRW-LBPRGKRZSA-N (2s)-2-[[3,5-dichloro-4-[(2,4-diaminopteridin-6-yl)methyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=C(Cl)C=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1Cl MCEHFIXEKNKSRW-LBPRGKRZSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- QAPSNMNOIOSXSQ-YNEHKIRRSA-N 1-[(2r,4s,5r)-4-[tert-butyl(dimethyl)silyl]oxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O[Si](C)(C)C(C)(C)C)C1 QAPSNMNOIOSXSQ-YNEHKIRRSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- SXFWKZNLYYRHMK-UHFFFAOYSA-N 1h-indolo[7,6-f]quinoline Chemical class C1=CC=C2C3=C(NC=C4)C4=CC=C3C=CC2=N1 SXFWKZNLYYRHMK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- GQGVBSHMRYHBTF-UOWFLXDJSA-N 4-amino-1-[(2r,4r,5r)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3,5-triazin-2-one Chemical compound O=C1N=C(N)N=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 GQGVBSHMRYHBTF-UOWFLXDJSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108091007914 CDKs Proteins 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000002427 Cyclin B Human genes 0.000 description 1
- 108010068150 Cyclin B Proteins 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010054814 DNA Gyrase Proteins 0.000 description 1
- AADVCYNFEREWOS-OBRABYBLSA-N Discodermolide Chemical compound C=C\C=C/[C@H](C)[C@H](OC(N)=O)[C@@H](C)[C@H](O)[C@@H](C)C\C(C)=C/[C@H](C)[C@@H](O)[C@@H](C)\C=C/[C@@H](O)C[C@@H]1OC(=O)[C@H](C)[C@@H](O)[C@H]1C AADVCYNFEREWOS-OBRABYBLSA-N 0.000 description 1
- 102100020977 DnaJ homolog subfamily A member 1 Human genes 0.000 description 1
- 108010093502 E2F Transcription Factors Proteins 0.000 description 1
- 102000001388 E2F Transcription Factors Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 description 1
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 102100032510 Heat shock protein HSP 90-beta Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000931227 Homo sapiens DnaJ homolog subfamily A member 1 Proteins 0.000 description 1
- 101001016856 Homo sapiens Heat shock protein HSP 90-beta Proteins 0.000 description 1
- 101000742859 Homo sapiens Retinoblastoma-associated protein Proteins 0.000 description 1
- 241000341655 Human papillomavirus type 16 Species 0.000 description 1
- 241000709701 Human poliovirus 1 Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101000988090 Leishmania donovani Heat shock protein 83 Proteins 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- JXLYSJRDGCGARV-PJXZDTQASA-N Leurosidine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-PJXZDTQASA-N 0.000 description 1
- LPGWZGMPDKDHEP-HLTPFJCJSA-N Leurosine Chemical compound C([C@]1([C@@H]2O1)CC)N(CCC=1C3=CC=CC=C3NC=11)C[C@H]2C[C@]1(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC LPGWZGMPDKDHEP-HLTPFJCJSA-N 0.000 description 1
- LPGWZGMPDKDHEP-GKWAKPNHSA-N Leurosine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@]6(CC)O[C@@H]6[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C LPGWZGMPDKDHEP-GKWAKPNHSA-N 0.000 description 1
- 229930195248 Macbecin Natural products 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- 229910020700 Na3VO4 Inorganic materials 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 108010057576 Papillomavirus E7 Proteins Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 101000965899 Simian virus 40 Large T antigen Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010085012 Steroid Receptors Proteins 0.000 description 1
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- JXLYSJRDGCGARV-KSNABSRWSA-N ac1l29ym Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-KSNABSRWSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003388 anti-hormonal effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 230000009925 apoptotic mechanism Effects 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 190000008236 carboplatin Chemical compound 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- 229930188550 carminomycin Natural products 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 230000009848 hypophosphorylation Effects 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- FBOZXECLQNJBKD-UHFFFAOYSA-N methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-UHFFFAOYSA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 230000017095 negative regulation of cell growth Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 108091008569 nuclear steroid hormone receptors Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N o-hydroxybenzoic acid ethyl ester Natural products CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000033667 organ regeneration Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000009828 sister chromatid segregation Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940083466 soybean lecithin Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 230000004862 vasculogenesis Effects 0.000 description 1
- 230000000982 vasogenic effect Effects 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Description
METHODS FOR TREATING CELL PROLIFERATIVE DISORDERS AND
VIRAL INFECTIONS
DESCRIPTION
This application claims the benefit of US Provisional Applications Serial Nos. 60/221,415 filed July 28, 2000 and 60/245,264 filed November 2, 2000, both of which are incorporated herein by reference.
Background of the Invention
The eukaryotic heat shock protein 90s (HSP90s) are ubiquitous chaperone proteins, which bind and hydrolyze ATP. The HSP90 family of proteins includes four known members: Hsp90 and β, Grp94 and Trap-1. The roles of HSP90s in cellular functions are not completely understood, but recent studies indicate that HSP90s are involved in folding, activation and assembly of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation. For example, researchers have reported that HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, including many implicated in tumorigenesis, such as Raf-1, EGFR, v-Src family kinases, Cdk4, and ErbB-2 ( Buchner J., 1999,
TIBS, 24:136-141; Stepanova, L. et al, 1996, Genes Dev. 10:1491-502; Dai, K. et ah, 1996, J. Biol Chem. 271:22030-4).
In vivo and in vitro studies indicate that without the aid of co-chaperones HSP90 is unable to fold or activate proteins. For steroid receptor conformation and association in vitro, HSP90 requires Hsp70 and p60/Hop/Stil (Caplan, A., 1999,
Trends in Cell Biol, 9: 262-68). In vivo HSP90 may interact with HSP70 and its co- chaperones. Other co-chaperones associated with HSP90s in higher eukaryotes include Hip, Bagl, HSP40/Hdj2/Hsjl, Immunophillins, p23, and p50 (Caplan, A. supra). Ansamycin antibiotics are natural products derived from Streptomyces hygroscopicus that have profound effects on eukaryotic cells. Many ansamycins,
such as herbimycin A (HA) and geldanamycin (GM), bind tightly to a pocket in the HSP90 (Stebbins, C. et al, 1997, Cell, 89:239-250). The binding of ansamycins to HSP90 has been reported to inhibit protein refolding and to cause the proteasome dependent degradation of a select group of cellular proteins (Sepp-Lorenzino, L., et al, 1995, J. Biol Chem., 270:16580-16587; Whitesell, L. et al, 1994, Proc. Natl.
Acad. Sci. USA, 91: 8324-8328).
The ansamycins were originally isolated on the basis of their ability to revert v-src transformed fibroblasts (Uehara, Y. et al, 1985, J. Cancer Res., 76: 672-675). Subsequently, they were said to have antiproliferative effects on cells transformed with a number of oncogenes, particularly those encoding tyrosine kinases (Uehara,
Y., et al, 1988, Virology, 164: 294-98). Inhibition of cell growth is associated with apoptosis and, in certain cellular systems, with induction of differentiation (Nasilevskaya, A. et al, 1999, Cancer Res., 59: 3935-40). A GM derivative is currently in phase I clinical trials. The use of ansamycins as anticancer agents are described in U.S. Patent Νos.
4,261,989, 5,387,584 and 5,932,566. The preparation of the ansamycin, geldanamycin, is described in U.S. Patent No. 3,595,955 (incorporated herein by reference).
The ansamycin-binding pocket in the N-terminus of Hsp90 is highly conserved and has weak homology to the ATP-binding site of DNA gyrase (Stebbins,
C. et al, supra; Grenert, J.P. et al, 1997, J. Biol Chem., 272:23843-50). This pocket has been reported to bind ATP and ADP with low affinity and to have weak ATPase activity (Proromou, C. et al, 1997, Cell, 90: 65-75; Panaretou, B. et al., 1998, EMBO J., 17: 4829-36). In vitro and in vivo studies are said to indicate that occupancy of the pocket by ansamycins alters HSP90 function and inhibits protein refolding. At high concentrations, ansamycins have been reported to prevent binding of protein substrates to HSP90 (Scheibel, T., H. et al, 1999, Proc. Natl. Acad. Sci. U SA 96:1297-302; Schulte, T. W. et al, 1995, J. Biol Chem. 270:24585-8; Whitesell, L., et al, 1994, Proc. Natl Acad. Sci. USA 91:8324-8328). Alternatively, they have also been reported to inhibit the ATP-dependent release of chaperone-associated protein substrates (Schneider, C, L. et al, 1996, Proc. Natl. Acad. Sci. USA,
93:14536-41; Sepp-Lorenzino et /., 1995, J. Biol Chem. 270:16580-16587). In both models, the unfolded substrates are said to be degraded by a ubiquitin-dependent process in the proteasome (Schneider, C, L., supra; Sepp-Lorenzino, supra)
In both tumor and nontransformed cells, binding of ansamycins to HSP90 has been reported to result in the degradation of a subset of signaling regulators. These include Raf (Schulte, T. W. et al, 1991, Biochem. Biophys. Res. Commun. 239:655- 9; Schulte, T. W., et al, 1995, J. Biol. Chem. 270:24585-8), nuclear steroid receptors (Segnitz, B., and U. Gehring. 1997, J. Biol. Chem. 272:18694-18701; Smith, D. F. et al, 1995, Mol. Cell Biol 15:6804-12 ), v-src (Whitesell, L., et al, 1994, Proc. Natl. Acad. Sci. USA 91:8324-8328) and certain transmembrane tyrosine kinases
(Sepp-Lorenzino, L. et al,. 1995, J. Biol Chem. 270:16580-16587) such as EGF receptor (EGFR) and Her2/Neu (Hartmann, F., et al, 1997, Int. J. Cancer 70:221-9; Miller, P. et al, 1994, Cancer Res. 5A:212A-2130; Mimnaugh, E. G., et al, 1996, J. Biol Chem. 271 :22796-801; Schnur, R. et al, 1995, J. Med. Chem. 38:3806-3812). The ansamycin-induced loss of these proteins is said to lead to the selective disruption of certain regulatory pathways and results in growth arrest at specific phases of the cell cycle (Muise-Heimericks, R. C. et al, 1998, J. Biol. Chem. 273:29864-72).
