AU2001287633A1 - Preparation of 4-thioalkylbromobenzene derivatives - Google Patents

Preparation of 4-thioalkylbromobenzene derivatives

Info

Publication number
AU2001287633A1
AU2001287633A1 AU2001287633A AU2001287633A AU2001287633A1 AU 2001287633 A1 AU2001287633 A1 AU 2001287633A1 AU 2001287633 A AU2001287633 A AU 2001287633A AU 2001287633 A AU2001287633 A AU 2001287633A AU 2001287633 A1 AU2001287633 A1 AU 2001287633A1
Authority
AU
Australia
Prior art keywords
methylthio
alkyl
dihydroisoxazol
methyl
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001287633A
Other versions
AU2001287633B2 (en
Inventor
Joachim Gebhardt
Michael Keil
Rene Lochtman
Michael Rack
Wolfgang Von Deyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority claimed from PCT/EP2001/008238 external-priority patent/WO2002006211A1/en
Publication of AU2001287633A1 publication Critical patent/AU2001287633A1/en
Application granted granted Critical
Publication of AU2001287633B2 publication Critical patent/AU2001287633B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Preparation of 4-thioalkylbromobenzene derivatives
The present invention provides a process for preparing 4-thioalkylbromobenzene derivatives .
4-Thioalkylbromobenzene derivatives are useful compounds which are used as intermediates in the chemical industry. They are suitable, for example, for preparing active compounds employed in the field of crop protection, or else for preparing pharmaceutically active compounds or other chemical end products .
WO 99/58509, for example, describes - for the case of the plant active compounds - a process for preparing isoxazolin-3-yl-acylbenzenes in which 4-thioalkylbromobenzene derivatives are used as intermediates for preparing plant active compounds . These active compounds
(2-alkyl-3-{4, 5-dihydroisoxazol-3-yl) acylbenzenes) are described in WO 98/31681 as herbicidally active compounds.
The prior-art processes for preparing 4-thioalkylbromobenzene derivatives, such as the process described in WO 99/58509, are technologically complicated, in particular with respect to the process of the reaction and purification or work-up of the reaction solution. These processes are therefore of limited suitability for the industrial preparation of
4-thioalkylbromobenzene derivatives on a relatively large scale.
It is an object of the present invention to provide an alternative preparation process for these compounds .
We have found that this object is achieved by a process for preparing 4-thioalkylbromobenzene derivatives of the formula I
where :
R1 is Ci-Cβ-alkyl , Ci-Ce-haloalkyl , Ci-Cδ-alkoxy,
Cι-C6-haloalkoxy C3-Cs-cycloalkyl , halogen, R2 is Ci-Cg-alkyl , Ci-Cg-alkoxy, C3-Cg-cycloalkyl, C -C6-alkenyl , cyano or a heterocyclic radical ,
R3 is Ci-Cg-alkyl ,
purity can furthermore be achieved by carrying out the extraction in the further work-up of the product initially with concentrated hydrochloric acid which is diluted with water only for phase separation. Owing to the resulting higher purity of the crude product obtained, it is possible to reduce the overall number of additional purification steps for isolating and working up the compounds I prepared by the process according to the invention. This is particularly advantageous in the large-scale industrial preparation of the compounds I, providing an overall efficient and cost-effective process.
The radicals mentioned above in the definition of R1 - R3 have in particular the following meanings :
Cι-C6-Alkyl is a straight-chain or branched alkyl group having 1 - 6 carbons, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert. -butyl, n-pentyl or n-hexyl; preference is given to Cχ-C4-alkyl, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert. -butyl.
