AU2001292151A1 - Vaccines containing ribavirin and methods of use thereof - Google Patents

Vaccines containing ribavirin and methods of use thereof

Info

Publication number
AU2001292151A1
AU2001292151A1 AU2001292151A AU2001292151A AU2001292151A1 AU 2001292151 A1 AU2001292151 A1 AU 2001292151A1 AU 2001292151 A AU2001292151 A AU 2001292151A AU 2001292151 A AU2001292151 A AU 2001292151A AU 2001292151 A1 AU2001292151 A1 AU 2001292151A1
Authority
AU
Australia
Prior art keywords
ribavirin
antigen
hcv
seq
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001292151A
Other versions
AU2001292151B2 (en
AU2001292151C1 (en
Inventor
Catharina Hultgren
Matti Sallberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tripep AB
Original Assignee
Tripep AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tripep AB filed Critical Tripep AB
Priority claimed from PCT/IB2001/001808 external-priority patent/WO2002013855A2/en
Application granted granted Critical
Publication of AU2001292151C1 publication Critical patent/AU2001292151C1/en
Publication of AU2001292151A1 publication Critical patent/AU2001292151A1/en
Publication of AU2001292151B2 publication Critical patent/AU2001292151B2/en
Priority to AU2006203358A priority Critical patent/AU2006203358B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

