AU2001288417A1 - Apparatus and method for assessing loads on adjacent bones - Google Patents

Apparatus and method for assessing loads on adjacent bones

Info

Publication number
AU2001288417A1
AU2001288417A1 AU2001288417A AU2001288417A AU2001288417A1 AU 2001288417 A1 AU2001288417 A1 AU 2001288417A1 AU 2001288417 A AU2001288417 A AU 2001288417A AU 2001288417 A AU2001288417 A AU 2001288417A AU 2001288417 A1 AU2001288417 A1 AU 2001288417A1
Authority
AU
Australia
Prior art keywords
sensor
output signal
adjacent bones
implant
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001288417A
Other versions
AU2001288417B2 (en
Inventor
Edward C. Benzel
Lisa Ferrara
Aaron J. Fleischman
Shuvo Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Clinic Foundation
Original Assignee
Cleveland Clinic Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cleveland Clinic Foundation filed Critical Cleveland Clinic Foundation
Priority claimed from PCT/US2001/026623 external-priority patent/WO2002015769A2/en
Publication of AU2001288417A1 publication Critical patent/AU2001288417A1/en
Application granted granted Critical
Publication of AU2001288417B2 publication Critical patent/AU2001288417B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

APPARATUS AND METHOD FOR ASSESSING LOADS ON ADJACENT BONES
Technical Field
The present invention relates to an apparatus and method for assessing loads on adjacent bones, and is particularly directed to an apparatus and method for providing an in vivo assessment of loads on adjacent bones to be fused together.
Background of the Invention It is known to use surgical procedures to stabilize a fractured bone or repair a problematic interaction of adjacent bones. For example, spinal surgery is frequently performed to stabilize a problematic portion of the spine and relieve pain. Often, the vertebrae in the problematic portion of the spine are fused together with a bone graft in order to achieve the stabilization. Because the bone fusion takes time (six months or more on average) , spinal implants (often referred to as fixation instrumentation) , such as rods, clamps, and plates, are typically implanted and used to secure the vertebrae while the fusion of the bone graft takes place. During the months while the arthrodesis is occurring, it is desirable to monitor the progress of the bony incorporation, or bone-ingrowth, of the graft. Known methods for examining the bony incorporation include radiographic evaluation, magnetic resonance imaging, and computerized tomography. All of these techniques provide a snapshot of the progress of the bony incorporation, but do not provide accurate, continuous, real-time information to the patient and physician. Without the ability to accurately and continuously assess the bony incorporation, pseudoarthrosis (non-healed bone fusion) may occur unbeknownst to the physician. Such pseudoarthrosis may cause post-operative pain for the patient and necessitate additional surgery. If the fusion progress could be assessed continuously or on-demand during the post-operative period by assessing the loads on the fixation instrumentation, it may be possible to appropriately time additional surgery or even avoid additional surgery.
In a related manner, it is also desirable to assess the biomechanical performance of implanted spinal fixation instrumentation during the post-operative period while bone fusion is occurring. Both iii vitro and in vivo biomechanical testing of fixation instrumentation has been done in the past, but with limited success. Current in vitro testing of fixation instrumentation typically subjects cadaveric vertebrae and implantable instrumentation to various axial and torsional loading parameters on a hydraulic testing apparatus. Unfortunately, the use of nonliving cadaveric tissue can introduce significant error into the test data.
Previous attempts at in vivo biomechanical testing of spinal fixation instrumentation have been done primarily using animals (quadrapeds) , but some limited testing has been done with humans. In one of the in vivo human tests performed to date, sensors that were placed on the implanted spinal instrumentation utilized wires to carry data percutaneously (through the skin) from the sensors to a data monitoring unit outside the human body. The use of wires or other type of electrical or optical connection extending through the skin provides a significant risk of infection and is not suitable for long-term testing as there is a high risk of wire breakage. Another problem encountered with the in vivo testing that has been done is failure of a sensor, such as a strain gauge, or the sensor wiring which has been known to break, corrode, or debond within four months of in vivo implantation. While attempts have been made to use telemetry to transmit data from sensors implanted in transcranial applications to an external monitoring device, a need exists for an implantable, telemetered sensor arrangement for spinal or other orthopedic applications that could survive a minimum of a year.
Microelectromechanical systems, or MEMS, refers to a class of miniature electromechanical components and systems that are fabricated using techniques originally used in the fabrication of microelectronics. MEMS devices, such as pressure sensors and strain gauges, manufactured using microfabrication and micromachining techniques can exhibit superior performance compared to their conventionally built counterparts and are resistant to failure due to corrosion, etc. Further, due to their extremely small size, MEMS devices can be utilized to perform functions in unique applications, such as the human body, that were not previously feasible using conventional devices.
Summary of the Invention
The present invention is an apparatus for providing an in vivo assessment of loads on adjacent bones. The apparatus comprises a body for insertion between the adjacent bones. At least one sensor is associated with the body. The at least one sensor generates an output signal in response to and indicative of a load being applied to the body through the adjacent bones. At least one telemetric device is operatively coupled with the at least one sensor. The least one telemetric device is operable to receive the output signal from the at least one sensor and to transmit an electromagnetic field (EMF) signal dependent upon the output signal.
In accordance with one embodiment of the invention, the body comprises an implant for helping the adjacent bones to fuse together. The implant comprises a bone graft. In accordance with another embodiment of the invention, the body comprises a fusion cage for insertion between an adjacent pair of vertebrae. In accordance with yet another embodiment, the body comprises a prosthetic device for preserving motion between adjacent bones.
According to various features of the invention, the at least one sensor comprises a pressure sensor, a load cell, and/or at least one strain gauge.
According to another aspect of the present invention, an apparatus for providing an in vivo assessment of loads on adjacent bones comprises a body for insertion between the adjacent bones and sensor means for sensing a load being applied to the body through the adjacent bones. The sensor means generates a corresponding output signal in response to and indicative of a sensed load. First circuit means is operatively coupled with the sensor means for receiving the output signal from the sensor means. The first circuit means includes antenna means for receiving energy to power the first circuit means and the sensor means and for transmitting an EMF signal dependent upon the output signal.
In according with another feature of the invention, the apparatus further comprises second circuit means for transmitting energy to power the first circuit means and the sensor means and for receiving the EMF signal. The second means is disposed remote from the first circuit means.
According to yet another aspect of the present invention, an apparatus for providing an in vivo assessment of loads on and motion of one or more bones comprises a member for placement adjacent a bone and at least one sensor associated with the member. The at least one sensor generates an output signal in response to and indicative of a load being applied to the member through the bone. At least one telemetric device is operatively coupled with the at least one sensor. The at least one telemetric device is operable to receive the output signal from the at least one sensor and to transmit an EMF signal dependent upon the output signal.
According to various embodiments of the present invention, the member comprises an implant for helping adjacent bones fuse together, such as a fusion cage, a fixation plate, and/or a bone graft. Alternatively, the member comprises a prosthetic device for preserving motion between adjacent bones.
According to still another aspect of the present invention, an apparatus for providing an in vivo assessment of loads on and motion of one or more bones comprises at least one sensor attached to a bone. The at least one sensor generates an output signal in response to and indicative of a load on the bone. At least one telemetric device is operatively coupled with the at least one sensor. The at least one telemetric device is operable to receive the output signal from the at least one sensor and to transmit an EMF signal dependent upon the output signal.
The present invention also provides a method for in vivo assessing the loads on adjacent bones to be fused together. According to the inventive method, a body for insertion between the adjacent bones is provided. The body is instrumented with at least one sensor for sensing a load on the body and for generating an output signal indicative of a sensed load. At least one telemetric device is operatively coupled with the at least one sensor to receive the output signal and to transmit an EMF signal dependent upon the output signal. The body is implanted between the adjacent bones. The EMF signal from the at least one telemetric device is then monitored.
Brief Description of the Drawings
The foregoing and other features of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
Fig. 1 is a perspective view of a portion of a human spine illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones in accordance with the present invention;
Fig. 2 is a side view, taken in section, illustrating the apparatus of Fig. 1; Fig. 3 is a sectional view of a component of the apparatus shown in Fig. 2;
Fig. 3A is a view similar to Fig. 3 illustrating an alternate construction of the component;
Fig. 4 is a perspective view taken along line 4-4 in Fig. 3;
Fig. 5 is a plan view taken along line 5-5 in Fig. 3;
Fig. 6 is a schematic block diagram of the apparatus for providing an in vivo assessment of loads on adjacent bones;
Fig. 7 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a second embodiment of the present invention;
Fig. 8 is a sectional view, similar to Fig. 3, showing a component of the apparatus of Fig. 7; Fig. 9 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a third embodiment of the present invention; Fig. 10 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a fourth embodiment of the present invention; Fig. 11 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a fifth embodiment of the present invention; Fig. 12 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a sixth embodiment of the present invention; Fig. 13 is a perspective view , similar to Fig. 1, of a portion of a human spine illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones in accordance with a seventh embodiment of the present invention;
Fig. 14 is an enlarged view illustrating a component of the apparatus of Fig. 13;
Fig. 15 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with an eighth embodiment of the present invention;
Fig. 16 is a side view, similar to Fig. 2, illustrating an apparatus for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a ninth embodiment of the present invention;
