AU2001290833A1 - Container for inhalation anesthetic - Google Patents

Container for inhalation anesthetic

Info

Publication number
AU2001290833A1
AU2001290833A1 AU2001290833A AU2001290833A AU2001290833A1 AU 2001290833 A1 AU2001290833 A1 AU 2001290833A1 AU 2001290833 A AU2001290833 A AU 2001290833A AU 2001290833 A AU2001290833 A AU 2001290833A AU 2001290833 A1 AU2001290833 A1 AU 2001290833A1
Authority
AU
Australia
Prior art keywords
container
anesthetic
inhalation anesthetic
pharmaceutical product
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001290833A
Other versions
AU2001290833B2 (en
Inventor
Ralph A. Lessor
Ralph V. Rudzinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
Baxter International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter International Inc filed Critical Baxter International Inc
Priority claimed from PCT/US2001/028550 external-priority patent/WO2002022195A2/en
Publication of AU2001290833A1 publication Critical patent/AU2001290833A1/en
Application granted granted Critical
Publication of AU2001290833B2 publication Critical patent/AU2001290833B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

Container for Inhalation Anesthetic
Background of the Invention
The present invention relates to containers for liquid inhalation anesthetics, more particularly, to aluminum containers that are suitable for storing halogenated inhalation anesthetics.
Containers, such as those of the present invention, are used to store the liquid anesthetic agent, and to dispense it to a device for administering the agent to a patient. These devices are known in the art as "vaporizers', which mate with the container, receive the liquid anesthetic through an orifice in the container, vaporize the anesthetic, mix it with oxygen and optionally other gases, and mete out the gaseous mixture to the patient.
Inhalation anesthetics have traditionally been stored in glass containers. These containers, however, possess certain drawbacks. Glass requires careful handling to avoid breakage, and when breakage does occur, product is lost and injury may occur. In addition, it has been theorized that the inhalation anesthetic may react with components of the glass, leading to certain degradation products. C.f. US Patent No. 5,990,176.
A number of patents have taught the use of plastic containers for inhalation anesthetics and, in particular, sevoflurane. For example, US Patent No. 4,250,334 teaches the use of "Kel-F" plastic for a container for holding sevoflurane. "Kel-F" is understood to be the trade name for chlorotrifluoroethylene. US Patent No. 5,679,576 teaches the use of a container lined with PTFE, or polytetrafluoroethylene, for holding sevoflurane. US Patent No. 5,505,236, teaches the use of a plastic container with an inhalation anesthetic. While not specifically naming the inhalation anesthetic, it is believed that the commercial embodiment of the system shown in the '236 patent has been used with the anesthetic sevoflurane. Despite the existence of these patents teaching plastic containers to hold sevoflurane, a number of additional patents have recently issued that have taught the use of particular types of plastic for containers to hold sevoflurane. See, e.g., US Patent Nos. 6,074,668 (polyethylene napthalate), 6,083,514 (polymethylpentene) and 6,162,443 (polypropylene, polyethylene and ionomeric resins). The present invention presents an alternative type of container (aluminum) to hold sevoflurane.
In addition, containers for inhalation anesthetics made of certain plastics have been proposed. C.f. WO 99/34762, US Patent Nos. 6,074,668 and 6,162,443 and US Patent Application Publication No. US 2001/0000729 Al . While plastic containers are less likely to break than glass containers, they are still susceptible to breakage under common use conditions. Moreover, many plastics tend to be vapor permeable, allowing the inhalation anesthetic to escape the container and ambient vapors to enter the container over time, leading to possible contamination. Also, plastic containers are subject to deformation when exposed to elevated temperatures, which may be required during processing and treatment of the inhalation anesthetic-containing containers. Moreover, inhalation anesthetics have strong organic solvent properties, which typically will dissolve and/or react with the plastic material, leading to measurable impurities in the inhalation anesthetic.
Containers for sevoflurane have also been made of stainless steel. For example, US Patent No. 5,990,176 describes a container made of glass, plastic or stainless steel for holding sevoflurane. Metal containers have been used for various types of pharmaceutical products, as well as food and beverages. US Patent No. 6,008,273 describes an epoxy resin for coating the inside of a metal container for use as a food or beverage container.
Summary of the Invention
The present invention overcomes the drawbacks of the prior art by providing a pharmaceutical product comprising a halogenated inhalation anesthetic stored within an aluminum container. It has been found that aluminum containers provide structural integrity, inertness and vapor-barrier properties that are well-suited for storage and handling of such inhalation anesthetics. In addition, aluminum is light in weight, resistant to heat-deformation, easily recycled and protects the inhalation anesthetic from light-induced degradation.
In further embodiments, the container is provided with an orifice for filling or removing the halogenated inhalation anesthetic, and a closure for the orifice.
The closure preferably has a lining that helps the closure retain the desirable characteristics of the aluminum container. Alternatively, the closure may be provided with a valve assembly for regulating the flow of anesthetic. The closure may also be provided with indexing elements specially configured and unique to the particular inhalation anesthetic housed in the container to help ensure the anesthetic is administered only by the vaporizer for which it is designed.