VACCINES CONTAINING RIBAVIRIN AND METHODS OF USE THEREOF
FIELD OF THE INVENTION The present invention relates to compositions and methods for enhancing the effect of vaccines in animals, such as domestic, sport, or pet species, and humans. More particularly, preferred embodiments concern the use of ribavirin as an adjuvant and compositions having ribavirin and an antigen.
BACKGROUND OF THE INVENTION
The use of vaccines to prevent disease in humans, faπn livestock, sports animals, and household pets is a common practice. Frequently, however, the antigen used in a vaccine is not sufficiently immunogenic to raise he antibody titre to levels that are sufficient to provide protection against subsequent challenge or to maintain the potential for mounting these levels over extended time periods. Further, many vaccines are altogether deficient in inducing cell-mediated immunity, which is a primary immune defense against bacterial and viral infection. A considerable amount of research is currently focussed on the development of more potent vaccines and ways to enhance the immunogenicity of antigen-containing preparations. (See e.g., U.S. Pat.
Nos. 6,056,961; 6,060,068; 6,063,380; and Li et al., Science 288:2219-2222 (2000)).
Notorious among such "weak" vaccines are hepatitis B vaccines. For example, recombinant vaccines against hepatitis B virus such as Genhevacb (Pasteur Merieux Serums et Vaccines, 58, Avenue Leclerc 69007 Lyon, France), Engerixb (Smith, Kline and Symbol French), and Recombivaxhb (Merck, Sharp, and Dhome) are effective only after at least three injections at 0, 30, and 60 or 180 days, followed by an obligatory booster after one year. (Chedid et al., U.S. Patent No. 6,063,380). Additionally, many subjects receiving these vaccines respond poorly, if at all. Because many regions of he world are endemic for HBV infection, the poorly immunogenic character of existing HBV vaccines h&s become an extremely serious problem.
To obtain a stronger, humoral and/or cellular response, it is common to administer a vaccine in a material that enhances the immune response ofthe patient to the antigen present in the vaccine. The most commonly used adjuvants for vaccine protocols are oil preparations and alum.
(Chedid et al., U.S. Patent No. 6,063,380). A greater repertoire of safe and effective adjuvants is needed.
Nucleoside analogs have been widely used in anti-viral therapies due to their capacity to reduce viral replication. (Hosoya et al, J. Inf. Dis., 168:641-646 (1993)). ribavirin (1-β-D- ribofuranosyl-l,2,4-triazole-3-carboxamide) is a synthetic guanosine analog that has been used to inhibit RNA and DNA virus replication. (Huffman et al., Antimicrob. Agents. Chemother., 3:235 (1973); Sidwell et al., Science, 177:705 (1972)). ribavirin has been shown to be a competitive inhibitor of inositol mono-phosphate (IMP) dehydrogenase (IMPDH), which converts IMP to IMX (which is then converted to GMP). De Clercq, Anti viral Agents: characteristic activity spectrum depending on the molecular target with which they interact. Academic press, Inc., New York N.Y., pp. 1-55 (1993). Intracellular pools of GTP become depleted as a result of long term ribavirin treatment.
In addition to antiviral activity, investigators have observed that some guanosine analogs have an effect on the immune system. (U.S. Patent Nos. 6,063,772 and 4,950,647). ribavirin has been shown to inhibit functional humoral immune responses (Peavy et al, J. Immunol, 126:861- 864 (1981); Powers et al, Antimicrob. Agents. Chemother., 22:108-114 (1982)) and IgE-mediated modulation of mast cell secretion. (Marquardt et al., J. Pharmacol. Exp. Therapeutics, 240:145- 149 (1987)). Some investigators report that a daily oral therapy of ribavirin has an immune modulating effect on humans and mice. (Hultgren et al., J. Gen. Virol, 79:2381-2391 (1998) and Cramp et al., Gastron. Enterol, 118:346-355 (2000)). Nevertheless, the current understanding of the effects of ribavirin on the immune system is in its infancy. SUMMARY OF THE INVENTION
It has been discovered that ribavirin can be used as an adjuvant to enhance or facilitate an immune response to an antigen. Embodiments of the invention described herein include "strong" vaccine preparations that comprise an antigen and ribavirin. Generally, these preparations have an amount of ribavirin that is sufficient to enhance or facilitate an immune response to the antigen. Other aspects of the invention include methods of enhancing or facilitating an immune response of an animal, including a human, to an antigen. By one approach, for example, an animal in need of a potent immune response to an antigen is identified and then is provided an amount of ribavirin together with the antigen. In some -methods, the ribavirin and the antigen are provided in combination (e.g., in a single composition) and in others, the ribavirin and the antigen are provided separately. Several embodiments also concern the manufacture and use of compositions having ribavirin and an antigen.
Although the embodied compositions include ribavirin and virtually any antigen or epitope, preferred compositions comprise ribavirin and a hepatitis viral antigen or epitope. The antigen or epitope can be peptide or nucleic acid-based (e.g., a RNA encoding a peptide antigen or a construct that expresses a peptide antigen when introduced to a subject). Compositions having ribavirin and a peptide comprising an antigen or epitope from the hepatitis A virus (HAV) or a nucleic acid encoding said peptide are embodiments. Compositions having ribavirin and a peptide comprising an antigen or epitope from the hepatitis B virus (HBV) or a nucleic acid encoding said peptide are embodiments. HBV antigens that are suitable include, for example, hepatitis B surface antigen (HBsAg), hepatitis core antigen (HBcAg), hepatitis e antigen (HBeAg), and nucleic acids encoding these molecules. Still further, compositions having ribavirin and a peptide comprising an antigen or epitope from the hepatitis C virus (HCV) or a nucleic acid encoding said peptide are embodiments. Suitable HCV antigens include, but are not limited to, one or more domains of the HCV sequence (e.g., NS3 and/or NS4 V) and nucleic acids encoding said molecules. A new HCV sequence was also discovered. A novel NS3/4A fragment of the HCV genome was cloned and sequenced from a patient infected with HCV (SEQ. ID. NO.: 16). This sequence was found to be only 93% homologous to the most closely related HCV sequence. This novel peptide (SEQ. ID. NO.: 17) and fragments thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length, nucleic acids encoding these molecules, vectors having said nucleic acids, and cells having said vectors, nucleic acids, or peptides are also embodiments of the present invention. A particularly preferred embodiment is a vaccine composition comprising ribavirin and the HCV peptide of SEQ. ID. NO.: 17 or a fragment thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g., SEQ. ID. NO.: 25) or a nucleic acid encoding said peptide or fragments.
Additionally, it was discovered that truncated mutants and mutants of the NS3/4A peptide, which lack a proteolytic cleavage site, are highly immunogenic. These novel peptides (SEQ. ID. NOs.: 29- 32 and 43-49) and fragments thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g., SEQ. LD. NOs.: 26, 27, and 33-42), nucleic acids encoding these molecules, vectors having said nucleic acids, and cells having said vectors, nucleic acids, or peptides are also embodiments. A particularly preferred embodiment is a vaccine composition comprising ribavirin and at least one HCV peptide of SEQ. ID. NOs.: 29- 32 and 43-49 or a fragment thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g., SEQ. LD. NOs.: 26, 27, and 33-42) or a nucleic acid encoding said peptides or fragments.
Furthermore, compositions having a mixture ofthe antigens above are embodiments of the invention. For example, some compositions comprise a HBV antigen, a HAV antigen, and ribavirin or a HBV antigen, a HCV antigen, and ribavirin or a HAV antigen, a HCV antigen, and ribavirin or a HBV antigen, a HAV antigen, a HCV antigen, and ribavirin. Other embodiments comprise ribavirin and a nucleic acid encoding a mixture of the antigens described above. Some embodiments also include other adjuvants, binders, emulsifiers, carriers, and fillers, as known in the art, including, but not limited to, alum, oil, and other compounds that enhance an immune response.
Methods of making and usiijg the compositions described herein are also aspects of the invention. Some methods are practiced by mixing ribavirin with a peptide or nucleic acid antigen (e.g., an HAV, HBV, HCV antigen) so as to formulate a single composition (e.g., a vaccine composition). Preferred methods involve the mixing of ribavirin with an HCV antigen that has an epitope present on one or more domains of HCV (e.g., NS3 and/or NS4A). Preferred methods of using tHe compositions described herein involve providing an animal in need with a sufficient amount of ribavirin and a hepatitis viral antigen (e.g., HBV antigen, HAV antigen, HCV antigen a nucleic acid encoding one of these antigens or any combination thereof). By one approach, for example, an animal in need of potent immune response to a hepatitis viral antigen (e.g., an animal at risk or already infected with a hepatitis infection) is identified and said animal is provided an amount of ribavirin and a hepatitis viral antigen (either in a single composition or separately) that is effective to enhance or facilitate an immune response to the hepatitis viral antigen. Preferably, an animal in need of a potent immune response to HCV is identified and said animal is provided a composition comprising ribavirin and a peptide comprising an antigen or epitope present on SEQ. ID. NO.: 1, 6, 7, or 17 or a nucleic acid encoding said peptide. Particularly preferred methods involve the identification of an animal in need of an potent immune response to HCV and providing said animal a composition comprising ribavirin and an amount of an HCV antigen (e.g, NS3/4A (SEQ. ID. NO.: 17), mutant NS3/4A SEQ. ID. NOs.: 29- 32 and 43-49, or a fragment thereof at least 3, 4-10, 10-20, 20-30, or 30-50 amino acids in length (e.g, SEQ. ID. NOs.: 25-27, and 33-42) or a nucleic acid encoding one or more of these molecules) that is sufficient to enhance or facilitate an immune response to said antigen.
BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1 is a graph showing the humoral response to 10 and lOOμg recombinant Hepatitis C virus (HCV) non structural 3 protein (NS3), as determined by mean end point titres, when a single dose of lmg of ribavirin was co-administered.
FIGURE 2 is a graph showing the humoral response to 20μg recombinant Hepatitis C virus (HCV) non structural 3 protein (NS3), as determined by mean end point titres, when a single dose of 0.1, 1.0, or lOmg of ribavirin was co-administered.
FIGURE 3 is a graph showing the effects of a single dose of lmg ribavirin on NS3-specific lymph node proliferative responses, as determined by in vitro recall responses.
FIGURE 4 is a graph showing the antibody titer in H-21^ mice against NS3 as a function of time after the first immunization. Diamonds denote antibody titer in mice immunized with NS3/4A-pVAX and squares denote antibody titer in mice immunized with NS3-pVAX.
FIGURE 5A is a graph showing the percentage of specific CTL-mediated lysis of SP2/0 target cells as a function of the effector to target ratio. Phosphate Buffered Saline (PBS) was used as a control immunogen.
FIGURE 5B Is a graph showing the percentage specific CTL-mediated lysis of SP2/0 target cells as a function of the effector to target ratio. Plasmid NS3/4A-pVAX was used as the immunogen. DETAILED DESCRIPTION OF THE INVENTION It has been discovered that compositions comprising ribavirin and an antigen (e.g, a molecule containing an epitope of a pathogen such as a virus, bacteria, mold, yeast, or parasite) enhance and/or facilitate an animal's immune response to the antigen. That is, it was discovered that ribavirin is an effective "adjuvant," which for the purposes of this disclosure, refers to a material that has the ability to enhance or facilitate an immune response to a particular antigen. The adjuvant activity of ribavirin was manifested by a significant increase in immune-mediated protection against the antigen, an increase in the titer of antibody raised to the antigen, and an increase in proliferative T cell responses. Several compositions (e.g, vaccines) that comprise ribavirin and an antigen or epitope are described herein. Vaccine formulations containing ribavirin, for example, can vary according to the amount of ribavirin, the form of ribavirin, and the type of antigen. The antigen can be a peptide or a nucleic acid (e.g, a RNA encoding a peptide antigen or a construct that expresses a peptide antigen when introduced into a subject): Preferred compositions comprise ribavirin and a hepatitis viral antigen (e.g, HAV antigen, HBV antigen, HCV antigen, a nucleic acid encoding these molecules, or any combination thereof). In particular, at least one HCV antigen or an epitope present on SEQ. D3. NO.: 1 or a nucleic acid encoding said HCV antigen are desired for mixing with ribavirin to make said compositions. That is, some embodiments include, but are not limited to, compositions comprising ribavirin and a peptide comprising SEQ. ID. NO.: 1, or a fragment thereof having at least 2500, 2000, 1600, 1200, 800, 400, 200, 100, 50, 10, or 3 consecutive amino acids of SEQ. ID. NO.: 1. Additional embodiments concern compositions comprising ribavirin and a nucleic acid encoding SEQ. ID. NO.: 13 or a fragment thereof having at least 9, 12, 15, 20, 30, 50, 75, 100, 200, 500 consecutive nucleotides of SEQ. ID. NO.: 13.
Other embodiments include a composition (e.g, a vaccine) that comprises ribavirin and a specific fragment of SEQ. ID. NO.>»l, wherein said fragment corresponds to a particular domain of HCV. Some embodiments, for example, comprise a fragment of HCV corresponding to amino acids 1-182, 183-379, 380-729, 730-1044, 1045-1657, 1658-1711, 1712-1971, or 1972-3011 of SEQ. ID. NO.: 1. Compositions comprising ribavirin and a nucleic acid encoding one or more of these fragments are also embodiments ofthe invention. Additionally, a novel HCV sequence was discovered. A novel nucleic acid and protein corresponding to the NS3/4A domain of HCV was cloned from a patient infected with HCV (SEQ. H). NO.: 16). A Genebank search revealed that the cloned sequence had the greatest homology to HCV sequences but was only 93% homologous to the closest HCV relative (accession no AJ 278830). This novel peptide (SEQ. ID. NO.: 17) and fragments thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length, nucleic acids encoding these molecules, vectors having said nucleic acids, and cells having said vectors, nucleic acids, or peptides are also embodiments of the invention. Further, some ofthe vaccine embodiments described herein comprise ribavirin and this novel NS3/4A peptide or a fragment thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g, SEQ. ID. NO.: 25) or a nucleic acid encoding one or more of these molecules. Mutants of the novel NS3/4A peptide were also created. It was discovered that truncated mutants (e.g, SEQ. ID. NO.: 29) and mutants, which lack a proteolytic cleavage site, are highly immunogenic. These novel peptides SEQ. ID. NOs.: 29- 32 and 43-49 and fragments thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g, SEQ. ID. NOs.: 26, 27, and 33-42), nucleic acids encoding these molecules, vectors having said nucleic acids, and cells having said vectors, nucleic acids, or peptides are also embodiments. Furthermore, some of the compositions described herein comprise ribavirin and at least one of the mutant HCV peptides described above or a fragment thereof at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length. Other vaccine embodiments comprise ribavirin and a nucleic acid (e.g, DNA) encoding one or more of the peptides described above. Methods of making and using the compositions above are also embodiments. For example, the compositions described above can be made by providing ribavirin, providing an antigen (e.g, a peptide comprising an HCV antigen or a nucleic acid encoding said peptide), and mixing said ribavirin and said antigen so as to formulate a composition that can be used to enhance or facilitate an immune response in a subject to said antigen. Preferred methods entail mixing a preferred antigen or epitope (e.g, a peptide comprising SEQ. ID. NO.: 1, 6, 7, or 17 or specific fragments thereof, such as amino apids 1-182, 183-379, 380-729, 730-1044, 1045-1657, 1658- 1711, 1712-1971, 1972-3011 of SEQ. ID. NO.: 1 and nucleic acids encoding these molecules) with ribavirin. Other antigens or epitopes can also be mixed with ribavirin including, but not limited to, fragments of SEQ. ID. NO.r 1 that have at least 2500, 2000, 1600, 1200, 800, 400, 200, 100, 50, 10, or 3 consecutive amino acids and nucleic acids encoding these fragments. Particularly preferred methods concern the making of vaccine compositions comprising the newly discovered NS3/4A fragment or an NS3/4A mutant (e.g, a truncated mutant or a mutant lacking a proteolytic cleavage site), or a fragment thereof of at least four amino acids in length or a nucleic acid encoding one or more of these molecules. Methods of enhancing or facilitating the immune response of an animal, including humans, to an antigen are embodiments of the invention. Such methods can be practiced, for example, by identifying an animal in need of a potent immune response to an antigen/epitope and providing said animal a composition comprising the antigen/epitope and an amount of ribavirin that is effective to enhance or facilitate an immune response to the antigen/epitope. In some embodiments, the ribavirin and the* antigen are administered separately, instead of in a single mixture. Preferably, in this instance, the ribavirin is administered a short time before or a short time after admininstering the antigen. Preferred methods involve providing the animal in need with ribavirin and a hepatitis antigen (e.g, HAV antigen, HBV antigen, HCV antigen, a nucleic acid encoding these molecules, or any combination thereof). Some of these methods involve HCV antigens, such as a peptide comprising SEQ. ID. NO.: 1, or a fragment thereof having at least 2500, 2000, 1600, 1200, 800, 400, 200, 100, 50, 10, or 3 consecutive amino acids of SEQ. ID. NO.: 1. Additional methods involve compositions comprising ribavirin and a nucleic acid encoding SEQ. ID. NO.: 13 or a nucleic acid encoding one or more of the fragments discussed above. Some preferred methods, for example, concern the use of a composition (e.g, a vaccine) that comprises ribavirin and a peptide comprising SEQ. ID. NO.: 1 or a specific fragment thereof, which corresponds to an HCV domain including, but not limited to, a peptide comprising amino acids 1-182, 183-379, 380-729, 730-1044, 1045-1657, 1658-1711, 1712-1971, or 1972-3011 of SEQ. ID. NO.: 1. Particularly preferred methods concern the use of a vaccine composition comprising the NS3/4A fragment of SEQ. ID. NO.: 17 or the mutant NS3/4A (e.g, SEQ. ID. NOs:. 29- 32 and 43-49), which lack a proteolytic cleavage site, or a fragment thereof of at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g, SEQ. ID. NOs.: 26, 27, and 33-42). Compositions comprising ribavirin and a nucleic acid encoding these fragments can also be used with the methods described herein. Other embodiments concern methods of treating and preventing HCV infection. By one approach, ribavirin and an HCV antigen or epitope are used to prepare a medicament for the treatment and/or prevention of HCV infection. By another approach, an individual in need of a medicament that prevents and/or treats HCV infection is identified and said individual is provided a medicament comprising ribavirin and an HCV antigen or epitope, preferably an epitope present on SEQ. ID. NO.: 1, more preferably a fragment of SEQ. ID. NO.: 1 having at least 2500, 2000, 1600, 1200, 800, 400, 200, 100, 50, 10, or 3 consecutive amino acids or most preferably a fragment of SEQ. ID. NO.: 1 such as 1-182, 183-379, 380-729, 730-1044, 1045-1657, 1658-1711, 1712- 1971, or 1972-3011 or a nucleic acid encoding SEQ. ID. NO.: 1 or said fragments above. Particularly preferred methods concern the use of a vaccine composition comprising ribavirin and the NS3/4A fragment of SEQ. ID. NO.: 17 or the mutant NS3/4A, which lacks a proteolytic cleavage site (e.g, SEQ. ID. NOs.: 29- 32 and 43-49) or a fragment thereof of at least 3, 4, 6, 8, 10, 12, 15 or 20 amino acids in length (e.g, SEQ. ID. NOs.: 25-27, and 33-42) or a nucleic acid encoding one or more of these molecules. The section below discusses the use of ribavirin as an adjuvant in greater detail. Ribavirin
The compositions described herein can be manufactured in accordance with conventional methods of galenic pharmacy to produce medicinal agents for administration to animals, e.g, mammals including humans. Ribavirin can be obtained from commercial suppliers (e.g, Sigma and ICN). Ribavirin and/or the antigen can be formulated into the vaccine with and without modification. For example, the ribavirin and/or antigen can be modified or derivatized to make a more stable molecule and/or a more potent adjuvant. By one approach, the stability of ribavirin and/or an antigen can be enhanced by coupling the molecules to a support such as a hydrophilic polymer (e.g, polyethylene glycol). Many more ribavirin derivatives can be generated using conventional techniques in rational drug design and combinatorial chemistry. For example, Molecular Simulations Inc. (MSI), as well as many other suppliers, provide software that allows one of skill to build a combinatorial library of organic molecules. The C2.Analog Builder program, for example, can be integrated with MSI's suite of Cerius2 molecular diversity software to develop a library of ribavirin derivatives that can be used with the embodiments described herein. (See e.g, http://msi.com/life/products/cerius2/index.html).
By one approach, the chemical structure of ribavirin is recorded on a computer readable medium and is accessed by one or more modeling software application programs. The C2Analog Builder program in conjunction with C2Diversity program allows the user to generate a very large virtual library based on the diversity of R-groups for each substituent position, for example. Compounds having the same structure as the modeled ribavirin derivatives created in the virtual library are then made using conventional chemistry or can be obtained from a commercial source.
The newly manufactured ribavirin derivatives are then screened in assays, which determine the extent of adjuvant activity of the molecule and/or the extent of its ability to modulate of an immune response. Some assays may involve virtual drug screening software, such as C2.Ludi. C2.Ludi is a software program that allows a user to explore databases of molecules (e.g, ribavirin derivatives) for their ability to interact with the active site of a protein of interest (e.g, RAC2 or another GTP binding protein). Based upon predicted interactions discovered with the virtual drug screening software, the ribavirin derivatives can be prioritized for further characterization in conventional assays that determine adjuvant activity and/or the extent of a molecule to modulate an immune response. Example 1 describes several assays that were used to evaluate the adjuvant activity of ribavirin.
EXAMPLE 1 This following assays can be used with any ribavirin derivative or combinations of ribavirin derivatives to determine the extent of adjuvant activity ofthe particular composition. In a first set of experiments, groups of three to five Balb/c mice (BK Universal, Uppsala, Sweden) were immunized i.p or s.c. (e.g, at the base ofthe tail) with lOμg or lOOμg of recombinant hepatitis C virus non-structural 3 (rNS3) protein at weeks zero and four. The rNS3 was dissolved in phosphate buffered saline (PBS) alone or PBS containing lmg ribavirin (obtained from ICN, Costa Mesa, CA). Mice were injected with a total volume of lOOμl per injection.
At two, four, and six weeks following first i.p. immunization, all mice were bled by retro- orbital sampling. Serum samples were collected and analyzed for the presence of antibodies to rNS3. To determine the antibody titer, an enzyme immunoassay (EIA) was performed. (See e.g, Hultgren et al, J Gen Virol. 79:2381-91 (1998) and Hultgren et al, Clin. Diagn. Lab. Immunol. 4:630-632 (1997)). The antibody levels were recorded as the highest serum dilution giving an optical density at 405nm more than twice that of non-immunized mice.
Mice that received lOμg or lOOμg rNS3 mixed with lmg ribavirin in PBS displayed consistently higher levels of NS3 antibodies. The antibody titer that was detected by EIA at two weeks post-immunization is shown in FIGURE 1. The vaccine formulations having lmg of ribavirin and either lOμg or lOOμg of rNS3 induced a significantly greater antibody titer than the vaccine formulations composed of only rNS3.
