AU2001279209A1 - Scaffolds for tissue engineered hair - Google Patents

Scaffolds for tissue engineered hair

Info

Publication number
AU2001279209A1
AU2001279209A1 AU2001279209A AU2001279209A AU2001279209A1 AU 2001279209 A1 AU2001279209 A1 AU 2001279209A1 AU 2001279209 A AU2001279209 A AU 2001279209A AU 2001279209 A AU2001279209 A AU 2001279209A AU 2001279209 A1 AU2001279209 A1 AU 2001279209A1
Authority
AU
Australia
Prior art keywords
solvent
scaffold
scaffolds
bioabsorbable
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001279209A
Other versions
AU2001279209B2 (en
Inventor
Thomas H. Barrows
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aderans Research Institute Inc
Original Assignee
Aderans Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aderans Research Institute Inc filed Critical Aderans Research Institute Inc
Priority claimed from PCT/US2001/024671 external-priority patent/WO2002015952A1/en
Publication of AU2001279209A1 publication Critical patent/AU2001279209A1/en
Assigned to ADERANS RESEARCH INSTITUTE, INC. reassignment ADERANS RESEARCH INSTITUTE, INC. Request for Assignment Assignors: BIOAMIDE, INC.
Application granted granted Critical
Publication of AU2001279209B2 publication Critical patent/AU2001279209B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