Fig. 17 is a perspective view of a component of the apparatus of Fig. 16; and Fig. 18 is a schematic block diagram of another component of the apparatus of Fig. 16.
Description of Embodiments
The present invention relates to an apparatus and method for providing an in vivo assessment of loads on adjacent bones. As representative of the present invention, Fig. 1 illustrates several cervical vertebrae in a human spine and an apparatus 10 for providing an in vivo assessment of loads on adjacent cervical vertebrae to be fused together. It should be understood that the apparatus 10 could be used to assess loads and motion in other regions of the human spine. Further, it should also be understood that basic concept of the apparatus 10 could be used to assess loads on and motion of bones in other areas of the human body such as, for example, hip and knee joints, as well as loads on and motion of cartilage, muscles, ligaments, and tendons associated with various bones . Cervical vertebrae C2-C7, identified by reference numbers 20-30, respectively, are shown in Fig. 1. A discectomy has been performed to remove a problematic intervertebral disc (not shown) between two vertebrae (indicated by reference numbers 24 and 26) . The removal of the disc leaves an intervertebral space 32 (Fig. 2) between the vertebrae 24 and 26. The intervertebral space 32 is to be filled with a body of bone graft material. In the illustrated embodiment, the body of bone graft material is an autograft 34 harvested from the patient undergoing the discectomy, but the body of bone graft material could alternatively be an allograft, heterograft, or a graft made of a synthetic, biocompatible material. Prior to insertion of the autograft 34 into the space 34 between the vertebrae 24 and 26, a small passage (not shown) is drilled into the cancellous bone in the interior of the autograft. A transducer assembly 40 placed into the interior of the autograft 34 through a small cannula (not shown) . To place the transducer assembly 40 into the autograft 34, the transducer assembly is first loaded into one end of the cannula, and the end of the cannula is then inserted into the passage in the autograft. Morselized cancellous bone may also be placed into the cannula to protect the transducer assembly 40 and to assist in moving the transducer assembly from the end of the cannula into the interior of the autograft 34. Following placement of the transducer assembly 40 inside the autograft 34, the cannula is removed. The passage may then be filled with additional morselized cancellous bone to close and seal the passage.
The transducer assembly 40 comprises a pressure sensor 42 and a telemetric device 44. The transducer assembly 40 is encased in a shell 46 made of a biocompatible metal, such as titanium, or other suitable biocompatible material. As may be seen in Fig. 3, a portion of the shell 46 has a recess 48 defining a thin wall section 50 that is responsive to external pressure. Inside the shell 46, a pair of spacers 52 separate the transducer assembly 40 from the shell.
The illustrated pressure sensor 42 is of a known configuration and is made using known micromachining processes, microfabrication processes, or other suitable MEMS fabrication techniques. Pressure sensors of this type are commercially available from Motorola, Inc. of Schaumburg, IL and TRW Novasensor of Fremont, CA. It should be understood that any pressure sensor that meets the biocompatibility and size requirements (less than two mm3) may be used. The illustrated pressure sensor 42 is a piezoresistive device, but it should be understood that other types of pressure sensors, such as a piezoelectric and capacitive sensors, could be substituted. As best seen in Fig. 4, the pressure sensor 42 comprises a substrate 60, a sensing diaphragm 62, a plurality of patterned resistors 64, and a plurality of bond pads 66, two of which are associated with each of the resistors.
The substrate 60 has upper and lower surfaces 67 and 68, respectively, and is made of silicon, but could alternatively be made of another suitable material. The substrate 60 has a well region 70 that extends between the upper and lower surfaces 67 and 68 and that is formed using a conventional microfabrication and bulk micromachining processes including lithography and etching. The sensing diaphragm 62, which extends across the well region 70, is also made of silicon and is defined by the lithography and etching processes. The resistors 64 and the bond pads 66 are formed from a metal layer that is deposited, patterned, and etched in a known manner on the lower surface 68 of the substrate 60. The resistors 64 could also be formed by doping the silicon using boron, phosphorus, arsenic, or another suitable material to make it highly conductive. The resistors 64 are positioned along the edges of the sensing diaphragm 62 to detect strain in the sensing diaphragm caused by pressure differentials.
The telemetric device 44 in the transducer assembly 40 comprise an electronics module 80 (Fig. 3) and an antenna 82. The electronics module 80 is operatively coupled to the pressure sensor 42 by the bond pads 6'6 in a manner not shown. As shown in the block diagram of Fig. 6, the electronics module 80 comprises an integrated circuit. It is contemplated that an application specific integrated circuit (ASIC) could be designed to incorporate the electronics module 80 and the antenna 82.
The integrated circuit includes an RF-DC converter/modulator 84 and a voltage regulator 86 operatively coupled between the antenna 82 and the pressure sensor 42. The integrated circuit further includes a microprocessor 88 operatively coupled between the pressure sensor 42 and the RF-DC converter/modulator 84. To protect the circuitry of the electronics module 80, the electronics module may be coated with a soft polymeric film, such as parylene or polydimethylsiloxane (PDMS) , or a biocompatible epoxy.
The antenna 82 may be fabricated on the substrate of the pressure sensor 42 using known micromachining or icrofabrication techniques, or may alternatively be fabricated separately and joined with the pressure sensor. The antenna 82 comprises a spiral-shaped coil 90 (Fig. 5) of metal deposited over an oxide layer 92 (Fig. 3) . A layer of doped polysilicon 94 underneath the oxide layer establishes an electrical connection between a contact 96 in the center of the coil 90 and one of two contacts 98 outside the coil. The contacts 98 of the antenna 82 outside of the coil 90 are operatively coupled with the electronics module 80 in a manner not shown. For protection purposes, the antenna 82 may be coated with a soft polymeric film, such as parylene or PDMS, or a biocompatible epoxy.
Before the shell 46 of the transducer assembly 40 is sealed shut, in a manner not shown, to encapsulate the transducer assembly, the interior of the shell is filled with a silicone gel 100, sol-gel, or other suitable material that is dielectric and biocompatible. The properties of the gel 100 allow it to transmit pressure exerted against the thin section 50 of the shell 46 uniformly against the sensing diaphragm 62 of the pressure sensor 42, while isolating the electrical components and circuitry of the transducer assembly 40 from any corrosive media.
The shell 46 containing the transducer assembly 40 is then packaged within a biomolecular coating 102. Exposing the shell 46 to solutions containing desired biomolecules, such as collagen or hyaluronan, leads to monolayer coating of the outer surface of the shell 46. Alternatively, the outer surfaces of the shell 46 may be coated with thin layers of a soft biocompatible material, such as parylene or PDMS.
Fig. 3A illustrates an alternate configuration for the transducer assembly 40, indicated by the suffix "a". The difference between the transducer assembly 40 of Fig. 3 and the transducer assembly 40a of Fig. 3A is that the shell 46 has been omitted. The transducer assembly 40a is simply coated with a biocompatible polymeric film 104, such as parylene or PDMS, or a biocompatible epoxy. The transducer assembly may then also packaged within a biomolecular coating 102a, as described above.
Returning now to the first embodiment of the present invention, when the transducer assembly 40 is positioned inside the autograft 34 as described above, the autograft is ready to be inserted into the intervertebral space 32 between the vertebrae 24 and 26. Insertion of the autograft 34 into the intervertebral space 32 involves a distraction procedure known in the art . After the autograft 34 has been inserted between the vertebrae 24 and 26, a spinal fixation implant 120 (Fig. 1) is connected to the cervical vertebrae 22, 24, and 28 to stabilize the vertebrae 20-30 while the autograft 34 fuses the adjacent vertebrae 24 and 26 together. According to the illustrated embodiment, the implant 120 comprises a modified version of the DOC™ Ventral Cervical Stabilization System (hereinafter referred to as the "DOC™ system 122"), available from the DePuy/AcroMed division of Johnson & Johnson, described in U.S. Patent Nos. 5,843,082 and 6,036,693. It should, however, be understood that the implant 120 could be any type of implanted orthopedic instrumentation or device. The DOC™ system 122 includes a plurality of plates 124 that are anchored to the vertebrae by screws 126 and interconnected by first and second rods 128 and 130. A platform 132 also extends between the rods 128 and 130 and is secured to the rods by setscrews 134. The platform 132 is positioned over the inserted autograft 34.
A second transducer assembly 140, comprising a plurality of strain gauges 142 and a second telemetric device 144, is mounted to the DOC™ system. The second telemetric device 144 is constructed like the telemetric device described above and comprises a second electronics module 146 and a second antenna 148, both of which are shown only schematically in Fig. 2. The second electronics module 146 is located on a first side of the platform 132 facing toward the autograft 34, while the second antenna 148 is located on an oppositely disposed second side of the platform 132. The second electronics module 146 has the basic construction as the electronics module 80 in the transducer assembly 40 illustrated in Fig. 6. The second electronics module 146 comprises an integrated circuit that is operatively coupled to the second antenna 148 on the second side of the platform 132 in manner not shown. To protect its circuitry, the second electronics module 146 may be coated with a soft polymeric film, such as parylene or PDMS, or a biocompatible epoxy. As may be seen in Fig. 1, the second antenna 148 is larger in overall size than the antenna 82 in the transducer assembly 40, but has the same basic configuration and construction. The second antenna 148 may be fabricated using known MEMS fabrication or micromachining techniques, or any other conventional microelectronic fabrication process. The second antenna 148 comprises a spiral-shaped coil of metal deposited over an oxide layer. A layer of doped polysilicon underneath the oxide player establishes an electrical connection between a contact in the center of the coil and a contact outside the coil. For protection purposes, the antenna 82 may be coated with a soft polymeric film, such as parylene or PDMS, or a biocompatible epoxy.
In accordance with the apparatus 10, the first and second rods 128 and 130 of the DOC™ system 122 are instrumented with the plurality of strain gauges 142. The strain gauges 142 may be commercially available devices, such as those produced by microelectronics suppliers such as Vishay Inc. and
MicroMeasurements Inc., or may be custom-fabricated by a foundry. Two of the strain gauges 142 are secured to the first rod 128 above and below, respectively, the platform 132. The strain gauges 142 are operatively coupled to the second electronics module 146 by electrical leads in the form of metal traces 150 deposited on the surface of an insulating film (not shown) covering the first rod 128 and the side of the platform 132. Alternatively, the electrical ends could be insulated wires threaded through the inside of the rod 128 to make contact. For protection purposes, the strain gauges 142 and the electrical traces 150 may be coated with a soft polymeric film, such as parylene or PDMS, a biocompatible epoxy, or a monolayer of biomolecular coating.