Ci-Cg-haloalkyl is a straight-chain or branched C -Cg-alkyl group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example chlorome- thyl, dichloromethyl, trichloromethyl, fluoromethyl, difluorome- thyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2, 2-difluoroethyl, 2 , 2 , 2-trifluoroethyl, 2-chloro-2-fluoroethyl , 2-chloro-2 , 2 , -difluoroethyl , 2, 2-dichloro-2-fluoroethyl, 2, 2 , 2-trichloroethyl, pentafluoroe- thyl, 2-fluoropropyl, 3-fluoropropyl, 2, 2-difluoropropyl, 2,3-di- fluoropropyl , 2-chloropropyl, 3-chloropropyl, 2, 3-dichloropropyl, 2-bromopropyl , 3-bromopropyl , 3,3, 3-trifluoropropyl , 3,3, 3-trich- loropropyl , 2,2,3,3,3-pentafluoropropyl , heptafluoropropyl , 1- (fluoromethyl) -2-fluoroethyl, l-(chloromethyl) -2-chloroethyl, 1- (bromo ethyl) -2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl , 4-bromobutyl, nonafluorobutyl, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl , 6-bromohexyl, 6-iodohexyl and dodecafluorohexyl; perference is given to Cχ-C4-haloalkyl, such as chloromethyl , dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlo- rodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2, 2-difluoroethyl, 2, 2, 2-trifluoroethyl, 2-chloro-2-fluoroethyl , 2-chloro-2 , 2 , -difluoroethyl , 2 , 2-dichloro-2-fluoroethyl, 2, 2 , 2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2, 2-difluoropropyl, 2,3-di- fluoropropyl, 2-chloropropyl, 3-chloropropyl, 2, 3-dichloropropyl, 2-bromopropyl, 3-bromopropyl , 3 , 3 , 3-trifluoropropyl, 3,3,3-trich- loropropyl, 2, 2, 3 , 3 , 3-pentafluoropropyl, heptafluoropropyl, 1- (fluoromethyl) -2-fluoroethyl, 1- (chloromethyl) -2-chloroethyl, 1- (bromomethyl) -2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, or nonafluorobutyl;
Ci-Cδ-Alkoxy is a straight-chain or branched alkyl group having 1 - 6 carbons, such as, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert . -butyloxy, n-pentyloxy or n-hexyloxy; preference is given to Cι-C4-alkoxy, such as, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy or tert.-butyloxy;
Cι-C6-haloalkoxy is a straight-chain or branched Ci-Cg-alkoxy group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example, fluo- romethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluorome- thoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2 , 2-difluoroethoxy, 2 , 2 , 2-trifluo- roethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2, 2, difluoroethoxy, 2 , 2-dichloro-2-fluoroethoxy, 2,2, 2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chlo- ropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2, 2-difluoropropoxy, 2 , 3-difluoropropoxy, 2 , 3-dichloropropoxy, 3,3, 3-trifluoropropoxy, 3 , 3 , 3-trichloropropoxy, 2 , 2 , 3 , 3-pentafluoropropoxy, heptafluoropropoxy, 1- (fluoromethyl) -2-fluoroethoxy, 1- (chloromethyl ) -2-chloroethoxy, 1- (bromomethyl ) -2-bromoethoxy, 4-fluorobu- toxy, 4-chlorobutoxy, 4-bromobutoxy, nonafluorobutoxy, 5-fluoro- pentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undeca- fluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy; perference is given to Cι-C4-haloalkoxy, such as fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-di- fluoroethoxy, 2 , 2, 2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2 , 2 , difluoroethoxy, 2 , 2-dichloro-2-fluoroethoxy, 2, 2, 2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2, 2-difluoropropoxy, 2, 3-difluoropropoxy, 2, 3-dichloropropoxy, 3, 3, 3-trifluoropropoxy, 3 , 3 , 3-trichloropropoxy, 2,2,3, 3-pentafluoropropoxy, heptafluoropropoxy, 1- ( fluoromethyl) -2-fluoroethoxy, 1- (chloromethyl) -2-chloroethoxy, 1- (bromomethyl) -2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy, or nonafluorobutoxy; C3-C8-cycloalkyl is an unsubstituted or substituted cycloalkyl ring having 3 - 8 carbons, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl . Suitable substituents are, for example: Ci-Cβ-alkyl, Ci-Cβ-alkoxy or halogen; preference is given to C3-C6-cycloalkyl, which is unsubstituted, such as, for example cyclopropyl, cyclopentyl or cyclohexyl;
C -C6-alkenyl is a straight-chain or branched alkenyl group having 2-6 carbon atoms, wherein the double bond is located at the connecting positon, such as for example ethenyl, prop-1-en-l-yl , 1-methylethenyl, buten-1-yl, 1-methylprop-l-en-l-yl, -methyl- prop-1-en-l-yl, penten-1-yl, 1-methyl-but-l-en-l-yl, 2-methyl- but-1-en-l-yl, 3-methyl-but-l-en-l-yl, 1, 2-dimethyl- prop-1-en-l-yl, hex-1-en-l-yl, 1-methylpent-l-en-l-yl, 2-methyl- pent-1-en-l-yl, 3-methylpent-l-en-yl, 4-methylpent-l-en-l-yl,