SCAFFOLDS FOR TISSUE ENGINEERED HATR
BACKGROUND OF THE INVENTION
Male pattern baldness is a common condition that is often treated by hair transplant surgery. In this procedure hair follicles from areas of the scalp that are not within the baldness pattern are excised and re-implanted to create the illusion of a fuller head of hair.
In fact, no new hair is created by this procedure, which is limited by the number of follicles that can be harvested for re-distribution. Thus, there is a great need, satisfied by the present invention, for a means for stimulating the growth of multiple new hair follicles in the scalp of an individual.
BRIEF SUMMARY OF THE INVENTION This invention relates to new bioabsorbable scaffolds that are useful for the tissue engineering of new hair follicles and to methods for their manufacture and to methods of their use in creating new hair. More specifically it relates to new and useful bioabsorbable porous structures that have the correct architecture to facilitate culturing of the appropriate follicle progenitor cells and their development into normal, functional, hair-producing follicles. The invention also relates to methods of making and using bioabsorbable scaffolds to implant and grow new hair follicles in vitro and in vivo.
BRIEF DESCRIPTION OF THE DRAWING(S) Figure 1 is a cross-sectional view of form 1, with porous polymer precursor 5 coating the distal end 4 of form 1.
Figure 2 is a cross-sectional view of porous scaffold 8 with a layer of follicle progenitor cells 9 lining the inner surface 10 of the porous scaffold.
Figure 3 is a side, three-dimensional view of anon- woven web 12 of bioabsorbable porous polymer material.
Figure 4 is a cross-sectional side view of a mold for forming a porous scaffold, comprising a top plate 14 having a bottom side 15 with forms 16 protruding from the bottom side of the top plate, and a bottom plate 17 with a top side 18 defining wells 19 designed to receive the forms 16 of the top plate 14, when aligned therewith. Figure 5 is a top, slightly raised view of the non- woven web 12' after having been pressed and heated in the mold of Figure 4, forming depressions 20 in the non-woven web. Figure 6 is a cross-sectional view of a set of scaffolds 10', after transfer to wells 22 of a cell culture dish 23.
DETAILED DESCRIPTION OF THE INVENTION In one aspect, the present invention comprises porous bioabsorbable scaffolds that are in the approximate shape of the normal hair follicle bulb, and designed to promote the formation of a hair follicle when seeded with hair follicle cells and implanted intradermally into a living host.
The scaffolds of the present invention are preferably comprised of a bioabsorbable polymer, selected from any of a wide variety of synthetic and natural polymers that are commonly used in clinical practice and in biomedical research. The scaffolds are more preferably comprised of a polymer selected from the group consisting of poly(lactic acid), poly(glycolic acid), poly(trimethylene carbonate), poly(amino acid)s, tyrosine-derived poly(carbonate)s, poly(carbonate)s, poly(caprolactone), poly(para-dioxanone), poly(ester)s, poly(ester-amide)s, poly(anhydride)s, poly(ortho ester)s, poly(amino acid)s, collagen, gelatin, serum albumin, proteins, carbohydrates, poly(ethylene glycol)s, poly(propylene glycol)s, poly(acrylate ester)s, poly(methacrylate ester)s, poly(vinyl alcohol), and copolymers, blends and mixtures of said polymers.
When the scaffold is comprised of a synthetic polymer, it is preferably a synthetic polymer formed from any one or combination of the following monomers: L-lactide, d,l- lactide, glycolide, trimethylene carbonate, caprolactone, and /?αrø-dioxanone. Other preferred synthetic polymers for use in making the scaffold of the present invention include poly(ethylene glycol), poly(vinyl alcohol), poly(acrylic acid) and other water soluble polymers that have been crosslinked with degradable linkages and any bioabsorbable hydrogel that has been modified to support cell attachment.
When the scaffold is comprised of a crosslinked or otherwise insoluble or insolubilized naturally occurring polymer, it is preferably a polymer selected from the group consisting of hyaluronic acid, human serum albumin, collagen, gelatin, cellulose derivatives, starch, dextrin, chitosan, and other proteins, glycoproteins, lipoproteins, polysaccharides, and biopolymers. A preferred scaffold of the present invention has an inner surface which is preferably in the shape of the outer surface of a hair root or bulb. The inner surface of the scaffold is preferably porous. The porosity of the scaffold is preferably sufficient to enable hair follicle cells to be adsorbed by the inner surface of the scaffold when placed into contact therewith, e.g., in a cell culture solution.
Methods of making the porous bioabsorbable scaffolds of the present invention are disclosed herein, below. Such methods include procedures for creating porosity in bioabsorbable materials and procedures for molding, shaping, or sculpting said porous scaffolds into the desired configuration. The present invention is not limited to scaffolds produced according to the specific methods disclosed herein, below, as it is contemplated that the scaffolds could be made using variations of the disclosed methods, or by adapting known means used to manufacture porous polymers.
Any one of a number of different means are suitable for creating the porosity of the scaffolds of the present invention. A preferred method for creating porosity involves the use of "blowing agents". These are chemical additives that decompose at known temperatures with the liberation of gases that cause foaming in the molten polymer and porosity in the resultant cooled material. A number of useful blowing agents are commercially available under the trade name of Celogen™ (Uniroyal Chemical Co.). One example of a traditional blowing agent is azodicarbonamide. Another blowing agent that may be especially useful in the present invention due to its compatibility with bioabsorbable polymers is urea dicarboxylic acid anhydride, described in U.S. Patent 4,104,195, the teachings of which are incorporated herein. The use of blowing agents can produce both open cell and closed cell foams. In the present invention open cells are desired and closed cells are to be avoided. Thus the conditions used in the manufacture of the porous coating are preferably optimized to achieve an open cell structure known as "reticulated" foam. The porosity of the scaffold is preferably due to interconnected pores in the size range of 0.1 to 1,000 microns, more preferably in the size range of 1 to 500 microns.
In an alternative embodiment, the porosity of the scaffold is due to the fact that the scaffold has a fibrous structure. When the scaffold has a fibrous structure, the fibers are preferably bonded together. The fibers of such a preferred structure are more preferably comprised of a core and sheath structure, said sheath being lower melting than said core, and bonded together by means of inter-fiber welds in the sheaths at points of contact.
One preferred method of making a scaffold of the present invention, (hereinafter, "the dissolution method") comprises the following steps: 1. Provide a bioabsorbable polymer that is soluble in a solvent (solvent A).
2. Provide a form in the shape of the desired scaffold made of a material that is soluble in a different solvent (solvent B) and that is substantially insoluble in solvent A.
3. Coat the form with particles of a pore-forming substance that is also soluble in solvent B or in a third solvent (solvent C). 4. Dissolve the bioabsorbable polymer in solvent A and apply the resultant solution to the particle-covered form.
5. Remove solvent A by evaporation or other suitable means.
6. Use solvent B to dissolve said form and said particles.
7. Remove solvent B from the finished porous scaffold. 8. If required, use solvent C additionally to remove said particles.
The dissolution method is illustrated in Figure 1, which shows form 1 in cross- section with distal end 4 coated with porous polymer precursor 5, a mixture of particles of the pore forming substance and a solution of the polymer dissolved in solvent A. Note that the distal end 4 of form 1 is bulbous in shape, and includes a cavity 3 sufficiently large enough to enable some of the porous polymer precursor 5 to enter the cavity. Once a porous polymer has been formed from the porous polymer precursor 5 of Figure 1, as described above, and the form has been dissolved, the resulting porous scaffold can be seeded with hair follicle progenitor cells and used as described below. Figure 2 is a cross-sectional view that shows the porous scaffold 8 obtained by
' dissolving and washing away the pore forming substance and form, as described above, leaving only the bioabsorbable polymer. The scaffold 8 is shown with follicle progenitor cells 9 seeded on to the inner surface 10 of the scaffold, having taken the shape of the scaffold. The structure shown in Figure 2 could be directly implanted into the dermis to promote the growth of a new single hair fiber from the tissue engineered follicle. However, to better ensure that the transplanted engineered follicle matures, the structure shown in Figure 2 is more preferably cultured with additional cells prior to implantation. Examples of materials that can be used to create the form and solvents that can be selected for use as solvent B in the dissolution method, described above, include the following combinations: poly(ethylene oxide) and water; paraffin wax and hexane; and polystyrene and acetone. The pore forming substance and form material must be selected from those substances that have low solubility in solvent A, used to introduce the bioabsorbable polymer into the structure. These choices are further exemplified in Table 1 below where the following abbreviations have been used: PLGA is a copolymer of lactic and glycolic acids and PEO is poly(ethylene oxide).