In a second set of experiments, groups of eight Balb/c mice were at weeks zero and four immunized intraperitoneally with 10 or 50 μg of rNS3 in 100 μl phosphate buffered saline containing either 0 mg, 1 mg, 3 mg, or 10 mg ribavirin (Sigma). At four, six and eight weeks the mice were bled and serum was separated and frozen. After completion of the study, sera were tested for the levels of antibodies to recombinant NS3, as described above. Mean antibody levels to rNS3 were compared between the groups using Student's t-test (parametric analysis) or Mann- Whitney (non-parametric analysis) and the software package StatView 4.5 (Abacus Concepts, Berkely, CA). The adjuvant effect of ribavirin when added in three doses to 10 μg of rNS3 are provided in TABLE 1. The adjuvant effect of ribavirin when added in three doses to 50 μg of rNS3 are provided in TABLE 2. Parametrical comparison of the mean rNS3 antibody titres in mice receiving different lOμg or 50 μg of rNS3 and different doses of ribavirin are provided in TABLES 3 and 4, respectively. Non-parametrical comparison of mean NS3 antibody titres in mice receiving different lOμg or 50 μg of rNS3 and different doses of ribavirin are provided in TABLES 5 and 6, respectively. The values given represent end point titres to recombinant rNS3. TABLE 1
TABLE 2
TABLE 3
TABLE4
Significance levels: NS = not significant; * = p<0.05; ** = pO.Ol; *** = pθ.001 TABLE 5
TABLE 6
Significance levels: NS = not significant; * = p<0.05; ** = p<0.01; *** = pO.OOl The data above demonstrate that ribavirin facilitates or enhances an immune response to an HCV antigen or HCV epitopes. A potent immune response to rNS3 was elicited after immunization with a vaccine composition comprising as little as 1 mg ribavirin and 10 μg of rNS3 antigen. The data above also provide evidence that the amount of ribavirin that is sufficient to facilitate an immune response to an antigen is between 1 and 3 mg per injection for a 25-30g Balb/c mouse. It should be realized, however, that these amounts are intended for guidance only and should not be interpreted to limit the scope ofthe invention in any way. Nevertheless, the data shows that vaccine compositions comprising approximately 1 to 3 mg doses of ribavirin induce an immune response that is more than 12 times higher than the immune response elicited in the absence of ribavirin (TABLES 3 and 4). Thus, ribavirin has a significant adjuvant effect on the humoral immune response of an animal and thereby, enhances or facilitates the immune response to the antigen. The example below describes experiments that were performed to better understand the amount of ribavirin needed to enhance or facilitate an immune response to an antigen.
EXAMPLE 2 To determine a dose of ribavirin that is sufficient to provide an adjuvant effect, the following experiments were performed. In a first set of experiments, groups of mice (three per group) were immunized with a 20μg rNS3 alone or a mixture of 20μg rNS3 and O.lmg, lmg, or lOmg ribavirin. The levels of antibody to the antigen were then determined by EIA. The mean endpoint titers at weeks 1 and 3 were plotted and are shown in FIGURE 2. It was discovered that the adjuvant effect provided by ribavirin had different kinetics depending on the dose of ribavirin provided. For example, even low doses (<lmg) of ribavirin were found to enhance antibody levels at week one but not at week three, whereas, higher doses (1-1 Omg) were found to enhance antibody levels at week three.
A second set of experiments was also performed. In these experiments, groups of mice were injected with vaccine compositions comprising various amounts of ribavirin and rNS3 and the IgG response in these animals was monitored. The vaccine compositions comprised approximately 100 μl phosphate buffered saline and 20 μg rNS3 with or without 0.1 mg, 1.0 mg, or 10 mg ribavirin (Sigma). The mice were bled at week six and rNS3-specific IgG levels were determined by EIA as described previously. As shown in TABLE 7, the adjuvant effects on the sustained antibody levels were most obvious in the dose range of 1 to 10 mg per injection for a 25- 30g mouse. TABLE 7
In a third set of experiments, the adjuvant effect of ribavirin after primary and booster injections was investigated. In these experiments, mice were given two intraperitoneal injections of a vaccine composition comprising 10 μg rNS3 with or without ribavirin and the IgG subclass responses to the antigen was monitored, as before. Accordingly, mice were immunized with 100 μl phosphate buffered containing 10 μg recombinant NS3 alone, with or without 0.1 or 1.0 mg ribavirin (Sigma) at weeks 0 and 4. The mice were bled at week six and NS3-specific IgG subclasses were determined by EIA as described previously. As shown in TABLE 8, the addition of ribavirin to the immunogen prior to the injection does not change the IgG subclass response in the NS3-specific immune response. Thus, the adjuvant effect of a vaccine composition comprising ribavirin and an antigen can not be explained by a shift in the Thl/Th2-balance. It appears that another mechanism may be responsible for the adjuvant effect of ribavirin. TABLE 8
The data presented in this example further verify that ribavirin can be administered as an adjuvant and establish that that the dose of ribavirin can modulate the kinetics of the adjuvant effect. The example below describes another assay that was performed to evaluate the ability of ribavirin to enhance or facilitate an immune response to an antigen.
EXAMPLE 3 This assay can be used with any ribavirin derivative or combinations of ribavirin derivatives to determine the extent that a particular vaccine formulation modulates a cellular immune response. To determine CD4+ T cell responses to a ribavirin-containing vaccine, groups of mice were immunized s.c. with either lOOμg rNS3 in PBS or lOOμg rNS3 and lmg ribavirin in PBS. The mice were sacrificed ten days post-immunization and their lymph nodes were harvested and drained. In vitro recall assays were then performed. (See e.g, Hultgren et al, J Gen Virol. 79:2381-91 (1998) and Hultgren et al, Clin. Diagn. Lab. Immunol. 4:630-632 (1997)). The amount of CD4+ T cell proliferation was determined at 96 h of culture by the incorporation of [^H] thymidine.
As shown in FIGURE 3, mice that were immunized with lOOμg rNS3 mixed with lmg ribavirin had a much greater T cell proliferative response than mice that were immunized with lOOμg rNS3 in PBS. These data provide additional evidence that ribavirin enhances or facilitates a cellular immune response (e.g, by promoting the effective priming of T cells). The section below discusses some of the antigens and epitopes that can be used with the embodiments described herein.
Antigens and epitopes
Virtually any antigen that can be used to generate an immune response in an animal can be combined with ribavirin so as to prepare the compositions described herein. That is, antigens that can be incorporated into such compositions (e.g, vaccines) comprise bacterial antigens or epitopes, fungal antigens or epitopes, plant antigens or epitopes, mold antigens or epitopes, viral antigens or epitopes, cancer cell antigens or epitopes, toxin antigens or epitopes, chemical antigens or epitopes, and self-antigens or epitopes. Although many of these molecules induce a significant immune response without an adjuvant, ribavirin can be administered in conjunction with or combined with " strong" or "weak" antigens or epitopes to enhance or facilitate the immune response to said antigen or epitope. In addition, the use of ribavirin as an adjuvant may allow for the use of lesser amounts of antigens while retaining immunogenicity.
In addition to peptide antigens, nucleic acid-based antigens can be used in the vaccine compositions described herein. Various nucleic acid-based vaccines are known and it is contemplated that these compositions and approaches to immunotherapy can be augmented by reformulation with ribavirin (See e.g, U.S. Pat. No. 5,589,466 and 6,235,888). By one approach, for example, a gene encoding a polypeptide antigen of interest is cloned into an expression vector capable of expressing the polypeptide when introduced into a subject. The expression construct is introduced into the subject in a mixture of ribavirin or in conjunction with ribavirin (e.g, ribavirin is administered shortly after the expression construct at the same site). Alternatively, RNA encoding a polypeptide antigen of interest is provided to the subject in a mixture with ribavirin or in conjunction with ribavirin.
Where the antigen is to be DNA (e.g, preparation of a DNA vaccine composition), suitable promoters include Simian Virus 40/SV40), Mouse Mammary Tumor Virus (MMTV) promoter, Human Immunodeficiency Virus (HIV) such as the HIV Long Terminal Repeat (LTR) promoter, Moloney virus, ALV, Cytomegalovirus (CMV) such as the CMV immediate early promoter, Epstein Barr Virus (EBV), Rous Sarcoma Virus (RSV) as well as promoters from human genes such as human actin, human myosin, human hemoglobin, human muscle creatine and human metalothionein can be used. Examples of polyadenylation signals useful with some embodiments, especially in the production of a genetic vaccine for humans, include but are not limited to, SV40 polyadenylation signals and LTR polyadenylation signals. In particular, the SV40 polyadenylation signal, which is in pCEP4 plasmid (Invitrogen, San Diego Calif.), referred to as the SV40 polyadenylation signal, is used. In addition to the regulatory elements required for gene expression, other elements may also be included in a gene construct. Such additional elements include enhancers. The enhancer may be selected from the group including but not limited to: human actin, human myosin, human hemoglobin, human muscle creatine and viral enhancers such as those from CMV, RSV and EBV. Gene constructs can be provided with mammalian origin of replication in order to maintain the construct extrachromosomally and produce multiple copies of the construct in the cell. Plasmids pCEP4 and pREP4 from Invitrogen (San Diego, CA) contain the Epstein Barr virus origin of replication and nuclear antigen EBNA-1 coding region, which produces high copy episomal replication without integration. All forms of DNA, whether replicating or non-replicating, which do not become integrated into the genome, and which are expressible, can be used. The example below describes the use of a composition comprising a nucleic acid-based antigen and ribavirin.
EXAMPLE 4 The following describes the immunization of an animal with a vaccine comprising a nucleic acid-based antigen and ribavirin. Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3ml of 2.5% Avertin. A 1.5cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. One group of mice are injected with approximately 20:g of an expression construct having the gp-120 gene, driven by a cytomegalovirus (CMV) promotor and second group of mice are injected with approximately 5:g of capped in vitro transcribed RNA (e.g, SP6, T7, or T3 (Ambion)) encoding gp-120. These two groups are controls. A third group of mice is injected with approximately 20:g of the expression vector having the gp-120 gene and the CMV promoter mixed with lmg of ribavirin and a fourth group of mice is injected with approximately 5:g of capped in vitro transcribed RNA mixed with lmg ribavirin. The vaccines are injected in 0.1ml of solution (PBS) in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5cm from the distal insertion site of the muscle into the knee and about 0.2cm deep. A suture is placed over the injection site for future localization, and the skin is then closed with stainless steel clips.
Blood samples are obtained prior to the injection (Day 0) and up to more than 40 days post injection. The serum from each sample is serially diluted and assayed in a standard ELISA technique assay for the detection of antibody, using recombinant gp-120 protein made in yeast as the antigen. Both IgG and IgM antibodies specific for gp-120 will be detected in all samples, however, groups three and four, which contained the ribavirin, will exhibit a greater immune response to the gp-120 as measured by the amount and/or titer of antibody detected in the sera.
Preferred embodiments of the invention comprise ribavirin and a viral antigen or an epitope present on a virus, preferably a hepatitis virus. Compositions comprise, for example, ribavirin and an HAV antigen, HBV antigen, HCV antigen or any combination of these antigens or epitopes present on one or more of these viruses. The hepatitis antigens can be peptides or nucleic acids. Compositions that can be used to vaccinate against HAV infection, for example, comprise ribavirin and an HAV peptide with a length of at least 3-10 consecutive amino acids, 10-50 consecutive amino acids, 50-100 consecutive amino acids, 100-200 consecutive amino acids, 200- 400 consecutive amino acids, 400-800 consecutive amino acids, 800-1200 consecutive amino acids, 1200-1600 consecutive amino acids, 1600-2000 consecutive amino acids, and 2000-2227 consecutive amino acids of SEQ ID. NO.: 12.
Additionally, compositions comprising ribavirin and a nucleic acid encoding one or more of the HAV peptides, described above, can be used to treat or prevent HAV infection. Preferred nucleic acid-based antigens include a nucleotide sequence of at least 9 consecutive nucleotides of an HAV sequence (e.g, SEQ. D. NO.: 15). That is, a nucleic acid based antigen can comprise at least 9-25 consecutive nucleotides, 25-50 consecutive nucleotides, 50-100 consecutive nucleotides, 100-200 consecutive nucleotides, 200-500 consecutive nucleotides, 500-1000 consecutive nucleotides, 1000-2000 consecutive nucleotides, 2000-4000 consecutive nucleotides, 4000-8000 consecutive nucleotides, and 8000-9416 consecutive nucleotides of SEQ. ID. NO.: 15 or an RNA that corresponds to these sequences.
Similarly, preferred HBV vaccine embodiments comprise ribavirin and a HBV peptide of at least 3 consecutive amino acids of HBsAg (SEQ. ID. NO.: 10) or HBcAg and HBeAg (SEQ. ID. NO.: 11). That is, some embodiments have ribavirin and a HBV peptide with a length of at least 3-10 consecutive amino acids, 10-50 consecutive amino acids, 50-100 consecutive amino acids, 100-150 consecutive amino acids, 150-200 consecutive amino acids, and 200-226 consecutive amino acids of either SEQ. ID. NO.: 10 or SEQ. ID. NO.: 11.
Additionally, compositions comprising ribavirin and a nucleic acid encoding one or more of the HBV peptides, described above, can be used to treat or prevent HBV infection. Preferred nucleic acid-based antigens include a nucleotide sequence of at least 9 consecutive nucleotides of an HBV (e.g, SEQ. ID. NO.:14). That is, a nucleic acid based antigen can comprise at least 9-25 consecutive nucleotides, 25-50 consecutive nucleotides, 50-100 consecutive nucleotides, 100-200 consecutive nucleotides, 200-500 consecutive nucleotides, 500-1000 consecutive nucleotides, 1000-2000 consecutive nucleotides, 2000-4000 consecutive nucleotides, 4000-8000 consecutive nucleotides, and 8000-9416 consecutive nucleotides of SEQ. ID. NO.: 14 or an RNA that corresponds to these sequences. The example below describes the use of ribavirin in conjunction with a commercial HBV vaccine preparation.
EXAMPLE 5 The adjuvant effect of ribavirin was tested when mixed with two doses of a commercially available vaccine containing HBsAg and alum. (Engerix, SKB). Approximately 0.2μg or 2μg of Engerix vaccine was mixed with either PBS or lmg ribavirin in PBS and the mixtures were injected intra peritoneally into groups of mice (three per group). A booster containing the same mixture was given on week four and all mice were bled on week six. The serum samples were diluted from 1:60 to 1:37500 and the dilutions were tested by EIA, as described above, except that purified human HBsAg was used as the solid phase antigen. As shown in TABLE 9, vaccine formulations having ribavirin enhanced the response to 2μg of an existing vaccine despite the fact that the vaccine already contained alum. That is, by adding ribavirin to a suboptimal vaccine dose (i.e, one that does not induce detectable antibodies alone) antibodies became detectable, providing evidence that the addition of ribavirin allows for the use of lower antigen amounts in a vaccine formulation without compromising the immune response.
TABLE 9
Some HCV vaccine compositions comprise ribavirin and a HCV peptide of at least 3 consecutive amino acids of SEQ. ID. NO.: 1 or a nucleic acid encoding said HCV peptide. That is, a vaccine composition can comprise ribavirin and one or more HCV peptides with a length of at least 3-10 consecutive amino acids, 10-50 consecutive amino acids, 50-100 consecutive amino acids, 100-200 consecutive amino acids, 200-400 consecutive amino acids, 400-800 consecutive amino acids, 800-1200 consecutive ^mino acids, 1200-1600 consecutive amino acids, 1600-2000 consecutive amino acids, 2000-2500 consecutive amino acids, and 2500-3011 consecutive amino acids of SEQ. ID. NO.: 1 or a nucleic acid encoding one or more of said fragments.
Preferred HCV compositions comprise ribavirin and a peptide of at least 3 consecutive amino acids of HCV core protein (SEQ. ID. NO.: 2), HCV El protein (SEQ. ID. NO.: 3), HCV E2 protein (SEQ. ID. NO.: 4), HCV NS2 (SEQ. ID. NO.: 5), HCV NS3 (SEQ. ID. NO.: 6), HCV NS4A (SEQ. ID. NO.: 7), HCV NS4B (SEQ. ID. NO.: 8), or HCV NS5A/B (SEQ. ID. NO.: 9) or peptides consisting of combinations of these domains. That is, preferred HCV vaccines comprise ribavirin and a peptide with a length of at least 3-10 consecutive amino acids, 10-50 consecutive amino acids, 50-100 consecutive amino acids, 100-200 consecutive amino acids, 200-400 consecutive amino acids, 400-800 consecutive amino acids, and 800-1040 consecutive amino acids of any one or more of (SEQ. ID. NOs.: 2-9). These domains correspond to amino acid residues 1- 182, 183-379, 380-729, 730-1044, 1045-1657, 1658-1711, 1712-1971, or 1972-3011 of SEQ. ID. NO.: 1. Thus, preferred embodiments also include one or more of 1-182, 183-379, 380-729, 730- 1044, 1045-1657, 1658-1711, 1712-1971, or 1972-3011 of SEQ. ID. NO.: 1 or fragments thereof.
Vaccine compositions comprising ribavirin and a nucleic acid encoding one or more of the peptides described above are also embodiments. Preferred nucleic acid-based antigens include a nucleotide sequence of at least 9 consecutive nucleotides of HCV (SEQ. ID. NO.: 13). That is, a nucleic acid based antigen can comprise at least 9-25 consecutive nucleotides, 25-50 consecutive nucleotides, 50-100 consecutive nucleotides, 100-200 consecutive nucleotides, 200-500 consecutive nucleotides, 500-1000 consecutive nucleotides, 1000-2000 consecutive nucleotides, 2000-4000 consecutive nucleotides, 4000-8000 consecutive nucleotides, and 8000-9416 consecutive nucleotides of any one of SEQ. ID. NOs.: 13 or an RNA that corresponds to these sequences. The section below discusses some of the compositions containing ribavirin and an antigen.
Compositions containing ribavirin and an antigen
Compositions (e.g, vaccines) that comprise ribavirin and an antigen or epitope of a pathogen (e.g, virus, bacteria, mold, yeast, and parasite) may contain other ingredients including, but not limited to, adjuvants, binding agents, excipients such as stabilizers (to promote long teπn storage), emulsifiers, thickening agents, salts, preservatives, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. These compositions are suitable for treatment of animals either as a preventive measure to avoid a disease or condition or as a therapeutic to treat animals already afflicted with a disease or condition.
Many other ingredients can be present in the vaccine. For example, the ribavirin and antigen can be employed in admixture with conventional excipients (e.g, pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, enteral (e.g, oral) or topical application that do not deleteriously react with the ribavirin and/or antigen). Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyetylene glycols, gelatine, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxy methylcellulose, polyvinyl pyrrolidone, etc. Many more suitable carriers are described in Remmington's Pharmaceutical Sciences, 15th Edition, Easto Mack Publishing Company, pages 1405-1412 and 1461-1487(1975) and The National Formulary XIV, 14th Edition, Washington, American Pharmaceutical Association (1975).
The gene constructs described herein may be formulated with or administered in conjunction with agents that increase uptake and/or expression of the gene construct by the cells relative to uptake and/or expression of the gene construct by the cells that occurs when the identical genetic vaccine is administered in the absence of such agents. Such agents and the protocols for administering them in conjunction with gene constructs are described in U.S. Ser. No. 08/008,342 filed Jan. 26, 1993, 11.4. Ser. No. 08/029,336 filed Mar. 11, 1993, U.S. Ser. No. 08/125,012 filed Sep. 21, 1993, PCT Patent Application Serial Number PCT/US94/00899 filed Jan. 26, 1994, and U.S. Ser. No. 08/221,579 filed Apr. 1, 1994. Examples of such agents include: CaPθ4, DEAE dextran, anionic lipids; extracellular matrix-active enzymes; saponins; lectins; estrogenic compounds and steroidal hormones; hydroxylated lower alkyls; dimethyl sulfoxide (DMSO); urea; and benzoic acid esters anilides, amidines, urethanes and the hydrochloride salts thereof such as those of the family of local anesthetics. In addition, the gene constructs are encapsulated within/administered in conjunction with lipids/polycationic complexes.
Vaccines can be sterilized and if desired mixed with auxiliary agents, e.g, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like that do not deleteriously react with ribavirin or the antigen. The effective dose and method of administration of a particular vaccine formulation can vary based on the individual patient and the type and stage of the disease, as well as other factors known to those of skill in the art. Therapeutic efficacy and toxicity of the vaccines can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g, ED50 (the dose therapeutically effective in 50% of the population). The data obtained from cell culture assays and animal studies can be used to formulate a range of dosage for human use. The dosage of the vaccines lies preferably within a range of circulating concentrations that include the ED50 with no toxicity. The dosage varies within this range depending upon the type of ribavirin derivative and antigen, the dosage form employed, the sensitivity of the patient, and the route of administration. Since ribavirin has been on the market for several years, many dosage forms and routes of administration are known. All known dosage forms and routes of administration can be provided within the context of the embodiments described herein. Preferably, an amount of ribavirin that is effective to enhance an immune response to an antigen in an animal can be considered to be an amount that is sufficient to achieve a blood serum level of antigen approximately 0.25 - 12.5μg/ml in the animal, preferably, about 2.Sμg/ml. In some embodiments, the amount of ribavirin is determined according to the body weight of the animal to be given the vaccine. Accordingly, the amount of ribavirin in a vaccine formulation can be from about 0.1 - 6.0mg/kg body weight. That is, some embodiments have an amount of ribavirin that corresponds to approximately 0.1 - l.Omg/kg, 1.1 - 2.0mg/kg, 2.1 - 3.0mg/kg, 3.1 - 4.0mg/kg, 4.1 - 5.0mg/kg, 5.1, and 6.0mg/kg body weight of an animal. More conventionally, the vaccines contain approximately 0.25mg - 2000mg of ribavirin. That is, some embodiments have approximately 250μg, 500μg, lmg, 25mg, 50mg, lOOmg, 150mg, 200mg, 250mg, 300mg, 350mg, 400mg, 450mg, 500mg, 550mg, 600mg, 650mg, 700mg, 750mg, 800mg, 850mg, 900mg, lg, l.lg, 1.2g, 1.3g, 1.4g, 1.5g, 1.6g, 1.7g, 1.8g, 1.9g, and 2g of ribavirin. Conventional vaccine preparations can be modified by adding an amount of ribavirin that is sufficient to enhance an immune response to the antigen. That is, existing conventional vaccine formulations can be modified by simply adding ribavirin to the preparation or by administering the conventional vaccine in conjunction with ribavirin (e.g, shortly before or after providing the antigen). As one of skill in the art will appreciate, the amount of antigens in a vaccine can vary depending on the type of antigen and its immunogenicity. The amount of antigens in the vaccines can vary accordingly. Nevertheless, as a general guide, the vaccines can have approximately 0.25mg - 5mg, 5-10mg, 10-lOOmg, 100-500mg, and upwards of 2000mg of an antigen (e.g, a hepatitis viral antigen). f
In some approaches described herein, the exact amount of ribavirin and/or antigen is chosen by the individual physician in view of the patient to be treated. Further, the amounts of ribavirin can be added in combination "with or separately from the same or equivalent amount of antigen and these amounts can be adjusted during a particular vaccination protocol so as to provide sufficient levels in light of patient-specific or antigen-specific considerations. In this vein, patient- specific and antigen- specific factors that can be taken into account include, but are not limited to, the severity of the disease state of the patient, age, and weight of the patient, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. The next section describes the discovery of a novel HCV gene and the creation of mutant HCV sequences, which can be used with the embodiments described herein. Novel NS3/4A and mutant NS3/4A sequences A novel nucleic acid and protein corresponding to the NS3/4A domain of HCV was cloned from a patient infected with HCV (SEQ. ID. NOs.: 16 and 17). A Genebank search revealed that the cloned sequence had the greatest homology to HCV sequences but was only 93% homologous to the closest HCV relative (accession no AJ 278830). A truncated mutant of the novel NS3/4A peptide and NS3/4A mutants, which lack a proteolytic cleavage site, were also created. It was discovered that these novel peptides and nucleic acids encoding said peptides were potent immunogens that can be mixed with ftbavirin so as to make a composition that provides a recipient with a potent immune response to HCV. The cloning ofthe novel NS3/4A domain and the creation ofthe various NS3/4A mutants is described in the following example.