The aluminum container may also be provided with a lining for added inertness. Typically, the container will be bottle-shaped. Detailed Description of the Invention
Halogenated inhalation anesthetics are well known and commercially available. These include sevoflurane (fluoromethyl-2,2,2-trifluoro/l/(tri- fluoromethyl)ethyl ether), desflurane (2-difluromethyl 1,2,2,2-tetrafluoroethyl ether), isoflurane (l-chloro-2,2,2-trifluoroethyl difluoromethyl ether), enflurane (2-chloro-l,l,2-trifluoroethyl difluoromethyl ether), methoxyflurane (2,2-dichloro-l,l-difluoroethyl methyl ether) and halothane (2-bromo-2- chloro-l,l,l-trifluoroethane), all of which are liquids at ambient conditions.
Aluminum containers suitable for use in the present invention are commercially available. Typically, they will be manufactured in the size and shape of the glass containers in which inhalation anesthetics are currently commercially sold. Commercially sold containers are bottle-shaped, i.e. they are outfitted with a neck whose mouth (orifice) can be sealed shut with a closure.
The aluminum containers of the present invention may be lined or unlined. Although the prior art hypothesizes that aluminum oxide present in glass containers may lead to degradation of the inhalation anesthetic, it has been found that no such degradation problem arises in the present invention. However, in some cases it may be desirable to provide the aluminum container with an inert lining to prevent the formation or release of flakes or small particles of aluminum during the manufacture of the container and formation of threads on the neck of the container. These flakes, while not a problem from a safety standpoint, may appear in the liquid anesthetic and be unpleasing from a cosmetic or visual standpoint. Therefore, it is desirable to prevent formation of particles or flakes during the bottle manufacturing process. Suitable lining materials are those which demonstrate no significant solubility in the inhalation anesthetic, i.e. do not render the inhalation anesthetic unusable. These lining materials include lacquers and enamels, and preferably contain an epoxyphenolic resin. Examples of lining materials that are commercially available include Type Nos. 7407P and 7940 HL/F from HOBA
Industrie-Chemie GmbH, Bodelshausen, Germany. 7407P is a highly flexible liner suitable for aluminum containers having a thickness of 8-14 microns, and is based upon epoxyphenolic resin having a solid content of about 30 parts by weight, a delivered viscosity of about 90 sec. DIN 4 mm 20 °C, a density of about 0.99 g/ml. The thickness of the liner may be less for certain applications.
The containers of the present invention will have an orifice for filling or removing the halogenated inhalation anesthetic, as well as a closure for the orifice. The closure should be chosen so as not to compromise the characteristics of the container, namely, it should provide structural integrity, inertness and vapor barrier properties. The closure will typically be a cap, such as those used on commercially available glass containers. The cap may be screw-on, snap-on or of a more elaborate design for fitting with commercially available vaporizers which are used to dispense the inhalation anesthetics. The closure may be made of aluminum or other metal, or of a polymer material. Particularly preferred are closures that are lined with the aforementioned lacquers, or with a polytetrafluoroethylene (PTFE). One such lining is commercially available under the name "Plytrax 100" and has a PTFE facing with a polyethylene foam backing, available from Norton Performance
Plastics Corporation, 150 Day Road, Wayne NJ 07470-4699, a subsidiary of Saint-Gobain Performance Plastics. Alternatively, the closure may be provided with a valve assembly. As used herein, "valve assembly" means a closure provided with at least one valve for regulating flow of the anesthetic. Such closures are well known in the art, c.f. US Patent Nos. 5,505,236 and 5,617,906. These valve assemblies, serve to, alternately, close the orifice of the container to minimize loss of anesthetic from the container, and open the orifice by way of interaction with the vaporizer to deliver anesthetic to the vaporizer. Like caps, valve assemblies may be screwed or snapped onto the container.
In addition, these closures may be provided with indexing elements that allow the container to mate only with a vaporizer having corresponding indexing elements. This helps to ensure that an anesthetic is administered only through the vaporizer for which it was designed.
In a preferred embodiment, the container is bottle-shaped, whose neck
(orifice) is sealed closed with a cap or valve assembly. The neck may be threaded, to allow screw-on of the cap or valve assembly. The valve assembly may be provided with indexing elements having a configuration that is unique and specific to the particular inhalation anesthetic stored in the container. The indexing elements helps assure that the container storing a particular inhalation anesthetic will only mate to a vaporizer designed for that inhalation anesthetic. The container size and shape may be varied to indicate a particular type of inhalation anesthetic as well as to avoid mistaken mixing of different types of anesthetics in a vaporizer. Various alloys of aluminum may be used for the container, and still fall within the scope of the present invention. The container may be a bottle sized container for holding the final drug product, or may be in a larger tank or drum size for use during shipping, mixing or holding of the inhalation anesthetic in the bulk drug foπn or in a crude manufactured form awaiting final distillation. Also, the aluminum may be in the form of a liner or inner layer of another type of container, such as a plastic or steel container.