1 , 2-dimethylbut-l-en-l-yl , 1 , 3-dimethylbut-l-en-l-yl ,
2, 3-dimethylbut-l-en-l-yl, 3 , 3-dimethylbut-l-en-l-yl, 1-ethyl- but-1-en-l-yl, 2-ethylbut-l-en-l-yl or l-ethyl-2-methyl- prop-1-en-l-yl;
Halogen is fluorine, chlorine, bromine, in particular chlorine or bromine .
"Heterocyclic ring" is a saturated, unsaturated or partially unsaturated heterocycle having 3 - 8 ring atoms and one, two or three oxygen, sulfur or nitrogen atoms. Preference is given to heterocycles which contain at least one oxygen and/or one nitrogen atom. Preference is furthermore given to heterocycles having 5 or 6 ring atoms. The heterocycle can be attached to the phenyl ring via any site on the heterocycle, for example via a heterocyclic nitrogen ring atom or a carbon ring atom. The heterocycles are unsubstituted or mono-, di- or trisubstituted. Suitable substituents are radicals which are chemically inert under the chosen reaction conditions, such as, for example,
Ci-Cδ-alkyl, Ci-Cδ-alkoxy or halogen. Heterocyclic rings suitable for the purpose of the present invention are, for example, the following heterocycles: pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, piperidinyl, morpholinyl, oxazinyl, isoxazolinyl, isoxazolidinyl, etc..
Preference is given to the following heterocycles: isoxazolyl, isoxazolinyl or isoxazolidinyl, in particular
4, 5-dihydroisoxazol-3-yl or 4, 5-dihydroisoxazol-5-yl . The process according to the invention is preferably suitable for preparing compounds of the formula I, wherein the meaning of the substituents is as follows :
R1 Cι-C6-alkyl, Cι-C5-alkoxy, C3-C8-cycloalkyl, halogen;
R2 Cι-C6-alkyl, Ci-Cδ-alkoxy, C3-C8-cyloalkyl, cyano or a heterocyclic radical; R3 Cι-C6-alkyl.
The process according to the invention is preferably suitable for preparing compounds of the formula I, wherein the meaning of the substituent R3 is Ci-C4-alkyl, preferably Cι-C2-alkyl, especially methyl .
The process according to the invention is preferably suitable for preparing the following compounds of the formula I:
4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2-methylbromobenzene 4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2-methoxybromobenzene 4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2-ethoxybromobenzene 4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-methylbromobenzene 4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-ethylbromo- benzene
4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-methoxybromobenzene
4-methylthio-3- (3-methyl-4 , 5-dihydroisoxazol-5-yl) -2-ethoxybromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-methylbromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-methoxybromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-ethoxybromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-methylbromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-methoxybromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-ethoxybromobenzene 4-methylthio-3-cyanobromobenzene 4-methylthio-3-cyano-2-methylbromobenzene
The reaction of the compounds II with the compounds III is carried out, for example, using the following process steps:
The compound II, if appropriate together with the disulfide III, a catalyst, is initially charged as a solution or suspension in a suitable solvent or solvent mixture, and the nitrite is then added batchwise or continuously. In a preferred embodiment, the compound II and the disulfide, which simultaneously serves as solvent, are initially charged. After the reaction has ended, the reaction solution is worked up by removing the catalyst. Removal of the catalyst is preferably carried out by extraction with inorganic acids, for example hydrochloric acid or sulfuric acid.
