AU2001279158A1 - Continuous manufacturing process for alpha-olefins - Google Patents

Continuous manufacturing process for alpha-olefins

Info

Publication number
AU2001279158A1
AU2001279158A1 AU2001279158A AU7915801A AU2001279158A1 AU 2001279158 A1 AU2001279158 A1 AU 2001279158A1 AU 2001279158 A AU2001279158 A AU 2001279158A AU 7915801 A AU7915801 A AU 7915801A AU 2001279158 A1 AU2001279158 A1 AU 2001279158A1
Authority
AU
Australia
Prior art keywords
bound
carbon group
ring
ring atom
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2001279158A
Inventor
Rinaldo S. Schiffino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of AU2001279158A1 publication Critical patent/AU2001279158A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Description

TITLE
CONTINUOUS MANUFACTURING PROCESS FOR α-OLEFINS
FIELD OF THE INVENTION
A continuous manufacturing process for α-olefins using certain iron containing ethylene oligomerization catalysts together with alkylaluminum cocatalysts, in which using a low ratio of Al:Fe in the process results in a lowered formation of undesired polyethylene waxes and polymer.
TECHNICAL BACKGROUND -Olefins are important items of commerce, billions of kilograms being manufactured yearly. They are useful as monomers for (co)polymerizations and as chemical intermediates for the manufacture of many other materials, for example detergents and surfactants . Presently most α-olefins are made by the catalyzed oligomerization of ethylene by various catalysts, especially certain nickel complexes or aluminum alkyls, see for instance US4020121 and I. Krosch- witz, et al., Ed., Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., Vol. 17, John Wiley & Sons, New York, p 839-858.
Recently, as reported in US5955555 and US6103946, both of which are hereby incorporated by reference herein for all purposes as if fully set forth, it has been found that iron complexes of certain tridentate ligands are excellent catalysts for the production of α-olefins from ethylene. Among the options for using such catalysts are those in which the iron complexes are used in conjunction with a cocatalyst, particularly an alkylaluminum cocatalyst such as an alkyla- luminoxane .
It has recently been found, particularly in continuous processes using such iron complexes, that high molar ratios of Al:Fe lead to the undesirable formation of polyethylene waxes and polymers, which tend to foul the oligomerization apparatus. It has now been found that lower Al:Fe ratios diminish the formation of these undesirable polyethylenes, while not otherwise significantly deleteriously affecting the process .
SUMMARY OF THE INVENTION
This invention concerns a method for reducing the formation of polyethylene waxes and polymers in a continous process for the production of a linear α-olefin product, said continuous process comprising the step of contacting, in a continuous reactor, process ingredients comprising an ethylene oligomerization catalyst composition, ethylene and a cocatalyst, wherein:
(a) the ethylene oligomerization catalyst composition comprises an iron complex of a compound of the formula
wherein:
R1, R2 and R3 are each independently hydrogen, hydrocar- byl, substituted hydrocarbyl or an inert functional group, provided that any two of R1, R2 and R3 vicinal to one another taken together may form a ring;
R4 and R5 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;
R6 and R7 are each independently a substituted aryl having a first ring atom bound to the imino nitrogen, provided that: in R6, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that in R6, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; and
(b) the cocatalyst comprises an alkyl aluminum compound; said method for reducing comprising the step of contacting said process ingredients in amounts such that the molar ratio of Al in the cocatalyst to Fe in the ethylene oligomerization catalyst is about 2000 or less.
Stated another way, the present invention concerns the use, in the aforementioned continuous process, of a molar ratio of Al in the cocatalyst to Fe in the ethylene oligomerization catalyst is about 2000 or less, to reduce the formation of polyethylene waxes and polymers in such a con- tinous process.
The present invention also concerns a continuous process for the production of a linear α-olefin product, the process comprising the step of contacting, in a continuous reactor, process ingredients comprising an ethylene oli- gomerization catalyst composition, ethylene and a cocatalyst, wherein:
(a) the ethylene oligomerization catalyst composition comprises an iron complex of a compound of the formula
wherein:
R1, R2 and R3 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R1, R2 and R3 vicinal to one another taken together may form a ring;
R4 and R5 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;
R6 and R7 are each independently a substituted aryl having a first ring atom bound to the i ino nitrogen, provided that : in R6, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that in R6, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; and
(b) the cocatalyst comprises an alkyl aluminum compound; characterized in that the molar ratio of Al in the cocatalyst to Fe in the ethylene oligomerization catalyst is from about 5 to about 300.
These and other features and advantages of the present invention will be more readily understood by those of ordinary skill in the art from a reading of the following detailed description. It is to be appreciated that certain features of the invention which are, for clarity, described below in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Herein, certain terms are used. Some of them are:
A "hydrocarbyl group" is a univalent group containing only carbon and hydrogen. As examples of hydrocarbyls may be mentioned unsubstituted alkyls, cycloalkyls and aryls . If not otherwise stated, it is preferred that hydrocarbyl groups (and alkyl groups) herein contain 1 to about 30 carbon atoms .