EXAMPLE 6 The NS3/4A sequence was amplified from the serum of an HCV-infected patient (HCV genotype la) using the Polymerase Chain Reaction (PCR). Total RNA was extracted from serum, cDNA synthesis, and PCR was performed according to standard protocols (Chen M et al, J. Med. Virol. 43:223-226 (1995)). The cDNA synthesis was initiated using the antisense primer "NS4KR" (5'-CCG TCT AGA TCA GCA CTC TTC CAT TTC ATC-3' (SEQ. ID. NO.: 18)). From this cDNA, a 2079 base pair DNA fragment of HCV, corresponding to amino acids 1007 to 1711, which encompasses the NS3 and NS4A genes, was amplified. A high fidelity polymerase (Expand High Fidelity PCR, Boehringer-Mannheim, Mannheim, Germany) was used with the "NS3KF" primer (5'-CCT GAA TTC ATG GCG CCT ATC ACG GCC TAT-3' (SEQ. ID. NO.: 19) and the NS4KR primer. The NS3KF primer contained a EcoRI restriction enzyme cleavage site and a start codon and the primer NS4KR contained a Xbal restriction enzyme cleavage site and a stop codon. The amplified fragment was then sequenced SEQ. ID. NO.: 16. Sequence comparison analysis revealed that the gene fragment was indeed amplified from a viral strain of genotype la. A computerized BLAST search against the Genbank database using the NCBI website revealed that the closest HCV homologue was 93% identical in nucleotide sequence. The amplified DNA fragment was then digested with EcoRI and Xbal, and was inserted into a pcDNA3.1/His plasmid (Invitrogen) digested with the same enzymes. The NS3/4A- pcDNA3.1 plasmid was then digested with EcoRI and Xba I and the insert was purified using the QiaQuick kit (Qiagen, Hamburg, Germany) and was ligated to a EcoRI/Xba I digested pVAX vector (Invitrogen) so as to generatethe NS3/4A-pVAX plasmid. The rNS3 truncated mutant was obtained by deleting NS4A sequence from the NS3/4A
DNA. Accordingly, the NS3 gene sequence of NS3/4A-pVAX was PCR amplified using the primers NS3KF and 3 ot/ (5'-CCA CGC GGC CGC GAC GAC CTA CAG-3' (SEQ. ID. NO.: 20)) containing EcoRI and Not I restriction sites, respectively. The NS3 fragment (1850 bp) was then ligated to a EcoRI and Not I digested pVAX plasmid to generate the NS3-pVAX vector. Plasmids were grown in BL21 E.coli cells. The plasmids were sequenced and were verified by restriction cleavage and the results were" as to be expected based on the original sequence.
To change the proteolytic cleavage site between NS3 and NS4A, the NS3/4A-pVAX plasmid was mutagenized using the QUICKCHANGE™ mutagenesis kit (Stratagene), following the manufacturer's recommendations. To generate the "TPT" mutation, the plasmid was amplified using the primers 5 '-CTGGAGGTCGTCACGCCTACCTGGGTGCTCGTT-3 ' (SEQ. ID. NO.: 21) and 5 '-ACCGAGCACCCAGGTAGGCGTGACGACCTCCAG-3 ' (SEQ. LD. NO.: 22) resulting in NS3/4A-TPT-pVAX. To generate the "RGT" mutation, the plasmid was amplified using the primers 5'-CTGGAGGTCGTCCGCGGTACCTGGGTGCTCGTT-3' (SEQ. ID. NO.: 23) and 5'-ACCGAGCACCCAGGTACC-GCGGACGACCTCCAG-3' (SEQ. ID. NO.: 24) resulting in NS3/4A-RGT-pVAX.
All mutagenized constructs were sequenced to verify that the mutations had been correctly made. Plasmids were grown in competent BL21 E. coli. The plasmid DNA used for in vivo injection was purified using Qiagen DNA purification columns, according to the manufacturers instructions (Qiagen GmbH, Hilden, FRG). The concentration of the resulting plasmid DNA was determined spectrophotometrically (Dynaquant, Pharmacia Biotech, Uppsala, Sweden) and the purified DNA was dissolved in sterile phosphate buffer saline (PBS) at concentrations of 1 mg/ml. The amino acid sequences of the wild-type and mutated junctions are shown in TABLE 10. The section below describes several nucleic acids that encode HCV peptides.
TABLE 10
Plasmid Deduced amino acid sequence
*NS3/4A-pVAX TKYMTCMSADLEVVTSTWVLVGGVL (SEQ. ID. NO.: 25)
NS3/4A-TGT-pVAX TKYMTCMSADLEVVTGTWVLVGGVL (SEQ. ID. NO.: 26)
NS3/4A-RGT-pVAX TKYMTCMSADLEVVRGTWVLVGGVL (SEQ. ID. NO.: 27)
NS3/4A-TPT-pVAX TKYMTCMSADLEVVTPTWVLVGGVL (SEQ. ID. NO.: 33)
NS3/4A-RPT-pVAX TKYMTCMSADLEVVRPTWVLVGGVL (SEQ. ID. NO.: 34)
NS3/4A-RPA-pVAX TKYMTCMSADLEVVRPAWVLVGGVL (SEQ. ID. NO.: 35)
NS3/4A-CST-pVAX TKYMTCMSADLEVVCSTWVLVGGVL (SEQ. ID. NO.: 36)
NS3/4A-CCST-pVAX TKYMTCMSADLEVCCSTWVLVGGVL (SEQ. ID. NO.: 37)
NS3/4A-SSST-pVAX TKYMTCMSADLEVSSSTWVLVGGVL (SEQ. ID. NO.: 38)
NS3/4A-SSSSCST-pVAX TKYMTCMSADSSSSCSTWVLVGGVL (SEQ. ID. NO.: 39)
NS3A/4A-VVVVTST-pVAX TKYMTCMSADVVVVTSTWVLVGGVL (SEQ. ID. NO.: 40)
NS5-pVAX SEDVVCCSMSYTWTG (SEQ. TD. NO.: 41)
NS5A/B-pVAX SSEDVVCCSMWVLVGGVL (SEQ. ID. NO.: 42)
*The wild type sequence for the NS3/4A fragment is NS3/4A-ρVAX. The NS3/4A breakpoint is identified by underline, wherein the Pl position corresponds to the first Thr (T) and the Pl ' position corresponds to the next following amino acid the NS3/4A-pVAX sequence. In the wild type NS3/4A sequence the NS3 protease cleaves between the Pl and Pl ' positions.
Nucleic acids encoding HCV peptides The nucleic acid embodiments include nucleotides encoding the HCV peptides described herein (e.g, SEQ. ID. NO.: 17, 29, 31, 32, and 43-49) or fragments thereof at least 4, 6, 8, 10, 12, 15, or 20 amino acids in length (e.g, SEQ. ID. NOs.: 25-27, and 33-42). Some embodiments for example, include genomic DNA, RNA, and cDNA encoding these HCV peptides. The HCV nucleotide embodiments not only include the DNA sequences shown in the sequence listing (e.g, SEQ. ID. NO.: 16) but also include nucleotide sequences encoding the amino acid sequences shown in the sequence listing (e.g, SEQ. ID. NO.: 17) and any nucleotide sequence that hybridizes to the DNA sequences shown in the sequence listing under stringent conditions (e.g, hybridization to filter-bound DNA in 0.5 M NaHPθ4, 7.0% sodium dodecyl sulfate (SDS), 1 mM EDTA at 50°C) and washing in 0.2 X SSC/0.2% SDS at 50°C and any nucleotide sequence that hybridizes to the DNA sequences tb encode an amino acid sequence provided in the sequence listing (SEQ. ID. NOs.: 17) under less stringent conditions (e.g, hybridization in 0.5 M NaHP04, 7.0% sodium dodecyl sulfate (SDS), 1 mM EDTA at 37°C and washing in 0.2X SSC/0.2% SDS at 37°C).
The nucleic acid embodiments also include fragments, modifications, derivatives, and variants of the sequences described above. Desired embodiments, for example, include nucleic acids having at least 12 consecutive bases of one of the novel HCV sequences or a sequence complementary thereto and preferred fragments include at least 12 consecutive bases of a nucleic acid encoding the NS3/4A molecule of SEQ. ID. NO.: 17 or a sequence complementary thereto.
In this regard, the nucleic acid embodiments of the invention can have from 12 to approximately 2079 consecutive nucleotides. Some DNA fragments of the invention, for example, include nucleic acids having at least 12-15, 15-20, 20-30, 30-50, 50-100, 100-200, 200-500, 500- 1000, 1000-1500, 1500-2079 consecutive nucleotides of SEQ. ID. NO.: 16 or a complement thereof. The nucleic acid embodiments can also be altered by mutation such as substitutions, additions, or deletions. Due to the degeneracy of nucleotide coding sequences, for example, other DNA sequences that encode substantially the same HCV amino acid sequence as depicted in SEQ. ID. NOs: 17 can be used in some embodiments. These include, but are not limited to, nucleic acid sequences encoding all or portions of NS3/4A (SEQ. ID. NO.: 16) or nucleic acids that complement all or part of this sequence that have been altered by the substitution of different codons that encode a functionally equivalent amino acid residue within the sequence, thus producing a silent change, or a functionally non-equivalent amino acid residue within the sequence, thus producing a detectable change. By using the nucleic acid sequences described above, probes that complement these molecules can be designed and manufactured by oligonucleotide synthesis. Desirable probes comprise a nucleic acid sequence of (SEQ. ID. NO.: 16) that is unique to this HCV isolate. These probes can be used to screen cDNA from patients so as to isolate natural sources of HCV, some of which may be novel HCV sequences in themselves. Screening can be by filter hybridization or by PCR, for example. By filter hybridization, the labeled probe preferably contains at least 15-30 base pairs of the nucleic acid sequence of (SEQ. ID. NO.: 16) that is unique to to this NS3/4A peptide. The hybridization washing conditions used are preferably of a medium to high stringency. The hybridization can be performed in 0.5M NaHP04, 7.0%) sodium dodecyl sulfate (SDS), 1 mM EDTA at 42°C overnight and washing can be performed in 0.2X SSC/0.2% SDS at 42°C. For guidance regarding such conditions see, for example, Sambrook et al, 1989, Molecular Cloning. A Laboratory Manual. Cold Springs Harbor Press, N.Y.; and Ausubel et al, 1989, Current Protocols in Molecular Biology. Green Publishing Associates and Wiley Interscience, N.Y.
HCV nucleic acids can also be isolated from patients infected with HCV using the nucleic acids described herein. (See also Example 6). Accordingly, RNA obtained from a patient infected with HCV is reverse transcribed and the resultant cDNA is amplified using PCR or another amplification technique. The primers are preferably obtained from the NS3/4A sequence (SEQ. ID. NO.: 16).
For a review of PCR technology, see Molecular Cloning to Genetic Engineering, White, BA. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa (1997) and the publication entitled "PCR Methods and Applications" (1991, Cold Spring Harbor Laboratory Press). For amplification of mRNAs, it is within the scope ofthe invention to reverse transcribe mRNA into cDNA followed by PCR (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Patent No. 5,322,770. Another technique involves the use of Reverse Transcriptase Asymmetric Gap Ligase Chain Reaction (RT-AGLCR), as described by Marshall R.L. et al. (PCR Methods and Applications 4:80-84, 1994).
Briefly, RNA is isolated, following standard procedures. A reverse transcription reaction is performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment as a primer of first strand synthesis. The resulting RNA/DNA hybrid is then "tailed" with guanines using a standard terminal transferase reaction. The hybrid is then digested with RNAse H, and second strand synthesis is primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment are easily isolated. For a review of cloning strategies which can be used, see e.g, Sambrook et al, 1989, supra.
In each of these amplification procedures, primers on either side of the sequence to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase, such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are then extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites. PCR has further been described in several patents including US Patents 4,683,195, 4,683,202 and 4,965,188.
The primers are selected to be substantially complementary to a portion of the nucleic acid sequence of (SEQ. ID. NO.: 16) that "is unique to this NS3/4A molecule, thereby allowing the sequences between the primers to be amplified. Preferably, primers are at least 16-20, 20-25, or 25-30 nucleotides in length. The formation of stable hybrids depends on the melting temperature (Tm) of the DNA. The Tm depends on the length of the primer, the ionic strength of the solution and the G+C content. The higher the G+C content of the primer, the higher is the melting temperature because G:C pairs are held by three H bonds whereas A:T pairs have only two. The G+C content of the amplification primers described herein preferably range between 10 and 75 %, more preferably between 35 and 60 %, and most preferably between 40 and 55 %. The appropriate length for primers under a particular set of assay conditions can be empirically determined by one of skill in the art.
The spacing of the primers relates to the length of the segment to be amplified. In the context of the embodiments described herein, amplified segments carrying nucleic acid sequence encoding HCV peptides can range in size from at least about 25 bp to the entire length of the HCV genome. Amplification fragments from 25-1000 bp are typical, fragments from 50-1000 bp are preferred and fragments from 100-600 bp are highly preferred. It will be appreciated that amplification primers can be of any sequence that allows for specific amplification of the NS3/4A region and can, for example, include modifications such as restriction sites to facilitate cloning.
The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequences of an HCV peptide. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library. Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from an infected patient. In this manner, HCV geneproducts can be isolated using standard antibody screening techniques in conjunction with antibodies raised against the HCV gene product. (For screening techniques, see, for example, Harlow, E. and Lane, eds, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor.)
Embodiments also include (a) DNA vectors that contain any of the foregoing nucleic acid sequences and/or their complements (i.e, antisense); (b) DNA expression vectors that contain any of the foregoing nucleic acid sequences operatively associated with a regulatory element that directs the expression of the nucleic acid; and (c) genetically engineered host cells that contain any of the foregoing nucleic acid sequences operatively associated with a regulatory element that directs the expression of the coding seq'uences in the host cell. These recombinant constructs are capable of replicating autonomously in a host cell. Alternatively, the recombinant constructs can become integrated into the chromosomal DNA of a host cell. Such recombinant polynucleotides typically comprise an HCV genomic or cDNA polynucleotide of semi-synthetic or synthetic origin by virtue of human manipulation. Therefore, recombinant nucleic acids comprising these sequences and complements thereof that are not naturally occurring are provided.
Although nucleic acids encoding an HCV peptide or nucleic acids having sequences that complement an HCV gene as they appear in nature can be employed, they will often be altered, e.g, by deletion, substitution, or insertion and can be accompanied by sequence not present in humans. As used herein, regulatory elements include, but are not limited to, inducible and non- inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include, but are not limited to, the cytomegalovirus hCMV immediate early gene, the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage A, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase, the promoters of acid phosphatase, and the promoters of the yeast _-mating factors.
In addition, recombinant HCV peptide-encoding nucleic acid sequences and their complementary sequences can be engineered so as to modify their processing or expression. For example, and not by way of limitation, the HCV nucleic acids described herein can be combined with a promoter sequence and/or ribosome binding site, or a signal sequence can be inserted upstream of HCV peptide-encoding sequences so as to permit secretion of the peptide and thereby facilitate harvesting or bioavailability. Additionally, a given HCV nucleic acid can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction sites or destroy preexisting ones, or to facilitate further in vitro modification. (See Example 6). Any technique for mutagenesis known in the art can be used, including but not limited to, in vitro site-directed mutagenesis. (Hutchinson et al, J. Biol. Chem., 253:6551 (1978)).
Further, nucleic acids encoding jother proteins or domains of other proteins can be joined to nucleic acids encoding an HCV peptide so as to create a fusion protein. Nucleotides encoding fusion proteins can include, but are not limited to, a full length NS3/4A sequence (SEQ. ID. NO.: 16), a truncated NS3/4A sequence or a peptide fragment of an NS3/4A sequence fused to an unrelated protein or peptide, such as for example, poly histidine, hemagglutinin, an enzyme, fluorescent protein, or luminescent protein, as discussed below. Surprisingly, it was discovered that the NS3-pVAX and NS3/4A-pVAX vectors were capable of eliciting a potent immune response when injected into an immunocompetent mammal. The example below describes these experiments in greater detail.
EXAMPLE 7 To determine whether a humoral immune response was elicited by the NS3-pVAX and
NS3/4A-pVAX vectors, the expression constructs described in Example 6 were purified using the Qiagen DNA purification system, according to the manufacturer's instructions and the purified DNA vectors were used to immunize groups of four to ten Balb/c mice. The plasmids were injected directly into regenerating tibialis anterior (TA) muscles as previously described (Davis et al, Human Gene Therapy 4(6):733 (1993)). In brief, mice were injected intramuscularly with 50 μl/TA of 0.01 mM cardiotoxin (Latoxan, Rosans, France) in 0.9%> sterile NaCl. Five days later, each TA muscle was injected with 50 μl PBS containing either rNS3 or DNA,
Inbred mouse strains C57/BL6 (H-2b) Balb/C (H-2d), and CBA (H-2k) were obtained from the breeding facility at Mollegard Denmark, Charles River Uppsala, Sweden, or B&K Sollentuna Sweden. All mice were female and were used at 4-8 weeks of age. For monitoring of humoral responses, all mice received a booster injection of 50 μl /TA of plasmid DNA every fourth week. In addition, some mice were given recombinant NS3 (rNS3) protein, which was purified as described herein. The mice receiving rNS3 were immunized no more than twice. All mice were bled twice a month. Enzyme immunosorbent assays (EIAs) were used to detect the presence of murine NS3 antibodies. These assays were performed essentially as described in (Chen et al, Hepatology 28(1): 219 (1998)). Briefly, rNS3 w&s passively adsorbed overnight at 4°C to 96-well microtiter plates (Nunc, Copenhagen, Denmark) at 1 μg/ml in 50 mM sodium carbonate buffer (pH 9.6). The plates were then blocked by incubation with dilution buffer containing PBS, 2% goat serum, and 1% bovine serum albumin for one hour at 37°C. Serial dilutions of mouse sera starting at 1:60 were then incubated on the plates for one hour. Bound murine serum antibodies were detected by an alkaline phosphatase conjugated goat anti-mouse IgG (Sigma Cell Products, Saint Louis, MO) followed by addition of the substrate pNPP (1 tablet/5ml of IM Diethanol amine buffer with 0.5 mM MgCl2). The reaction was stopped by addition of IM NaOH and absorbency was read at 405 nm.
After four weeks, four out of five mice immunized with NS3/4A-pVAX had developed NS3 antibodies, whereas one out of five immunized with NS3-pVAX had developed antibodies (FIGURE 4). After six weeks, four out of five mice immunized with NS3/4A-pVAX had developed high levels (>104) of NS3 antibodies (mean levels 10800±4830) and one had a titer of 2160. Although all mice immunized with NS3-pVAX developed NS3 antibodies, none of them developed levels as high as that produced by the NS3/4A-pVAX construct (mean levels 1800±805). The antibody levels elicited by the NS3/4A fusion construct were significantly higher than those induced by NS3-pVAX at six weeks (mean ranks 7.6 v.s 3.4, p<0.05, Mann- Whitney rank sum test, and p<0.01, Students t-test). Thus, immunization with either NS3-pVAX or NS3/4A-pVAX resulted in the production of anti-NS3 antibodies, but the NS3/4A fusion gene was a more potent immunogen. The example below describes experiments that were performed to determine if the NS3/4A-TPT-pVAX construct could elicit a potent immune response.
EXAMPLE 8 To test if the enhanced immunogenicity of NS3/4A could be solely attributed to the presence of NS4A, or if the NS3/4A fusion protein in addition had to be cleaved at the NS3/4A junction, new experiments were performed. In a first experiment, the immunogenicity ofthe NS3- pVAX, NS3/4A-pVAX, and NS3/4A-TPT-pVAX vectors were compared in Balb/c mice. Mice were immunised on week 0 as described above, and, after two weeks, all mice were bled and the presence of antibodies to NS3 at a serum dilution of 1 :60 was determined (TABLE 11). Mice were bled again on week 4. Although, the NS3/4A-TPT-pVAX vector was comparable to the NS3- pVAX vector (4/10 vs. 0/10; NS, Fisher's exact test), the NS3/4A-pVAX vector continued to be the most potent immunogen. Thus, all of the HCV constructs that were introduced into mice were capable of eliciting an immune response against NS3, however, the NS4A sequence and a functional proteolytic cleavage site etween the NS3 and NS4A sequences provided for a more potent immune response.
TABLE 11
During the chronic phase of infection, HCV replicates in hepatocytes, and spreads within the liver. A major factor in combating chronic and persistent viral infections is the cell-mediated immune defense system. CD4+ and "CD8+ lymphocytes infiltrate the liver during the chronic phase of HCV infection, but they are incapable of clearing the virus or preventing liver damage. In addition, persistent HCV infection is associated with the onset of hepatocellular carcinoma (HCC), The examples below describe experiments that were performed to determine whether the NS3 and NS3/4A construct were capable of eliciting a T-cell mediated immune response against NS3.
EXAMPLE 9
To study whether the constructs described above were capable of eliciting a cell-mediated response against NS3, an in vivo tumor growth assay was perfomed. To this end, an SP2/0 tumor cell line stably transfected with the NS3/4A gene was made. The pcDNA3.1 plasmid containing the NS3/4A gene was linearized by Bglll digestion. A total of 5μg linearized plasmid DNA was mixed with 60μg transfection reagent (Superfect, Qiagen, Germany) and the mixture was added to a 50% confluent layer of SP2/0 cells in a 35 mm dish. The transfected SP2/0 cells (NS3/4A- SP2/0) were grown for 14 days in the presence of 800μg/ml geneticin and individual clones were isolated. A stable NS3/4A-expressing SP2/0 clone was identified using PCR and RTPCR. The cloned cell line was maintained in DMEM containing 10%> fetal bovine serum, L-glutamine, and penicillin-streptomycin.
The in vivo growth kinetics of the SP2/0 and the NS3/4A-SP2/0 cell lines were then evaluated in Balb/c mice. Mice were injected subcutaneously with 2 x 10^ tumor cells in the right flank. Each day the size of the tumor was determined through the skin. The growth kinetics of the two cell lines was comparable. For example, the mean tumor sizes did not differ between the two cell lines at any time point. (See TABLE 12). The example below describes experiments that were performed to determine whether mice immunized with the NS3/4A constructs had developed a T-cell response against NS3.
TABLE 12
EXAMPLE 10 To examine whether a T-cell response is elicited by the NS3/4A immunization, the capacity of an immunized mouse's immune defense system to attack the NS3-expressing tumor cell line was assayed. The protocol for testing for in vivo inhibition of tumor growth ofthe SP2/0 myeloma cell line in Balb/c mice has been described in detail previously (Encke et al, J. Immunol. 161:4917 (1998)). Inhibition of tumor growth in this model is dependent on the priming of cytotoxic T lymphocytes (CTLs). Briefly, groups often mice were immunized i.m. five times with one month intervals with either lOOμg NS3-pVAX or 100 μg NS3/4A-pVAX. Two weeks after the last immunization 2 x 10^ SP2/0 or NS3/4A-SP2/0 cells were injected into the right flank of each mouse. Two weeks later the mice were sacrificed and the maximum tumor sizes were measured. There was no difference between the mean SP2/0 and NS3/4A-SP2/0 tumor sizes in the NS3- pVAX immunized mice (See TABLE 13). TABLE 13
Note: Statistical analysis (StatView): Student's t-test on maximum tumor size. P-values < 0.05 are considered significant.
Unpaired t-test for Max diam Grouping Variable: Column 1 Hypothesized Difference = 0 Row exclusion: NS3DNA-Tumor-001213
Mean Diff. DF t-Value P-Value
NS3-sp2, NS3-spNS3 1.750 0.58 0.584
Group Info for Max diam
Grouping Variable: Column 1
Row exclusion: NS3DNA-Tumor-001213
Count Mean - Variance Std. Dev. Std. Err
NS3-sp2 NS3-spNS3
In the next set of experiments, the inhibition of SP2/0 or NS3/4A-SP2/0 tumor growth was evaluated in NS3/4A-pVAX immunized Balb/c mice. In mice immunized with the NS3/4A-pVAX plasmid the growth of NS3/4A-SP2/0 tumor cells was significantly inhibited as compared to growth of the non-transfected SP2/0 cells. (See TABLE 14). Thus, NS3/4A-pVAX immunization elicits CTLs that inhibit growth of cells expressing NS3/4A in vivo. The example below describes experiments that were performed to analyze the efficiency of various NS3 containing compositions in eliciting a cell-mediated response to NS3. TABLE 14
Note: Statistical analysis (StatView): Student's t-test on maximum tumor size. P-values < 0.05 are considered significant.
Unpaired t-test for Max diam Grouping Variable: Column 1 Hypothesized Difference = 0 Row exclusion: NS3DNA-Tumor-001213
Mean Diff. DF t-Value P-Value
NS3/4-sp2, NS3/4-spNS3 11.000 2.526 0.044
Group Info for Max diam Grouping Variable: Column 1
Row exclusion: NS3DNA-Tumor-001213
Count Mean Variance Std. Dev. Std. Err
NS3/4-sp2 NS3/4-spNS3
EXAMPLE 1 1