Similarly, another two strain gauges 142 "are secured to the second rod 130 above and below, respectively, the platform 132. These two strain gauges 142 are also operatively coupled to the second electronics module 146 by electrical leads in the form of metal traces 150 deposited on the surface of the second rod 130 and the side of the platform 132. Again, the strain gauges 142 and the electrical traces 150 associated with the second rod 130 may be coated with a soft polymeric film, such as parylene or PDMS, or a biocompatible epoxy.
The apparatus 10 further includes an external (meaning it is located outside of and/or remote from the patient's body) readout/power supply unit 160 (Fig. 6) having an integrated antenna 162. The readout/power supply unit 160 contains circuitry known in the art and therefore not described in any detail. The readout/power supply unit 160 may be a hand-held device or a larger piece of equipment found at a physician's office. The readout/power supply unit 160 could also be a device worn by the patient. The readout/power supply unit 160 is operable to transmit electrical energy and receive data through the antenna 162 as described further below. Further, the readout/power supply unit 160 is able to display and store the received data. Following implantation of the instrumented autograft 34 and the instrumented DOC™ system 122 into the spine as described above, the apparatus 10 can be used to provide an in vivo assessment of the bony incorporation of the autograft, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system. The readout/power supply unit 160 transmits electrical energy in the form of an electromagnetic field (EMF) signal, or more specifically a radio frequency (RF) signal, through the antenna 162 to the transducer assembly 40 in the autograft 34 and to the transducer assembly 140 on the platform 132. The RF signal is received through the antennas 82 and 148 in each of the transducer assemblies 40 and 140, respectively, and is converted into a DC signal to energize the circuitry in the sensor assemblies, including the pressure sensor 42 and the strain gauges 142.
The pressure sensor 42 in the autograft 34 detects changes in electrical resistance caused by deformation and strain on the sensing diaphragm 62. The changes in resistance detected by the pressure sensor 42 correspond to applied pressure and a data signal dependent upon the sensed condition is generated by the electronics module 80. The data signal is then transmitted percutaneously from the antenna 82 to the antenna 162 in the readout/power supply unit 160. The data signal transmitted is a pulse-width-modulated (PWM) signal that has an RF carrier frequency. It should be understood that other signal types (e.g., frequency modulation (FM) or frequency shift key (FSK) ) could also be used.
The antenna 162 in the readout/power supply unit 160 receives the data signal from the transducer assembly 40, processes the data signal, and displays pressure data based on the data signal that correspond to the pressure sensed by the pressure sensor 42. The pressure data may be displayed in any number of formats, such as absolute values or plots. The pressure data may also be stored by the readout/power supply unit 160.
While the readout/power supply unit 160 is providing electrical power to and receiving data from the transducer assembly 40 in the autograft 34, the readout/power supply unit 160 is also doing the same with the second transducer assembly 140 on the DOC™ system 122. The implanted strain gauges 142 detect changes in strain on the rods 128 and 130. The electronics module 146 on the platform 132 generates data signals dependent upon the sensed changes in strain. These data signals are then transmitted percutaneously from the antenna 148 to the antenna 162 in the readout/power supply unit 160. As above, the data signals transmitted are a pulse-width-modulated (PWM) signals that have an RF carrier frequency, but could be other signal types (e.g., frequency modulation (FM) or frequency shift key (FSK) ) .
The antenna 162 in the readout/power supply unit 160 receives the data signals from the second transducer assembly 140, processes the data signals, and displays strain data based on the data signals that correspond to the strain on the rods 128 and 130. The strain data may be displayed in any number of formats, and may also be stored by the readout/power supply unit 160.
The pressure data and the strain data received by the readout/power supply unit 160 provide an in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122. For example, an expected pattern of loads detected by the pressure sensor 42 will initially involve pressure oscillations that dampen over time, with an overall increase in applied pressure indicative of bone incorporation of the autograft 34. On the other hand, an expected pattern of strain detected by the strain gauges 142 will initially involve large axial forces that will decrease over time as the DOC™ system 122 shares more of the load with the vertebrae 24 and 26 that are being fused by the autograft 34. If the data from the pressure sensor 42 and the strain gauges 142 follows or deviates from the expected patterns, conclusions can be drawn about progress of the fusion between the autograft 34 and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122. The apparatus 10 described above provides the ability to continuously, or on-demand, monitor fusion progress and biomechanical performance during the post-operative period by assessing the loads on the autograft 34 and on the spinal fixation instrumentation. Because of this ability to continuously or on-demand monitor fusion progress and biomechanical performance, it may be possible to appropriately time, or even avoid, additional surgery. Further, information gathered from such in vivo assessments can lead to improvements in surgical techniques and spinal implant design.
Figs. 7 and 8 illustrate an apparatus 210 for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a second embodiment of the present invention. In the second embodiment of Figs. 7 and 8, reference numbers that are the same as those used in the first embodiment of Figs. 1-6 designate components that are the same as components in the first embodiment.
According to the second embodiment, a tube 220 replaces the shell 46 and encapsulates a transducer assembly 240. The tube 220 is made of metal, such as titanium, and is fixedly attached to the platform 132 of the DOC™ system in a manner not shown. The transducer assembly 240 is positioned inside the end of the tube 220 and coated inside the tube with a dielectric gel as described above. The tube 220 is inserted into the passage drilled into the autograft 34 so that the transducer assembly 240 is located approximately in the middle of the autograft.
The tube 220 containing the transducer assembly 240 may be packaged within a biomolecular coating. Exposing the tube 220 to solutions containing desired biomolecules, such as collagen or hyaluronan, leads to monolayer coating of the outer surface of the tube. Alternatively, the outer surfaces of the tube 220 may be coated with thin layers of a soft biocompatible material, such as parylene or PDMS.
The transducer assembly 240 comprises the pressure sensor 42 described above, but could alternatively utilize another suitable type of micromachined/microfabricated sensor. Unlike the transducer assembly 40 described above, the transducer assembly 240 does not include an antenna. Rather, wires 250 (Fig. 8) extend through the tube 220 to electrically connect the electronics module 146 on the platform 132 to an electronics module 280 in the transducer assembly 240. The wires 250 carry electrical power from the second transducer assembly 140 to the transducer assembly 240 in the autograft 34. The wires 250 also carry data signals from the pressure sensor 42 back to the second transducer assembly 140 for transmission over the antenna 148 on the platform 132.
The apparatus 210 according to the second embodiment functions in the same manner as the apparatus of the first embodiment to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system. Fig. 9 illustrates an apparatus 310 for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a third embodiment of the present invention. In the third embodiment of Fig. 9, reference numbers that are the same as those used in Figs. 1-8 designate components that are the same as components shown in Figs. 1-8.
According to the third embodiment, the apparatus 310 includes a load cell 320. The load cell 320 is countersunk into the upper surface (as viewed in the Figures) of the autograft 34 facing the vertebrae 26. It should be understood, however, that the load cell 320 could be positioned in any number of locations in the autograft 34. Further, it is contemplated that more than one load cell 320 could be positioned in the autograft 34.
Like the transducer assembly 40 illustrated in Fig. 3, the load cell 320 includes a sensing element (not shown) and an integral telemetry device (not shown) constructed using MEMS and/or microelectronic fabrication techniques. The telemetry device includes an electronics package and an antenna. The sensing element in the load cell 320 may be a piezoresistive device, a piezoelectric device, a capacitive device, a strain gauge-based device, or any other suitable device. Using an RF carrier signal, the load cell 320 is inductively powered and interrogated for data in the same manner as the transducer assembly 40 described in the first embodiment. The load cell 320 has an outer housing 322 that may be packaged within a biomolecular coating. Exposing the outer housing 322 of the load cell 320 to solutions containing desired biomolecules, such as collagen or hyaluronan, leads to monolayer coating of the surface of the outer housing 322. Alternatively, the outer housing 322 of the load cell 320 may be coated with thin layers of a soft biocompatible material, such as parylene or PDMS. The apparatus 310 according to the third embodiment functions in a similar manner to the apparatus 10 of the first embodiment to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122. The addition of the load cell 320 in the apparatus provides additional data for the physician to assess the bone in-growth and biomechanical performance of the implant.
Fig. 10 illustrates an apparatus 410 for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a fourth embodiment of the present invention. In the fourth embodiment of Fig. 10, reference numbers that are the same as those used in Figs. 1-9 designate components that are the same as components shown in Figs. 1-9.
According to the fourth embodiment, the apparatus 410 includes the first and second transducer assemblies 40 and 140, as well as the load cell 320. A tube 430 extends between the transducer assembly 40 in the autograft 34 and the load cell 320 in the upper surface of the autograft. As above, it should be understood that the load cell 320 could be positioned in any number of locations in the autograft 34.
Unlike the load cell 320 described above in the third embodiment, the load cell 320 does not include an antenna. Rather, wires (not shown) extend through the tube 430 to electrically connect any electronics module (not shown) in the load cell 320 to the electronics module 80 in the transducer assembly 40. The wires carry electrical power from the transducer assembly 40 to the load cell 320. The wires also carry data signals from the load cell 320 back to the transducer assembly 40 for RF transmission to the readout/power supply device 160.