Cyclin D in complex with Cdk4 or Cdk6 and cyclin E-Cdk2 phosphorylate the protein product of the retinoblatoma gene, Rb. Researchers have reported that the protein product of the Rb gene is a nuclear phosphoprotein, which arrests cells during the G, phase of the cell cycle by repressing transcription of genes involved in the Gj to S phase transition (Weinberg, R.A., 1995, Cell, 81 :323-330). Dephosphorylated Rb is said to inhibit progression through late G,, in part, through its interaction with E2F transcription family members, which ultimately represses the transcription of E2F target genes (Dyson, N., 1998, Genes Dev., 12: 2245-2262). Progressive phosphorylation of Rb by the cyclin-dependent kinases in mid to late G, leads to dissociation of Rb from Rb-E2F complexes, allowing the expression of E2F target genes and entry into the S phase.
The retinoblastoma gene product is mutated in several tumor types, such as retinoblastoma, osteosarcoma and small-cell lung cancer. Research also indicates that in many additional human cancers the function of Rb is is disrupted through
neutralization by a binding protein, (e.g., the human papilloma virus-E7 protein in cervical carcinoma; Ishiji, T, 2000, J DermatoL, 27: 73-86) or deregulation of pathways ultimately responsible for its phoshorylation. Inactivation of the Rb pathway often results from pertubation of pl6INK4a, Cyclin Dl, and Cdk4. The retinoblastoma gene product, besides being a target of human papilloma
E7 protein, is also the target of other oncogenic viral gene products. For example, studies indicate that the simian virus 40 large T antigen inactivates the Rb family of proteins, including Rb, pi 07, and ρl30 (Zalvide, J.H. et al, 1998, Mol Cell. Biol, 18: 1408-1415). Research also indicates that transformation by adenovirus requires E1A binding to Rb (Egan, C. et al, 1989, Oncogene, 4:383-388).
Scientists estimate that over 70 types of papilloma viruses infect humans (HPN) (Sasagawa, T. et al., 1996, Clinical Diag. Lab. Immunol, 3: 403-410). Of these several are associated with malignancies of humans, particularly cervical cancers (Bosch et al, 1995, J. Natl. Cancer Inst., 87:796-802). Recent evidence also implicates HPV in some head and neck cancers. Several types of HPN are associated with an intermediate to high risk of malignancies (types 16, 18, 31, 33, 35, 45, and 56) (Sasagawa, T., et al, supra). In infections with these HPN, the viral genome integrates into the genome of the infected cell with subsequent expression of transforming genes E6 and E7. Data indicate that the products of these genes may promote malignant transformation by altering the functions of two cellular tumor suppressor proteins (p53 and Rb). E6 causes the proteolytic degradation of p53 (Scheffher, M. et al, 1990, Cell, 63: 1129-1136. E7 complexes with Rb causing its release from transcription factor E2F, leading to the activation of genes involved in cell proliferation (Dyson, Ν. et al, 1988, Science, 243: 934-937.). Most cancer therapies are not successful with all types of cancers. For example, solid tumor types ultimately fail to respond to either radiation or chemotherapy. There remains a need for cancer treatments which target specific cancer types. The present invention satisfies these needs and provides related advantages as well. The present invention provides novel methods for treating cell proliferative disorders and viral infections associated with retinoblastoma negative or deficient cells.
Summary of the Invention
The present invention relates to methods useful for the treatment of an animal, preferably a mammal, that has a cell proliferative disorder or viral infection associated with Rb negative or deficient cells. One such method comprises administering an effective amount of a pharmaceutical composition that comprises a pharmaceutically acceptable carrier and a compound that binds to the N-terminal pocket of heat shock protein 90 to cells that are Rb negative or Rb deficient. In a preferred embodiment the HSP90 binding compound is an ansamycin. In a particularly preferred embodiment, the ansamycin is 17-allylamino-(17)- demethoxygeldanamycin (17-AAG).
The present invention further provides methods of destroying cells that are deficient in the retinoblastoma gene product. In one such embodiment, the method comprises administering an effective amount of a compound that binds to the N- terminal pocket of HSP90 to cells that are Rb negative or Rb deficient. In one embodiment, the HSP90 binding compound is an ansamycin. In a particularly preferred embodiment, the ansamycin is 17-AAG.
In another embodiment, the invention provides a method of destroying Rb negative or Rb deficient cells, comprising administering an effective amount of a compound that binds to the N-terminal pocket of HSP90 selected from the group consisting of herbimycin, geldanamycin, and 17-AAG, radicicol or synthetic compounds that bind into the N-terminal pocket of HSP90 which is the ATP-binding site ofHSP90.
The method can further comprise treating a mammal in combination with other therapies. Other such therapies include, but are not limited to, chemotherapy, surgery, and/or radiotherapy.
By means of the invention, a method of destroying cells which are Rb negative or Rb deficient is provided. The invention provides a means to treat cell proliferative disorders, tumors associated with viral infections and certain viral infections associated with an Rb negative phenotype. These and other advantages of
the present invention will be appreciated from the detailed description and examples set forth below. The detailed description and examples enhance the understanding of the invention, but are not intended to limit the scope of the invention.
Brief Description of the Figures
Figure 1 shows differential cell cycle effects of Herbimycin on Rb- wild type (A) and Rb-negative cells (B). (A) MCF7 and Colo 205; (B) MB-MDA 468 and BT 549
Figure 2 shows levels of mitotic cyclin expression and associated kinase activities in Herbimycin arrested MB-MD 468 cells. Figure 2(A) shows a western blot using anti-cyclin A and also shows an in vitro kinase assay of immunoprecipitates isolated with anti-cyclin A. Figure 2(B) shows a western blot using anti-cyclin Bl antibodies and also shows an in vitro kinase assay of immunoprecipitates isolated with anti-cyclin Bl. Figure 3 shows Rb-wild-type cells complete mitosis in the presence of HA after arrest with aphidicolin (Fig. 3A). Fig. 3B shows that, after release from aphidicolin, Rb-negative MB-MDA 468 cells arrested in the next mitosis
Figure 4A and B shows that HA induces mitotic arrest and not G, arrest in primary cells expressing HPN 16 E6 and E7. Figure 5 shows the effect of HA on Rb-negative cells transfected with the Rb gene. Fig. 5 A shows a western blot analysis of Rb expression in MB-MDA 468, 468-7 and 468-19 Figs 5B- D show that introduction of the Rb gene abrogates HA- induced mitotic arrest in MB-MDA 468 cells.
Detailed Description of the Invention
The present invention concerns the surprising discovery that ansamycins cause Rb negative or Rb deficient cells to undergo mitotic arrest followed by rapid programmed cell death. This is in contrast to ansamycin treatment of cells containing wild-type levels of Rb, which causes cells to arrest in G, of the cell cycle followed, in
some cases, by differentiation and apoptosis. The induction of mitotic arrest by ansamycins in Rb negative or Rb deficient cells, which rapidly leads to programmed cell death, is a phenomenon confined to cells with defective Rb function. Mitosis is unaffected in normal cells with wild-type Rb. Thus, the present invention will aid in the treatment of cell proliferative disorders which are associated with Rb negative or
Rb deficient cells, such as small-cell lung cancers, retinoblastoma, osteosarcoma, certain breast cancers, prostate cancer, bladder cancer, hepatocarcinoma, certain viral infections, and virally induced tumors, including those caused by human papilloma viruses, such as cervical carcinoma. As used in the specification and claims of this application, the term "Rb deficient" describes several types of cells, including cells which produce no detectable amounts of a functional Rb protein. Such cells are referred to herein as "Rb negative" cells. Cells which are Rb deficient may be cells which do not contain a functional Rb gene. Cells which are Rb deficient may also be cells that can encode an Rb protein, but in which the protein does not function properly or is produced at lower than normal level. An Rb deficient phenotype can also occur due to the perturbation of the pathway which ultimately results in phosphorylation of the Rb protein, for example, perturbation of pl6INK4a, Cyclin Dl, or Cdk4, and cells with such a perturbation are Rb deficient cells. As used in the specification and claims of this application, the term "HSP90" refers to the family of HSP90 heat shock proteins. Thus, this term encompasses Hsp90 α and Hsp90β, Grp94 and Trap-1. The HSP90 heat shock proteins each possess a characteristic pocket located near the N-terminal end of the protein to which ATP and ADP bind. This is the same pocket which has been shown to bind to ansamycin antibiotics. This pocket is referred to herein as "the N-terminal pocket of
HSP90".