Particularly suitable catalysts are copper powder and inorganic or organic mono- or divalent copper salts, such as, for example, copper chlorides, copper bromides or copper sulfate. Preference is given to using copper powder.
Suitable nitrites are organic Ci-Cg-alkyl nitrites, for example n-butyl nitrite, (iso)amyl nitrite or tert-butyl nitrite, or Ci-Cδ-alkyl dinitrites, for example ethylens glycole dinitrite, or nitrite salts from the group of the alkali metals or alkaline earth metals, such as sodium nitrite or potassium nitrite. Preference is given to organic Ci-Cg-alkyl nitrites or nitrite salts form the group of the alkali metals or alkaline earth metals. In a particular embodiment, the nitrite used is a Cι-C6-alkyl nitrite, for example n-butyl nitrite, (iso)amyl nitrite or tert. -butyl nitrite. In another particular embodiment, the nitrite used is a alkali metal nitrite, for example sodium nitrite.
The reaction of compounds II with disulfides III in the presence of nitrites is carried out in suitable inert solvents or solvent mixtures, such as dimethyl disulfide, esters of acetic acid, for example ethyl acetate; aromatic compounds, for example benzene, toluene, chlorobenzene or nitrobenzene; halogenated alkanes, for example methylene chloride or 1, 2-dichloroethane. Particular preference is given to dimethyl disulfide.
The reaction is carried out at temperatures of from room temperature to the boiling point of the solvent, in particular from 30 to 100°C, preferably at from 50 to 80°C, in particular at from 55 to 75°C.
In a particular embodiment, the catalyst used is elemental copper. In this case, the copper is advantageously removed from the reaction solution by adding inorganic or organic acids, for example hydrochloric acid or sulfuric acid. After the compound II has reacted with the dialkyldisulfide III, the required amount of an acid is added and the mixture is stirred until the catalyst has substantially been dissolved. In this manner, the complicated removal of the catalyst from the reaction solution by filtration can be avoided. The reaction time for the reaction of compounds II with disulfides III is 1 - 12 hours, preferably 2 - 8 hours.
After removal of the catalyst, the product can be isolated by removing the solvent and low-boiling components by distillation or concentration under reduced pressure. Preference is given to complete removal of the solvents by distillation. It is then possible to use the crude product as a melt in further steps in the context of the further reaction for preparing active compounds or corresponding intermediates, or to purify the product in an appropriate manner.
In a preferred embodiment, the reagent used for the reaction of compounds II with dialkyl disulfides are alkali metal nitrites or alkaline earth metal nitrites in the presence of mineral acids . To this end, the compound II is initially charged together with the disulfide III, a catalyst and, if appropriate, a solvent, and the mixture is stirred for from 15 minutes to four hours, preferably from 15 minutes to two hours. Particular preference is given to a variant where the disulfide III serves simultaneously as solvent, and no other solvents are used. An aqueous nitrite solution is then added at 20°C - 80°C, preferably at 40°C - 60°C. Preference is given to using solutions of sodium nitrite or potassium nitrite. A mineral acid, preferably concentrated hydrochloric acid or sulfuric acid, is then added at 20°C - 80°C, preferably at 50°C - 75°C. The reaction time is 1 - 12 hours, preferably 2 - 8 hours. Work-up is carried out, for example, by extraction with concentrated or dilute mineral acids, such as hydrochloric acid or sulfuric acid, preferably concentrated hydrochloric acid.