Table 1.
Bioabsorbable Form Pore forming Solvent A Solvent B Solvent C polymer material substance
PLGA PEO Sodium Acetone Water Water chloride
PLGA Wax Glucose Acetone Hexane Water
Collagen Wax Polystyrene Water Hexane Acetone
A modification of the dissolution method is exemplified by reversing the sequence of steps of creating the desired structure followed by seeding with progenitor cells. Thus a porous scaffold structure can first be formed in the shape of a disc, for example by adding a solution of polymer in an organic solvent to appropriately sized salt particles in a cylindrical container followed by evaporation of said solvent and removal of the salt by dissolving and rinsing with water.
The resultant highly porous scaffold can then be sterilized and seeded with micro- dissected human dermal papilla or other suitable source of follicle progenitor cells and cultured in vitro until the entire porous structure is populated with cultured cells. This tissue-engineered construct then can be cut up into a large number of fragments, each about the size of a normal human dermal papilla. These irregular shaped fragments can be suspended in culture media and cultured further until the desired smooth surfaced structure is obtained. These tissue engineered dermal papilla can be implanted or injected into the skin to initiate the process of follicle neogenesis for hair restoration.
Alternatively, the porous scaffolds of the present invention can also be made according to the following method (hereinafter, the "pressed mold method"), comprising the following steps:
1. Provide a thin, non-woven web of bioabsorbable fibers. 2. Place said web in a two-part mold that has cavities in one part and mating forms in the other part, said cavities and forms providing the desired shape and dimensions of the desired scaffolds.
3. Close the mold and apply sufficient heat and pressure to form the web into the desired porous structure.
4. Remove the web from the mold and die-cut the molded scaffolds from the web.
The non-woven web preferably comprises either fibers that have a core/sheath structure in which the core of the fiber has a higher melting temperature than the sheath, or fibers without such a structure. The fibers in the non- woven web are preferably felted, sintered, or bonded with the use of a solvent or a second polymer dissolved in a solvent.
Figures 3-6 illustrate application of the mold method to produce scaffolds of the present invention. Figure 3 shows a drawing of a non-woven web 12 of bioabsorbable fibers. Figure 4 shows a two-part mold, comprising a top plate 14 and a bottom plate 17. The top plate features a bottom surface 15 with an array of forms 16 protruding therefrom. The bottom plate features a top surface 18 with depressions 19 therein to receive said forms. Figure 5 is a slightly raised, angled view of the non- woven web 12' after it has been compressed and heated in the mold of Figure 4, thereby creating depressions 20 that are molded into the desired shape for scaffolds for tissue engineered hair. Figure 6 shows molded scaffolds 8' after they have been cut from the depressions 20 in the non- woven web 12' in Figure 5 by means of a die cutter, and transferred to wells 22 of culture dish 23. The wells 22 are designed to receive scaffolds 8 or 8', culture medium, and cells.
The mold production process described immediately above is particularly well suited for scale-up and mass production. For example, the two-part mold shown in Figure 4 could be produced in the form of two cylinders rather than two flat plates. The web, in the form of a continuous ribbon, could be embossed with the desired pattern as it is compressed and heated during passage between the two counter-rotating rolls. Die cutters also could be mounded in a rotating cylinder to cut out the scaffolds or the cutter could be an added feature of the embossing rolls. This automated assembly line process would continue with the scaffolds being deposited into cell culture wells that are pre-formed in polyester film. The scaffold- loaded film could be cut and packaged into trays, placed in additional packaging and sterilized. Other methods of creating porous scaffolds from bioabsorbable materials also can be used in practice of the present invention. Methods such as emulsion freeze-drying, expansion in high pressure gas, 3D printing, and phase separation techniques are discussed in an article by Y.S. Nam and T.G.Park, "Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation", The Journal of Biomedical Materials Research, Oct. 1999, vol. 47, no. 1, pages 8-17, the teachings of which are incorporated herein.
A preferred embodiment of the above-mentioned phase separation technique uses poly( ,/-lactide-co-glycolide) (PLGA) as the structural polymer and polyethylene glycol) (PEG) as the porogen. Thus a mixture of PLGA and PEG can be dissolved in dichloromethane to give a clear solution, which is then applied to a scaffold form made from a material that is not soluble in dichloromethane, but preferably soluble in water, for example sugar. Upon evaporation of the dichloromethane, the PEG phase separates from the PLGA by crystallization. If the form is made of sugar, then soaking in water dissolves out the PEG as well as the form to leave the resultant desired porous PLGA scaffold.
Scaffolds of the present invention can be used to engineer new hair follicles in a number of ways. In general, the appropriate cells can be seeded on the scaffold and either implanted immediately into the scalp or allowed to multiply in culture on the scaffold prior to implantation. The implantation procedure can be the same technique that hair transplant surgeons currently use to implant single follicles or "mini-grafts". For example, a laser can be used to bore a small hole in the scalp to precisely the desired depth and the cell- seeded scaffold can simply be planted in the hole. As these implanted cells grow they orchestrate the neo-genesis of a new hair follicle. The bioabsorbable scaffold then degrades and is eliminated from the site as the implant matures into a normal, hair- producing follicle.
The cells used to seed the scaffold can be taken from follicles biopsied from the patient or from organ donor follicles. This later option is known to be feasible due to recent research results. Follicle progenitor cells from a human donor were successfully transplanted into an unrelated human recipient where they initiated the formation of new follicles that grew hair. This finding, entitled "Trans-gender induction of hair follicles", was reported by A.M. Reynolds, C. Lawrence, P.B. Caerhalmi-Friedman, A.M. Christiano and C.A.B. Jahoda in Nature, 402, 33-34, November 4, 1999, the teachings of which are incorporated by reference herein. A distinct advantage of the present invention is the ability to multiply the cells in culture before seeding them on the scaffold implants. This both maximizes the number of scaffolds that can be seeded from each harvested follicle and minimizes the labor of dissecting follicles to obtain the desired progenitor cells.
EXAMPLES Example 1:
Poly(ethylene oxide) (hereinafter, "PEO") 100,000 molecular weight purchased from Aldrich Chemical Co. (Milwaukee, WI 53201), was melt extruded into a 1.0 mm diameter filament and cut into 2 cm lengths. One of the PEO filaments was dipped into water, hydrating the surface and making it sticky. This was then dipped into sodium chloride crystals that had been ground into fine particles in an electric coffee bean grinder. Excess salt was shaken off and the coating was allowed to dry. A 10% (w/v) solution of poly(cζ/-lactide-co-50%-glycolide) (PLGA) (Resomer RG504, Boehringer frigelheim, Germany) in acetone (Aldrich Chemical Co.) was dripped onto the salt encrusted PEO filament and the excess solution was allowed to run off. Additional powdered salt was sprinkled onto the surface until it was completely covered. After the acetone evaporated, the coated PEO filament was placed in water until all of the salt and PEO dissolved, leaving a hollow filament of porous PLGA which was removed, flattened, and cut into thin strips with a sharp blade. The strips were rolled between finger and thumb and cut into 2 mm lengths. The hollow filament of porous PLGA produced as described above was used to make a form for a scaffold of the present invention, as follows.
Scaffolds of the present invention were produced as follows. A 0.3 mm diameter concentric hole was made in the end of another PEO filament by pressing a heated needle about 2 mm into the PEO. This caused molten PEO to build up around the sides of the filament. Upon cooling, the needle was removed. The hole was then filled with one of the above rolled strips of porous PLGA. The end of the resulting PEO filament was then coated as described above with salt and PLGA solution. Upon evaporation of the acetone and dissolving all of the salt and PEO in water and drying, the desired porous bioabsorbable polymer scaffold was obtained. Example 2:
Human hair follicles are dissected to obtain the dermal papilla, which are transferred to a culture flask containing culture media. After several weeks in culture, the dermal papilla cells multiply and grow over the surface of the cell culture flask. These cells are detached from the flask by treatment with an enzyme and concentrated by centrifugation. The cells are then transferred, after re-suspension, by pipette into the scaffolds of Example 1 and the cell-seeded scaffolds placed in a culture flask with media for several days to allow the cells to adhere to the surfaces of the scaffolds. Culturing of the cell-seeded scaffolds is then continued in another flask of media with gentle stirring until the scaffolds are fully populated with cells.
Example 3:
Scaffolds seeded as described in Example 2 are implanted into the scalp of a human experiencing hair loss. Over time, as new hair follicles are created, new hairs grow from the implants, and the scaffolds bioabsorb.