Although the precise mechanisms are not yet understood, the present application makes use of compositions that bind to the N-terminal pocket of HSP90 in a manner that results in an alteration of the function of HSP90. As used in the specification and claims of this application, this alteration of function is referred to as
"inhibition of HSP90 function". In accordance with the present invention, this
inhibition occurs upon adminstration of HSP90 binding compounds, such as ansamycins, and results in arrest of Rb negative or deficient cells in mitosis. Such cells uniformly die through apoptotic mechanisms. This novel mechanism of destroying cells that are Rb negative or deficient provides a means to specifically treat cell proliferative disorders and certain viral infections associated with cells that are
Rb negative or deficient.
The destruction of Rb negative or deficient cells can occur with less cytotoxicity to normal cells or tissues. For example, when cells which contain a normal Rb gene product are treated with HSP90 inhibitors, those cells arrest in G, of the cell cycle and, in some cases, may differentiate and die. However, cells which are
Rb negative or deficient uniformly die when treated with HSP90 inhibitors. Further, such cells will be more susceptible to other agents or radiation treatments and will require lower doses of drug for killing than cells with wild-type retinoblastoma gene product. Studies indicate that the G2/M phase of the cell cycle is the most radiosensitive phase of the cell cycle (Sinclair, W.K, 1968, Radial Res., 33:620).
In one embodiment of the invention, the IC50 of the HSP90 inhibitor used in the instant methods to destroy cells which are Rb negative of Rb deficient is lower than the IC50 against similar cells which are not Rb negative or deficient. Preferably the IC50 is 5-fold lower, more preferably 10-fold lower, still further 20-fold lower, and most preferably 30- to 50-fold lower when compared to similar cells containing wild- type Rb.
As used herein "IC50" is defined as the concentration of an HSP90 inhibitor required to achieve killing of 50% of cells.
The term "effective amount" as used herein, means an amount of a compound utilized in the methods of the present invention which is capable of providing a therapeutic effect. The specific dose of compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, the condition being treated and the individual being treated. A typical daily dose (administered in single
or divided doses) will contain a dosage level of from about 0.01 mg/kg to about 50 mg/kg of body weight of an active compound of this invention. Preferred daily doses generally will be from about 0.05 mg/kg to about 20 mg/kg and ideally from about 0.1 mg/kg to about 10 mg/kg. The preferred therapeutic effect of the methods of the instant invention, with respect to cell proliferative disorders, is the inhibition, to some extent, of growth of cells causing or contributing to a cell proliferative disorder. A therapeutic effect relieves to some extent one or more of the symptoms of a cell proliferative disorder. In reference to the treatment of a cancer, a therapeutic effect refers to one or more of the following: 1) reduction in the number of cancer cells; 2) reduction in tumor size;
3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 3) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 4) inhibition, to some extent, of tumor growth; and/or 5) relieving to some extent one or more of the symptoms associated with the disorder.
In reference to the treatment of a cell proliferative disorder other than a cancer, a therapeutic effect refers to either: 1) the inhibition, to some extent, of the growth of cells causing the disorder; 2) the inhibition, to some extent, of the production of factors (e.g., growth factors) causing the disorder; and/or 3) relieving to some extent one or more of the symptoms associated with the disorder.
With respect to viral infections, the preferred therapeutic effect is the inhibition of a viral infection. More preferably, the therapeutic effect is the destruction of cells which contain the virus.
The methods of this invention are useful for inhibiting cell proliferative diseases associated with Rb negative or Rb deficient, for example, retinoblastoma, osteosarcoma, breast cancers, bladder cancer, prostate cancer, renal carcinoma, cancers associated with viral infections, such as cervical cancers associated with human papilloma virus, and small-cell lung cancer. Additionally, the methods of the invention are useful for the treatment of certain viral infections which result in an Rb negative phenotype, such as human papilloma virus.
"Cell proliferative disorders" refer to disorders wherein unwanted cell proliferation of one or more subset(s) of cells in a multicellular organism occurs, resulting in harm, for example, pain or decreased life expectancy to the organism. Cell proliferative disorders include, but are not limited to, tumors, benign tumors, blood vessel proliferative disorders, autoimmune disorders and fibrotic disorders.
The methods of the present invention may be used on mammals, preferably humans, either alone or in combination with other therapies or methods useful for treating a particular cell proliferative disorder or viral infection.
The use of the present invention is facilitated by first identifying whether the cell proliferation disorder or viral infection is accompanied by cells which contain altered expression of the Rb gene product. Once such disorders are identified, patients suffering from such a disorder can be identified by analysis of their symptoms by procedures well known to medical doctors. Such patients can then be treated as described herein. The determination of whether the cell proliferation disorder is associated with an altered expression of the Rb gene product can be carried out by first determining the protein expression of Rb in the appropriate cells isolated from a mammal suspected of having a cell proliferative disorder or viral infection. For example, in the case of small-cell lung cancer, the protein expression of Rb determined from cells isolated from a mammal suspected of having small cell lung cancer can be compared to the appropriate cells isolated from a disease free mammal. Rb expression and/or mutations can be measured using methods well known in the art, including, but not limited to, immunohistochemistry, Southern blot analysis, and Northern blot analysis. The use of immunohistochemistry (e.g., Western blot analysis) to determine Rb expression is described by Higashiyam M et al, 199 , Oncogene, 51 : 544-51, and
Kohn G.J et al, 1997, J. Gasroenterol Hepatol, 12: 198-203, both of these references are incorporated herein by reference in their entireties. The use of Southern blot analysis to determine defects in the Rb gene is demonstrated by Presti J.C. Jr. et al, 1996, AnticancerRes., 16:549-56, which is incorporated herein by reference in its entirety. The determination of Rb mRNA using Northern blot analysis is demonstrated by Rygaard K. et al, 1990, Cancer Res. , 50: 5312-7, which
is incorporated by reference herein in its entirety. If the analysis indicates that there is altered Rb expression, the patient is a candidate for treatment using the methods described herein.
In the case of cell proliferative disorders arising due to unwanted proliferation of non-cancer cells, the level of the Rb gene product is compared to that level occurring in the general population (e.g., the average level occurring in the general population of people or animals excluding those people or animals suffering from a cell proliferative disorder). If the unwanted cell proliferation disorder is characterized by an abnormal level of Rb than occurring in the general population, then the disorder is a candidate for treatment using the methods described herein.
Methods to determine HPN association of with cervical cancer are described in Sasagawa, T. et al, supra, which is incorporated herein by reference.
Cell proliferative disorders, including those referenced above are not necessarily independent. For example, fibrotic disorders may be related to, or overlap with, blood vessel disorders. Additionally, for example, atherosclerosis (which is characterized herein as a blood vessel disorder) is associated with the abnormal formation of fibrous tissue.
A cancer cell refers to various types of malignant neoplasms, most of which can invade surrounding tissues, and may metastasize to different sites, as defined by Stedman's Medical Dictionary 25th edition (Hensyl ed. 1990).
The formation and spreading of blood vessels, or vasculogenesis and angiogenesis respectively, play important roles in a variety of physiological processes such as embryonic development, wound healing and organ regeneration. They also play a role in cancer development. Blood vessel proliferation disorders refer to angiogenic and vasculogenic disorders generally resulting in abnormal proliferation of blood vessels. Examples of such disorders include restenosis, retinopathies, and atherosclerosis.
As noted above, other such proliferative diseases can be identified by standard techniques, and by determination of the efficacy of action of the compounds described herein.
A. Rb Negative or Deficient Cells Arrest in Mitosis After Treatment With Ansamycins
Rb negative or deficient cells treated with ansamycin or radicicol were discovered to contain a bipolar spindle and elevated cyclin Bl-associated kinase activity. However, chromosomal alignment was disorganized, with chromosomes scattered along the length of the spindle. The presence of paired chromosomes at the poles led to the conclusion that HA-treated cells had arrested in prometaphase as a result of failure of chromosomes to align into a metaphase plate. This arrest was dependent on the absence of Rb as introduction of wild-type RB allowed progression through mitosis in the presence of drug. When treated with ansamycins in S phase,
Rb-negative cells blocked in the subsequent mitosis whereas Rb-wild type cells progressed through mitosis and arrested in G. Thus, Rb is required for completion of mitosis when Hsp90 function is inhibited.