To analyze whether administration of different NS3 containing compositions affected the elicitation of a cell-mediated immune response, mice were immunized with PBS, rNS3, irrelevant DNA or the NS3/4A construct, and tumor sizes were determined, as described above. Only the NS3/4A construct was able to elicit a T-cell response sufficient to cause a statistically significant reduction in tumor size (See TABLE 15). The example below describes experiments that were performed to determine whether the reduction in tumor size can be attributed to the generation of NS3-specific T- lymphocytes. TABLE 15
Note: Statistical analysis (StatView): Student's t-test on maximum tumor size. P-values <
0.05 are considered as significant. Unpaired t-test for Largest Tumor size Grouping Variable: group Hypothesized Difference = 0
p17-sp3-4, NS3-100-sp3-4 p17-sp3-4, NS3/4-10-sp3-4 p17-sp3-4, NS3-10-sp3-4 p17-sp3-4, NS3/4-100-sp3-4 p17-sp3-4, PBS-sp3-4 p17-sp3-4, rNS3-sp3-4 NS3-100-sp3-4, NS3/4-10-sp3-4 NS3-100-sp3-4, NS3-10-sp3-4 NS3-100-sp3-4, NS3/4-100-sp3-4 NS3-100-sp3-4, PBS-sp3-4 NS3-100-sp3-4, rNS3-sp3-4 NS3/4-10-sp3-4, NS3-10-sp3-4 NS3/4-10-sp3-4, NS3/4-100-sp3-4 NS3/4-10-sp3-4, PBS-sp3-4 NS3/4-10-sp3-4, rNS3-sp3-4 NS3-10-sp3-4, NS3/4-100-sp3-4 NS3-10-sp3-4, PBS-sp3-4 NS3-10-sp3-4, rNS3-sp3-4 NS3/4-100-sp3-4, PBS-sp3-4 NS3/4-100-sp3-4, rNS3-sp3-4 PBS-sp3-4, rNS3-sp3-4
EXAMPLE 12 To determine whether NS3 -specific T-cells were elicited by the NS3/4A immunizations, an in vitro T-cell mediated tumor c lysis assay was employed. The assay has been described in detail previously (Townsend et al. J. Virol. 71 :3365 (1997)). Briefly, groups of five Balb/c mice were immunized three times with lOOμg NS3/4A-pVAX i.m. Two weeks after the last injection the mice were sacrificed and splenocytes were harvested. Re-stimulation cultures with 3 x 10^ splenocytes and 3 x 10^ NS3/4A-SP2/0 cells were set. After five days, a standard Cr^ l-release assay was performed using NS3/4A-SP2/0 or SP2/0 cells as targets. Percent specific lysis was calculated as the ratio between lysis of NS3/4A-SP2/0 cells and lysis of SP2/0 cells. Only mice immunized with NS3/4A-pVAX displayed specific lysis over 10% in four out of five tested mice, using an effector to target ratio of 20:1 (See FIGURES 5A and B). Accordingly, mice immunized with NS3/4A exhibited a reduction in cancer cell proliferation and/or NS3/4A caused the lysis of cancer cells. The section below describes several of the embodied HCV polypeptides in greater detail. HCV peptides
The nucleic acids encoding the HCV peptides, described in the previous section, can be manipulated using conventional techniques in molecular biology so as to create recombinant constructs that express the HCV peptides. The embodied HCV peptides or derivatives thereof, include but are not limited to, those containing as a primary amino acid sequence all of the amino acid sequence substantially as depicted in the Sequence Listing (SEQ. ID. NOs.: 17, 29- 32 and 43-49) and fragments thereof at least four amino acids in length (e.g., SEQ. ID. NOs.: 25-27, and 33-42) including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change. Preferred fragments of a sequence of SEQ. ID. NOs.: 17, 29- 32 and 43-49 are at least four amino acids and comprise amino acid sequence unique to the discovered NS3/4A peptide (SEQ. ID. NO.: 17) including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change. The HCV peptides can be, for example, at least 12-15, 15-20, 20-25, 25-50, 50-100, 100-150, 150-250, 250-500 or 500-704 amino acids in length. Other fragments (e.g., SEQ. ID. NOs.: 25-27, and 33-42) are also aspects ofthe invention.
Embodiments ofthe invention also include HCV peptides that are substantially identical to those described above. That is, HCV peptides that have one or more amino acid residues within SEQ. ID. NO.: 17 and fragments thereof that are substituted by another amino acid of a similar polarity that acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence can be selected from other members of the class to which the amino acid belongs. For example, the non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine, and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. The aromatic amino acids include phenylalanine, tryptophan, and tyrosine.
The HCV peptides described herein can be prepared by chemical synthesis methods (such as solid phase peptide synthesis) using techniques known in the art such as those set forth by Merrifield et al., J. Am. Chem. Soc. 85:2149 (1964), Houghten et al., Proc. Natl. Acad. Sci. USA, 82:51:32 (1985), Stewart and Young (Solid phase peptide synthesis. Pierce Chem Co., Rockford, IL (1984), and Creighton, 1983, Proteins: Structures and Molecular Principles. W. H. Freeman & Co., N.Y. Such polypeptides can be synthesized with or without a methionine on the amino terminus. Chemically synthesized HCV peptides can be oxidized using methods set forth in these references to form disuifide bridges. While the HCV peptides described herein can be chemically synthesized, it can be more effective to produce these polypeptides by recombinant DNA technology. Such methods can be used to construct expression vectors containing the HCV nucleotide sequences described above, for example, and appropriate transcripticfnal and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Alternatively, RNA capable of encoding HCV nucleotide sequences can be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in Oligonucleotide Synthesis, 1984, Gait, M. J. ed., IRL Press, Oxford. Accordingly, several embodiments concern cell lines that have been engineered to express the embodied HCV peptides. For example, some cells are made to express the HCV peptides of (SEQ. ID. NOs.: 17, 29- 32 and 43-49) or fragments of these molecules.
A variety of host-expression vector systems can be utilized to express the embodied HCV peptides. Suitable expression systems include, but are not limited to, microorganisms such as bacteria (e.g., E. coli or B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing HCV nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing the HCV nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the HCV sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing HCV sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). In bacterial systems, a number of expression vectors can be advantageously selected depending upon the use intended for the HCV gene product being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of HCV peptide or for raising antibodies to the HCV peptide, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified can be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J., 2:1791 (1983), in which the HCV coding sequence can be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res., 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem., 264:5503-5509 (1989)); and the like. pGEX vectors can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can be purified from lysed cells by adsorption to glutathione- agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety. In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The HCV coding sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of an HCV gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus, (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed. (See e.g., Smith et al., J. Virol 46: 584 (1983); and Smith, U.S. Pat. No. 4,215,051).
In mammalian host cells, a number of viral-based expression systems can be utilized. In cases where an adenovirus is used as an expression vector, the HCV nucleotide sequence of interest can be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region ofthe viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the HCV gene product in infected hosts. (See e.g., Logan & Shenk, Proc. Natl. Acad. Sci. USA 81:3655-3659 (1984)). Specific initiation signals can also be required for efficient translation of inserted HCV nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences.
However, in cases where only a portion of the HCV coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, can be provided. Furthermore, the initiation codon can be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., Methods in Enzymol, 153:516-544 (1987)).
In addition, a host cell strain can be chosen which modulates the expression ofthe inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products are important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation ofthe gene product can be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, and WI38.
For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express the HCV peptides described above can be engineered. Rather than using expression vectors that contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction ofthe foreign DNA, engineered cells are allowed to grow for 1-2 days in an enriched media,- and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn are cloned and expanded into cell lines. This method is advantageously used to engineer cell lines which express the HCV gene product.
A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., Cell 11:223 (1977), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:2026 (1962), and adenine phosphoribosyltransferase (Lowy, et al., Cell 22:817 (1980) genes can be employed in tk", hgprt" or aprt" cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes:- dhfr, which confers resistance to methotrexate (Wigler, et al., Proc. Natl. Acad. Sci. USA 77:3567 (1980); O'Hare, et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Nat Acad. Sci. USA 78:2072 (1981); neo, which confers resistance to the aminoglycoside G-418 (Colberre- Garapin, et al., J. Mol. Biol 150:1 (1981); and hygro, which confers resistance to hygromycin (Santerre, et al., Gene 30:147 (1984)).
Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines. (Janknecht, et al., Proc. Nat Acad. Sci. USA 88: 8972-8976 (1991)). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni^+nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.
The example below describes a method that was used to express the HCV peptides encoded by the embodied nucleic acids.
EXAMPLE 13 To characterize the NS3/4A fusion protein, and the truncated and mutated versions thereof, the vector constructs, described in Example 6, were transcribed and translated in vitro, and the resulting polypeptides were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro transcription and translation were performed using the T7 coupled reticulocyte lysate system (Promega, Madison, WI) according to the manufacturer's instructions. All in vitro translation reactions of the expression constructs were carried out at 30°C with 35s-labeled methionine (Amersham International, Pic, Buckinghamshire, UK). The labeled proteins were separated on 12% SDS-PAGE gels and visualized by exposure to X-ray film (Hyper Film-MP, Amersham) for 6-18 hours.
The in vitro analysis revealed that all proteins were expressed to high amounts from their respective expression constructs. The rNS3 construct (NS3-pVAX vector) produced a single peptide of approximately 61 kDa, whereas, the TPT construct (NS3/4A-TPT-pVAX) and the RGT construct (NS3/4A-RGT-pVAX) produced a single polypeptide of approximately 67 kDa, which is identical to the molecular weight of the uncleaved NS3/4A peptide produced from the NS3/4A- pVAX construct. The cleaved product produced from the expressed NS3/4A peptide was approximately 61 kDa, which was identical in size to the rNS3 produced from the NS3-pVAX vector. These results demonstrated that the expression constructs were functional, the NS3/4A construct was enzymatically active, the rNS3 produced a peptide ofthe predicted size, and the TPT and RGT mutations completely abolished cleavage at the NS3-NS4A junction.
The sequences, constructs, vectors, clones, and other materials comprising the embodied
HCV nucleic acids and peptides can be in enriched or isolated form. As used herein, "enriched" means that the concentration ofthe material is at least about 2, 5, 10, 100, or 1000 times its natural concentration (for example), advantageously 0.01%, by weight, preferably at least about 0.1% by weight. Enriched preparations from about 0.5%, 1%, 5%, 10%, and 20% by weight are also contemplated. The term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally- occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated. It is also advantageous that the sequences be purified form. The term "purified" does not require absolute purity; rather, it is intended as a relative definition. Isolated proteins have been conventionally purified to electrophoretic homogeneity by Coomassie staining, for example. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or frve orders of magnitude is expressly contemplated.
The HCV gene products described herein can also be expressed in plants, insects, and animals so as to create a transgenic organism. Desirable transgenic plant systems having an HCV peptide include Arabadopsis, maize, and Chlamydomonas. Desirable insect systems having an
HCV peptide include, but are not limited to, D. melanogaster and C. elegans. Animals of any species, including, but not limited to, amphibians, reptiles, birds, mice, hamsters, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, dogs, cats, and non-human primates, e.g., baboons, monkeys, and chimpanzees can be used to generate transgenic animals having an embodied HCV molecule.
These transgenic organisms desirably exhibit germline transfer of HCV peptides described herein.
Any technique known in the art is preferably used to introduce the HCV transgene into animals to produce the founder lines of transgenic animals or to knock out or replace existing HCV genes. Such techniques include, but are not limited to pronuclear microinjection (Hoppe, P. C. and Wagner, T. E., 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines
(Van der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152 (1985); gene targeting in embryonic stem cells (Thompson et'al., Cell 56:313-321 (1989); electroporation of embryos (Lo,
Mol Cell. Biol. 3:1803-1814 (1983); and sperm-mediated gene transfer (Lavitrano et al., Cell
57:717-723 (1989); see also Gordon, Transgenic Animals, Intl. Rev. Cytol. 115:171-229 (1989). The section below describes the manufacture of antibodies that interact with the HCV peptides described herein.
Anti-HCV antibodies
Following synthesis or expression and isolation or purification of the HCV peptides, the isolated or purified peptide can be used to generate antibodies. Depending on the context, the term "antibodies" can encompass polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library. Antibodies that recognize the HCV peptides have many uses including, but not limited to, biotechnological applications, therapeutic/prophylactic applications, and diagnostic applications.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, and humans etc. can be immunized by injection with an HCV peptide. Depending on the host species, f various adjuvants can be used to increase immunological response. Such adjuvants include, but are not limited to, ribavirin, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluroriic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. BCG (Bacillus Calmette-Guerin) and Corynebacterium parvum are also potentially useful adjuvants. Peptides used to induce specific antibodies can have an amino acid sequence consisting of at least four amino acids, and preferably at least 10 to 15 amino acids. By one approach, short stretches of amino acids encoding fragments of NS3/4A are fused with those of another protein such as keyhole limpet hemocyanin such that an antibody is produced against the chimeric molecule. Additionally, a composition comprising ribavirin and NS3/4A (SEQ. ID. NO.: 17), a fragment thereof at least 4, 6, 8, 10, 12, 15, or 20 amino acids in length, or a nucleic acid encoding one or more of these moleucles is administered to an animal. While antibodies capable of specifically recognizing HCV can be generated by injecting synthetic 3-mer, 10-mer, and 15-mer peptides that correspond to an HCV peptide into mice, a more diverse set of antibodies can be generated by using recombinant HCV peptides, prepared as decribed above.
To generate antibodies to an HCV peptide, substantially pure peptide is isolated from a transfected or transformed cell. The concentration of the peptide in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the peptide of interest can then be prepared as follows: Monoclonal antibodies to an HCV peptide can be prepared using any technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique originally described by Koehler and Milstein (Nature 256:495-497 (1975), the human B-cell hybridoma technique (Kosbor et al. Immunol Today 4:72 (1983); Cote et al Proc Natl Acad Sci 80:2026-2030 (1983), and the EBV- hybridoma technique Cole et al. Monoclonal Antibodies and Cancer Therapy. Alan R. Liss Inc, New York N.Y., pp 77-96 (1985). In addition, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used. (Morrison et al. Proc Natl Acad Sci 81:6851-6855 (1984); Neuberger et al. Nature 312:604-608(1984); Takeda et al. Nature 314:452-454(1985). Altematively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce HCV-specific single chain antibodies. Antibodies can also be produced by inducing in vivo production in the lymphocyte population or by screening recombinant immunoglobulin libraries or panels of highly specific binding reagents as disclosed in Orlandi et al., Proc Natl Acad Sci 86: 3833-3837 (1989), and Winter G. and Milstein C; Nature 349:293-299 (1991).
Antibody fragments that contain specific binding sites for an HCV peptide can also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments that can be produced by pepsin digestion of the antibody molecule and the Fab fragments that can be generated by reducing the disuifide bridges ofthe F(ab')2 fragments. Alternatively, Fab expression libraries can be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (Huse W. D. et al. Science 256:1275-1281 (1989)).
By one approach, monoclonal antibodies to an HCV peptide are made as follows. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused in the presence of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth ofthe culture is continued. Antibody- producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.
Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and can require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol, Metab. 33:988-991 (1971).
Booster injections are given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12μM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980). Antibody preparations prepared according to either protocol are useful in quantitative immunoassays that determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively (e.g., in diagnostic embodiments that identify the presence of HCV in biological samples). The section below describes some ofthe diagnostic embodiments in greater detail.
Diagnostic embodiments
Generally, the embodied diagnostics are classified according to whether a nucleic acid or protein-based assay is used. Some diagnostic assays detect the presence or absence of an embodied
HCV nucleic acid sequence in a sajaiple obtained from a patient, whereas, other assays seek to identify whether an embodied HCV peptide is present in a biological sample obtained from a patient.
Additionally, the manufacture of kits that incorporate the reagents and methods described herein that allow for the rapid detection and identification of HCV are also embodied. These diagnostic kits can include, for example, an embodied nucleic acid probe or antibody, which specifically detects HCV.
The detection component of these kits will typically be supplied in combination with one or more of the following reagents. A support capable of absorbing or otherwise binding DNA, RNA, or protein will often be supplied. Available supports include membranes of nitrocellulose, nylon or derivatized nylon that can be characterized by bearing an array of positively charged substituents. One or more restriction enzymes, control reagents, buffers, amplification enzymes, and non-human polynucleotides like calf-thymus or salmon-sperm DNA can be supplied in these kits.
Useful nucleic acid-based diagnostics include, but are not limited to, direct DNA sequencing, Southern Blot analysis, dot blot analysis, nucleic acid amplification, and combinations of these approaches. The starting point for these analysis is isolated or purified nucleic acid from a biological sample obtained from a patient suspected of contracting HCV or a patient at risk of contracting HCV. The nucleic acid is extracted from the sample and can be amplified by RT-PCR and/or DNA amplification using primers that correspond to regions flanking the embodied HCV nucleic acid sequences (e.g., NS3/4A (SEQ. ID. NO.: 16)).
In some embodiments, nucleic acid probes that specifically hybridize with HCV sequences are attached to a support in an ordered array, wherein the nucleic acid probes are attached to distinct regions of the support that do not overlap with each other. Preferably, such an ordered array is designed to be "addressable" where the distinct locations of the probe are recorded and can be accessed as part of an assay procedure. These probes are joined to a support in different known locations. The knowledge of the precise location of each nucleic acid probe makes these "addressable" arrays particularly useful in binding assays. The nucleic acids from a preparation of several biological samples are then labeled by conventional approaches (e.g., radioactivity or fluorescence) and the labeled samples are applied to the array under conditions that permit hybridization.
If a nucleic acid in the samples hybridizes to a probe on the array, then a signal will be detected at a position on the support that corresponds to the location of the hybrid. Since the identity of each labeled sample is known and the region ofthe support on which the labeled sample was applied is known, an identification of the presence of the polymorphic variant can be rapidly determined. These approaches are easily automated using technology known to those of skill in the art of high throughput diagnostic or detection analysis. Additionally, an opposite approach to that presented above can be employed. Nucleic acids present in biological samples can" be disposed on a support so as to create an addressable array. Preferably, the samples are disposed on the support at known positions that do not overlap. The presence of HCV nucleic acids in each sample is determined by applying labeled nucleic acid probes that complement nucleic acids, which encode HCV peptides, at locations on the array that correspond to the positions at which the biological samples were disposed. Because the identity of the biological sample and its position on the array is known, the identification of a patient that has been infected with HCV can be rapidly determined. These approaches are also easily automated using technology known to those of skill in the art of high throughput diagnostic analysis.
Any addressable array technology known in the art can be employed. One particular embodiment of polynucleotide arrays is known as Genechips™, and has been generally described in US Patent 5,143,854; PCT publications WO 90/15070 and 92/10092. These arrays are generally produced using mechanical synthesis methods or light directed synthesis methods, which incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis. (Fodor et al., Science, 251:767-777, (1991)). The immobilization of arrays of oligonucleotides on solid supports has been rendered possible by the development of a technology generally identified as "Very Large Scale Immobilized Polymer Synthesis" (VLSPIS™) in which, typically, probes are immobilized in a high density array on a solid surface of a chip. Examples of VLSPIS™ technologies are provided in US Patents 5,143,854 and 5,412,087 and in PCT Publications WO 90/15070, WO 92/10092 and WO 95/11995, which describe methods for forming oligonucleotide arrays through techniques such as light-directed synthesis techniques. In designing strategies aimed at providing arrays of nucleotides immobilized on solid supports, further presentation strategies were developed to order and display the oligonucleotide arrays on the chips in an attempt to maximize hybridization patterns and diagnostic information. Examples of such presentation strategies are disclosed in PCT Publications WO 94/12305, WO 94/11530, WO 97/29212, and WO 97/31256.
A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid assays. There are several ways to produce labeled nucleic acids for hybridization or PCR including, but not limited to, oligolabeling, nick translation, end- labeling, or PCR amplification using a labeled nucleotide. Alternatively, a nucleic acid encoding an HCV peptide can be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3 or SP6 and labeled nucleotides. A number of companies such as Pharmacia Biotech (Piscataway N.J.), Promega (Madison Wis.), and U.S. Biochemical Corp (Cleveland Ohio) supply commercial kits and protocols for these procedures. Suitable reporter molecules or labels include those radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as, substrates, cofactors, inhibitors, magnetic particles and the like.