Claims (17)

CLA S
1. A porous, bioabsorbable scaffold for tissue engineering of human hair follicles.
2. A scaffold of claim 1 in which said bioabsorbable material is comprised of a polymer synthesized from one or more of the following monomers: L-lactide, dj-lacύde, glycolide, trimethylene carbonate, caprolactone, and j?αrø-dioxanone.
3. A bioabsorbable material of claim 2 in which said polymer is a copolymer of d,l- lactide and glycolide.
4. A scaffold of claim 1 in which said bioabsorbable material is collagen.
5. A scaffold of claim 1 in which said porosity is due to interconnected pores in the size range of 0.1 to 1 ,000 microns.
6. A scaffold of claim 5 in which said pores are in the size range of 1 to 500 microns.
7. A scaffold of claim 1 in which said porosity is due to a scaffold with a fibrous structure.
8. A scaffold of claim 7 in which said fibrous structure is comprised of fibers that are bonded together.
9. A scaffold of claim 8 in which said fibers are comprised of a core and sheath structure, said sheath being lower melting than said core, and are bonded together by means of inter-fiber welds in the sheaths at points of contact.
10. A method of making a scaffold of claim 1 comprising the steps of, a. Provide a bioabsorbable polymer that is soluble in a solvent (solvent A). b. Provide a form in the shape of the desired scaffold made of a material that is soluble in a different solvent (solvent B) and that is substantially insoluble in solvent A. c. Coat the form with particles of a substance (the pore-forming substance) that is also soluble in solvent B or in a third solvent (solvent C). d. Dissolve the bioabsorbable polymer in solvent A and apply the resultant solution to the particle-covered form. e. Remove solvent A by evaporation or other suitable means. f. Use solvent B to dissolve said form and said particles. g. Remove solvent B from the finished porous scaffold. h. If required, use solvent C additionally to remove said particles.
11. A method of making a scaffold of claim 1 comprising the steps of, a. Providing a bioabsorbable polymer that is soluble in a first solvent and substantially insoluble in a second solvent. b. Providing a form in the shape of the desired scaffold made of a material that is soluble in the second solvent and substantially insoluble in the first solvent. c. Providing a pore-forming substance that is soluble in both first and second solvents. d. Coating the form with a solution of bioabsorbable polymer and pore- forming substance dissolved in the first solvent. e. Removing the first solvent and causing the pore forming substance to phase separate from the bioabsorbable polymer. f. Using the second solvent to dissolve said form and said pore forming substance. g. Removing the second solvent from the finished porous scaffold.
12. A method of making a scaffold of claim 11 in which said bioabsorbable polymer is a copolymer of d,l-lactide and glycolide, said pore forming substance is poly(ethylene glycol), said form is made of sugar the first solvent is dichloromethane and the second solvent is water.
13. A method of making a scaffold of claim 1 comprising the steps of, a. Providing a thin, non-woven web of bioabsorbable fibers. b. Placing said web in a two-part mold that has cavities in one part and mating forms in the other part, said cavities and forms providing the desired shape and dimensions of the desired scaffolds. c. Closing the mold and applying sufficient heat and pressure to form the web into the desired porous structure. d. Removing the web from the mold and die-cut the molded scaffolds from the web.
14. A method of creating new hair comprising the steps of, a. Providing scaffolds of claim 1. b. Seeding hair follicle progenitor cells on said scaffolds. c. Implanting scaffolds of step 2 into skin where the growth of new hair is desired.
15. The method of creating new hair of claim 14 in which said progenitor cells used in step 2 are obtained from substructures within normal hair follicles that are known to contain such cells including the dermal papilla, the dermal sheath and the bulge area.
16. The method of creating new hair of claim 15 in which said progenitor cells are multiplied in culture prior to seeding on the scaffolds of claim 1.
17. The method of creating new hair of claim 14 in which the method of implantation of said scaffolds in step 3 is substantially equivalent to the procedure currently used by hair transplant surgeons to implant single hair grafts into the scalp.
AU2001279209A 2000-08-08 2001-08-07 Scaffolds for tissue engineered hair Ceased AU2001279209B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22363600P 2000-08-08 2000-08-08
US60/223,636 2000-08-08
PCT/US2001/024671 WO2002015952A1 (en) 2000-08-08 2001-08-07 Scaffolds for tissue engineered hair