It should be apparent that a variant of the fourth embodiment would be that a telemetry device, including an electronics module and an antenna, be located in the load cell 320 rather than in the transducer assembly 40. Further, it should also be apparent that another variant of the fourth embodiment would be to use the transducer assembly 240 of Fig. 9, which does not include an electronics module nor an antenna, and the tube 220 that houses wires for exchanging signals.
The apparatus 410 according to the fourth embodiment functions in the same manner as the apparatus 310 of the third embodiment to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122.
In Fig. 11, an apparatus 510 constructed in accordance with a fifth embodiment of the present invention is illustrated. The fifth embodiment of Fig. 11 is nearly identical to the fourth embodiment of Fig. 10, except that both the transducer assembly 40 and the load cell 320 have integral telemetry devices. As such, the readout/power supply unit 160 thus separately inductively powers and collects data from the load cell 320, the transducer assembly 40 in the autograft 34, and the transducer assembly 140 on the DOC™ system 122. Accordingly, the apparatus 510 functions in the same basic manner as the apparatus 310 of the third embodiment 310 to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122.
Fig. 12 illustrates an apparatus 610 constructed in accordance with a sixth embodiment of the present invention. The sixth embodiment of Fig. 12 is similar to the third embodiment of Fig. 9, except that in Fig. 12 a second tube 630 connects the load cell 320 to the transducer assembly 140 on the platform 132. This is because the load cell 320 does not have an integral telemetry device and thus wires (not shown) are run through the second tube 630 to carry electrical power and data to and from, respectively, the load cell 320. As such, all of the data from the load cell 320, the pressure sensor 42, and the strain gauges 142 is transmitted over the antenna 148 on the platform 132. Other than this difference, the apparatus 610 according to the sixth embodiment functions in the same basic manner as the apparatus 310 of the third embodiment to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122. Figs. 13 and 14 illustrate an apparatus 710 for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a seventh embodiment of the present invention. In the seventh embodiment of Figs. 13 and 14, reference numbers that are the same as those used above designate components that are the same as components described above.
According to the seventh embodiment, the apparatus 710 comprises a plurality of transducer assemblies 740 mounted to the rods 128 and 130 of the DOC™ system 122. Additional transducer assemblies may be located in the autograft 34 as described above, but are omitted from Figs. 13 and 14 for clarity. Each transducer assembly 740 includes a sensor, such as a strain gauge 742, and an integral telemetry device 744 constructed using MEMS and/or microelectronic fabrication techniques. As best seen in the schematic diagram of Fig. 14, each telemetry device 744 includes an electronics package 746 and an antenna 748. Hence, there are no electronics present on the platform 132. Using RF carrier signals, each strain gauge 742 is inductively powered and interrogated for data in the same manner as the transducer assembly 40 described in the first embodiment. The apparatus 710 according to the seventh embodiment functions to provide a continuous or on-demand in vivo assessment of the bony incorporation of the autograft 34, and thus the fusion of the autograft and the vertebrae 24 and 26, as well as the biomechanical performance of the DOC™ system 122.
Fig. 15 illustrates an apparatus 810 for providing an in vivo assessment of loads on and motion of a bone in accordance with an eighth embodiment of the present invention. In the eighth embodiment of Fig. 15, reference numbers that are the same as those used above designate components that are the same as components described above.
In accordance with the eighth embodiment, an artificial disc 820 is inserted between the vertebrae 24 and 26 in place of a problematic disc. The artificial disc 820 is intended to carry the loads on the vertebrae 24 and 26 and also preserve the motion of the vertebrae. The artificial disc 820 illustrated in Fig. 15 has upper and lower plates 822 and 824 spaced apart by a flexible polymeric core 826. It should, however, be understood that other configurations of artificial discs could also be used. Prior to insertion of the artificial disc 820 between the vertebrae 24 and 26, a transducer assembly such as the transducer assembly 40 described in the first embodiment, is positioned within the artificial disc. Additional transducer assemblies (not shown) may also be located in the artificial disc 820. Further, as shown in Fig. 15, it is contemplated that a transducer assembly 40 can be positioned in the interior of a vertebrae, such as the vertebrae 26, by inserting the transducer assembly into a passage drilled in the vertebrae. The apparatus 810 according to the eighth embodiment functions to provide a continuous or on-demand in vivo assessment of the loads on the vertebrae 26 and*on the artificial disc 820, as well as provide an assessment of the motion of the artificial disc relative to the vertebrae 24 and 26. It should be understood that the apparatus 810 could be used in any number of different applications in the human body where it is desirable to assess the loads on one or more bones or on an orthopedic implant. Furthermore, it should also be understood that the apparatus 810 could be used to assess motion of, or between, adjacent bones and/or orthopedic implants. Such additional applications of the apparatus 810 would include most joints in the human body.
Figs. 16-18 illustrate an apparatus 910 for providing an in vivo assessment of loads on adjacent bones constructed in accordance with a ninth embodiment of the present invention. In the ninth embodiment of Figs. 16-18, reference numbers that are the same as those used above designate components that are the same as components described above. According to the ninth embodiment, another different type of implant is inserted into the intervertebral space 32 following a discectomy. The implant is an interbody fusion cage 920 known in the art. The fusion cage 920 has a cylindrical outer surface 922 with external threads 924. The fusion cage 920 is screwed into place in the intervertebral space 32 so that the threads 924 bite into the surfaces (also known as endplates) of the vertebrae 24 and 26. As in known in the art, the fusion cage 920 has a plurality of openings 926 that extend through the outer surface 922 and into an interior chamber (not numbered) . After the fusion cage 920 is implanted in the vertebrae 24 and 26, the interior chamber is filled with bone graft material, such as bone chips or a synthetic material to promote bone growth. Removable end caps 930 and 932 close the interior chamber after the bone graft material has been placed inside the fusion cage 920. Over time, bone in-growth occurs and the fusion cage 920 fuses the vertebrae 24 and 26 together. The openings 926 in the fusion cage 920 help to facilitate the bone in-growth, and thus, the fusion process.
Prior to implantation of the fusion cage 920, a plurality of strain gauges 940 are installed on the fusion cage. The strain gauges 940 are located in the groove that lies between the threads 924 on the outer surface 922 of the fusion cage 920. The strain gauges 940 may be commercially available devices or custom-fabricated by a foundry. The strain gauges 940 are operatively coupled to a telemetry device 950 located on the end cap 932 by electrical leads in the form of metal traces (not shown) deposited on an insulating film (not shown) or the inside surface of the fusion cage. The traces make electrical contact with traces (not shown) on the end cap 932 when the end cap is attached to the fusion cage 920. Alternatively, the electrical leads could be insulated wires. For protection purposes, the strain gauges 940 and the electrical traces may be coated with a soft polymeric film, such as parylene or PDMS, a biocompatible epoxy, or a monolayer biomolecular coating. Alternatively, each strain gauge 940 could have an integral telemetry device constructed using MEMS and/or microelectronic fabrication techniques.
A metal tube 960 is attached, in a manner not shown, to the end cap 932 and extends into the interior chamber of the fusion cage 920. A pressure sensor, such as the pressure sensor 42 described above, is positioned inside the end of the tube 960 and coated with a dielectric gel as described above. Wires (not shown) extend through the tube 960 to electrically connect the pressure sensor to the telemetry device 950. The tube 960 containing the pressure sensor 42 may be packaged within a biomolecular coating or coated with thin layers of a soft biocompatible material, such as parylene or PDMS.
As shown in Fig. 18, the telemetry device 950 on the end cap 932 of the fusion cage 920 includes an electronics module 960 and an antenna 970. In the same manner as described above with regard to the previous embodiments, the telemetry device 950 is inductively powered by the readout/power supply unit 160 and is operable to transmit data from the strain gauges 940 and pressure sensor 42 via an RF carrier signal out to the readout/power supply unit.
The apparatus 910 according to the ninth embodiment of the present invention functions to provide a continuous or on-demand in vivo assessment of bony incorporation, and thus the fusion of the fusion cage 920 and the vertebrae 24 and 26, as well as the biomechanical performance of the fusion cage. In addition to the telemetry schemes described above, it is contemplated that an alternative telemetry scheme using a tank circuit (not shown) could be employed with each of the aforementioned embodiments of the present invention. It is known that a change in capacitance or inductance on a sensor, such as a pressure sensor or a strain gauge, can be detected using a tank circuit. Such a tank circuit has either a variable capacitance and a fixed inductance, or a variable inductance and a fixed capacitance. If the tank circuit has a variable capacitance, the capacitance will change as the pressure or strain, depending on the type of sensor, changes. This change in capacitance leads to changes in resonant frequency that can be detected. The capacitance changes can then be calculated using the following equation: fo=l/2π (LC) 12, where L is the inductance and C is the capacitance. This same equation is also used to calculate inductance changes if the capacitance of the tank circuit is fixed. In the embodiments discussed above where there are multiple sensors, each sensor is designed to operate within a specific resonant frequency band. The tank circuit is then swept over range of frequencies so that the individual resonant frequency of each sensor, which corresponds to the output of each sensor, can be identified.
In the present invention, the tank circuit telemetry scheme could be employed in several different ways. The circuitry of the tank circuit could be added to the electronics module associated with each of the implanted sensors. Alternatively, the implanted sensors could be capacitive sensors having an integral tank circuitry. Finally, the conventional tank circuit described above (variable capacitance or variable inductance) could be configured such that the variable capacitor and one half of the inductor are fabricated on the same sensing diaphragm. The other half of the inductor is combined with a fixed electrode of the capacitor such that when the sensing diaphragm moves, the capacitance and the inductance increase or decrease together.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. For example, it is contemplated that the EMF signals exchanged between the readout/power supply unit and the transducer assemblies could be infrared transmissions rather than RF transmissions. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims .

Claims (77)

Having described the invention, we claim:
1. An apparatus for providing an in vivo assessment of loads on adjacent bones, said apparatus comprising: a body for insertion between the adjacent bones; at least one sensor associated with said body, said at least one sensor for generating an output signal in response to and indicative of a load being applied to said body through the adjacent bones; and at least one telemetric device operatively coupled with said at least one sensor, said at least one telemetric device being operable to receive said output signal from said at least one sensor and to transmit an EMF signal dependent upon said output signal .
2. The apparatus of claim 1 wherein said body comprises an implant for helping the adjacent bones to fuse together.
3. The apparatus of claim 2 wherein said implant comprises a fusion cage for insertion between an adjacent pair of vertebrae, said fusion cage having an interior chamber for receiving bone graft material.
4. The apparatus of claim 1 wherein said body comprises a bone graft.
5. The apparatus of claim 1 wherein said at least one sensor comprises a pressure sensor.
6. The apparatus of claim 1 wherein said at least one sensor further comprises a load cell.
7. The apparatus of claim 1 further comprising an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together.
8. The apparatus of claim 7 further comprising at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to a load being applied to said implant, said at least one strain gauge being electrically connected with said at least one telemetric device.
9. The apparatus of claim 1 wherein said body comprises a prosthetic device for preserving motion between adjacent bones.
10. An apparatus for providing an in vivo assessment of loads on adjacent bones to be fused together, said apparatus comprising: a graft for insertion between the adjacent bones; at least one sensor associated with said graft, said at least one sensor for generating an output signal in response to and indicative of a load being applied to said graft through the adjacent bones; and at least one telemetric device operatively coupled with said at least one sensor, said at least one telemetric device being operable to receive said output signal from said at least one sensor and to transmit an EMF signal dependent upon said output signal.
11. The apparatus of claim 10 further comprising an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together.
12. The apparatus of claim 10 wherein said at least one sensor comprises a pressure sensor.
13. The apparatus of claim 12 further comprising an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together.
14. The apparatus of claim 13 further comprising at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to a load being applied to said implant, said at least one strain gauge being electrically connected with said at least one telemetric device.
15. The apparatus of claim 12 wherein said at least one sensor further comprises a load cell.
16. The apparatus of claim 15 further comprising an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together.
17. The apparatus of claim 15 further comprising at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to and indicative of a load being applied to said implant, said at least one strain gauge being electrically connected with said at least one telemetric device.
18. The apparatus of claim 10 wherein said at least one sensor comprises a load cell.
19. The apparatus of claim 18 further comprising an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together.
20. The apparatus of claim 19 further comprising at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to and indicative of a load being applied to said implant, said at least one strain gauge being electrically connected with said at least one telemetric device.
21. An apparatus for providing an in vivo assessment of loads on adjacent vertebrae to be fused together, the adjacent vertebrae being separated by an intervertebral space created by the removal of an intervertebral disc, said apparatus comprising: a bone graft for insertion into the intervertebral space; at least one sensor associated with said bone graft, said at least one sensor for generating an output signal in response to and indicative of a load being applied to said bone graft through the adjacent pair of vertebrae; and at least one telemetric device operatively coupled with said at least one sensor, said at least one telemetric device being operable to receive said output signal from said at least one sensor and to transmit an EMF signal dependent upon said output signal .
22. The apparatus of claim 21 wherein said at least one sensor comprises a pressure sensor.
23. The apparatus of claim 22 wherein said pressure sensor is positioned in an interior portion of said bone graft.
24. The apparatus of claim 22 wherein said at least one sensor further comprises at least one load cell.
25. The apparatus of claim 24 wherein said at least one load cell is countersunk into a surface of said bone graft that faces one of the adjacent bones.
26. The apparatus of claim 21 wherein said at least one sensor comprises at least one load cell.
27. The apparatus of claim 19 further comprising: an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together; and at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to and indicative of a load being applied to said implant, said at least one strain gauge being electrically connected with said at least one telemetric device.
28. The apparatus of claim 27 wherein said at least one telemetric device is mounted on said implant and operatively coupled to said at least one sensor.
29. The apparatus of claim 27 wherein said at least one telemetric device and said at least one sensor are formed on a silicon substrate and secured within said bone graft, said at least one telemetric device being operatively coupled to said at least one strain gauge.
30. An apparatus for providing an in vivo assessment of loads on adjacent bones to be fused together, said apparatus comprising: a bone graft for insertion between the adjacent bones; a pressure sensor associated with said bone graft, said pressure sensor for generating a first output signal in response to and indicative of a load being applied to said bone graft through the adjacent bones; and a load cell associated with said bone graft, said load cell for generating a second output signal in response to and indicative of the load being applied to said bone graft through the adjacent bones.
31. The apparatus of claim 30 wherein said pressure sensor is positioned in an interior portion of said bone graft.
32. The apparatus of claim 30 wherein said pressure sensor is coated with a film of biomolecules to protect said pressure sensor.
33. The apparatus of claim 30 wherein said pressure sensor is coated with monolayers of biomolecules to protect said pressure sensor.
34. The apparatus of claim 30 wherein said pressure sensor is coated with thin layers of biocompatible materials to protect said pressure sensor.
35. The apparatus of claim 30 wherein said load cell is countersunk into a surface of said bone graft that faces one of the adjacent bones.
36. The apparatus of claim 30 wherein said load cell is coated with a film of biomolecules to protect said load cell.
37. The apparatus of claim 30 wherein said load cell is coated with onolayers of biomolecules to protect said load cell.
38. The apparatus of claim 30 wherein said load cell is coated with thin layers of biocompatible materials to protect said load cell.
39. The apparatus of claim 30 further comprising at least one telemetric device operatively coupled with said pressure sensor and with said load cell, said at least one telemetric device being operable to receive said first and second output signals and to transmit EMF signals dependent upon said output signals.
40. The apparatus of claim 39 further comprising: an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones fuse together; and at least one strain gauge mounted on said implant, said at least one strain gauge for generating a third output signal in response to and indicative of the load being applied to said implant, said at least one strain gauge being operatively coupled with said at least one telemetric device.
41. An apparatus for providing an in vivo assessment of loads on adjacent bones to be fused together, said apparatus comprising: a graft for insertion between the adjacent bones; at least one sensor associated with said graft, said at least one sensor for generating a first output signal in response to and indicative of a load being applied to said graft; an implant connected with the adjacent bones for helping to stabilize the adjacent bones while the adjacent bones are fusing together; and at least one strain gauge mounted on said implant, said at least one strain gauge for generating a second output signal in response to and indicative of the load being applied to said implant.
42. The apparatus of claim 41 wherein said at least one sensor comprises a pressure sensor.
43. The apparatus of claim 41 wherein said at least one sensor further comprises a load cell.
44. The apparatus of claim 41 wherein said implant includes a platform and at least one rod, said at least one strain gauge being mounted to one of said platform and said at least one rod.
45. The apparatus of claim 41 further comprising at least one telemetric device operatively coupled with said at least one sensor and with said at least one strain gauge, said at least one telemetric device being operable to receive said first and second output signals and to transmit EMF signals dependent upon said output signals percutaneously.
46. The apparatus of claim 45 further comprising an external monitoring unit for receiving said EMF signals transmitted percutaneously.
47. An apparatus for providing an in vivo assessment of loads on adjacent bones to be fused together, said apparatus comprising: a body for insertion between the adjacent bones; sensor means for sensing a load being applied to said body through the adjacent bones and for generating a corresponding output signal in response to and indicative of a sensed load; and first circuit means operatively coupled with said sensor means for receiving said output signal from said sensor means, said first circuit means including antenna means for receiving energy to power said first circuit means and said sensor means and for transmitting an EMF signal dependent upon said output signal.
48. The apparatus of claim 47 wherein said first circuit means includes signal processing means and telemetry means.
49. The apparatus of claim 47 wherein said first circuit means further includes an RF-DC converter/modulator and a voltage regulator operatively coupled between said antenna means and said at least one sensor, said RF-DC converter/modulator and said voltage regulator providing electrical energy received by said antenna means to said at least one sensor.
50. The apparatus of claim 49 wherein said first circuit means further includes a microprocessor operatively coupled between said at least one sensor and said RF-DC converter/modulator, said microprocessor and said RF-DC converter/modulator receiving said output signal from said at least one sensor and converting said output signal into said EMF signal for percutaneous transmission via said antenna means.
51. The apparatus of claim 47 further comprising second circuit means for transmitting energy to power said first circuit means and said sensor means and for receiving said data signal, said second means being disposed remote from said first circuit means.
52. An apparatus for providing an in vivo assessment of loads on and motion of one or more bones, said apparatus comprising: a member for placement adjacent a bone; at least one sensor associated with said member, said at least one sensor for generating an output signal in response to and indicative of a load being applied to said member through the bone; and at least one telemetric device operatively coupled with said at least one sensor, said at least one telemetric device being operable to receive said output signal from said at least one sensor and to transmit an EMF signal dependent upon said output signal.
53. The apparatus of claim 52 wherein said member comprises an implant for helping adjacent bones fuse together.
54. The apparatus of claim 53 wherein said implant comprises a fusion cage for insertion between an adjacent pair of vertebrae.
55. The apparatus of claim 52 wherein said member comprises a bone graft.
56. The apparatus of claim 52 wherein said member comprises a prosthetic device for preserving motion between adjacent bones.
57. The apparatus of claim 56 wherein said prosthetic device comprises an artificial disc.
58. An apparatus for providing an in vivo assessment of loads on and motion of one or more bones, said apparatus comprising: at least one sensor attached to a bone, said at least one sensor for generating an output signal in response to and indicative of a load on the bone; and at least one telemetric device operatively coupled with said at least one sensor, said at least one telemetric device being operable to receive said output signal from said at least one sensor and to transmit an EMF signal dependent upon said output signal.
59. The apparatus of claim 58 wherein said at least one sensor comprises a pressure sensor.
60. The apparatus of claim 59 wherein said pressure sensor is positioned in an interior portion of a vertebrae.
61. A method for in vivo assessing the loads on adjacent vertebrae to be fused together, said method comprising the steps of: harvesting a bone graft; removing an intervertebral disc between the adjacent vertebrae; instrumenting the bone graft with at least one sensor for sensing a load on the bone graft and for generating an output signal indicative of a sensed load; operatively coupling at least one telemetric device with the at least one sensor to receive the output signal and to transmit an EMF signal dependent upon the output signal; implanting the bone graft between the adjacent vertebrae; and monitoring the EMF signal from the least one telemetric device.
62. The method of claim 61 further wherein said step of instrumenting the bone graft with at least one sensor comprises securing a pressure sensor to the bone graft.
63. The method of claim 61 further comprising the step of coating the pressure sensor with thin layers of a biocompatible material.
64. The method of claim 61 further comprising the step of coating the pressure sensor with monolayers of biomolecules .
65. The method of claim 61 further comprising the step of coating the pressure sensor with a film of biomolecules.
66. The method of claim 61 further wherein said step of instrumenting the bone graft with at least one sensor further comprises securing a load cell to the bone graft.
67. The method of claim 66 further comprising the step of coating the load cell with thin layers of a biocompatible material.
68. The method of claim 66 further comprising the step of coating the load cell with monolayers of biomolecules.
69. The method of claim 66 further comprising the step of coating the load cell with a film of biomolecules .
70. The method of claim 61 further comprising the step of attaching an implant to the adjacent vertebrae to help stabilize the vertebrae while fusing together.
71. The method of claim 70 further comprising the steps of: mounting at least one strain gauge to the implant; and operatively coupling the at least one strain gauge to the least one telemetric device.
72. The method of claim 61 further comprising the step of inductively energizing the at least one sensor and the least one telemetric device.
73. A method for in vivo assessing the loads on adjacent bones to be fused together, said method comprising the steps of: providing a body for insertion between the adjacent bones; instrumenting the body with at least one sensor for sensing a load on the body and for generating an output signal indicative of a sensed load; operatively coupling at least one telemetric device with the at least one sensor to receive the output signal and to transmit an EMF signal dependent upon the output signal; implanting the body between the adjacent bones; and monitoring the EMF signal from the least one telemetric device.
74. The method of claim 73 wherein said step of providing a body comprises providing a prosthetic implant for helping the adjacent bones to fuse together.
75. The method of claim 74 further comprising the step of filling the interior of the prosthetic implant with bone graft material following implantation of the prosthetic implant.
76. The method of claim 73 wherein said step of providing a body comprises harvesting a bone graft.
77. A method for in vivo assessing of loads on and motion of one or more bones, said method comprising the steps of: providing a member for placement adjacent a bone; instrumenting the member with at least one sensor for generating an output signal in response to and indicative of a load being applied to the member through the bone; operatively coupling at least one telemetric device with the at least one sensor to receive the output signal from the at least one sensor and to transmit an EMF signal dependent upon the output signal; inserting the member adjacent the bone; and monitoring the EMF signal from the least one telemetric device.
AU2001288417A 2000-08-25 2001-08-24 Apparatus and method for assessing loads on adjacent bones Ceased AU2001288417B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22816600P 2000-08-25 2000-08-25
US60/228,166 2000-08-25
PCT/US2001/026623 WO2002015769A2 (en) 2000-08-25 2001-08-24 Apparatus and method for assessing loads on adjacent bones