In another preferred embodiment, the reagent used for the reaction of compounds II with dialkyl disulfides are organic Cι-C6-alkylnitrites, for example n-butyl nitrite, (iso) amylnitrite or tert . -butylnitrite . To this end, the compound II is initially charged togethter with the disulfide III, a catalyst and, if appropriate, a solvent, and the mixture is stirred up to four hours, preferably up to two hours. Particular preference is given to a variant where the disulfide III serves simultaneously as solvent, and no other solvents are used. The Ci-Cβ-alkyl nitrite and, if appropriate, a solvent, for example the disulfide III, is then added at 20°C-80°C, preferably at 40°C - 70°C, especially 55°C-70°C. Preference is given to add the Cι-C5-alkyl nitrite without a solvent. The reaction time is 0.5-12 hours, preferably 1-8 hours, especially 1-6 hours. Then the reaction mixture is cooled to room temperature. Work-up is carried out, for example, by extraction with concentrated or dilute mineral acids, such as hydrochloric acid or sulfuric acid, preferably concentrated hydrochloric acid.
Further purification of the crude product is carried out either by washing the residue obtained or by crystallization. Suitable for washing are, for example, water or water-miscible solvents or hydroxide solutions, like sodiumhydroxide. Suitable for recrystallization are, for example, toluene or benzene.
In principle, the resulting crude product can also be employed without further purification of the reaction solution for the next reaction step in the context of the further conversion for preparing active compounds. To this end the reaction solution, which contains compounds of the formula I, can be diluted with further solvents and in this manner be used as a crude solution for the next step of the process. Alternatively, it is also possible to concentrate the reaction solution and to transfer the resulting residue directly or as a melt into the next step of the process .
In a preferred embodiment of the process, the compound of the formula II and the nitrite are employed in a molar ratio of 1:0.8 to 1:1.5. The nitrite is preferably employed in about equimolar amounts, or in a slight excess (up to about 5 mol%) .
In a preferred embodiment of the process the dialkyl disulfide of the formula III is used in excess with regard to the compound of formula II . Especially the dialkyl disulfide of the formula II is used as a solvent.
In a preferred embodiment of the process the catalyst and the compound of formula II are employed in a molar ratio of from 0.005:1 to 0.05:1, especially from 0.01:1 to 0.02:1.
The compounds of the formula II to be used as starting materials are known from the literature and/or commercially available. They can also be prepared by processes known per se, as described in more detail in WO 98/31681 or WO 99/58509, for example.
The invention is illustrated in more detail in the embodiments below. Example 1
3- ( 3-Bromo-2-methyl-6-methylthiophenyl ) -4 , 5-dihydroisoxazole
5 114.7 g (0.45 mol) of 4-bromo-2- (4, 5-dihydroisoxazol-3-yl) -3- methylaniline, 857 mg of copper powder and 1000 ml of dimethyl disulfide are initially charged. Over a period of one hour, 49.2 g of n-butyl nitrite are metered in at 58-65°C, and the mixture is stirred until the reaction has gone to completion (about 1 - 3
10 hours). At 20-25°C, 130 ml of cone, hydrochloric acid are added, and the mixture is stirred for 20 - 30 minutes. 130 ml of water are added, and the phases are then separated. Washing is repeated twice. The organic phase is concentrated, giving 114.4 g of product (yield: 89%) .
15
Example 2
3- (3-Bromo-2-methyl-6-methylthiophenyl) -4, 5-dihydroisoxazole
20 10 g (35.3 mmol) of 4-bromo-2- (4, 5-dihydroisoxazol-3-yl) -3- methylaniline, 67.3 mg of copper powder and 58.5 ml of dimethyl disulfide are initially charged, and the mixture is stirred for one hour. At 50°C, 9.05 g of a 40.4% strength aqueous sodium nitrite solution are added. At 63-65°C, 6.96 g of 25% strength
25 sulfuric acid are then metered in, and the mixture is stirred at 65°C for 3 hours. At 20-25°C, 15 ml of cone, hydrochloric acid are added, and the mixture is stirred for one hour. 15 ml of water are added, and the phases are then separated. Washing is repeated twice. The organic phase is concentrated, giving 6.7 g of a brown
30 solid (yield: 58%) .
35
40
45