Publications (2)

Publication Number Publication Date
AU2001279209A1 true AU2001279209A1 (en) 2002-05-30
AU2001279209B2 AU2001279209B2 (en) 2006-08-24

Family

ID=22837377

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001279209A Ceased AU2001279209B2 (en) 2000-08-08 2001-08-07 Scaffolds for tissue engineered hair
AU7920901A Pending AU7920901A (en) 2000-08-08 2001-08-07 Scaffolds for tissue engineered hair

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU7920901A Pending AU7920901A (en) 2000-08-08 2001-08-07 Scaffolds for tissue engineered hair

Country Status (10)

Country Link
US (1) US7198641B2 (en)
EP (1) EP1309361A1 (en)
JP (1) JP4017977B2 (en)
KR (1) KR20030043928A (en)
CN (1) CN1277585C (en)
AU (2) AU2001279209B2 (en)
BR (1) BR0113107A (en)
CA (1) CA2420901A1 (en)
MX (1) MXPA03001278A (en)
WO (1) WO2002015952A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884427B1 (en) * 1999-02-08 2005-04-26 Aderans Research Institute, Inc. Filamentary means for introducing agents into tissue of a living host
MXPA03001278A (en) 2000-08-08 2004-07-30 Aderans Res Inst Inc Scaffolds for tissue engineered hair.
GB0121985D0 (en) * 2001-09-11 2001-10-31 Isis Innovation Tissue engineering scaffolds
US7597885B2 (en) * 2004-03-26 2009-10-06 Aderans Research Institute, Inc. Tissue engineered biomimetic hair follicle graft
AR050212A1 (en) * 2004-08-13 2006-10-04 Aderans Res Inst Inc ORGANOGENESIS FROM DISCELLED CELLS
AU2005304567B2 (en) 2004-11-12 2011-10-27 Mayo Foundation For Medical Education And Research Photocrosslinkable poly(caprolactone fumarate)
ATE540984T1 (en) * 2004-11-18 2012-01-15 Mayo Foundation BLOCK COPOLYMERS FROM POLYCAPROLACTONE AND POLY (PROPYLENE FUMARATE)
CA2606396A1 (en) * 2005-04-29 2006-11-09 Mayo Foundation For Medical Education And Research Hydrophilic/hydrophobic polymer networks based on poly(caprolactone fumarate), poly(ethylene glycol fumarate), and copolymers thereof
PL1945757T3 (en) * 2005-10-17 2018-05-30 Aderans Research Institute, Inc. Method of delivering hair follicle progenitor cells to the skin
NL1030484C1 (en) * 2005-11-22 2007-05-23 Hair Science Inst Method for in vivo hair multiplication.
US20070148138A1 (en) * 2005-11-22 2007-06-28 Aderans Research Institute, Inc. Hair follicle graft from tissue engineered skin
US20070122387A1 (en) * 2005-11-22 2007-05-31 Aderans Research Institute, Inc. Hair grafts derived from plucked hair
US20070155273A1 (en) * 2005-12-16 2007-07-05 Cornell Research Foundation, Inc. Non-woven fabric for biomedical application based on poly(ester-amide)s
CA2642129C (en) * 2006-02-09 2012-08-21 Aderans Research Institute, Inc. Apparatus and methods for delivering fluid and material to a subject
US20070212335A1 (en) * 2006-03-07 2007-09-13 Hantash Basil M Treatment of alopecia by micropore delivery of stem cells
WO2008042216A2 (en) * 2006-09-28 2008-04-10 Follica, Inc. Methods, kits, and compositions for generating new hair follicles and growing hair
US7985537B2 (en) * 2007-06-12 2011-07-26 Aderans Research Institute, Inc. Methods for determining the hair follicle inductive properties of a composition
EP3858268A1 (en) 2008-04-01 2021-08-04 The General Hospital Corporation Apparatus for tissue grafting
US8957344B2 (en) 2009-09-30 2015-02-17 Illinois Tool Works Inc. Welding system with power line communication
CN106037889B (en) * 2010-05-07 2020-03-10 通用医疗公司 Method and apparatus for tissue transplantation and replication
WO2012148042A2 (en) * 2011-04-26 2012-11-01 Lee Hee Young Hair transplant material
EP2786770B1 (en) * 2011-08-30 2017-04-19 Kyoto University Porous scaffold material, and method for producing same
USD690004S1 (en) 2012-03-16 2013-09-17 Aderans Research Institute, Inc. Holder for a device for delivering cellular material and physiologic fluids
US9814802B2 (en) * 2012-04-30 2017-11-14 The University Of Kansas Method for promoting hair growth comprising implanting a tissue scaffold comprising CK-19 positive cells derived from Wharton's jelly mesenchymal stromal cells
WO2014016816A2 (en) * 2012-07-27 2014-01-30 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Polymeric mesh with selective permeability, for the repair and regeneration of tissues
US10118241B2 (en) 2012-09-07 2018-11-06 Illinois Tool Works Inc. Welding system with multiple user interface modules
US10543127B2 (en) 2013-02-20 2020-01-28 Cytrellis Biosystems, Inc. Methods and devices for skin tightening
JP2016529000A (en) 2013-08-09 2016-09-23 サイトレリス バイオシステムズ,インコーポレーテッド Method and apparatus for skin treatment using non-thermal tissue ablation
US9545302B2 (en) 2013-11-20 2017-01-17 Dermagenesis Llc Skin printing and auto-grafting
US10953143B2 (en) 2013-12-19 2021-03-23 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US9718141B2 (en) 2014-03-28 2017-08-01 Illinois Tool Works Inc. Systems and methods for prioritization of wireless control of a welding power supply
US9943924B2 (en) 2014-03-28 2018-04-17 Illinois Tool Works Inc. Systems and methods for wireless control of an engine-driven welding power supply
US9724778B2 (en) 2014-03-28 2017-08-08 Illinois Tool Works Inc. Systems and methods for wireless control of a welding power supply
US10464156B2 (en) 2014-03-28 2019-11-05 Illinois Tool Works Inc. Systems and methods for pairing of wireless control devices with a welding power supply
US11103948B2 (en) 2014-08-18 2021-08-31 Illinois Tool Works Inc. Systems and methods for a personally allocated interface for use in a welding system
WO2016077759A1 (en) 2014-11-14 2016-05-19 Cytrellis Biosystems, Inc. Devices and methods for ablation of the skin
US9743949B2 (en) 2015-04-22 2017-08-29 Medline Industries, Inc. Two-dimensional needle array device and method of use
AU2017245174A1 (en) 2016-03-29 2018-10-04 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
WO2018057630A1 (en) 2016-09-21 2018-03-29 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
CN109498850A (en) * 2018-12-11 2019-03-22 上海七木医疗器械有限公司 A kind of preparation method of Biodegradable fibers bracket