Claims (8)

What is claimed is:
1. A pharmaceutical product comprising a halogenated inhalation anesthetic contained within an aluminum container.
2. The pharmaceutical product of claim 1 wherein the halogenated inhalation anesthetic is selected from the group comprising sevoflurane, desflurane, isoflurane, enflurane, methoxyflurane and halothane.
3. The pharmaceutical product of claim 1 or 2 wherein the interior of the aluminum container is provided with an inert lining.
4. The pharmaceutical product of claim 3 wherein the inert lining comprises a lacquer or an enamel.
5. The pharmaceutical product of claim 1 or 2 further comprising an orifice for filling or removing the halogenated inhalation anesthetic from the container and a closure for the orifice.
6. The pharmaceutical product of claim 1 wherem the container is bottle-shaped.
7. The pharmaceutical product of claim 5 wherein the closure comprises a cap.
8. The pharmaceutical product of claim 5 wherein the closure comprises a valve assembly for regulating flow of the halogenated inhalation anesthetic.
AU2001290833A 2000-09-15 2001-09-13 Container for inhalation anesthetic Expired AU2001290833B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23330200P 2000-09-15 2000-09-15
US60/233,302 2000-09-15
PCT/US2001/028550 WO2002022195A2 (en) 2000-09-15 2001-09-13 Container for inhalation anesthetic

Publications (2)

Publication Number Publication Date
AU2001290833A1 true AU2001290833A1 (en) 2002-06-13
AU2001290833B2 AU2001290833B2 (en) 2006-02-02

Family

ID=22876707

Family Applications (2)

Application Number Title Priority Date Filing Date
AU9083301A Pending AU9083301A (en) 2000-09-15 2001-09-13 Container for inhalation anesthetic
AU2001290833A Expired AU2001290833B2 (en) 2000-09-15 2001-09-13 Container for inhalation anesthetic

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU9083301A Pending AU9083301A (en) 2000-09-15 2001-09-13 Container for inhalation anesthetic

Country Status (17)