In 12 tumor cell lines examined, ansamycin treatment caused growth arrest in G] (Fig. 1 A ). This arrest was accompanied by a rapid decline in D-cyclin-associated kinase activity and hypophosphorylation of Rb, suggesting that ansamycins affect G, via a cyclin D-related pathway (Srethapakdi, M., F. Liu, R. Tavorath, and N. Rosen, 2000, Cancer Res. 60: 3940-6). These effects were elicited by three different ansamycins, HA, GM and its derivative, 17-allylamino-(17)demethoxygeldanamycin (17-AAG), differing only in regard to potency. Although these experiments were done, for the most part, with HA, it will be understood that similar effects can be obtained using other ansamycins, which bind to the HSP90 pocket, such as the benzoquinone ansamycins, including, but not limited to, geldanamycin, geldanamycin derivatives, such as 17-AAG, herbimycin, and macbecins, or other compounds which bind to the HSP 90 pocket, such as radicicol. To determine if ansamycins disrupted
G„ progression by inhibiting the cyclin D-Rb pathway, their effects were examined in cell lines lacking functional Rb. Rb is the only known substrate of cyclin D- associated kinases (Baldin, V., et al., 1993, Genes Dev. 7:812-21; Ewen, M. E. et al., 1993, Cell 73:487-97; Kato, J., H. et al, 1993, Genes Dev. 7:331-42; Matsushime, H., et al, 1992, Cell 71 :323-34; Matsushime, H., D. et al, 1994, Mol Cell. Biol.
14:2066-76; Meyerson, M., and E. Harlow, 1994, Mol Cell. Biol 14:2077-86;
Quelle, D. E., et al, 1993, Genes Dev. 7:1559-1571; Guan, K.-L., et al, 1994, Genes Dev. 8:2939-52; Koh, J. et al, 1995, Nature 375:506-10; Lukas, J. et al., 1995, Mol. Cell. Biol. 15:2600-1 1; Lukas, J., H. et al, 1994, J. Cell Biol. 125:625-38; Lukas. J., D. et al, 1995, Nature 375:503-6; Medema, R. H. et al, 1995, Proc. Natl. Acad. Sci. USA, 92:6289-93). In tumor cell lines with mutated Rb (MB-MDA 468, BT-
549, DU145 and DU4475) HA treatment failed to induce a G, block but instead led to an accumulation of cells with 4n DNA content (Fig. IB ).
To determine if HA treatment caused Rb-negative cells to arrest in G2 or mitosis, mitotic index was determined with bisbenzimide staining and mitosis was scored by the presence of condensed chromosomes. In MB-MDA 468 cells, in which the mitotic index of the control population was 5-10%, 60-70% of HA-treated cells were in mitosis. Thus, in the absence of Rb function, HA treatment resulted in mitotic arrest.
To further define the nature of the HA-induced mitotic defect, cells were triple-stained with bisbenzimide, anti-α-tubulin antibodies and anti-centromere autoimmune serum (AC A/CREST), α-tubulin staining revealed that arrested cells contained bipolar spindles, demonstrating that HA does not interfere with spindle formation. Examination of chromosomal distribution by bisbenzamide and ACA/CREST staining, however, showed that in most cells, chromosomes localized both to the poles and within the spindle.
Without being bound to any particular theories, the observed accumulation of chromosomes at the poles is consistent with either an arrest in prometaphase due to failure of chromosomes to align into a metaphase plate or to an abnormal anaphase with impaired sister chromatid segregation. ACA staining, however, revealed paired centromeres on chromosomes at the poles, indicating that they were undisjoined sister chromatids (Fig. 3B). In 77 chromosomes localized to the poles, 87% scored as double dots for ACA staining. This demonstrates that accumulation of chromosomes at the poles did not result from premature or incomplete segregation but rather, failure of paired chromatids to congress to the spindle equator. These data show that HA- treated cells are arrested in prometaphase and that, in Rb-negative cells, HA induces mitotic arrest by interfering with chromosomal alignment.
To further distinguish between prometaphase and anaphase, the expression and -associated kinase activities of the mitotic cyclins were assessed. Levels of cyclin A-associated kinase activity begun to decline in prometaphase while cyclin B associated kinase activity remains elevated until anaphase (Furuno, N., N. den Eizen, and J. Pines, 1999, J. Cell Biol 147:295-306; Townsley, F. M., and J. V. Ruderman,
1998, Trends Cell Biol 8:238-244; Zachariae, W., and K. Nasmyth, 1999, Genes Dev. 13:2039-58). As the mitotic index in the HA- blocked population is only 60- 70%, mitotically arrested cells were enriched by using only the loosely adherent population in which the mitotic index was greater than 90%. Cyclin Bl -associated kinase activity was elevated 5-fold in HA-treated cells when compared to control and was comparable to that seen in nocodazole-arrested cells (Fig. 2B). In parallel with kinase activity, cyclin Bl protein expression was also increased in HA-treated cells (Fig. 2B). In contrast, cyclin A expression and its associated kinase activity were slightly lower in both HA and nocodazole-arrested cells compared to that in control cells (Fig. 2A). Thus, HA induces arrest at a point before early anaphase and after prophase when proteo lysis of cyclin A but not cyclin Bl, has begun. This result shows that arrest occurs in prometaphase of mitosis.
Cells with wild-type RB traverse mitosis in the presence of HA The HA-induced mitotic block was observed, surprisingly, only in cells lacking wild-type Rb. HA likely causes the degradation of mitotic regulators more slowly than it affects the expression of G, regulators. The absence of Rb would abrogate the effects on Gλ and expose the mitotic phenotype. The addition of HA to Rb-negative cells blocked in S phase, then, would fail to cause arrest in the mitosis immediately following drug addition. To demonstrate this, Colo 205 cells and MB-
MDA,468 cells were arrested in G,/S with aphidicolin and subsequently released from block in the presence of either HA or DMSO. In the presence of HA, Rb-wild type Colo 205 cells progressed through G2 and mitosis and were arrested in the next G] (Fig. 3A). In contrast, following release from aphidicolin, Rb-negative MB-MDA 468 cells arrested within 12 hours in the next mitosis (Fig. 3B). Thus, cells
containing Rb are able to progress normally through mitosis in the presence of HA while those lacking Rb function are not.
HA induces M and not G, arrest in primary cells expressing HPV 16 E6 and E7
With regard to whether the above observations could result from mutations in other genes that complement with Rb mutations to cause transformation, the cell cycle effects of HA were examined in primary human foreskin keratinocytes (HFK) expressing human papilloma virus-16 (HPN-16) E6 and E7. These viral oncogenes functionally inactivate p53 and Rb, respectively. Introduction of both E6 and E7 was necessary as loss of Rb function in a p53 wild-type background has been shown to predispose cells to undergo apoptosis (Jones, D. L., D. A. Thompson, and K. Munger,
1997, Virology, 239:97-107; Pan, H., and A. E. Griep, 1994, Genes Dev. 8:1285-99; White, A. E., E. M. Livanos, and T. D. Tlsty, 1994, Genes Dev. 8:666-77). While HA caused the majority of primary HFK cells (Fig. 4A) to accumulate in G,, E6/E7 transfectants arrested with 4n DΝA content (Fig. 4B). These results provide further evidence that the cell cycle response to the HA is dictated by the status of Rb and moreover, that Rb is required for mitotic traversal following drug exposure. The loss of p53 function alone is not sufficient for mitotic block as the multiple p53- negative/Rb-positive cell lines that have been tested successfully traverse mitosis in the presence of ansamycins.
Introduction of Rb into Rb-negative cells allows progression though M in the presence of HA
The discovery that addition of HA to cells in S phase induces mitotic arrest in Rb negative MB-MDA 468 cells but not Rb-wild type Colo 205 cells indicates that Rb permits progression through mitosis under these conditions. To test this, wild type Rb was reintroduced into the cell line MB- MDA 468. A low transfection efficiency was seen, possibly because elevated expression of Rb inhibits cell growth. Five positive clones were ultimately obtained. These transfectants expressed lower levels of Rb when compared to Rb-wild-type tumor cell lines. Two stably transfected clones expressing different levels of Rb (468-7 and 468-19) were chosen for analysis (Fig. 5 A). FACS analysis of logarithmically growing populations revealed that Rb
expression in these clones did not alter the cell cycle distribution, though the cells had slightly longer doubling times. When treated with HA, control transfectants accumulated with 4n DNA content. In contrast, the drug had no effect on G2M in the Rb-transfectants and instead caused an increase in Gx. Furthermore, when released from aphidicolin block into HA, both clone 468-7 and 468-19 cycled through mitosis and entered G„ (Fig. 5C & D). In contrast, when treated with HA after aphidicolin block, MB-MDA 468 cells failed to reach Gj and arrested in mitosis by 12 hours (Fig. 5D). The amount of cell death induced by ansamycins was comparable in the Rb- transfected and untransfected cells. Thus, in the Rb-transfectants, the appearance of a higher percentage of cells in G, does not result from increased apoptosis of cells in
G2/M. As these cell lines differ only in Rb status, this finding demonstrates that Rb expression alone is sufficient to allow progression through mitosis in the presence of HA.