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946769A (en) * 1954-04-23 1960-07-26 Union Carbide Corp Linear polymers containing regularly recurring ester and amide linkages
US3025323A (en) * 1957-01-18 1962-03-13 Union Carbide Corp Amide diols and their esters
US3596292A (en) * 1969-02-20 1971-08-03 Franklin Institute Hair implant structure
US3966766A (en) * 1973-03-26 1976-06-29 Schering Corporation Monocyclic macrocyclic compounds and complexes thereof
DE2452740A1 (en) * 1974-11-07 1976-05-13 Bayer Ag UREA-DICARBONIC ANHYDRIDE-BASED PERFORMANCE
US4052988A (en) * 1976-01-12 1977-10-11 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
US4209607A (en) * 1978-05-12 1980-06-24 Ethicon, Inc. Polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
US4242931A (en) * 1979-02-22 1981-01-06 Burke Clement Gear wrench
US4226243A (en) * 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
US4529792A (en) * 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
US4343931A (en) * 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
DE3037269A1 (en) * 1980-10-02 1982-06-16 Dr. Beck & Co Ag, 2000 Hamburg HEAT-CURABLE, AMID AND IMID GROUPS CONTAINING POLYCONDENSATION PRODUCTS
US4458678A (en) * 1981-10-26 1984-07-10 Massachusetts Institute Of Technology Cell-seeding procedures involving fibrous lattices
US4505266A (en) * 1981-10-26 1985-03-19 Massachusetts Institute Of Technology Method of using a fibrous lattice
US4429080A (en) * 1982-07-01 1984-01-31 American Cyanamid Company Synthetic copolymer surgical articles and method of manufacturing the same
US4643734A (en) * 1983-05-05 1987-02-17 Hexcel Corporation Lactide/caprolactone polymer, method of making the same, composites thereof, and prostheses produced therefrom
US4604097A (en) * 1985-02-19 1986-08-05 University Of Dayton Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
GB8604360D0 (en) 1986-02-21 1986-03-26 Univ Dundee Stimulation of hair growth
CA1340581C (en) * 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
FR2612939B1 (en) * 1987-03-26 1989-06-23 Cird SKIN EQUIVALENT
US5274074A (en) * 1987-12-17 1993-12-28 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5147400A (en) * 1989-05-10 1992-09-15 United States Surgical Corporation Connective tissue prosthesis
JP2986509B2 (en) * 1989-05-26 1999-12-06 三井化学株式会社 Modified polyester resin composition, method for producing the same, and use thereof
US5091173A (en) * 1989-06-29 1992-02-25 The University Of Dundee Hair growth composition
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5423778A (en) * 1989-12-14 1995-06-13 Elof Eriksson System and method for transplantation of cells
US5697901A (en) * 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection
US5661132A (en) * 1989-12-14 1997-08-26 Auragen, Inc. Wound healing
US5133739A (en) * 1990-02-06 1992-07-28 Ethicon, Inc. Segmented copolymers of ε-caprolactone and glycolide
US5141522A (en) * 1990-02-06 1992-08-25 American Cyanamid Company Composite material having absorbable and non-absorbable components for use with mammalian tissue
US5545208A (en) * 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5061284A (en) * 1990-04-10 1991-10-29 Laghi Aldo A Silicone follicled hair implant
US5198507A (en) * 1990-06-12 1993-03-30 Rutgers, The State University Of New Jersey Synthesis of amino acid-derived bioerodible polymers
JPH06506366A (en) * 1990-12-06 1994-07-21 ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド Implantable bioabsorbable components
CA2060635A1 (en) * 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5756094A (en) * 1991-03-27 1998-05-26 Trustees Of The University Of Pennsylvania Methods for stimulating follicular growth
US5556783A (en) * 1991-03-27 1996-09-17 Trustees Of Univ. Of Penna Methods of culturing and modulating the growth of hair follicular stem cells
AU2605592A (en) * 1991-10-15 1993-04-22 Atrix Laboratories, Inc. Polymeric compositions useful as controlled release implants
US5286837A (en) * 1992-01-15 1994-02-15 Minnesota Mining And Manufacturing Company Process for increasing stability of poly(esteramides)
US5366756A (en) * 1992-06-15 1994-11-22 United States Surgical Corporation Method for treating bioabsorbable implant material
US5800537A (en) * 1992-08-07 1998-09-01 Tissue Engineering, Inc. Method and construct for producing graft tissue from an extracellular matrix
US5514378A (en) * 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
DE69316875T2 (en) * 1993-05-11 1998-08-13 Cooper Cameron Corp Valve assembly in the wellhead
US5522841A (en) * 1993-05-27 1996-06-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5403347A (en) * 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
WO1995005083A1 (en) * 1993-08-13 1995-02-23 Smith & Nephew Richards Inc Microporous polymeric foams and microtextured surfaces
US5639645A (en) * 1993-09-22 1997-06-17 Mitsubishi Corporation Recombinant Δ9 desaturase and a gene encoding the same
US5393323A (en) * 1993-11-05 1995-02-28 L'air Liquide S.A. Aromatic polyethersulfone gas separation membranes
US5721049A (en) * 1993-11-15 1998-02-24 Trustees Of The University Of Pennsylvania Composite materials using bone bioactive glass and ceramic fibers
US6093200A (en) * 1994-02-10 2000-07-25 United States Surgical Composite bioabsorbable materials and surgical articles made therefrom
US5626611A (en) * 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US5502092A (en) * 1994-02-18 1996-03-26 Minnesota Mining And Manufacturing Company Biocompatible porous matrix of bioabsorbable material
US5611811A (en) * 1994-04-29 1997-03-18 Star-Wood, Inc. Micro and mini hair transplant device