Publications (2)

Publication Number Publication Date
AU2001288417A1 true AU2001288417A1 (en) 2002-05-30
AU2001288417B2 AU2001288417B2 (en) 2004-07-22

Family

ID=22856089

Family Applications (2)

Application Number Title Priority Date Filing Date
AU8841701A Pending AU8841701A (en) 2000-08-25 2001-08-24 Apparatus and method for assessing loads on adjacent bones
AU2001288417A Ceased AU2001288417B2 (en) 2000-08-25 2001-08-24 Apparatus and method for assessing loads on adjacent bones

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU8841701A Pending AU8841701A (en) 2000-08-25 2001-08-24 Apparatus and method for assessing loads on adjacent bones

Country Status (6)

Country Link
US (3) US6706005B2 (en)
EP (1) EP1311191B1 (en)
AT (1) ATE547999T1 (en)
AU (2) AU8841701A (en)
CA (1) CA2424553C (en)
WO (1) WO2002015769A2 (en)

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872187B1 (en) 1998-09-01 2005-03-29 Izex Technologies, Inc. Orthoses for joint rehabilitation
US7416537B1 (en) * 1999-06-23 2008-08-26 Izex Technologies, Inc. Rehabilitative orthoses
US7998213B2 (en) * 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US8323341B2 (en) * 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US7220281B2 (en) * 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US7717961B2 (en) * 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
WO2002054978A2 (en) * 1999-08-18 2002-07-18 Intrinsic Orthopedics Inc Devices and method for nucleus pulposus augmentation and retention
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
WO2009033100A1 (en) * 2007-09-07 2009-03-12 Intrinsic Therapeutics, Inc. Bone anchoring systems
US6436101B1 (en) * 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
EP1311191B1 (en) * 2000-08-25 2012-03-07 The Cleveland Clinic Foundation Implantable apparatus for assessing loads on adjacent pair of vertebrae
US7708741B1 (en) * 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US6654629B2 (en) * 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US7357037B2 (en) * 2002-07-10 2008-04-15 Orthodata Technologies Llc Strain sensing system
US6821299B2 (en) * 2002-07-24 2004-11-23 Zimmer Technology, Inc. Implantable prosthesis for measuring six force components
US7615070B2 (en) * 2002-10-11 2009-11-10 Spineco, Inc. Electro-stimulation and medical delivery device
US20040073221A1 (en) * 2002-10-11 2004-04-15 Spineco, Inc., A Corporation Of Ohio Electro-stimulation and medical delivery device
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
WO2004089240A2 (en) * 2003-04-04 2004-10-21 Theken Disc, Llc Artificial disc prosthesis
US20040243148A1 (en) * 2003-04-08 2004-12-02 Wasielewski Ray C. Use of micro- and miniature position sensing devices for use in TKA and THA
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US7252005B2 (en) * 2003-08-22 2007-08-07 Alfred E. Mann Foundation For Scientific Research System and apparatus for sensing pressure in living organisms and inanimate objects
US7245117B1 (en) * 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor
US8070785B2 (en) 2003-09-16 2011-12-06 Spineco, Inc. Bone anchor prosthesis and system
US20060287602A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Implantable wireless sensor for in vivo pressure measurement
AU2004274005A1 (en) * 2003-09-16 2005-03-31 Cardiomems, Inc. Implantable wireless sensor
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US7763052B2 (en) * 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US7815665B2 (en) * 2003-09-24 2010-10-19 N Spine, Inc. Adjustable spinal stabilization system
US20050203513A1 (en) * 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US8979900B2 (en) * 2003-09-24 2015-03-17 DePuy Synthes Products, LLC Spinal stabilization device
US20050065516A1 (en) * 2003-09-24 2005-03-24 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US7306605B2 (en) 2003-10-02 2007-12-11 Zimmer Spine, Inc. Anterior cervical plate
US7550010B2 (en) * 2004-01-09 2009-06-23 Warsaw Orthopedic, Inc. Spinal arthroplasty device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US7556651B2 (en) * 2004-01-09 2009-07-07 Warsaw Orthopedic, Inc. Posterior spinal device and method
US20050182312A1 (en) * 2004-02-12 2005-08-18 Medtronic Xomed, Inc. Contact tonometer using MEMS technology
US7938831B2 (en) * 2004-04-20 2011-05-10 Spineco, Inc. Implant device
US20050267555A1 (en) 2004-05-28 2005-12-01 Marnfeldt Goran N Engagement tool for implantable medical devices
CN101060815B (en) * 2004-06-07 2012-07-18 芯赛斯公司 Orthopaedic implant with sensors
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US8176922B2 (en) * 2004-06-29 2012-05-15 Depuy Products, Inc. System and method for bidirectional communication with an implantable medical device using an implant component as an antenna
EP1773186A4 (en) 2004-07-08 2009-08-12 Deborah Schenberger Strain monitoring system and apparatus
US8114158B2 (en) * 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US7097662B2 (en) * 2004-08-25 2006-08-29 Ut-Battelle, Llc In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection
US20060069436A1 (en) * 2004-09-30 2006-03-30 Depuy Spine, Inc. Trial disk implant
AU2005304912A1 (en) 2004-11-04 2006-05-18 Smith & Nephew, Inc. Cycle and load measurement device
US8308794B2 (en) * 2004-11-15 2012-11-13 IZEK Technologies, Inc. Instrumented implantable stents, vascular grafts and other medical devices
WO2006055547A2 (en) * 2004-11-15 2006-05-26 Izex Technologies, Inc. Instrumented orthopedic and other medical implants
EP1814474B1 (en) 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
US8001975B2 (en) * 2004-12-29 2011-08-23 Depuy Products, Inc. Medical device communications network
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7849751B2 (en) 2005-02-15 2010-12-14 Clemson University Research Foundation Contact sensors and methods for making same
WO2006089069A2 (en) 2005-02-18 2006-08-24 Wasielewski Ray C Smart joint implant sensors
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7918887B2 (en) * 2005-03-29 2011-04-05 Roche Martin W Body parameter detecting sensor and method for detecting body parameters
US11457813B2 (en) 2005-03-29 2022-10-04 Martin W. Roche Method for detecting body parameters
US20110213221A1 (en) * 2005-03-29 2011-09-01 Roche Martin W Method for Detecting Body Parameters
DE202005009809U1 (en) * 2005-03-31 2005-08-25 Stryker Trauma Gmbh Patient data transmission system for use with implant, has downlink between internal transmission and receiving units, and uplink between external transmission and receiving units controlling measurement and internal transmission units
US8163261B2 (en) * 2005-04-05 2012-04-24 Voltaix, Llc System and method for making Si2H6 and higher silanes
US20060247773A1 (en) * 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Instrumented implant for diagnostics
CA2613241A1 (en) 2005-06-21 2007-01-04 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
EP1924211B1 (en) 2005-08-23 2019-12-18 Smith & Nephew, Inc. Telemetric orthopaedic implant
US20090216113A1 (en) * 2005-11-17 2009-08-27 Eric Meier Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
US8156824B2 (en) * 2006-01-13 2012-04-17 Mts Systems Corporation Mechanism arrangement for orthopedic simulator
US7770446B2 (en) 2006-01-13 2010-08-10 Mts Systems Corporation Orthopedic simulator with temperature controller arrangement for controlling temperature of specimen baths
US7913573B2 (en) 2006-01-13 2011-03-29 Mts Systems Corporation Orthopedic simulator with a multi-axis slide table assembly
US7654150B2 (en) * 2006-01-20 2010-02-02 Mts Systems Corporation Specimen containment module for orthopedic simulator
US7824184B2 (en) * 2006-01-13 2010-11-02 Mts Systems Corporation Integrated central manifold for orthopedic simulator
US7762147B2 (en) * 2006-01-13 2010-07-27 Mts Systems Corporation Orthopedic simulator with integral load actuators
US7779708B2 (en) * 2006-01-13 2010-08-24 Mts Systems Corporation Orthopedic simulator with fluid concentration maintenance arrangement for controlling fluid concentration of specimen baths
US7635389B2 (en) * 2006-01-30 2009-12-22 Warsaw Orthopedic, Inc. Posterior joint replacement device
US7811326B2 (en) * 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US8095198B2 (en) * 2006-01-31 2012-01-10 Warsaw Orthopedic. Inc. Methods for detecting osteolytic conditions in the body
US7328131B2 (en) * 2006-02-01 2008-02-05 Medtronic, Inc. Implantable pedometer
US20070238992A1 (en) * 2006-02-01 2007-10-11 Sdgi Holdings, Inc. Implantable sensor
US20070198090A1 (en) * 2006-02-03 2007-08-23 Abdou M S Use of Carbon Nanotubes in the Manufacture of Orthopedic Implants
US8016859B2 (en) * 2006-02-17 2011-09-13 Medtronic, Inc. Dynamic treatment system and method of use
US7993269B2 (en) * 2006-02-17 2011-08-09 Medtronic, Inc. Sensor and method for spinal monitoring
US20070237307A1 (en) * 2006-03-03 2007-10-11 Loubert Suddaby Radiographic spine marker
AU2006339993A1 (en) * 2006-03-14 2007-09-20 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US7918796B2 (en) * 2006-04-11 2011-04-05 Warsaw Orthopedic, Inc. Volumetric measurement and visual feedback of tissues
WO2008008845A2 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
US20080027547A1 (en) * 2006-07-27 2008-01-31 Warsaw Orthopedic Inc. Prosthetic device for spinal joint reconstruction
US20080045968A1 (en) * 2006-08-18 2008-02-21 Warsaw Orthopedic, Inc. Instruments and Methods for Spinal Surgery
US7878988B2 (en) * 2006-10-06 2011-02-01 Stephen Thomas Bush Method for measuring the strength of healing bone and related tissues
US8262710B2 (en) * 2006-10-24 2012-09-11 Aesculap Implant Systems, Llc Dynamic stabilization device for anterior lower lumbar vertebral fusion
US20080132882A1 (en) * 2006-11-30 2008-06-05 Howmedica Osteonics Corp. Orthopedic instruments with RFID
US20080177389A1 (en) * 2006-12-21 2008-07-24 Rob Gene Parrish Intervertebral disc spacer
WO2008103181A1 (en) * 2007-02-23 2008-08-28 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
US7822465B2 (en) * 2007-04-25 2010-10-26 Warsaw Orthopedic, Inc. Device and method for image-based device performance measurement
US8864832B2 (en) * 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US10821003B2 (en) 2007-06-20 2020-11-03 3Spline Sezc Spinal osteotomy
US20090005708A1 (en) * 2007-06-29 2009-01-01 Johanson Norman A Orthopaedic Implant Load Sensor And Method Of Interpreting The Same
US8080064B2 (en) 2007-06-29 2011-12-20 Depuy Products, Inc. Tibial tray assembly having a wireless communication device
US20090043341A1 (en) * 2007-08-09 2009-02-12 Aesculap, Inc. Dynamic extension plate for anterior cervical fusion and method of installation
US8570187B2 (en) * 2007-09-06 2013-10-29 Smith & Nephew, Inc. System and method for communicating with a telemetric implant
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8915866B2 (en) * 2008-01-18 2014-12-23 Warsaw Orthopedic, Inc. Implantable sensor and associated methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