Inhibition of Hsp90 with radicicol induces mitotic arrest in MB-MDA 468 cells HA binds to Hsp90 but may have other effects that relate to its chemical properties. Treatment with GM and 17-AAG generated the same Rb-dependent cell cycle profiles and mitotic phenotype as observed with HA. Radicicol is a non- ansamycin natural product that has been shown to bind to the N-terminal Hsp90 ' pocket (Schulte, T. et al, 1999, Mol. Endocrinol 13:1435-1448; Schulte, T. et α .,1998, Cell Stress Chaperones 3:100-8) and to induce the degradation of the same spectrum of proteins affected by ansamycins (Soga, S., et al, 1998, J. Biol. Chem. 273:822-828). Radicicol treatment induced Gj arrest in Rb-positive cell lines, Colo2O5 and MCF7, but failed to arrest Rb-negative MDA-468 cells in G2, and instead, like ansamycins, caused an accumulation of cells with 4n DNA content. Radicicol-arrested MDA 468 cells also displayed chromosomes localized to the poles as well as strewn along the spindle.
B. Administration and Pharmaceutical Compositions
The compounds utilized in the methods of the instant invention may be administered either alone or in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice. The compounds can be administered orally or
parenterally, including the intraventous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
The pharmaceutical compositions used in the methods of the instant invention can contain the active ingredient in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, such as microcrystalline cellulose, sodium crosscarmellose, corn starch, or alginic acid; binding agents, for example starch, gelatin, polyvinyl-pyrrolidone or acacia, and lubricating agents, for example, magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to mask the unpleasant taste of the drug or delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a water soluble taste masking material such as hydroxypropylmethyl-cellulose or hydroxypropylcellulose, or a time delay material such as ethyl cellulose, cellulose acetate butyrate may be employed.
Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose,
hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene- oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n- propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.
Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti- oxidant such as butylated hydroxyanisol or alpha-tocopherol. Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
The pharmaceutical compositions used in the methods of the instant invention may also be in the form of an oil-in- water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring phosphatides, for example soy bean lecithin, and esters or partial esters derived from
fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavoring agents, preservatives and antioxidants. Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
The pharmaceutical compositions maybe in the form of a sterile injectable aqueous solutions. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
The sterile injectable preparation may also be a sterile injectable oil-in-water microemulsion where the active ingredient is dissolved in the oily phase. For example, the active ingredient may be first dissolved in a mixture of soybean oil and lecithin. The oil solution then introduced into a water and glycerol mixture and processed to form a microemulation.
The injectable solutions or microemulsions maybe introduced into a patient's blood-stream by local bolus injection. Alternatively, it may be advantageous to administer the solution or microemulsion in such a way as to maintain a constant circulating concentration of the instant compound. In order to maintain such a constant concentration, a continuous intravenous delivery device may be utilized. An example of such a device is the Deltec CADD-PLUS™ model 5400 intravenous pump.
The pharmaceutical compositions maybe in the form of a sterile injectable aqueous or oleagenous suspension for intramuscular and subcutaneous administration. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butane diol. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil
may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
The HSP90 inhibitors used in the methods of the present invention may also be administered in the form of a suppositories for rectal administration of the drug. These compositions can be prepared by mixing the inhibitors with a suitable non- irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.
For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing an HSP90 inhibitor can be used. (As used herein, topical application can include mouth washes and gargles.)
The compounds used in the methods of the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles and delivery devices, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen. The HSP90 inhibitors used in the instant invention may also be co- administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated. For example, the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents. Similarly, the instant compounds may be useful in combination with agents that are effective in the treatment and prevention of certain viral infections or other conditions associated with an Rb negative phenotype. The instant compounds may also be useful in combination with other inhibitors of parts of the signaling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation.
The methods of the present invention may also be useful with other agents that inhibit angiogenesis and thereby inhibit the growth and invasiveness of tumor cells, including, but not limited to VEGF receptor inhibitors, including ribozymes and antisense targeted to VEGF receptors, angiostatin and endostatin. Examples of an antineoplastic agents, which can be used in combination with the methods of the present invention include, in general, alkylating agents, anti- metabolites; epidophyllotoxin; an antineoplastic enzyme; a topoisomerase inhibitor; procarbazine; mitoxantrone; platinum coordination complexes; biological response modifiers and growth inhibitors; hormonal/anti-hormonal therapeutic agents and haematopoietic growth factors.
Example classes of antineoplastic agents include, for example, the anthracycline family of drugs, the vinca drugs, the mitomycins, the bleomycins, the cytotoxic nucleosides, the epothilones, discodermolide, the pteridine family of drugs, diynenes and the podophyllotoxins. Particularly useful members of those classes include, for example, carminomycin, daunorubicin, aminopterin, methotrexate, methopterin, dichloromethotrexate, mitomycin C, porfiromycin, 5-fluorouracil, 6- mercaptopurine, gemcitabine, cytosine arabinoside, podophyllotoxin or podo- phyllotoxin derivatives such as etoposide, etoposide phosphate or teniposide, melphalan, vinblastine, vincristine, leurosidine, vindesine, leurosine, paclitaxel and the like. Other useful antineoplastic agents include estramustine, carboplatin, cyclophosphamide, bleomycin, gemcitibine, ifosamide, melphalan, hexamethyl melamine, thiotepa, cytarabin, idatrexate, trimetrexate, dacarbazine, L-asparaginase, camptothecin, CPT-11, topotecan, ara-C, bicalutamide, flutamide, leuprolide, pyridobenzoindole derivatives, interferons and interleukins. When a HSP90 inhibitor used in the methods of the present invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
In one exemplary application, a suitable amount of a HSP90 inhibitor is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount of each type of inhibitor of between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day. A particular therapeutic dosage that comprises the instant composition includes from about 0.01 mg to about 1000 mg of a HSP90 inhibitor. Preferably, the dosage comprises from about 1 mg to about 1000 mg of a HSP90 inhibitor.
Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, preferably from about 1 mg to 300 mg, more preferably 10 mg to 200 mg, according to the particular application. The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small amounts until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
The amount and frequency of administration of the HSP90 inhibitors used in the methods of the present invention and if applicable other chemotherapeutic agents and/or radiation therapy will be regulated according to the judgment of the attending clinician (physician) considering such factors as age, condition and size of the patient as well as severity of the disease being treated.
The chemotherapeutic agent and/or radiation therapy can be administered according to therapeutic protocols well known in the art. It will be apparent to those skilled in the art that the administration of the chemotherapeutic agent and/or radiation therapy can be varied depending on the disease being treated and the known
effects of the chemotherapeutic agent and/or radiation therapy on that disease. Also, in accordance with the knowledge of the skilled clinician, the therapeutic protocols (e.g., dosage amounts and times of administration) can be varied in view of the observed effects of the administered therapeutic agents (i.e., antineoplastic agent or radiation) on the patient, and in view of the observed responses of the disease to the administered therapeutic agents.
Also, in general, the HSP90 inhibitor and the chemotherapeutic agent do not have to be administered in the same pharmaceutical composition, and may, because of different physical and chemical characteristics, have to be administered by different routes. For example, the HSP90 inhibitor may be administered orally to generate and maintain good blood levels thereof, while the chemotherapeutic agent may be administered intravenously. The determination of the mode of administration and the advisability of administration, where possible, in the same pharmaceutical composition, is well within the knowledge of the skilled clinician. The initial administration can be made according to established protocols known in the art, and then, based upon the observed effects, the dosage, modes of administration and times of administration can be modified by the skilled clinician.
The particular choice of HSP90 inhibitor, and chemotherapeutic agent and/or radiation will depend upon the diagnosis of the attending physicians and their judgment of the condition of the patient and the appropriate treatment protocol.
The HSP90 inhibitor, and chemotherapeutic agent and/or radiation may be administered concurrently (e.g., simultaneously, essentially simultaneously or within the same treatment protocol) or sequentially, depending upon the nature of the proliferative disease, the condition of the patient, and the actual choice of chemotherapeutic agent and/or radiation to be administered in conjunction (i.e., within a single treatment protocol) with the HSP90 inhibitor.