By "substituted hydrocarbyl" herein is meant a hydrocarbyl group that contains one or more substituent groups which are inert under the process conditions to which the compound containing these groups is subjected (e.g., an inert functional group, see below) . The substituent groups also do not substantially detrimentally interfere with the oligomerization process or operation of the oligomerization catalyst system. If not otherwise stated, it is preferred that substituted hydrocarbyl groups herein contain 1 to about 30 carbon atoms. Included in the meaning of "substituted" are rings containing one or more heteroatoms, such as nitrogen, oxygen and/or sulfur, and the free valence of the substituted hydrocarbyl may be to the heteroatom. In a substituted hydrocarbyl, all of the hydrogens may be substituted, as in trifluoromethyl.
By "(inert) functional group" herein is meant a group, other than hydrocarbyl or substituted hydrocarbyl, which is inert under the process conditions to which the compound containing the group is subjected. The functional groups also do not substantially deleteriously interfere with any process described herein that the compound in which they are present may take part in. Examples of functional groups include halo (fluoro, chloro, bromo and iodo) , and ether such as -OR50 wherein R50 is hydrocarbyl or substituted hydrocarbyl. In cases in which the functional group may be near a transition metal (Fe) atom, the functional group alone should not coordinate to the metal atom (Fe) more strongly than the groups in those compounds that are shown as coordinating to the metal atom, that is they should not displace the desired coordinating group.
By a "cocatalyst" or a "catalyst activator" is meant one or more compounds that react with a transition metal compound to form an activated catalyst species . One such catalyst activator is an "alkyl aluminum compound" which, herein, is meant a compound in which at least one alkyl group is bound to an aluminum atom. Other groups such as, for example, alkoxide, hydride and halogen may also be bound to aluminum atoms in the compound.
By a "linear α-olefin product" is meant a composition predominantly comprising a compound (or mixture of compounds) of the formula H (CH2CH2) qCH=CH2 wherein q is an integer of 1 to about 18. In most cases, the linear α-olefin product of the present process will be a mixture of compounds having differing values of q of from 1 to 18, with a minor amount of compounds having q values of more than 18. Preferably less than 50 weight percent, and more preferably less than 20 weight percent, of the product will have q values over 18. The product may further contain small amounts (preferably less than 30 weight percent, more preferably less than 10 weight percent, and especially preferably less than 2 weight percent) of other types of compounds such as alkanes, branched alkenes, dienes and/or internal olefins.
By a "primary carbon group" herein is meant a group of the formula -CH2 , wherein the free valence is to any other atom, and the bond represented by the solid line is to a ring atom of a substituted aryl to which the primary carbon group is attached. Thus the free valence may be bonded to a hydrogen atom, a halogen atom, a carbon atom, an oxygen atom, a sulfur atom, etc. In other words, the free valence may be to hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group. Examples of primary carbon groups include -CH3, -CH2CH(CH3) 2, -CH2C1, -CH2C6H5, -OCH3 and -CH2OCH3.
By a "secondary carbon group" is meant the group
•CH wherein the bond represented by the solid line is to a ring atom of a substituted aryl to which the secondary carbon group is attached, and both free bonds represented by the dashed lines are to an atom or atoms other than hydrogen. These atoms or groups may be the same or different. In other words the free valences represented by the dashed lines may be hydrocarbyl, substituted hydrocarbyl or inert functional groups. Examples of secondary carbon groups include -CH(CH3)2, -CHC12, -CH(C6H5)2, cyclohexyl, -CH(CH3)OCH3, and -CH=CCH3.
By a "tertiary carbon group" is meant a group of the formula
wherein the bond represented by the solid line is to a ring atom of a substituted aryl to which the tertiary carbon group is attached, and the three free bonds represented by the dashed lines are to an atom or atoms other than hydrogen. In other words, the bonds represented by the dashed lines are to hydrocarbyl, substituted hydrocarbyl or inert functional groups . Examples of tetiary carbon groups include -C(CH3)3, -C(C6H5)3, -CC13, -CF3, -C (CH3) 2OCH3, -C≡CH, -C(CH3)2CH=CH2, aryl and substituted aryl such as phenyl and 1-adamantyl .
By "aryl" is meant a monovalent aromatic group in whicl the free valence is to the carbon atom of an aromatic ring. An aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups.
By "substituted aryl" is meant a monovalent aromatic group substituted as set forth in the above definition of "substituted hydrocarbyl". Similar to an aryl, a substituted aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups; however, when the substituted aryl has a heteroaromatic ring, the free valence in the substituted aryl group can be to a het- eroatom (such as nitrogen) of the heteroaromatic ring instead of a carbon.
By a "first ring atom in R6 and R7 bound to an imino nitrogen atom" is meant the ring atom in these groups bound to an imino nitrogen shown in (I), for example
the atoms shown in the 1-position in the rings in (II) and (III) are the first ring atoms bound to an imino carbon atom (other groups which may be substituted on the aryl groups are not shown) . Ring atoms adjacent to the first ring atoms are shown, for example, in (IV) and (V) , where the open valencies to these adjacent atoms are shown by dashed lines (the 2, 6-positions in (IV) and the 2 , 5-positions in (V)).