The presence of an HCV peptide in a protein sample obtained from a patient can also be detected by using conventional assays and the embodiments described herein. For example, antibodies that are immunoreactive with the disclosed HCV peptides can be used to screen biological samples for the presence of HCV infection. In preferred embodiments, antibodies that are reactive to the embodied HCV peptides are used to immunoprecipitate the disclosed HCV peptides from biological samples or are used to react with proteins obtained from a biological sample on Western or Immunoblots. Favored diagnostic embodiments also include enzyme-linked immunosorbant assays (ELISA), radioimmunoassays (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), including sandwich assays using monoclonal and/or polyclonal antibodies specific for the disclosed HCV peptides. Exemplary sandwich assays are described by David et al., in U.S. Patent Nos. 4,376,110 and 4,486,530. Other embodiments employ aspects of the immune-strip technology disclosed in U.S. Patent Nos. 5,290,678; 5,604,105; 5,710,008; 5,744,358; and 5,747,274.
In another preferred protein-based diagnostic, the antibodies described herein are attached to a support in an ordered array, wherein a plurality of antibodies are attached to distinct regions of the support that do not overlap with each other. As with the nucleic acid-based arrays, the protein- based arrays are ordered arrays that are designed to be "addressable" such that the distinct locations are recorded and can be accessed as part of an assay procedure. These probes are joined to a support in different known locations. The knowledge of the precise location of each probe makes these "addressable" arrays particularl useful in binding assays. For example, an addressable array can comprise a support having several regions to which are joined a plurality of antibody probes that specifically recognize HCV peptides present in a biological sample and differentiate the isotype of HCV identified herein.
By one approach, proteins are obtained from biological samples and are then labeled by conventional approaches (e.g., radioactivity, colorimetrically, or fluorescently). The labeled samples are then applied to the array under conditions that permit binding. If a protein in the sample binds to an antibody probe on the array, then a signal will be detected at a position on the support that corresponds to the location of the antibody-protein complex. Since the identity of each labeled sample is known and the region of the support on which the labeled sample was applied is known, an identification of the presence, concentration, and/or expression level can be rapidly determined. That is, by employing labeled standards of a known concentration of HCV peptide, an investigator can accurately determine the protein concentration of the particular peptide in a tested sample and can also assess the expression level of the HCV peptide. Conventional methods in densitometry can also be used to more accurately determine the concentration or expression level of the HCV peptide. These approaches are easily automated using technology known to those of skill in the art of high throughput diagnostic analysis.
In another embodiment, an opposite approach to that presented above can be employed. Proteins present in biological samples can be disposed on a support so as to create an addressable array. Preferably, the protein samples are disposed on the support at known positions that do not overlap. The presence of an HCV peptide in each sample is then determined by applying labeled antibody probes that recognize epitopes specific for the HCV peptide. Because the identity of the biological sample and its position on the array is known, an identification of the presence, concentration, and/or expression level of an HCV peptide can be rapidly determined.
That is, by employing labeled standards of a known concentration of HCV peptide, an investigator can accurately determine the concentration of peptide in a sample and from this information can assess the expression level of the peptide. Conventional methods in densitometry can also be used to more accurately determine the concentration or expression level of the HCV peptide. These approaches are also easily automated using technology known to those of skill in the art of high throughput diagnostic analysis. As detailed above, any addressable array technology known in the art can be employed. The section below describes some of the compositions that can have one or mote ofthe embodied HCV nucleic acids or HCV peptides. Compositions comprising the embodied HCV nucleic acids or peptides Some embodiments contain at least one of the HCV nucleic acids or peptides joined to a support. Preferably, these supports are manufactured so as to create a multimeric agent. These multimeric agents provide the HCV peptide or nucleic acid in such a form or in such a way that a sufficient affinity to the molecule is achieved. A multimeric agent having an HCV nucleic acid or peptide can be obtained by joining the desired molecule to a macromolecular support. A "support" can be a termed a carrier, a protein, a resin, a cell membrane, or any macromolecular structure used to join or immobilize such molecules. Solid supports include, but are not limited to, the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, animal cells, Duracyte®, artificial cells, and others. An HCV nucleic acid or peptide can also be joined to inorganic carriers, such as silicon oxide material (e.g., silica gel, zeolite, diatomaceous earth or aminated glass) by, for example, a covalent linkage through a hydroxy, carboxy or amino group and a reactive group on the carrier.
In several multimeric agents, the macromolecular support has a hydrophobic surface that interacts with a portion of the HCV nucleic acid or peptide by a hydrophobic non-covalent interaction. In some cases, the hydrophobic surface of the support is a polymer such as plastic or any other polymer in which hydpophobic groups have been linked such as polystyrene, polyethylene or polyvinyl. Additionally, HCV nucleic acid or peptide can be covalently bound to carriers including proteins and oligo/polysaccarides (e.g. cellulose, starch, glycogen, chitosane or aminated sepharose). In these later multimeric agents, a reactive group on the molecule, such as a hydroxy or an amino group, is used to join to a reactive group on the carrier so as to create the covalent bond. Additional multimeric agents comprise a support that has other reactive groups that are chemically activated so as to attach the HCV nucleic acid or peptide. For example, cyanogen bromide activated matrices, epoxy activated matrices, thio and thiopropyl gels, nitrophenyl chloroformate and N-hydroxy succinimide chlorformate linkages, or oxirane acrylic supports are used. (Sigma).
Carriers for use in the body, (i.e. for prophylactic or therapeutic applications) are desirably physiological, non-toxic and preferably, non-immunoresponsive. Suitable carriers for use in the body include poly-L-lysine, poly-D, L-alanine, liposomes, and Chromosorb® (Johns-Manville Products, Denver Co.). Ligand conjugated Chromosorb® (Synsorb-Pk) has been tested in humans for the prevention of hemolytic-uremic syndrome and was reported as not presenting adverse reactions. (Armstrong et al. J. Infectious Diseases 171:1042-1045 (1995)). For some embodiments, a "naked" carrier (i.e., lacking an attached HCV nucleic acid or peptide) that has the capacity to attach an HCV nucleic acid or peptide in the body of a organism is administered. By this approach, a "prodrug-type" therapy is envisioned in which the naked carrier is administered separately from the HCV nucleic acid or peptide and, once both are in the body of the organism, the carrier and the HCV nucleic acid or peptide are assembled into a multimeric complex.
The insertion of linkers, such as linkers (e.g., "λ linkers" engineered to resemble the flexible regions of λ phage) of an appropriate length between the HCV nucleic acid or peptide and the support are also contemplated so as to encourage greater flexibility ofthe HCV peptide, hybrid, or binding partner and thereby overcome any steric hindrance that can be presented by the support. The determination of an appropriate length of linker that allows for an optimal cellular response or lack thereof, can be determined by screening the HCV nucleic acid or peptide with varying linkers in the assays detailed in the present disclosure.
A composite support comprising more than one type of HCV nucleic acid or peptide is also envisioned. A "composite support" can be a carrier, a resin, or any macromolecular structure used to attach or immobilize two or more different HCV nucleic acids or peptides. As above, the insertion of linkers, such as λ linker^, of an appropriate length between the HCV nucleic acid or peptide and the support is also contemplated so as to encourage greater flexibility in the molecule and thereby overcome any steric hindrance that can occur. The determination of an appropriate length of linker that allows for an optimal cellular response or lack thereof, can be determined by screening the HCV nucleic acid or peptide with varying linkers in the assays detailed in the present disclosure.
In other embodiments, the multimeric and composite supports discussed above can have attached multimerized HCV nucleic acids or peptides so as to create a "multimerized-multimeric support" and a "multimerized-composite support", respectively. A multimerized ligand can, for example, be obtained by coupling two or more HCV nucleic acids or peptides in tandem using conventional techniques in molecular biology. The multimerized form of the HCV nucleic acid or peptide can be advantageous for many applications because of the ability to obtain an agent with a higher affinity, for example. The incorporation of linkers or spacers, such as flexible λ linkers, between the individual domains that make-up the multimerized agent can also be advantageous for some embodiments. The insertion of λ linkers of an appropriate length between protein binding domains, for example, can encourage greater flexibility in the molecule and can overcome steric hindrance. Similarly, the insertion of linkers between the multimerized HCV nucleic acid or peptide and the support can encourage greater flexibility and limit steric hindrance presented by the support. The determination of an appropriate length of linker can be determined by screening the HCV nucleic acids or peptides in the assays detailed in this disclosure.
Embodiments of the invention also include genetic vaccines, as described above. Preferably these compositions contain ribavirin and a nucleic acid encoding NS3/4A (SEQ. ID. NO.: 17), NS3 (SEQ. ID. NO.: 29), or a mutant (e.g., SEQ. ID. NOs.: 30 - 32 and 43-49) or a fragment thereof (e.g., SEQ. ID. NOs.: 25-27, and 33-42). The following example describes the preparation of a genetic vaccine suitable for use in humans.
EXAMPLE 14 An HCV expression plasmid is designed to express the NS3/4A peptide. The NS3/4A coding sequence of NS3/4A-pVAX is removed by digestion with EcoRI and Xbal, and the isolated fragment is inserted into plasmid A so that it is under the transcriptional control of the CMV promoter and the RSV enhancer element. (See U.S. Pat. No. 6,235,888 to Pachuk, et al). Plasmid backbone A is 3969 base pairs in length; it contains a PBR origin of replication for replicating in E. coli and a kanamycin resistance gene. Inserts such as the NS3/4A, are cloned into a polylinker region, which places the insert between and operably linked to the promoter and polyadenylation signal. Transcription of the cloned inserts is under the control of the CMV promoter and the RSV enhancer elements. A polyadenylation signal is provided by the presence of an SV40 poly A signal situated just 3' of the cloning site. An NS3/4A containing vaccine composition is then made by mixing 500μg ofthe rNS3/4A construct with lmg of ribavirin.
Said vaccine composition can be used to raise antibodies in a mammal (e.g., mice or rabbits) or can be injected intramuscularly into a human so as to to raise antibodies, preferably a human that is chronically infected with the HCV virus. The recipient preferably receives three immunization boosts of the mixture at 4-week intervals, as well. By the third boost, the titer of antibody specific for HCV will be significantly increased. Additionally, at this time, said subject will experience an enhanced antibody and T-cell mediated immune response against NS3, as evidenced by an increased fraction of NS3 specific antibodies as detected by EIA, and a reduction in viral load as detected by RT-PCR.
Embodiments also include NS3/4A fusion proteins or nucleic acids encoding these molecules. For instance, production and purification of recombinant protein may be facilitated by the addition of auxiliary amino acids to form a "tag". Such tags include, but are not limited to, His-6, Flag, Myc and GST. The tags may be added to the C-terminus, N-terminus, or within the NS3/4A amino acid sequence. Further embodiments include NS3/4A fusion proteins with amino or carboxy terminal truncations, or internal deletions, or with additional polypeptide sequences added to the amino or carboxy terminal ends, or added internally. Other embodiments include NS3/4A fusion proteins, or truncated or mutated versions thereof, where the residues of the NS3/4A proteolytic cleavage site have been substituted. Such substitutions include, but are not limited to, sequences where the Pl ' site is a Ser, Gly, or Pro, or the Pl position is an Arg, or where the P8 to P4' sequence is Ser-Ala-Asp-Leu-Glu-Val-Val-Thr-Ser-Thr-Trp-Val (SEQ. ID. NO.: 28).
Other embodiments concern an immunogen comprising the NS3/4A fusion protein, or a truncated or modified version thereof, capable of eliciting an enhanced immune response against NS3. The immunogen can be provided in a substantially purified form, which means that the immunogen has been rendered substantially free of other proteins, lipids, carbohydrates or other compounds with which it naturally associates. Embodiments also include vaccine compositions comprising the NS3/4A fusion protein (SEQ. ID. NO.: 17), or a truncated or mutated version thereof (e.g., SEQ. ID. NOS.: 29- 32 and 43-49) or a fragment thereof (e.g., SEQ. ID. NOs.: 25- 27, and 33-42), and an adjuvant, such as ribavirin. The following example describes one approach to prepare a vaccine composition comprising the NS3/4A fusion protein and an adjuvant. Example 15 To generate a tagged NS3/4A construct, the NS3/4A coding sequence of NS3/4A-pVAX is removed by digestion with EcoRI and Xbal, and the isolated fragment is inserted into an Xpress vector (Invitrogen). The Xpress vector allows for the production of a recombinant fusion protein having a short N-terminal leader peptide that has a high affinity for divalent cations. Using a nickel- chelating resin (Invitrogen), the recombinant protein can be purified in one step and the leader can be subsequently removed by cleavage with enterokinase. A preferred vector is the pBlueBacHis2 Xpress. The pBlueBacHis2 Xpress vector is a Baculovirus expression vector containing a multiple cloning site, an ampicillin resistance gene, and a lac z gene. Accordingly, the digested amplification fragment is cloned into the pBlueBacHis2 Xpress vector and SF9 cells are infected. The expression protein is then isolated or purified according to the maufacturer's instructions. An NS3/4A containing vaccine composition is then made by mixing lOOμg of the rNS3/4A with lmg of ribavirin.
Said vaccine composition can be used to raise antibodies in a mammal (e.g., mice or rabbits) or can be injected intramuscularly into a human so as to to raise antibodies, preferably a human that is chronically infected with the HCV virus. The recipient preferably receives three immunization boosts of the mixture at 4-week intervals. By the third boost, the titer of antibody specific for HCV will be significantly increased. Additionally, at this time, said subject will experience an enhanced antibody and T-cell mediated immune response against NS3, as evidenced by an increased fraction of NS3 specific antibodies as detected by EIA, and a reduction in viral load as detected by RT-PCR. The section below provides more explanation concerning the methods of using the compositions described herein.
Methods of using compositions comprising ribavirin and an antigen
Routes of administration of the vaccines described herein include, but are not limited to, transdermal, parenteral, gastrointestinal, transbronchial, and transalveolar, Transdermal administration can be accomplished by application of a cream, rinse, gel, or other compounds capable of allowing ribavirin and antigen to penetrate the skin. Parenteral routes of administration include, but are not limited to, electrical or direct injection such as direct injection into a central venous line, intravenous, intramuscular, intraperitoneal, intradermal, or subcutaneous injection. Gastrointestinal routes of administration include, but are not limited to, ingestion and rectal. Transbronchial and transalveolar routes of administration include, but are not limited to, inhalation, either via the mouth or intranasally.
Compositions having ribavirin and an antigen that are suitable for transdermal administration include, but are not limited to, pharmaceutically acceptable suspensions, oils, creams, and ointments applied directly to the skin or incorporated into a protective carrier such as a transdermal device ("transdermal patch"). Examples of suitable creams, ointments, etc. can be found, for instance, in the Physician's Desk Reference. Examples of suitable transdermal devices are described, for instance, in U.S. Patent No. 4,818,540 issued April 4, 1989 to Chinen, et al.
Compositions having ribavirin and an antigen that are suitable for parenteral administration include, but are not limited to, pharmaceutically acceptable sterile isotonic solutions. Such solutions include, bat are not limited to, saline, phosphate buffered saline and oil preparations for injection into a central venous line, intravenous, intramuscular, intraperitoneal, intradermal, or subcutaneous injection.
Compositions having ribavirin and an antigen that are suitable for transbronchial and transalveolar administration include, but not limited to, various types of aerosols for inhalation. Devices suitable for transbronchial and transalveolar administration of these are also embodiments. Such devices include, but are not limited to, atomizers and vaporizers. Many forms of currently available atomizers and vaporizers can be readily adapted to deliver vaccines having ribavirin and an antigen. Compositions having ribavirin and an antigen that are suitable for gastrointestinal administration include, but not limited to, pharmaceutically acceptable powders, pills or liquids for ingestion and suppositories for rectal administration.
The gene constructs described herein, in particular, may be administered by means including, but not limited to, traditional syringes, needleless injection devices, or "microprojectile bombardment gene guns". Alternatively, the genetic vaccine may be introduced by various means into cells that are removed from the individual. Such means include, for example, ex vivo transfection, electroporation, microinjection and microprojectile bombardment. After the gene construct is taken up by the cells, they are reimplanted into the individual. It is contemplated that otherwise non-immunogenic cells that have gene constructs incorporated therein can be implanted into the individual even if the vaccinated cells were originally taken from another individual.
According to some embodiments, the gene construct is administered to an individual using a needleless injection device. According to some embodiments, the gene construct is simultaneously administered to an individual intradermally, subcutaneously and intramuscularly using a needleless injection device. Needleless injection devices are well known and widely available. One having ordinary skill in the art can, following the teachings herein, use needleless injection devices to deliver genetic material to cells of an individual. Needleless injection devices are well suited to deliver genetic material to all tissue. They are particularly useful to deliver genetic material to skin and muscle cells. In some embodiments, a needleless injection device may be used to propel a liquid that contains DNA molecules toward the surface of the individual's skin. The liquid is propelled at a sufficient velocity such that upon impact with the skin the liquid penetrates the surface of the skin, permeates the skin and muscle tissue therebeneath. Thus, the genetic material is simultaneously administered intradermally, subcutaneously and intramuscularly. In some embodiments, a needleless injection device may be used to deliver genetic material to tissue of other organs in order to introduce a nucleic acid molecule to cells of that organ.
The vaccines containing ribavirin and an antigen can be used to treat and prevent a vast spectrum of diseases and can enhance the immune response of an animal to an antigen. As one of skill in the art will appreciate, conventional vaccines have been administered to subjects in need of treatment or prevention of bacterial diseases, viral diseases, fungal diseases, and cancer. Because the vaccines described herein include conventional vaccines, which have been modified by the addition of ribavirin, the methods described herein include the treatment and prevention of a disease using a vaccine that comprises an antigen and ribavirin.
Preferred embodiments concern methods of treating or preventing hepatitis infection. In these embodiments, an animal in need is provided a hepatitis antigen (e.g., a peptide antigen or nucleic acid-based antigen) and an amount of ribavirin sufficient to exhibit an adjuvant activity in said animal. Accordingly, an animal* can be identified as one in need by using currently available diagnostic testing or clinical evaluation. The range of hepatitis viral antigens that can be used with these embodiments is diverse. Preferred hepatitis viral antigens include an HBV antigen, an HAV antigen, an HCV antigen, nucleic acids encoding these antigens, or any combination thereof. Highly preferred embodiments include an HBV antigen selected from the group consisting of hepatitis B surface antigen (HBsAg), hepatitis core antigen (HBcAg), and hepatitis E antigen (HBeAg), in particular, the peptide and nucleic acid-based antigens described supra. The ribavirin and antigen can be provided separately or in combination, and other adjuvants (e.g., oil, alum, or other agents that enhance an immune response) can also be provided to the animal in need. Thus, preferred embodiments include methods of treating or preventing hepatitis in an animal (e.g.,
HBV) by identifying an infected animal or an animal at risk of infection and providing said animal a hepatitis antigen (e.g., HBsAg, HBcAg, and HBeAg) and an amount of ribavirin sufficient to exhibit adjuvant activity.
Other embodiments include methods of enhancing an immune response to an antigen by f providing an animal in need with an amount of ribavirin that is effective to enhance said immune response. In these embodiments, an animal in need of an enhanced immune response to an antigen is identified by using currently available diagnostic testing or clinical evaluation. Oftentimes these individuals will be suffering from a disease (e.g., bacterial, fungal, mold, viral, or cancer) or are at risk from contracting the disease. However, an animal in need of an enhanced immune response can be an animal that has been poisoned (e.g., bit by a poisonous insect or animal) or that has been exposed to a toxin or other toxic compound. Once identified, these animals are provided an appropriate antigen and an amount of "ribavirin effective to enhance an immune response in the animal.
As above, the hepatitis viral antigens that can be used with these embodiments include, but are not limited to, an HBV antigen, an HAV antigen, an HCV antigen, a nucleic acid encoding these molecules, or any combination thereof. Highly preferred embodiments include an HBV antigen selected from the group consisting of hepatitis B surface antigen (HBsAg), hepatitis core antigen (HBcAg), and hepatitis E antigen (HBeAg), in particular, the peptide and nucleic acid- based antigens described supra. The ribavirin and antigen can be provided separately or in combination, and other adjuvants (e.g., oil, alum, or other agents that enhance an immune response) can also be provided to the animal in need. Thus, preferred embodiments include methods of enhancing an immune response to a hepatitis antigen (e.g., HBV) by identifying an animal in need and providing the arfimal a hepatitis antigen (e.g., HBsAg, HBcAg, and HBeAg) and an amount of ribavirin that is effective to enhance an immune response in the animal. By one approach, for example, an uninfected individual is provided with the above mentioned vaccine compositions in an amount sufficient to elicit a cellular and humoral immune response to NS3 so as to protect said individual from becoming infected with HCV. In another embodiment, an HCV-infected individual is identified and provided with a vaccine composition comprising ribavirin and NS3 in an amount sufficient to enhance the cellular and humoral immune response against NS3 so as to reduce or eliminate the HCV infection. Such individual may be in the chronic or acute phase of the infection. In yet another embodiment, an HCV-infected individual suffering from HCC is provided with a composition comprising ribavirin and the NS3/4A fusion gene in an amount sufficient to elicit a cellular and humoral immune response against NS3-expressing tumor cells. Although the invention has been described with reference to embodiments and examples, it should be understood that various modifications can be made without departing from the spirit of f the invention. Accordingly, the invention is limited only by the following claims.