Country Link
US (3) US8001961B2 (en)
EP (1) EP1317301B1 (en)
JP (2) JP5801024B2 (en)
KR (2) KR100881241B1 (en)
CN (1) CN1228103C (en)
AR (2) AR031873A1 (en)
AT (1) ATE297779T1 (en)
AU (2) AU9083301A (en)
BR (1) BR0113917B1 (en)
CA (1) CA2420035C (en)
DE (1) DE60111546T2 (en)
ES (1) ES2244656T3 (en)
MX (1) MXPA03002340A (en)
PT (1) PT1317301E (en)
TW (1) TW523409B (en)
WO (1) WO2002022195A2 (en)
ZA (1) ZA200301153B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW523409B (en) * 2000-09-15 2003-03-11 Baxter Int Container for inhalation anesthetic
US20080087283A1 (en) * 2006-10-16 2008-04-17 Abbott Laboratories Apparatus for and related method of inhibiting lewis acid degradation in a vaporizer
US9278048B2 (en) * 2009-05-06 2016-03-08 Baxter International, Inc. Pharmaceutical product and method of use
WO2015024100A1 (en) * 2013-08-19 2015-02-26 Schmidt Klaus Michael Non-anesthetic protective gases in combination with liquid anesthetic agents for organ protection
EP3325061B1 (en) 2015-07-20 2021-05-05 Medical Developments International Limited Inhaler device for inhalable liquids
KR102574310B1 (en) 2015-07-20 2023-09-05 메디컬 디벨롭먼츠 인터네셔널 리미티드 Inhaler device for inhalable liquids
AU2016297678B2 (en) 2015-07-20 2020-10-08 Medical Developments International Limited Inhaler device for inhalable liquids
AU2017325107B2 (en) 2016-09-06 2022-10-06 Medical Developments International Limited Inhaler device for inhalable liquids
BE1024432B1 (en) * 2016-11-02 2018-02-19 Central Glass Company, Limited METHOD FOR WASHING OF SEVOFLURAN STORAGE CONTAINER AND METHOD FOR STORAGE OF SEVOFLURAN
JP2018075346A (en) * 2016-11-02 2018-05-17 セントラル硝子株式会社 Method for washing sevoflurane storage container and method for storing sevoflurane
UY37974A (en) 2017-11-20 2019-06-28 Lanxess Deutschland Gmbh ALUMINUM GLASSES CONTAINING DICARBONIC DIESTERS
CN111053760A (en) * 2019-12-27 2020-04-24 江苏恒丰强生物技术有限公司 Inhalation sevoflurane for pets
KR102200764B1 (en) 2020-02-18 2021-01-08 가톨릭대학교 산학협력단 Anesthesia container pressing device attached on anesthesia vaporizer
WO2023170680A1 (en) 2022-03-08 2023-09-14 Equashield Medical Ltd Fluid transfer station in a robotic pharmaceutical preparation system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE515475A (en) * 1951-11-13
US4250334A (en) 1979-12-26 1981-02-10 Baxter Travenol Laboratories, Inc. Method of synthesizing fluoromethylhexafluoroisopropyl ether
JPH01283225A (en) * 1988-05-10 1989-11-14 Toyo Jozo Co Ltd Aerosol preparation for treating infectious disease of bovine respiratory organ and treating method using the same
JPH0267374A (en) * 1988-08-31 1990-03-07 Takeuchi Press Ind Co Ltd Aerosol container
US5617906A (en) 1991-01-24 1997-04-08 The Boc Group Plc Container for anaesthetic agent
US6596260B1 (en) * 1993-08-27 2003-07-22 Novartis Corporation Aerosol container and a method for storage and administration of a predetermined amount of a pharmaceutically active aerosol
JP2780616B2 (en) * 1993-11-22 1998-07-30 東洋製罐株式会社 Epoxy paint
US5505236A (en) 1994-04-04 1996-04-09 Abbott Laboratories Anesthetic vaporizer filling system
JP2865554B2 (en) * 1994-04-08 1999-03-08 セントラル硝子株式会社 Gas chromatographic analysis of fluoromethyl-1,1,1,3,3,3-hexafluoroisopropyl ether
GB9504265D0 (en) * 1995-03-03 1995-04-19 Medeva Plc Corticosteroid-containing pharmaceutical composition
EP1166811B1 (en) * 1995-04-14 2006-12-06 SmithKline Beecham Corporation Metered dose inhaler for fluticasone propionate
GB9517998D0 (en) * 1995-09-04 1995-11-08 Bioglan Lab Ltd Compositions and device for their administration
US5990176A (en) * 1997-01-27 1999-11-23 Abbott Laboratories Fluoroether compositions and methods for inhibiting their degradation in the presence of a Lewis acid
DE19709704C2 (en) * 1997-03-10 1999-11-04 Michael Georgieff Use of a liquid preparation of xenon for intravenous administration when inducing and / or maintaining anesthesia
US6008273A (en) 1997-05-09 1999-12-28 The Dexter Corporation Waterborne coating compositions for metal containers
JP4498480B2 (en) * 1997-12-10 2010-07-07 千寿製薬株式会社 Nasal formulation
US6083514A (en) 1998-01-09 2000-07-04 Abbott Laboratories Polymethylpentene container for an inhalation anesthetic
US6074668A (en) 1998-01-09 2000-06-13 Abbott Laboratories Container for an inhalation anesthetic
US6162443A (en) * 1998-01-09 2000-12-19 Abbott Laboratories Container for an inhalation anesthetic
US6045784A (en) * 1998-05-07 2000-04-04 The Procter & Gamble Company Aerosol package compositions containing fluorinated hydrocarbon propellants
US6315985B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
TW523409B (en) * 2000-09-15 2003-03-11 Baxter Int Container for inhalation anesthetic

Similar Documents

Publication Publication Date Title
US20190151600A1 (en) Container For Inhalation Anesthetic
AU2001290833A1 (en) Container for inhalation anesthetic
AU732187B2 (en) Container for an inhalation anesthetic
RU2720158C2 (en) Inhaler device for inhalation liquids
CN108348702B (en) Inhaler device for inhalable liquids
JP2018520832A (en) Inhaler device for inhalable liquid
EP2427163B1 (en) Pharmaceutical product and method of use
JP7043399B2 (en) Inhaler device for inhalable liquids
US6074668A (en) Container for an inhalation anesthetic
US20070221217A1 (en) Container for an inhalation anesthetic
US20080044442A1 (en) Container for an Inhalation Anesthetic