WO2009097485A1 (en) * 2008-02-01 2009-08-06 Smith & Nephew, Inc. System and method for communicating with an implant
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
EP2977067B1 (en) * 2008-03-13 2020-12-09 3M Innovative Properties Company Apparatus for applying reduced pressure to a tissue site on a foot
US8968345B2 (en) * 2008-03-24 2015-03-03 Covidien Lp Surgical introducer with indicators
EP2268218B1 (en) * 2008-04-01 2016-02-10 CardioMems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US9265438B2 (en) * 2008-05-27 2016-02-23 Kyma Medical Technologies Ltd. Locating features in the heart using radio frequency imaging
US8989837B2 (en) 2009-12-01 2015-03-24 Kyma Medical Technologies Ltd. Methods and systems for determining fluid content of tissue
US8029566B2 (en) * 2008-06-02 2011-10-04 Zimmer, Inc. Implant sensors
US8197489B2 (en) 2008-06-27 2012-06-12 Depuy Products, Inc. Knee ligament balancer
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
CA2740730A1 (en) 2008-10-15 2010-04-22 James K. Rains Composite internal fixators
BRPI0919600A2 (en) * 2008-12-17 2015-12-08 Synthes Gmbh posterior and dynamic spinal stabilizer
US8403995B2 (en) * 2008-12-18 2013-03-26 Depuy Products, Inc. Device and method for determining proper seating of an orthopaedic prosthesis
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
WO2010088531A2 (en) * 2009-01-29 2010-08-05 Smith & Nephew, Inc. Low temperature encapsulate welding
WO2010096927A1 (en) 2009-02-27 2010-09-02 Halifax Biomedical Inc. Device and method for bone imaging
US8721568B2 (en) 2009-03-31 2014-05-13 Depuy (Ireland) Method for performing an orthopaedic surgical procedure
US8551023B2 (en) * 2009-03-31 2013-10-08 Depuy (Ireland) Device and method for determining force of a knee joint
US8556830B2 (en) 2009-03-31 2013-10-15 Depuy Device and method for displaying joint force data
US8740817B2 (en) 2009-03-31 2014-06-03 Depuy (Ireland) Device and method for determining forces of a patient's joint
US8597210B2 (en) 2009-03-31 2013-12-03 Depuy (Ireland) System and method for displaying joint force data
US7902851B2 (en) * 2009-06-10 2011-03-08 Medtronic, Inc. Hermeticity testing
US9549744B2 (en) 2009-06-16 2017-01-24 Regents Of The University Of Minnesota Spinal probe with tactile force feedback and pedicle breach prediction
US8172760B2 (en) * 2009-06-18 2012-05-08 Medtronic, Inc. Medical device encapsulated within bonded dies
US8679186B2 (en) 2010-06-29 2014-03-25 Ortho Sensor Inc. Hermetically sealed prosthetic component and method therefor
US8421479B2 (en) 2009-06-30 2013-04-16 Navisense Pulsed echo propagation device and method for measuring a parameter
US8696756B2 (en) 2010-06-29 2014-04-15 Orthosensor Inc. Muscular-skeletal force, pressure, and load measurement system and method
US8661893B2 (en) 2010-06-29 2014-03-04 Orthosensor Inc. Prosthetic component having a compliant surface
US8720270B2 (en) 2010-06-29 2014-05-13 Ortho Sensor Inc. Prosthetic component for monitoring joint health
US8707782B2 (en) 2009-06-30 2014-04-29 Orthosensor Inc Prosthetic component for monitoring synovial fluid and method
US9259179B2 (en) 2012-02-27 2016-02-16 Orthosensor Inc. Prosthetic knee joint measurement system including energy harvesting and method therefor
US9462964B2 (en) 2011-09-23 2016-10-11 Orthosensor Inc Small form factor muscular-skeletal parameter measurement system
US8746062B2 (en) 2010-06-29 2014-06-10 Orthosensor Inc. Medical measurement system and method
US9839390B2 (en) 2009-06-30 2017-12-12 Orthosensor Inc. Prosthetic component having a compliant surface
US8714009B2 (en) 2010-06-29 2014-05-06 Orthosensor Inc. Shielded capacitor sensor system for medical applications and method
US8701484B2 (en) 2010-06-29 2014-04-22 Orthosensor Inc. Small form factor medical sensor structure and method therefor
US8516884B2 (en) 2010-06-29 2013-08-27 Orthosensor Inc. Shielded prosthetic component
US8826733B2 (en) 2009-06-30 2014-09-09 Orthosensor Inc Sensored prosthetic component and method
WO2011002546A1 (en) * 2009-07-01 2011-01-06 Medtronic, Inc. Implantable medical device including mechanical stress sensor
US20110046494A1 (en) * 2009-08-19 2011-02-24 Mindray Ds Usa, Inc. Blood Pressure Cuff and Connector Incorporating an Electronic Component
IN2012DN03122A (en) 2009-09-18 2015-09-18 Orthomems Inc
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8376937B2 (en) * 2010-01-28 2013-02-19 Warsaw Orhtopedic, Inc. Tissue monitoring surgical retractor system
US8343224B2 (en) 2010-03-16 2013-01-01 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US8926530B2 (en) 2011-09-23 2015-01-06 Orthosensor Inc Orthopedic insert measuring system for having a sterilized cavity
US9332943B2 (en) 2011-09-23 2016-05-10 Orthosensor Inc Flexible surface parameter measurement system for the muscular-skeletal system
US8939030B2 (en) 2010-06-29 2015-01-27 Orthosensor Inc Edge-detect receiver for orthopedic parameter sensing
WO2012011065A1 (en) 2010-07-21 2012-01-26 Kyma Medical Technologies Ltd. Implantable radio-frequency sensor
US8666505B2 (en) 2010-10-26 2014-03-04 Medtronic, Inc. Wafer-scale package including power source
US8721566B2 (en) 2010-11-12 2014-05-13 Robert A. Connor Spinal motion measurement device
US8424388B2 (en) 2011-01-28 2013-04-23 Medtronic, Inc. Implantable capacitive pressure sensor apparatus and methods regarding same
FR2972344B1 (en) * 2011-03-07 2014-01-31 Lape Medical DEVICE FOR MONITORING A MEDICAL PROSTHESIS AND THE HUMAN BODY
GB201115411D0 (en) 2011-09-07 2011-10-19 Depuy Ireland Surgical instrument
US8690888B2 (en) 2011-09-23 2014-04-08 Orthosensor Inc. Modular active spine tool for measuring vertebral load and position of load
CN103945763B (en) * 2011-09-23 2016-04-06 奥索传感器公司 For the system and method for vertebral loads and location sensing
US8911448B2 (en) 2011-09-23 2014-12-16 Orthosensor, Inc Device and method for enabling an orthopedic tool for parameter measurement
US9414940B2 (en) 2011-09-23 2016-08-16 Orthosensor Inc. Sensored head for a measurement tool for the muscular-skeletal system
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8945133B2 (en) 2011-09-23 2015-02-03 Orthosensor Inc Spinal distraction tool for load and position measurement
US9839374B2 (en) 2011-09-23 2017-12-12 Orthosensor Inc. System and method for vertebral load and location sensing
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9795423B2 (en) 2012-01-23 2017-10-24 DePuy Synthes Products, Inc. Device and method for normalizing implant strain readings to assess bone healing
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9844335B2 (en) 2012-02-27 2017-12-19 Orthosensor Inc Measurement device for the muscular-skeletal system having load distribution plates
US9622701B2 (en) 2012-02-27 2017-04-18 Orthosensor Inc Muscular-skeletal joint stability detection and method therefor
US9271675B2 (en) 2012-02-27 2016-03-01 Orthosensor Inc. Muscular-skeletal joint stability detection and method therefor
WO2013138275A1 (en) * 2012-03-12 2013-09-19 University Of South Florida Implantable biocompatible sic sensors
US9381011B2 (en) 2012-03-29 2016-07-05 Depuy (Ireland) Orthopedic surgical instrument for knee surgery
US10070973B2 (en) 2012-03-31 2018-09-11 Depuy Ireland Unlimited Company Orthopaedic sensor module and system for determining joint forces of a patient's knee joint
US9545459B2 (en) 2012-03-31 2017-01-17 Depuy Ireland Unlimited Company Container for surgical instruments and system including same
US10098761B2 (en) 2012-03-31 2018-10-16 DePuy Synthes Products, Inc. System and method for validating an orthopaedic surgical plan
US10206792B2 (en) 2012-03-31 2019-02-19 Depuy Ireland Unlimited Company Orthopaedic surgical system for determining joint forces of a patients knee joint
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
WO2014043418A1 (en) * 2012-09-12 2014-03-20 Innovative In Vivo Sensing, Llc Strain sensor device with a biological substrate and method of manufacturing thereof
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9237885B2 (en) 2012-11-09 2016-01-19 Orthosensor Inc. Muscular-skeletal tracking system and method
WO2014159739A1 (en) 2013-03-14 2014-10-02 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US11793424B2 (en) 2013-03-18 2023-10-24 Orthosensor, Inc. Kinetic assessment and alignment of the muscular-skeletal system and method therefor
US9259172B2 (en) 2013-03-18 2016-02-16 Orthosensor Inc. Method of providing feedback to an orthopedic alignment system
EP4075597A1 (en) 2013-10-29 2022-10-19 Zoll Medical Israel Ltd. Antenna systems and devices and methods of manufacture thereof
EP4233711A3 (en) 2014-02-05 2023-10-18 Zoll Medical Israel Ltd. Apparatuses for determining blood pressure
US9456817B2 (en) 2014-04-08 2016-10-04 DePuy Synthes Products, Inc. Methods and devices for spinal correction
CN103860250B (en) * 2014-04-09 2016-04-06 陈浩 With the orthopedic steel plate of prompt functions
EP4212113A1 (en) * 2014-06-25 2023-07-19 Canary Medical Switzerland AG Devices monitoring spinal implants
JP2017520337A (en) * 2014-07-01 2017-07-27 インジェクトセンス, インコーポレイテッド Ultra-low power rechargeable implantable sensor with wireless interface for patient monitoring
US11259715B2 (en) 2014-09-08 2022-03-01 Zoll Medical Israel Ltd. Monitoring and diagnostics systems and methods
US9763705B2 (en) * 2014-10-03 2017-09-19 Globus Medical, Inc. Orthopedic stabilization devices and methods for installation thereof
WO2016115175A1 (en) 2015-01-12 2016-07-21 KYMA Medical Technologies, Inc. Systems, apparatuses and methods for radio frequency-based attachment sensing
US9820869B2 (en) 2015-10-02 2017-11-21 Henry E. Aryan Intervertebral pressure monitor
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
WO2017116346A1 (en) * 2015-12-29 2017-07-06 Tobb Ekonomi Ve Teknoloji Universitesi Intervertebral disc system with monitoring capabilities
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
WO2019030746A1 (en) 2017-08-10 2019-02-14 Zoll Medical Israel Ltd. Systems, devices and methods for physiological monitoring of patients
US11534316B2 (en) * 2017-09-14 2022-12-27 Orthosensor Inc. Insert sensing system with medial-lateral shims and method therefor
WO2019068078A1 (en) * 2017-09-29 2019-04-04 Axiomed, LLC Artificial disk with sensors
US20190117285A1 (en) * 2017-10-24 2019-04-25 Hae Sun Paik Checking apparatus for bone conglutination
EP3492047A1 (en) * 2017-11-30 2019-06-05 Clariance Intervertebral fusion remote monitoring device
US20190328315A1 (en) * 2018-04-26 2019-10-31 Arizona Board Of Regents On Behalf Of Arizona State University Internal anatomical force measurement
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11812978B2 (en) 2019-10-15 2023-11-14 Orthosensor Inc. Knee balancing system using patient specific instruments
US20220265324A1 (en) 2021-02-23 2022-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
CN115414162A (en) * 2022-11-04 2022-12-02 清华大学 Orthopedic intervertebral fusion cage, strain monitoring system and method caused by vertebral body fusion