US5690961A (en) * 1994-12-22 1997-11-25 Hercules Incorporated Acidic polysaccharides crosslinked with polycarboxylic acids and their uses
AU6251196A (en) * 1995-06-07 1996-12-30 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein
US5591444A (en) 1995-07-28 1997-01-07 Isolagen Technologies, Inc. Use of autologous dermal fibroblasts for the repair of skin and soft tissue defects
EP0786259B1 (en) * 1996-01-19 2004-03-31 United States Surgical Corporation Absorbable polymer blends and surgical articles fabricated therefrom
US5723508A (en) * 1996-01-25 1998-03-03 Northwestern University Method of fabricating emulsion freeze-dried scaffold bodies and resulting products
FR2744017B1 (en) * 1996-01-26 1998-04-30 Carilene Lab COMBINATIONS OF PEROXIDE LIPIDS AND ORGANOSILIC COMPOUNDS, COSMETIC AND DERMATOLOGICAL COMPOSITIONS CONTAINING THEM AND THEIR APPLICATIONS, PARTICULARLY FOR THE TREATMENT OF ALOPECIA
US5703200A (en) 1996-03-15 1997-12-30 Ethicon, Inc. Absorbable copolymers and blends of 6,6-dialkyl-1,4-dioxepan-2-one and its cyclic dimer
US5939323A (en) * 1996-05-28 1999-08-17 Brown University Hyaluronan based biodegradable scaffolds for tissue repair
WO1998032398A1 (en) * 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
NL1005445C2 (en) 1997-03-05 1998-09-21 Gho St Holding B V Method of multiplying hair.
US6281256B1 (en) * 1997-03-31 2001-08-28 The Regents Of The University Of Michigan Open pore biodegradable matrices
US7419661B2 (en) * 1997-04-30 2008-09-02 The Centre Of Excellence For Life Sciences Limited Dermal sheath tissue in wound healing
US5993374A (en) * 1997-06-17 1999-11-30 Radiance Medical Systems, Inc. Microcapsules for site-specific delivery
US6120788A (en) * 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6639051B2 (en) * 1997-10-20 2003-10-28 Curis, Inc. Regulation of epithelial tissue by hedgehog-like polypeptides, and formulations and uses related thereto
JP2002500065A (en) * 1998-01-06 2002-01-08 バイオアミド・インコーポレイテッド Bioabsorbable fibers and reinforced composites made therefrom
US6503539B2 (en) * 1998-02-27 2003-01-07 Biora Bioex Ab Matrix protein compositions for wound healing
US6660301B1 (en) * 1998-03-06 2003-12-09 Biosphere Medical, Inc. Injectable microspheres for dermal augmentation and tissue bulking
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6027744A (en) * 1998-04-24 2000-02-22 University Of Massachusetts Medical Center Guided development and support of hydrogel-cell compositions
US6350284B1 (en) * 1998-09-14 2002-02-26 Bionx Implants, Oy Bioabsorbable, layered composite material for guided bone tissue regeneration
US6699287B2 (en) * 1998-09-24 2004-03-02 Korea Atomic Energy Research Institute Dermal scaffold using alkaline pre-treated chitosan matrix or alkaline pre-treated chitosan and alkaline pre-treated collagen mixed matrix
US6159950A (en) 1998-10-16 2000-12-12 Cornell Research Foundation, Inc. Method of modulating hair growth
EP1002859A1 (en) * 1998-11-10 2000-05-24 Isotis B.V. Seeding of cells
WO2000029553A1 (en) * 1998-11-19 2000-05-25 Organogenesis Inc. Bioengineered tissue constructs and methods for producing and using them
US6383220B1 (en) * 1998-11-30 2002-05-07 Isotis N.V. Artificial skin
US6147135A (en) * 1998-12-31 2000-11-14 Ethicon, Inc. Fabrication of biocompatible polymeric composites
US6884427B1 (en) * 1999-02-08 2005-04-26 Aderans Research Institute, Inc. Filamentary means for introducing agents into tissue of a living host
CA2361383A1 (en) * 1999-02-08 2000-08-10 Bioamide, Inc. Filamentary means for introducing agents into tissue of a living host
WO2000051662A1 (en) * 1999-03-04 2000-09-08 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
AU768478B2 (en) * 1999-04-16 2003-12-11 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
CN1378445B (en) * 1999-08-06 2013-02-06 得克萨斯系统大学评议会 Drug releasing biodegradable fiber implant
US6569143B2 (en) * 1999-10-14 2003-05-27 Becton, Dickinson And Company Method of intradermally injecting substances
US20020193740A1 (en) 1999-10-14 2002-12-19 Alchas Paul G. Method of intradermally injecting substances
US7560275B2 (en) * 1999-12-30 2009-07-14 Vbi Technologies, L.L.C. Compositions and methods for generating skin
JP2001286493A (en) * 2000-02-03 2001-10-16 Shiro Yamada Artificial hair for transplant and method of manufacture
US6436424B1 (en) 2000-03-20 2002-08-20 Biosphere Medical, Inc. Injectable and swellable microspheres for dermal augmentation
US7338657B2 (en) * 2001-03-15 2008-03-04 Biosphere Medical, Inc. Injectable microspheres for tissue construction
US6613798B1 (en) * 2000-03-30 2003-09-02 Curis, Inc. Small organic molecule regulators of cell proliferation
US6423252B1 (en) * 2000-06-23 2002-07-23 Ethicon, Inc. Methods of making micropatterned foams
MXPA03001278A (en) 2000-08-08 2004-07-30 Aderans Res Inst Inc Scaffolds for tissue engineered hair.
GB0031206D0 (en) * 2000-12-21 2001-01-31 Ibm Multi-platform command line interpretation
WO2002067856A2 (en) * 2001-02-23 2002-09-06 University Of Massachusetts Injection molding of living tissues
US6749792B2 (en) * 2001-07-09 2004-06-15 Lifescan, Inc. Micro-needles and methods of manufacture and use thereof
US20040068284A1 (en) * 2002-01-29 2004-04-08 Barrows Thomas H. Method for stimulating hair growth and kit for carrying out said method
US20030161815A1 (en) * 2002-02-12 2003-08-28 Intercytex Limited Cell delivery system
US20030195625A1 (en) * 2002-04-15 2003-10-16 Garcia Castro Marco A. Biodegradable follicle hair implant
DE10224982A1 (en) * 2002-06-05 2003-12-24 Rolf Hoffmann Mesenchymal stem cells of the hair follicle and their use