Claims (13)

We claim :
1. A process for preparing 4-thioalkylbromobenzene derivatives of the formula I
where:
R1 is Ci-Cδ-alkyl, Ci-Cβ-haloalkyl, Ci-C6-alkoxy, Ci-Cg-haloalkoxy, C3-C8-cycloalkyl, halogen,
R2 is Cι-C6-alkyl, Ci-Cβ-alkoxy, C3-C8-cycloalkyl, C2-C6-alkenyl, cyano or a heterocyclic radical,
R3 is Cι-C6-alkyl;
which comprises reacting a compound of the formula II,
in which R1 and R2 are as defined above, with a dialkyl disulfide of the formula III
R3—S—S R3 III
in the presence of a nitrite and a catalyst in a suitable solvent .
2. A process as claimed in claim 1, wherein the catalyst used is copper powder.
3. A process as claimed in claim 2, wherein the copper powder is removed from the reaction solution by adding an acid.
4. A process as claimed in any of claims 1 to 3, wherein the solvent used is the dialkyl disulfide of the formula III.
5. A process as claimed in any of claims 1 - 4, wherein the reaction is carried out at temperatures of from 30 to 100°C.
6. A process as claimed in any of claims 1 - 5, wherein the reaction is carried out in the presence of sodium nitrite and sulfuric acid.
7. A process as claimed in any of claims 1-5, wherein the reaction is carried out in the presence of a Ci-Ce-alkyl nitrite.
8. A process as claimed in any of claims 1 - 7, wherein R1 is Cι-C6-alkyl.
9. A process as claimed in claim 8, wherein R1 is methyl or ethyl .
10. A process as claimed in any of claims 1 - 9, wherein R2 is a heterocyclic ring.
11. A process as claimed in claim 10, wherein R2 is an isoxazole, isoxazoline or isoxazolidine ring.
12. A process as claimed in any of claims 1 - 11 for preparing the following compounds :
4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2- methyIbromobenzene
4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2- methoxybromobenzene
4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2- ethoxybromobenzene 4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-methyl- bromobenzene
4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-ethylbromobenzene
4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-methoxy- bromobenzene 4-methylthio-3- (3-methyl-4, 5-dihydroisoxazol-5-yl) -2-ethoxybromobenzene
4-methylthio-3- (isoxazol-3-yl) -2-methylbromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-methoxybromobenzene 4-methylthio-3- (isoxazol-3-yl) -2-ethoxybromobenzene
4-methylthio-3- (5-methylisoxazol-3-yl) -2-methylbromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-ethylbromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-methoxybromobenzene 4-methylthio-3- (5-methylisoxazol-3-yl) -2-ethoxybromobenzene 4-methylthio-3-cyanobromobenzene 4-methylthio-3-cyano-2-methylbromobenzene.
13. A process as claimed in claim 12 for preparing 4-methylthio-3- (4, 5-dihydroisoxazol-3-yl) -2- methylbromobenzene .
Preparation of 4-thioalkylbromobenzene derivatives
Abstract
A process for preparing 4-thioalkylbromobenzene derivatives of the formula I
where :
R1 is Cι-C6-alkyl, Cι-C6-haloalkyl , Ci-Cβ-alkoxy, Cι-C6-haloalkoxy, C3-C8-cycloalkyl, halogen,
R2 is Ci-Cg-alkyl, Cι-C6-alkoxy, C3-Cs-cycloalkyl, C2-C6-alkenyl, cyano or a heterocyclic radical,
R3 is Cx-Ce-alkyl,
which comprises reacting a compound of the formula II,
in which R1 and R2 are as defined above, with a dialkyl disulfide of the formula III
R3—S—S—R3 III
in the presence of a nitrite and a catalyst in a suitable solvent is described.
AU2001287633A 2000-07-17 2001-07-17 Preparation of 4-thioalkylbromobenzene derivatives Ceased AU2001287633B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10035075 2000-07-17
DE10035075.5 2000-07-17
PCT/EP2001/008238 WO2002006211A1 (en) 2000-07-17 2001-07-17 Preparation of 4-thioalkylbromobenzene derivatives