Claims (20)

WHAT IS CLAIMED IS:
1. A composition comprising ribavirin and the nucleic acid of SEQ. ID. NO.: 16.
2. A composition comprising Ribavrin and the peptide of SEQ. ID. NO.: 17.
3. A composition comprising Ribavrin and the nucleic acid of SEQ. ID. NO.: 13 or a fragment thereof at least 18 consecutive nucleotides in length.
4. A composition comprising ribavirin and the peptide of SEQ. ID. NO.: 1 or a fragment thereof at least 6 consecutive amino acids in length.
5. A composition comprising ribavirin and an antigen.
6. The composition of Claim 5, wherein said antigen is a nucleic acid.
7. The composition of Claim 5, wherein said antigen is a peptide.
8. The composition of Claim 6, wherein said nucleic acid is derived from a virus selected from the group consisting of hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV).
9. The composition of Claim 7, wherein said peptide is derived from a virus selected from the group consisting of hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV).
10. The composition of Claim 5, wherein said antigen is a nucleic acid or a peptide corresponding to an antigen selected from the group consisting of hepatitis B surface antigen (HBsAg), hepatitis core antigen (HBcAg), and hepatitis E antigen (HBeAg).
1 1. The composition of Claim 7, wherein said peptide comprises at least three consecutive amino acids of a sequence selected from the group consisting of SEQ. ID. NOs.: 1-12.
12. The composition of Claim 6, wherein said nucleic acid comprises at least 9
/ consecutive nucleotides of a sequence selected from the group consisting of SEQ. ID. NOs.: 13-
15.
13. A method of enhancing an immune response to a hepatitis C antigen comprising: identifying an animal in need of an enhanced immune response to a hepatitis C antigen; and providing to said animal a composition comprising ribavirin and the nucleic acid of SEQ. ID. NO.: 16.
14. A method of enhancing an immune response to a hepatitis C antigen comprising: identifying an animal in need of an enhanced immune response to a hepatitis C antigen; and providing to said animal a composition comprising ribavirin and the peptide of SEQ. ID. NO.: 17.
15. A method of enhancing an immune response to a hepatitis C antigen comprising: identifying an animal in need of an enhanced immune response to a hepatitis C antigen; and providing to said animal a composition comprising ribavirin and the nucleic acid of SEQ. ID. NO.: 13 or a fragment thereof at least 18 consecutive nucleotides in length.
16. A method of enhancing an immune response to a hepatitis C antigen comprising: identifying an animal in need of an enhanced immune response to a hepatitis C antigen; and providing to said animal a composition comprising ribavirin and the peptide of SEQ. ID. NO.: 1 or a fragment thereof at least 6 consecutive amino acids in length.
17. A method of making a vaccine comprising: providing ribavirin; providing the nucleic acid of SEQ. ID. NO.: 16; and mixing said ribavirin and said nucleic acid so as to formulate said vaccine.
18. A method of making a vaccine comprising: providing ribavirin; providing the peptide of SEQ. ID. NO.: 17; and mixing said ribavirin and said peptide so as to formulate said vaccine.
19. A method of making ^t vaccine comprising: providing ribavirin; providing the nucleic acid of SEQ. ID. NO.: 13 or a fragment thereof at least at least 18 consecutive nucleotides in length; and mixing said ribavirin and said nucleic acid so as to formulate said vaccine.
20. A method of making a vaccine comprising: providing ribavirin; providing the nucleic acid of SEQ. ID. NO.: 1 or a fragment thereof at least 6 consecutive amino acids in length; and mixing said ribavirin and said nucleic acid so as to formulate said vaccine.
AU2001292151A 2000-08-17 2001-08-15 Vaccines containing ribavirin and methods of use thereof Ceased AU2001292151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006203358A AU2006203358B2 (en) 2000-08-17 2006-08-04 Vaccines containing ribavirin and methods of use thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US22576700P 2000-08-17 2000-08-17
US60/225,767 2000-08-17
US22917500P 2000-08-29 2000-08-29
US60/229,175 2000-08-29
US70554700A 2000-11-03 2000-11-03
US09/705,547 2000-11-03
PCT/IB2001/001808 WO2002013855A2 (en) 2000-08-17 2001-08-15 Vaccines containing ribavirin and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2006203358A Division AU2006203358B2 (en) 2000-08-17 2006-08-04 Vaccines containing ribavirin and methods of use thereof