If the HSP90 inhibitor, and the chemotherapeutic agent and/or radiation are not administered simultaneously or essentially simultaneously, then the initial order of administration of the HSP90 inhibitor, and the chemotherapeutic agent and/or radiation, may not be important. Thus, the HSP90 inhibitor may be administered first
followed by the administration of the chemotherapeutic agent and/or radiation; or the chemotherapeutic agent and/or radiation may be administered first followed by the administration of the HSP90 inhibitor. This alternate administration may be repeated during a single treatment protocol. The determination of the order of administration, and the number of repetitions of administration of each therapeutic agent during a treatment protocol, is well within the knowledge of the skilled physician after evaluation of the disease being treated and the condition of the patient. For example, the chemotherapeutic agent and/or radiation may be administered first, especially if it is a cytotoxic agent, and then the treatment continued with the administration of the HSP90 inhibitor followed, where determined advantageous, by the administration of the chemotherapeutic agent and/or radiation, and so on until the treatment protocol is complete.
Thus, in accordance with experience and knowledge, the practicing physician can modify each protocol for the administration of a component (therapeutic agent- i.e., HSP90 inhibitor, chemotherapeutic agent or radiation) of the treatment according to the individual patient's needs, as the treatment proceeds.
The attending clinician, in judging whether treatment is effective at the dosage administered, will consider the general well-being of the patient as well as more definite signs such as relief of disease-related symptoms, inhibition of tumor growth, actual shrinkage of the tumor, or inhibition of metastasis. Size of the tumor can be measured by standard methods such as radiological studies, e.g., CAT or MRI scan, and successive measurements can be used to judge whether or not growth of the tumor has been retarded or even reversed. Relief of disease-related symptoms such as pain, and improvement in overall condition can also be used to help judge effectiveness of treatment.
The following examples are not limiting and are merely representative of various aspects and features of the present invention. All references referred to above and below are incorporated herein by reference.
Examples
Example 1 : Effect of Ansamycins on Cells with a Functional Rb Protein and Cells Lacking a Functional Rb Protein.
Cell culture:
The human breast cancer cell lines MB-MDA 468, MCF7 and BT-549 and the colon carcinoma cell line, Colo 205, were obtained from ATCC. Breast cell lines were maintained in DME-F12 media and Colo 205 cells in RPMI; both media were supplemented with 5% fetal calf serum (BRL), 2 mM glutamine and 50 u/ml each of penicillin and streptomycin. All cells were incubated at 37°C in 5% C02.
Cells were treated for 24 hours with 250 ng/ml herbimycin A (Gibco) dissolved in DMSO or 435nM of radicicol (Sigma).
After treatment the nuclei can be stained with ethidium bromide and analyzed by flow cytometry.
Flow cvtometry:
Nuclei were isolated for flow cytometry assays stained with ethidium bromide and analyzed using a Becton Dickinson fluorescence-activated cell sorter. Statistical data was obtained using Multicycle program software.
Results:
As shown in Fig.l, in 12 tumor cell lines examined, ansamycin treatment caused growth arrest in G,. In tumor cell lines with mutated Rb HA treatment failed to induce a Gj block but instead resulted to an accumulation of cells with 4n DNA content (Fig. IB).
Example 2: Analysis of Cell Arrest in Rb-Negative and Rb-Positive Cells Treated With HSP90 Inhibitors Mitotic index:
For mitotic indices, cells were trypsinized, washed with PBS and fixed with 3% paraformaidehyde in PBS for 20 min. Cells were then stained with 3 μg/ml
bisbenzimide (Hoechst 33258; Sigma) for 15 min and examined under fluorescence microscopy. Mitosis was scored by the presence of condensed chromosomes.
Immuno fluorescent analysis:
For immunofluorescent analysis, harvested cells were washed with PBS, fixed with methanol for 20 min at -20°C, washed again and blocked for 30 min with 2%
BSA in PBS. Cells were then stained with anti-α-tubulin (Sigma) and anti- centromere protein antibodies (ACA/CREST) (gift of Dr. J. D. Rattner) in 2% BSA PBS for 1 hour. Following 3 washes with 0.5% BSA in PBS, cells were incubated with anti-human FITC conjugated, antimouse rhodamine conjugated antibodies (Molecular Probes) and 2 μg/ml bisbenzimide in 2% BSA in PBS for 45 min. Cells were then washed 4X with 0.5% BSA in PBS, resuspended in PBS and images captured by confocal microscopy or with a CCD camera. Images were then processed using Slidebook 3.0 and Adobe Photoshop program software.
For synchrony experiments, cells were treated with 1 μg/ml aphidicolin (Sigma) for 18 hours, washed and replated in media containing DMSO or HA.
Results:
As shown in Fig 3, α-tubulin staining demonstrates that arrested cells contained bipolar spindles, indicating that ansamycins do not interfere with spindle formation. Additionally, in most cells, chromosomes localized both to the poles and within the spindle (Fig 3 A). ACA staining revealed paired centromeres on chromosomes at the poles (Fig. 3B). In 77 chromosomes localized to the poles, 87%, scored as double dots for ACA staining, indicating that accumulation of chromosomes at the poles is not the result of premature or incomplete segregation but rather, failure of paired chromatids to assemble to the spindle equator. These data show that HA-treated cells are arrested in promethaphase and that, in Rb-negative cells, HA induces mitotic arrest by interfering with chromosomal alignment.
Example 3: Measurement of Mitotic Cyclins Immunoblot Analysis:
Levels of mitotic cyclin expression and associated kinase activities in herbimycin arrested MB-MD 468 cells were assessed using immunoblot analysis and in vitro kinase assays as described below. Cells cultured with herbimycin were enriched for mitotically arrested cells by using only the loosely adherent population in which the mitotic index was greater than 90%.
Immunoblot analysis of lysates from cells treated with DMSO, nocodazole or herbimycin were analyzed by Western blot analysis using anti-cyclin A or anti-Bl antibodies. Treated cells were harvested, washed with PBS and lysed in NP40 lysis buffer (50 mM Tris pH7.4, 1% NP40,150 mM NaCl, 40 mM NaF. 1 mM Na3VO4, ImM phenylmethylsulfonylfluoride, and 10 μg/ml each of leupeptin, aprotinin and soybean trypsin inhibitor) for 30 min on ice. Lysates were centrifuged at 15,000xg for 10 min and protein concentration determined by bicinchoninic acid protein assay (Pierce). Equal amounts of total protein were resolved by SDS-PAGE and transferred onto Immobilon PVDF membranes (Millipore) by electroblotting. Blots were blocked overnight in 5% nonfat milk in TBS-T (0.1% Tween-20 TBS, 10 mM Tris pH 7.4, 150 mM NaCI) at 4°C and subsequently probed with either anti-cyclin A or cyclin Bl antibodies (Santa Cruz Biotechnology). Following incubation with HRP- conjugated secondary antibodies, proteins were detected by chemiluminescence (Amersham). Immunoprecipitation and in vitro kinase assays:
For immunoprecipitation, 100 μg of total protein was incubated with anti- cyclin A or anti-cyclin Bl (Santa Cruz) antibodies for 2 hours at 4°C and then for 1 hour following the addition of protein A-Sepharose. The immune complexes were washed AX with lysis buffer and boiled in SDS-PAGE sample buffer for 5 min. Following SDS-PAGE, proteins were transferred onto Immobilon and analyzed by western blotting.
For in vitro kinase reactions, immune complexes were washed 4x with lysis buffer, 2X with kinase buffer (20 mM Tris pH 7.4, 7.5 mM MgCl2, 1 mM DTT) and incubated in 40 μl of kinase buffer containing 2 μg histone HI, 10 μCi [γ-32P] ATP and 300 μM ATP for 10 min at 37°C. The reaction was stopped by the addition of
SDS-PAGE sample buffer and boiled for 5 min. Proteins were resolved on SDS- PAGE, transferred onto Immobilon and exposed to autoradiography film or phosphoimager screen. Kinase activity was quantitated by FUJIX phosphoimager and MacBAS program software. Results:
Cyclin Bl- associated kinase activity was elevated 5-fold in HA-treated cells when compared to control and was comparable to that seen in nocodazole-arrested cells (Fig. 4B). Cyclin Bl protein expression was also increased in HA-treated cells (Fig. 4B). In contrast, cyclin A expression and its associated kinase activity were slightly lower in both HA and nocodazole-aresseted cells compared to that in control cells (Fig. 4A).
Example 4: Effect of Herbimycin in Cells Expressing Human Papilomma Virus-16 E6 and E7 Primary human foreskin keratinocytes transfected with HPV-1 6 E6 and E7 were provided by Drs. H. Stδppler and R. Schlegel (Georgetown Univ.) and grown as previously described. Primary human foreskin keratinocytes or HPV 16 E6/E7 transfected human foreskin keratinoytes were treated with HA or DMSO for 24 hours and ethidium bromide stained-nuclei analyzed by flow cytometry as described above. Results:
HA caused the majority of primary HFK cells (Fig. 6A) to accumulate in G„ in contrast E6/E7 transfectants arrested with 4n DNA content (Fig. 6B).