Publications (2)

Publication Number Publication Date
AU2001287633A1 true AU2001287633A1 (en) 2002-05-02
AU2001287633B2 AU2001287633B2 (en) 2006-12-14

Family

ID=7649445

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001287633A Ceased AU2001287633B2 (en) 2000-07-17 2001-07-17 Preparation of 4-thioalkylbromobenzene derivatives
AU8763301A Pending AU8763301A (en) 2000-07-17 2001-07-17 Preparation of 4-thioalkylbromobenzene derivatives

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU8763301A Pending AU8763301A (en) 2000-07-17 2001-07-17 Preparation of 4-thioalkylbromobenzene derivatives

Country Status (22)

Country Link
US (1) US7301034B2 (en)
EP (1) EP1301469B1 (en)
JP (1) JP4990472B2 (en)
KR (1) KR100729324B1 (en)
CN (1) CN1210269C (en)
AT (1) ATE330936T1 (en)
AU (2) AU2001287633B2 (en)
BR (1) BR0112530B1 (en)
CA (1) CA2416722A1 (en)
CZ (1) CZ2003130A3 (en)
DE (1) DE60120979T2 (en)
DK (1) DK1301469T3 (en)
EA (1) EA007931B1 (en)
ES (1) ES2266246T3 (en)
HU (1) HUP0301724A2 (en)
IL (1) IL153519A0 (en)
MX (1) MXPA03000235A (en)
NO (1) NO327975B1 (en)
NZ (1) NZ524049A (en)
SK (1) SK286986B6 (en)
WO (1) WO2002006211A1 (en)
ZA (1) ZA200301220B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786032B2 (en) * 1998-05-11 2011-10-05 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing isoxazolin-3-ylacylbenzene
US9149465B2 (en) 2009-05-18 2015-10-06 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
US8927551B2 (en) 2009-05-18 2015-01-06 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
US8765735B2 (en) 2009-05-18 2014-07-01 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
US20130012389A1 (en) 2010-03-23 2013-01-10 Basf Se Substituted Pyridazines Having Herbicidal Action
WO2011117151A1 (en) 2010-03-23 2011-09-29 Basf Se Pyrazinothiazines having herbicidal action
JP2013522339A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Substituted pyridines with herbicidal action
AR081526A1 (en) 2010-03-23 2012-10-03 Basf Se PIRIDAZINAS REPLACED THAT HAVE HERBICITY ACTION
JP2013522336A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Pyridothiazine with herbicidal activity
WO2011117210A1 (en) 2010-03-23 2011-09-29 Basf Se Substituted pyridines having herbicidal action
CA2818897A1 (en) 2010-12-23 2012-06-28 Basf Se Substituted pyridines having herbicidal activity
CN103596959A (en) 2011-06-09 2014-02-19 巴斯夫欧洲公司 Substituted pyridines having herbicidal activity
WO2012168241A1 (en) 2011-06-09 2012-12-13 Basf Se Substituted pyrazines having herbicidal activity
ES2633766T3 (en) 2011-10-28 2017-09-25 Lumena Pharmaceuticals Llc Bile acid recycling inhibitors for the treatment of pediatric cholestatic liver diseases
BR112014029531A2 (en) 2012-06-01 2017-06-27 Basf Se pyridine compound, composition and method for controlling unwanted vegetation
EP3004117A1 (en) 2013-05-24 2016-04-13 Basf Se Substituted pyridine compounds having herbicidal activity
CN104710332B (en) * 2015-02-17 2017-01-04 温州大学 A kind of preparation method of thiazolinyl sulfide
CN112694427B (en) * 2019-10-23 2022-11-18 江西天宇化工有限公司 Method for preparing 2, 3-dimethyl sulfide
CN111170908B (en) * 2020-01-09 2021-08-17 北京印刷学院 Synthesis method of 2, 4-dimethyl-3-methylsulfonyl halogeno-benzene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9310203D0 (en) * 1993-05-18 1993-06-30 Rhone Poulenc Agriculture Compositions of new matter
EA006633B1 (en) 1997-01-17 2006-02-24 Басф Акциенгезельшафт 3-heterocyclyl-substituted benzoyl derivatives
JP4786032B2 (en) * 1998-05-11 2011-10-05 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing isoxazolin-3-ylacylbenzene
DE19852095A1 (en) * 1998-11-12 2000-05-18 Basf Ag Process for the preparation of 2-alkyl-3- (4,5-dihydroisoxazol-3-yl) acylbenzenes

Similar Documents

Publication Publication Date Title
EP1301469B1 (en) Preparation of 4-thioalkylbromobenzene derivatives
AU2001287633A1 (en) Preparation of 4-thioalkylbromobenzene derivatives
KR100604302B1 (en) Method For Producing Isoxazoline-3-yl-acyl Benzene
KR100779315B1 (en) Method for Producing 4-Bromine-Aniline Derivatives
US6388135B1 (en) Preparation of 4-bromoaniline derivatives
US20050272787A1 (en) Process for preparing crystalline form A of valdecoxib