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567767A (en) 1991-03-06 1993-03-19 Matsushita Electron Corp Solid-state image pick-up device and manufacture thereof
US5470354A (en) 1991-11-12 1995-11-28 Biomet Inc. Force sensing apparatus and method for orthopaedic joint reconstruction
US5425775A (en) 1992-06-23 1995-06-20 N.K. Biotechnical Engineering Company Method for measuring patellofemoral forces
US5531787A (en) 1993-01-25 1996-07-02 Lesinski; S. George Implantable auditory system with micromachined microsensor and microactuator
US5456724A (en) * 1993-12-15 1995-10-10 Industrial Technology Research Institute Load sensor for bone graft
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5925552A (en) * 1996-04-25 1999-07-20 Medtronic, Inc. Method for attachment of biomolecules to medical devices surfaces
US5843082A (en) 1996-05-31 1998-12-01 Acromed Corporation Cervical spine stabilization method and system
FR2751202B1 (en) * 1996-07-22 2001-03-16 Zacouto Fred SKELETAL IMPLANT
US6034296A (en) * 1997-03-11 2000-03-07 Elvin; Niell Implantable bone strain telemetry sensing system and method
US6059784A (en) 1998-10-08 2000-05-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capacitive extensometer particularly suited for measuring in vivo bone strain
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
US6342074B1 (en) 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US20020010390A1 (en) * 2000-05-10 2002-01-24 Guice David Lehmann Method and system for monitoring the health and status of livestock and other animals
EP1311191B1 (en) * 2000-08-25 2012-03-07 The Cleveland Clinic Foundation Implantable apparatus for assessing loads on adjacent pair of vertebrae

Similar Documents

Publication Publication Date Title
AU2001288417B2 (en) Apparatus and method for assessing loads on adjacent bones
AU2001288417A1 (en) Apparatus and method for assessing loads on adjacent bones
US9510785B2 (en) Strain monitoring system and apparatus
JP4657713B2 (en) Strain detection system
US8278941B2 (en) Strain monitoring system and apparatus
KR101006650B1 (en) Telemetric strain sensing system
US20140084943A1 (en) Strain monitoring system and apparatus