Publications (3)

Publication Number Publication Date
AU2001292151C1 AU2001292151C1 (en) 2002-02-25
AU2001292151A1 true AU2001292151A1 (en) 2002-05-23
AU2001292151B2 AU2001292151B2 (en) 2006-05-04

Family

ID=27397520

Family Applications (4)

Application Number Title Priority Date Filing Date
AU2001292151A Ceased AU2001292151B2 (en) 2000-08-17 2001-08-15 Vaccines containing ribavirin and methods of use thereof
AU9215101A Pending AU9215101A (en) 2000-08-17 2001-08-15 Vaccines containing ribavirin and methods of use thereof
AU2001290178A Abandoned AU2001290178A1 (en) 2000-08-17 2001-08-15 A hepatitis c virus non-structural ns3/4a fusion gene
AU2006203358A Ceased AU2006203358B2 (en) 2000-08-17 2006-08-04 Vaccines containing ribavirin and methods of use thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
AU9215101A Pending AU9215101A (en) 2000-08-17 2001-08-15 Vaccines containing ribavirin and methods of use thereof
AU2001290178A Abandoned AU2001290178A1 (en) 2000-08-17 2001-08-15 A hepatitis c virus non-structural ns3/4a fusion gene
AU2006203358A Ceased AU2006203358B2 (en) 2000-08-17 2006-08-04 Vaccines containing ribavirin and methods of use thereof

Country Status (12)

Country Link
US (1) US6960569B2 (en)
EP (3) EP1947185B1 (en)
JP (1) JP5175417B2 (en)
KR (2) KR20070114209A (en)
CN (1) CN100400101C (en)
AT (2) ATE375804T1 (en)
AU (4) AU2001292151B2 (en)
CA (1) CA2419418A1 (en)
DE (1) DE60130998T2 (en)
ES (1) ES2296803T3 (en)
PL (1) PL360990A1 (en)
WO (2) WO2002014362A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680059B2 (en) 2000-08-29 2004-01-20 Tripep Ab Vaccines containing ribavirin and methods of use thereof
EP1947185B1 (en) 2000-08-17 2011-07-20 Tripep Ab HCV NS3/4A encoding nucleic acid
RU2286172C2 (en) * 2000-08-17 2006-10-27 Трипеп Аб Ribavirin-containing vaccines and methods for their application
US7022830B2 (en) 2000-08-17 2006-04-04 Tripep Ab Hepatitis C virus codon optimized non-structural NS3/4A fusion gene
AU2002312487A1 (en) * 2001-06-15 2003-01-02 Ribapharm Nucleoside vaccine adjuvants
WO2004019878A2 (en) * 2002-08-27 2004-03-11 Compound Therapeutics, Inc. Adzymes and uses thereof
EP1567547A2 (en) * 2002-11-26 2005-08-31 Tripep Ab Hepatisis c virus nonstructural protein 4a (ns4a) is an enhancer element
US7419912B2 (en) 2004-04-01 2008-09-02 Cree, Inc. Laser patterning of light emitting devices
DE602005002673T2 (en) * 2004-04-29 2008-07-24 F. Hoffmann-La Roche Ag Nucleotide sequence variation in the NS5A gene as a marker
AU2012200012B8 (en) * 2004-09-29 2014-05-01 The Administrators Of The Tulane Educational Fund Inhibitors of hepatitis C virus
PT1797112E (en) * 2004-09-29 2010-10-25 Univ Rockefeller Inhibitors of hepatitits c virus
WO2008004992A2 (en) * 2005-05-25 2008-01-10 Tripep Ab Transdermal formulations containing hepatitis c virus immunogens and an ethoxylated oil
CA2618429A1 (en) * 2005-05-25 2007-03-22 Tripep Ab A hepatitis c virus non-structural ns3/4a fusion gene
ES2334472B1 (en) * 2006-06-09 2011-01-21 Proyecto De Biomedicina Cima, S.L. IMMUNO STIMULATOR COMBINATION FOR PROFILAXIS AND HEPATITIS C TREATMENT.
RU2431499C2 (en) * 2005-10-07 2011-10-20 Пройекто Де Биомедисина Сима, С.Л. Immunostimulating combination for prevention and treatment of hepatitis c
US20090214593A1 (en) * 2007-08-16 2009-08-27 Tripep Ab Immunogen platform
WO2009022236A2 (en) * 2007-08-16 2009-02-19 Tripep Ab Immunogen platform
WO2009079834A1 (en) * 2007-12-18 2009-07-02 Peking University People's Hospital An anti-hcv vaccine and preparation methods and uses thereof
CN108148121B (en) * 2018-03-06 2021-07-09 中美赛尔生物科技(广东)有限公司 Hepatitis C virus antigen polypeptide composition and hepatitis C virus vaccine

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933693A (en) 1957-05-03 1960-04-19 Lyle R Battersby Sensitivity control circuit
US4215051A (en) 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4486530A (en) 1980-08-04 1984-12-04 Hybritech Incorporated Immunometric assays using monoclonal antibodies
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US4818540A (en) 1985-02-25 1989-04-04 Rutgers, The State University Of New Jersey Transdermal fertility control system and process
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5643565A (en) 1985-09-20 1997-07-01 Chiron Corporation Human IL-2 as a vaccine adjuvant
US5322770A (en) 1989-12-22 1994-06-21 Hoffman-Laroche Inc. Reverse transcription with thermostable DNA polymerases - high temperature reverse transcription
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5712088A (en) * 1987-11-18 1998-01-27 Chiron Corporation Methods for detecting Hepatitis C virus using polynucleotides specific for same
US6171782B1 (en) * 1987-11-18 2001-01-09 Chiron Corporation Antibody compositions to HCV and uses thereof
US5679342A (en) * 1987-11-18 1997-10-21 Chiron Corporation Hepatitis C virus infected cell systems
US5350671A (en) * 1987-11-18 1994-09-27 Chiron Corporation HCV immunoassays employing C domain antigens
US5968775A (en) * 1987-11-18 1999-10-19 Chiron Corporation Hepatitis C virus infected cell systems
CN1049686C (en) * 1987-11-18 2000-02-23 希龙股份有限公司 Nanbv diagnostics and vaccines
US5698390A (en) * 1987-11-18 1997-12-16 Chiron Corporation Hepatitis C immunoassays
US5714596A (en) * 1987-11-18 1998-02-03 Chiron Corporation NANBV diagnostics: polynucleotides useful for screening for hepatitis C virus
US5683864A (en) * 1987-11-18 1997-11-04 Chiron Corporation Combinations of hepatitis C virus (HCV) antigens for use in immunoassays for anti-HCV antibodies
US4950647A (en) 1988-10-04 1990-08-21 Nucleic Acid Research Institute T cell immunopotentiator
HUT54896A (en) 1989-03-17 1991-04-29 Chiron Corp Process for producing aquous diagnosticum and vaccine of nanbv
US5703055A (en) * 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US6027729A (en) * 1989-04-20 2000-02-22 Chiron Corporation NANBV Diagnostics and vaccines
DE69033891T2 (en) 1989-05-18 2002-08-29 Chiron Corp NANBV diagnostics: polynucleotides, suitable for screening for hepatitis C virus
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
DE69031791T2 (en) 1989-08-25 1998-04-02 Chiron Corp Process for HCV cultivation in cell lines from B or T lymphocytes
JP3156200B2 (en) * 1989-09-15 2001-04-16 国立予防衛生研究所長 New HCV isolate
US5372928A (en) * 1989-09-15 1994-12-13 Chiron Corporation Hepatitis C virus isolates
UA41266C2 (en) 1990-04-04 2001-09-17 Чірон Корпорейшн COMBINATION OF HEPATITIS C VIRUS (HCV) EPITOPE SEQUENCES, METHOD OF DETECTION OF ANTIBODIES TO HEPATITIS VIRUS (HCV), KIT FOR ANALYTES ANALYTES ANALYSIS ANALYSIS
PL169273B1 (en) * 1990-04-04 1996-06-28 Chiron Corp Method of testing chemical compounds for their activity against hepatitis c
US6312889B1 (en) * 1990-04-04 2001-11-06 Chiron Corporation Combinations of hepatitis c virus (HCV) antigens for use in immunoassays for anti-HCV antibodies
US6194140B1 (en) 1990-04-04 2001-02-27 Chiron Corporation HCV NS3 protein fragments having helicase activity and improved solubility
EP0543924B1 (en) 1990-08-10 1997-06-18 Chiron Corporation Nanbv diagnostics: polynucleotides useful for screening for hepatitis c virus
US5604105B1 (en) 1990-10-12 1999-08-24 Spectral Diagnostics Inc Method and device for diagnosingand distinguishing chest pain in early onset thereof
CA2027434C (en) 1990-10-12 1999-01-05 George Jackowski Diagnostic kit for diagnosing and distinguishing chest pain in early onset thereof
US5710008B1 (en) 1990-10-12 1999-09-07 Spectral Diagnostics Inc Method and device for diagnosing and distinguishing chest pain in early onset thereof
RO115446B1 (en) 1990-11-08 2000-02-28 Chiron Corp Process for producing purified asialoglycoproteins from hepatitis c virus
US6274148B1 (en) * 1990-11-08 2001-08-14 Chiron Corporation Hepatitis C virus asialoglycoproteins
ES2155822T3 (en) 1990-12-06 2001-06-01 Affymetrix Inc COMPOUNDS AND ITS USE IN A BINARY SYNTHESIS STRATEGY.
US6190864B1 (en) * 1991-05-08 2001-02-20 Chiron Corporation HCV genomic sequences for diagnostics and therapeutics
DK0585398T3 (en) 1991-05-08 2004-02-02 Chiron Corp HCV genomic sequences for diagnostic and therapeutic agents
FR2677372B1 (en) * 1991-06-06 1994-11-10 Pasteur Institut NUCLEOTIDE AND PEPTIDE SEQUENCES OF A HEPATITIS C VIRUS ISOLATE, DIAGNOSTIC AND THERAPEUTIC APPLICATIONS.
RO117329B1 (en) * 1991-06-24 2002-01-30 Chiron Corp Emeryville Polypeptides containing a hcv sequence
PL171489B1 (en) * 1991-09-13 1997-05-30 Chiron Corp Method of obtaining an immunogenous composition capable to immunologically cross-react with many hcv isolates
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5795714A (en) 1992-11-06 1998-08-18 Trustees Of Boston University Method for replicating an array of nucleic acid probes
DE4239311C2 (en) 1992-11-23 1996-04-18 Guehring Joerg Dr Drills, especially pointed drilling tools with exchangeable cutting inserts
IL108449A (en) 1993-01-26 2011-09-27 Weiner David B Use of a polynucleotide function enhancer and a nucleic acid molecule to manufacture a pharmaceutical composition for introducing genetic material into cells
DE69435023T2 (en) * 1993-04-27 2008-09-11 N.V. Innogenetics S.A. SEQUENCES OF THE GENOTYPE OF HEPATITIS C-VIRUS AND THEIR USE AS MEDICAMENTS AND DIAGNOSTICS
JPH09507121A (en) 1993-10-26 1997-07-22 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ Nucleic acid probe array on biological chip
JP3365635B2 (en) 1994-09-23 2003-01-14 ゾナジェン,インコーポレイテッド Chitosan-induced immune enhancement
US6235888B1 (en) 1994-10-05 2001-05-22 The General Hospital Corporation Hepatitis C virus vaccine
WO1996013590A2 (en) * 1994-10-21 1996-05-09 Innogenetics N.V. New sequences of hepatitis c virus genotypes and their use as prophylactic, therapeutic and diagnostic agents
FR2730935A1 (en) 1994-12-21 1996-08-30 Vacsyn Sa VACCINE WITH INCREASED IMMUNOGENICITY
US5932556A (en) * 1995-09-17 1999-08-03 Tam; Robert C Methods and compositions for regulation of CD28 expression
WO1996028162A1 (en) 1995-03-14 1996-09-19 University Of Medicine & Dentistry Of New Jersey New drug combination for the treatment of viral diseases
US5767097A (en) 1996-01-23 1998-06-16 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes
US6150337A (en) * 1996-01-23 2000-11-21 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by Ribavirin in activated T-lymphocytes
SI9720013A (en) 1996-01-23 1999-06-30 Icn Pharmaceuticals, Inc. Modulation of TH1/TH2 cytokine expression by ribavirin and ribavirin analogs in activated T-lymphocytes
US6228575B1 (en) 1996-02-08 2001-05-08 Affymetrix, Inc. Chip-based species identification and phenotypic characterization of microorganisms
EP2368897B1 (en) 1996-02-09 2016-10-19 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
US6514731B1 (en) * 1996-05-24 2003-02-04 Chiron Corporation Methods for the preparation of hepatitis C virus multiple copy epitope fusion antigens
WO1997047358A1 (en) 1996-06-11 1997-12-18 Merck & Co., Inc. Synthetic hepatitis c genes
JP2001500738A (en) * 1996-09-17 2001-01-23 カイロン コーポレイション Compositions and methods for treating intracellular diseases
UA63915C2 (en) 1996-10-16 2004-02-16 Ай-Сі-Ен Фармасьютикалз, Інк. Monocyclic l-nucleosides, analogues and use thereof
EP0961775B1 (en) 1996-10-16 2004-07-14 ICN Pharmaceuticals, Inc. Purine l-nucleosides, analogs and uses thereof
IL119833A (en) 1996-12-15 2001-01-11 Lavie David Hypericum perforatum extracts for the preparation of pharmaceutical compositions for the treatment of hepatitis
YU61598A (en) 1997-01-17 2003-02-28 Icn Pharmaceuticals Inc. Cytokine related treatments of disease
CA2280195A1 (en) 1997-02-07 1998-08-13 Merck & Co., Inc. Synthetic hiv gag genes
WO1998037180A2 (en) * 1997-02-22 1998-08-27 Abbott Laboratories Hcv fusion protease and polynucleotide encoding same
US6153421A (en) * 1997-07-18 2000-11-28 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Cloned genomes of infectious hepatitis C viruses and uses thereof
AU1416099A (en) * 1997-11-28 1999-06-16 Schering Corporation Single-chain recombinant complexes of hepatitis c virus ns3 protease and ns4a cofactor peptide
US6541011B2 (en) 1998-02-11 2003-04-01 Maxygen, Inc. Antigen library immunization
JP2002512370A (en) * 1998-04-17 2002-04-23 イノジェネティックス・ナムローゼ・フェンノートシャップ Improved immunodiagnostic assay using reducing agents
GB9820525D0 (en) * 1998-09-21 1998-11-11 Allergy Therapeutics Ltd Formulation
IL144130A0 (en) 1999-01-29 2002-05-23 Icn Pharmaceuticals Modulation of immune response by ribavirin
US20020187945A1 (en) * 1999-01-29 2002-12-12 Robert Tam Modulation of immune response by ribavirin
CN101684146A (en) 1999-11-24 2010-03-31 诺华疫苗和诊断公司 Novel hcv non-structural polypeptide
EP1350105B1 (en) 2000-06-15 2007-07-25 Novartis Vaccines and Diagnostics, Inc. Immunoassays for anti-hcv antibodies
EP1947185B1 (en) 2000-08-17 2011-07-20 Tripep Ab HCV NS3/4A encoding nucleic acid
DK1436397T3 (en) 2001-10-11 2010-08-09 Merck Sharp & Dohme Hepatitis C virus vaccine
KR20140137679A (en) 2013-05-23 2014-12-03 삼성전자주식회사 Socket for card

Similar Documents

Publication Publication Date Title
AU2006203358B2 (en) Vaccines containing ribavirin and methods of use thereof
US7244715B2 (en) Vaccines containing ribavirin and methods of use thereof
US7223743B2 (en) Hepatitis C virus codon optimized non-structural NS3/4A fusion gene
AU2001292151A1 (en) Vaccines containing ribavirin and methods of use thereof
EP1888751A2 (en) A hepatitis c virus non-structural ns3/4a fusion gene
ES2371936T3 (en) NUCLEIC ACID CODING NS3 / 4A OF HCV.