Example 5: Transfection of Rb gene into Rb-negative cells
Rb transfection:
To further confirm that the gene product of the Rb gene permits progression through mitosis in the presence of an HSP90 inhibitor, MB-MDA 468 cells were transfected with the plasmid pUHDl 0-3HGR containing full-length 4.7 kb human Rb cDNA. Rb transfectants were grown in DME-F12 media supplemented with 5% fetal calf serum (BRL), 2 mM glutamine and 50 μg/ml each of penicillin and streptomycin
and 100 μg/ml hygromycin B (Boehringer Mannheim). To confirm the presence of the Rb gene product Western blot analysis was carried out using anti-Rb antibodies (Pharmingen) as described herein. Vector control, MB-MDA 468, and Rb transfected MB-MDA 468 cells were arrested with aphidicolin as described above. After release from aphidicolin arrest, transfected and non-transfected MM-MDA 468 cells were cultured in the presence of an ansamycin inhibitor as described in Example 1. Cell progression was monitored by flow cytometric analysis of ethidium bromide-stained nuclei as described above.
Results: When treated with HA, control transfectants (MB-MDA 468 cells) accumulated with 4n DNA content. In contrast, in the Rb transfectants (468-7; 468- 19) HA caused an increase in G, and had no effect on G2/M (data not shown). When released from aphidicolin block into HA, Rb transfectants cycled through mitosis and entered G, (Fig. 5C- 5D). In contrast, when treated with HA after aphidicolin block, MB-MDA 468 cells failed to reach G, and arrested in mitosis by 12 hours (Fig. 5B).
All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually. None of the references are admitted to be prior art.
One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.
It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the
scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.
The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms
"comprising", "consisting essentially of and "consisting of maybe replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed maybe resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.
In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.
Other embodiments are within the following claims.
Claims (18)
- CLAIMS L A method for destroying cells that are deficient in retinoblastoma gene product, comprising administering to said cells a compound capable of inhibiting HSP90 function.
- 2. The method of claim 1, wherein said compound is an ansamycin.
- 3. The method of claim 2, wherein said ansamycin is selected from the group consisting of geldanamycin, 17-AAG, or herbimycin A.
- 4. The method of claim 2, wherein said ansamycin is 17-AAG.
- 5. The method of claim 1 , wherein said compound is radicicol.
- 6. The method of claim 1 , wherein said compound is a synthetic compound that binds into the ATP-binding site of a HSP90.
- 7. A method of treating disorders associated with cells that are deficient in retinoblastoma gene product, comprising administering a therapeutically effective amount of a compound capable of inhibiting HSP90 .
- 8. The method of claim 7, wherein said disorder is small cell lung cancer.
- 9. The method of claim 7, wherein said RB negative or deficient disorder is associated with a viral infection
- 10. The method of claim 9, wherein said viral infection is caused by a Human papilloma virus.
- 11. The method of claim 9, wherein said disorder is cervical cancer.
- 12. The method of claim 7, wherein said compound is given in combination with other known therapies.
- 13. The method of claim 7, wherein said compound is an ansamycin.
- 14. The method claim 13, wherein said ansamycin is selected from the group consisting of geldanamycin, 17-AAG, or herbimycin A.
- 15. The method of claim 13, wherein said ansamycin is 17-AAG
- 16. The method of claim 7, wherein said compound is radicicol.
- 17. The method of claim 7, wherein said compound is a synthetic compound which binds in the ATP-binding site of a HSP90.
- 18. The methods of claims 1 or 7, wherein said cells are RB negative.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22141500P | 2000-07-28 | 2000-07-28 | |
US60/221,415 | 2000-07-28 | ||
US24526400P | 2000-11-02 | 2000-11-02 | |
US60/245,264 | 2000-11-02 | ||
PCT/US2001/023640 WO2002009696A1 (en) | 2000-07-28 | 2001-07-27 | Methods for treating cell proliferative disorders and viral infections |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2001292548A1 true AU2001292548A1 (en) | 2002-05-09 |
AU2001292548B2 AU2001292548B2 (en) | 2005-06-16 |
Family
ID=26915764
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001292548A Expired AU2001292548B2 (en) | 2000-07-28 | 2001-07-27 | Methods for treating cell proliferative disorders and viral infections |
AU9254801A Pending AU9254801A (en) | 2000-07-28 | 2001-07-27 | Methods for treating cell proliferative disorders and viral infections |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU9254801A Pending AU9254801A (en) | 2000-07-28 | 2001-07-27 | Methods for treating cell proliferative disorders and viral infections |
Country Status (8)
Country | Link |
---|---|
US (1) | US6946456B2 (en) |
EP (1) | EP1322307B1 (en) |
JP (1) | JP2004505044A (en) |
KR (1) | KR20030046397A (en) |
AT (1) | ATE526019T1 (en) |
AU (2) | AU2001292548B2 (en) |
CA (1) | CA2417495C (en) |
WO (1) | WO2002009696A1 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2426952C (en) * | 2000-11-02 | 2012-06-26 | Sloan-Kettering Institute For Cancer Research | Small molecule compositions for binding to hsp90 |
US20090197852A9 (en) * | 2001-08-06 | 2009-08-06 | Johnson Robert G Jr | Method of treating breast cancer using 17-AAG or 17-AG or a prodrug of either in combination with a HER2 inhibitor |
US6872715B2 (en) | 2001-08-06 | 2005-03-29 | Kosan Biosciences, Inc. | Benzoquinone ansamycins |
EP2336133A1 (en) | 2001-10-30 | 2011-06-22 | Conforma Therapeutics Corporation | Purine analogs having HSP90-inhibiting activity |
AU2003217393B8 (en) | 2002-02-08 | 2009-06-25 | Conforma Therapeutics Corporation | Ansamycins having improved pharmacological and biological properties |
JP2006507021A (en) * | 2002-03-18 | 2006-03-02 | メドトロニック・エイヴイイー・インコーポレーテッド | A medical device for delivering an antiproliferative composition to an anatomical site at risk of restenosis |
CA2481683A1 (en) * | 2002-04-10 | 2003-10-23 | Conforma Therapeutics Corporation | Ansamycin formulations and methods for producing and using same |
US20060148776A1 (en) * | 2003-03-13 | 2006-07-06 | Conforma Therapeutics Corporation | Drug formulations having long and medium chain triglycerides |
US7691838B2 (en) * | 2003-05-30 | 2010-04-06 | Kosan Biosciences Incorporated | Method for treating diseases using HSP90-inhibiting agents in combination with antimitotics |
EA010160B1 (en) | 2003-09-18 | 2008-06-30 | Конформа Терапьютикс Корпорейшн | Novel heterocyclic compounds as hsp90-inhibitors |
JP2007505634A (en) * | 2003-09-22 | 2007-03-15 | ロゼッタ インファーマティクス エルエルシー | Synthetic lethal screening using RNA interference |
ES2409351T3 (en) | 2003-12-23 | 2013-06-26 | Infinity Discovery, Inc. | Ansamycin analogs containing benzoquinone for cancer treatment |
US20050256097A1 (en) * | 2004-05-11 | 2005-11-17 | Kosan Biosciences, Inc. | Pharmaceutical solution formulations containing 17-AAG |
US20060067953A1 (en) * | 2004-09-29 | 2006-03-30 | Conforma Therapeutics Corporation | Oral pharmaceutical formulations and methods for producing and using same |
DE102004049078A1 (en) | 2004-10-08 | 2006-04-13 | Merck Patent Gmbh | phenylpyrazoles |
KR101374553B1 (en) * | 2004-11-18 | 2014-03-17 | 신타 파마슈티칼스 코프. | Triazole compounds that modulate hsp90 activity |
US8735394B2 (en) | 2005-02-18 | 2014-05-27 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
CA3054535A1 (en) * | 2005-02-18 | 2006-08-24 | Abraxis Bioscience, Llc | Combinations and modes of administration of therapeutic agents and combination therapy |
DE102005009440A1 (en) | 2005-03-02 | 2006-09-07 | Merck Patent Gmbh | thienopyridine derivatives |
JP2008535844A (en) * | 2005-04-07 | 2008-09-04 | コンフォーマ・セラピューティクス・コーポレイション | PHARMACEUTICAL PREPARATION BASED ON PHOSPHOLIPID AND METHOD FOR PRODUCTION AND USE |