Similar Documents

Publication Publication Date Title
AU2001279209B2 (en) Scaffolds for tissue engineered hair
AU2001279209A1 (en) Scaffolds for tissue engineered hair
US6884427B1 (en) Filamentary means for introducing agents into tissue of a living host
US7597885B2 (en) Tissue engineered biomimetic hair follicle graft
KR101375828B1 (en) Complex Scaffold For Bone-Cartilage Regeneration, Method For Preparing Thereof And Composition for Treating Bone Cartilage Disease Comprising The Same
JP2005515802A (en) Hybrid / Synthetic Porous Extracellular Matrix Support Skeleton
WO1993023088A1 (en) Biotherapeutic cell-coated microspheres
JPH10234844A (en) Base material for regenerating cartilaginous tissue and regenerating method of cartilaginous tissue using the same
JP2003325656A (en) Biomedical scaffold and method for producing the same
JP2004535245A (en) Porous extracellular matrix scaffold materials and methods
US9629939B2 (en) Collagenous foam materials
AU771161B2 (en) Filamentary means for introducing agents into tissue of a living host
EP1923457B1 (en) Cell culture support embeddable in vivo
JP2003126236A (en) Porous support body prepared from biodegradable polymer for regeneration of damaged ocular tissue
JP2001204807A (en) Base material for tissue culture, and biomedical material made of same
KR20070031893A (en) Tissue engineered biomimetic hair follicle graft
JP2005523733A (en) Porous delivery support framework material and method
AU668959C (en) Biotherapeutic cell-coated microspheres
JP2000288080A (en) Adipose tissue-forming material