WO2007001049A1 (en) * | 2005-06-29 | 2007-01-04 | Kyowa Hakko Kogyo Co., Ltd. | Benzenoid ansamycin derivative |
JP5118039B2 (en) | 2005-08-18 | 2013-01-16 | シンタ ファーマシューティカルズ コーポレーション | Triazole compounds that modulate HSP90 activity |
AU2006320435A1 (en) * | 2005-12-01 | 2007-06-07 | Conforma Therapeutics Corporation | Compositions containing ansamycin |
WO2007071958A2 (en) * | 2005-12-22 | 2007-06-28 | Astrazeneca Ab | Combination of zd6474 and pemetrexed |
US20070167422A1 (en) * | 2006-01-18 | 2007-07-19 | Yu Kwok S | Pharmaceutical compositions comprising 17-allylamino-17-demethoxygeldanamycin |
US20070259820A1 (en) * | 2006-05-03 | 2007-11-08 | The Regents Of The University Of Michigan | Methods and reagents for activating heat shock protein 70 |
CA2653327A1 (en) * | 2006-05-25 | 2007-12-06 | Synta Pharmaceuticals Corp. | Compounds that modulate hsp90 activity and methods for identifying same |
AR061185A1 (en) | 2006-05-26 | 2008-08-13 | Chugai Pharmaceutical Co Ltd | HETEROCICLICAL COMPOUNDS AS INHIBITORS OF HSP90. PHARMACEUTICAL COMPOSITIONS. |
CN101588799B (en) * | 2006-08-11 | 2013-09-11 | 斯特拉斯堡大学 | Macrocyclic compounds useful as inhibitors of kinases and hsp90 |
DE102007002715A1 (en) | 2007-01-18 | 2008-07-24 | Merck Patent Gmbh | triazole |
EP2119718B1 (en) | 2007-03-01 | 2012-04-11 | Chugai Seiyaku Kabushiki Kaisha | Macrocyclic compound |
DE102007028521A1 (en) | 2007-06-21 | 2008-12-24 | Merck Patent Gmbh | Indazolamidderivate |
DE102007032739A1 (en) | 2007-07-13 | 2009-01-15 | Merck Patent Gmbh | Chinazolinamidderivate |
DE102007041116A1 (en) | 2007-08-30 | 2009-03-05 | Merck Patent Gmbh | 1,3-dihydro-isoindole derivatives |
US20110190237A1 (en) * | 2008-01-15 | 2011-08-04 | Nexgenix Pharmaceuticals | Macrocyclic Prodrug Compounds Useful as Therapeutics |
CN101983191B (en) | 2008-02-01 | 2013-11-20 | 武田药品工业株式会社 | Oxim derivatives as hsp90 inhibitors |
BRPI0924107A2 (en) * | 2008-11-28 | 2019-09-24 | Novartis Ag | hsp90 inhibitors for therapeutic treatment |
DE102008061214A1 (en) | 2008-12-09 | 2010-06-10 | Merck Patent Gmbh | Chinazolinamidderivate |
DE102009054302A1 (en) | 2009-11-23 | 2011-05-26 | Merck Patent Gmbh | quinazoline derivatives |
EP2552415B1 (en) | 2010-03-29 | 2016-09-07 | Abraxis BioScience, LLC | Methods of treating cancer |
MX2012011155A (en) | 2010-03-29 | 2012-12-05 | Abraxis Bioscience Llc | Methods of enhancing drug delivery and effectiveness of therapeutic agents. |
US9205086B2 (en) | 2010-04-19 | 2015-12-08 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of a Hsp90 inhibitory compounds and a EGFR inhibitor |
NZ706745A (en) | 2010-06-04 | 2017-01-27 | Abraxis Bioscience Llc | Methods of treatment of pancreatic cancer |
DE102010046837A1 (en) | 2010-09-29 | 2012-03-29 | Merck Patent Gmbh | Phenylchinazolinderivate |
CA2853806C (en) | 2011-11-02 | 2020-07-14 | Synta Pharmaceuticals Corp. | Combination therapy of hsp90 inhibitors with platinum-containing agents |
WO2013067162A1 (en) | 2011-11-02 | 2013-05-10 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of hsp90 inhibitors with topoisomerase i inhibitors |
AU2012339679A1 (en) | 2011-11-14 | 2014-06-12 | Synta Pharmaceuticals Corp. | Combination therapy of Hsp90 inhibitors with BRAF inhibitors |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3595955A (en) | 1969-03-26 | 1971-07-27 | Upjohn Co | Geldanamycin and process for producing same |
US4261989A (en) | 1979-02-19 | 1981-04-14 | Kaken Chemical Co. Ltd. | Geldanamycin derivatives and antitumor drug |
IE911915A1 (en) * | 1990-06-06 | 1991-12-18 | Sankyo Co | Radicicol derivatives, their preparation and their¹anti-tumor activity |
US5650430A (en) * | 1990-06-06 | 1997-07-22 | Sankyo Company, Limited | Radicicol derivatives, their preparation and their anti-tumor activity |
US5387584A (en) | 1993-04-07 | 1995-02-07 | Pfizer Inc. | Bicyclic ansamycins |
US5932566A (en) | 1994-06-16 | 1999-08-03 | Pfizer Inc. | Ansamycin derivatives as antioncogene and anticancer agents |
US5731343A (en) * | 1995-02-24 | 1998-03-24 | The Scripps Research Institute | Method of use of radicicol for treatment of immunopathological disorders |
EP0889042B1 (en) * | 1996-10-25 | 2004-05-06 | Kyowa Hakko Kogyo Co., Ltd. | Radicicol derivatives |
DE69841549D1 (en) * | 1997-05-14 | 2010-04-22 | Sloan Kettering Inst Cancer | PROCESS AND PREPARATIONS FOR DESTRUCTION OF CERTAIN PROTEINS |
US5968921A (en) | 1997-10-24 | 1999-10-19 | Orgegon Health Sciences University | Compositions and methods for promoting nerve regeneration |
WO2000059449A2 (en) | 1999-04-02 | 2000-10-12 | Euro-Celtique S.A. | Purine derivatives having phosphodiesterase iv inhibition activity |
WO2000061578A1 (en) | 1999-04-09 | 2000-10-19 | Sloan-Kettering Institute For Cancer Research | Methods and compositions for degradation and/or inhibition of her-family tyrosine kinases |
US6335157B1 (en) | 1999-05-07 | 2002-01-01 | The European Molecular Biology Laboratory | Method based on localization of Hsp90 to the centrosome |
GB9924020D0 (en) | 1999-10-11 | 1999-12-15 | Pfizer Ltd | Pharmaceutically active compounds |
EP1322325A4 (en) * | 2000-07-20 | 2004-09-15 | Merck & Co Inc | Inhibiting hepatitis c virus processing and replication |
EP2308515A1 (en) * | 2000-11-02 | 2011-04-13 | Sloan-Kettering Institute For Cancer Research | Methods for enhancing the efficacy of cytotoxic agents through the use of HSP90 inhibitors |
-
2001
- 2001-07-27 US US10/343,246 patent/US6946456B2/en not_active Expired - Lifetime
- 2001-07-27 AU AU2001292548A patent/AU2001292548B2/en not_active Expired
- 2001-07-27 AU AU9254801A patent/AU9254801A/en active Pending
- 2001-07-27 EP EP01972917A patent/EP1322307B1/en not_active Revoked
- 2001-07-27 JP JP2002515249A patent/JP2004505044A/en active Pending
- 2001-07-27 CA CA2417495A patent/CA2417495C/en not_active Expired - Lifetime
- 2001-07-27 KR KR10-2003-7001269A patent/KR20030046397A/en active Search and Examination
- 2001-07-27 WO PCT/US2001/023640 patent/WO2002009696A1/en active IP Right Grant
- 2001-07-27 AT AT01972917T patent/ATE526019T1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1322307B1 (en) | Methods for treating cell proliferative disorders and viral infections | |
AU2001292548A1 (en) | Methods for treating cell proliferative disorders and viral infections | |
AU2002228772B2 (en) | Methods for enhancing the efficacy of cytotoxic agents through the use of HSP90 inhibitors | |
US8518897B2 (en) | Method of treatment for cancers associated with elevated HER2 levels | |
US8759097B2 (en) | Inhibition of dynamin related protein 1 to promote cell death | |
AU2002310065A1 (en) | Method of treatment for cancers associated with elevated HER 2 levels | |
WO2009102986A1 (en) | Treatment of adenocarcinoma expressing lkb1 with mtor inhibitor in combination with cox1 inhibitor | |
AU2005262925A1 (en) | Modulation of GSK-3beta and method of treating proliferative disorders | |
Samy et al. | Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis | |
Dey et al. | The interruption of atypical PKC signaling and Temozolomide combination therapy against glioblastoma | |
WO2012121662A1 (en) | Novel pharmaceutical combinations and methods for treating cancer | |
US9063142B1 (en) | Method of predicting sensitivity to prostate cancer therapy | |
Yoo et al. | CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells. | |
US20040191168A1 (en) | Tumor cell killing by cell cycle checkpoint abrogation combined with Inhibition of the classical mitogen activated protein (map) kinase pathway | |
Gilmore et al. | Effects of a novel microtubule-depolymerizer on pro-inflammatory signaling in RAW264. 7 macrophages | |
KR100855355B1 (en) | Composition for enhancing radiation sensitivity containing expression inhibitors of SIRT1 and method for enhancing radiation sensitivity of cancer cells using the same | |
US20180303802A1 (en) | Methods for treating synovial sarcoma | |
Wang et al. | Effects and mechanisms of chloroquine alone and in combination with cisplatin in the treatment of human ovarian cancer cell SKOV3 in vitro | |
Jiang et al. | Hsp90-mediated inactivation of NF {kappa} B switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells | |
KR20220002766A (en) | Composition for preventing of hyperglycemia by statin |