In one preferred compound (I) R is
and R7 is wherein:
R8 is a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and
R9, R10, R11, R14, R15, R16 and R17 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group; provided that: when R8 is a halogen or primary carbon group none, one or two of R12, R13 and R17 are a halogen or a primary carbon group, with the remainder of R12, R13 and R17 being hydrogen; or when R8 is a secondary carbon group, none or one of R12, R13 and R17 is a halogen, a primary carbon group or a secondary carbon group, with the remainder of R12, R13 and R17 being hydrogen; or when R8 is a tertiary carbon group, none or one of R12, R13 and R17 is tertiary carbon group, with the remainder of R12, R13 and R17 being hydrogen; and further provided that any two of R8, R9, R10, R11, R12, R13, R14, R15, R16 and R17 vicinal to one another, taken together may form a ring.
In the above formulas (VI) and (VII) , R8 corresponds to the second ring atom adjacent to the first ring atom bound to the imino nitrogen, and R12, R13 and R17 correspond to the other ring atoms adjacent to the first ring atom.
In compounds (I) containing (VI) and (VII) , it is particularly preferred that: if R8 is a primary carbon group, R13 is a primary carbon group, and R12 and R17 are hydrogen; or if R8 is a secondary carbon group, R13 is a primary carbon group or a secondary carbon group, more preferably a secondary carbon group, and R12 and R17 are hydrogen; or if R8 is a tertiary carbon group (more preferably a tri- halo tertiary carbon group such as a trihalomethyl) , R13 is a tertiary carbon group (more preferably a trihalotertiary group such as a trihalomethyl) , and R12 and R17 are hydrogen; or if R8 is a halogen, R13 is a halogen, and R12 and R17 are hydrogen .
In all specific preferred compounds (I) in which (VI) and (VII) appear, it is preferred that R1, R2 and R3 are hydrogen; and/or R4 and R5 are methyl. It is further preferred that:
R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is methyl; and R8 is a primary carbon group, more preferably methyl; or
R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is ethyl; and R8 is a primary carbon group, more preferably ethyl ; or
R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is isopropyl; and R8 is a primary carbon group, more preferably isopropyl; or
R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is n-propyl; and R8 is a primary carbon group, more preferably n-propyl ; or
R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is chloro; and R8 is a halogen, more preferably chloro; or R9, R10, R11, R12, R14, R15, R16 and R17 are all hydrogen; R13 is trihalomethyl, more preferably trifluoromethyl; and R8 is a trihalomethyl, more preferably trifluoromethyl .
In another preferred embodiment of (I) , R6 and R7 are, respectively
(VIII ) ( IX) wherein:
R18 is a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and
R19, R20, R23 and R24 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group; Provided that : when R18 is a halogen or primary carbon group none, one or two of R21, R22 and R25 are a halogen or a primary carbon group, with the remainder of R21, R22 and R25 being hydrogen; or when R18 is a secondary carbon group, none or one of R21, R22 and R25 is a halogen, a primary carbon group or a secondary carbon group, with the remainder of R21, R22 and R25 being hydrogen; when R18 is a tertiary carbon group, none or one of R21, R22 and R25 is a tertiary carbon group, with the remainder of of R21, R22 and R25 being hydrogen; and further provided that any two of R18, R19, R20, R21, R22, R23, R24 and R25 vicinal to one another, taken together may form a ring.
In the above formulas (VIII) and (IX) , R18 corresponds to the second ring atom adjacent to the first ring atom bound to the imino nitrogen, and R21, R22 and R25 correspond to the other ring atoms adjacent to the first ring atom.
In compounds (I) containing (VIII) and (IX) , it is particularly preferred that: if R18 is a primary carbon group, R22 is a primary carbon group, and R21 and R25 are hydrogen; or if R18 is a secondary carbon group, R22 is a primary carbon 'group or a secondary carbon group, more preferably a secondary carbon group, and R21 and R25 are hydrogen; or if R18 is a tertiary carbon group (more preferably a trihalo tertiary carbon group such as a trihalomethyl) , R22 is a tertiary carbon group (more preferably a trihaloterti- ary group such as a trihalomethyl) , and R21 and R25 are hydrogen; or if R18 is a halogen, R22 is a halogen, and R21 and R25 are hydrogen.
In all specific preferred compounds (I) in which (VIII) and (IX) appear, it is preferred that R1, R2 and R3 are hydrogen; and/or R4 and R5 are methyl. It is further preferred that:
R19, R20, R21, R23 and R24 are all hydrogen; R22 is methyl; and R18 is a primary carbon group, more preferably methyl; or
R19, R20, R21, R23 and R24 are all hydrogen; R22 is ethyl; and R18 is a primary carbon group, more preferably ethyl; or
R19, R20, R21, R23 and R24 are all hydrogen; R22 is isopropyl; and R18 is a primary carbon group, more preferably isopropyl ; or
R19, R20, R21, R23 and R24 are all hydrogen; R22 is n- propyl; and R18 is a primary carbon group, more preferably n- propyl ; or
R19, R20, R21, R23 and R24 are all hydrogen; R22 is chloro or bromo; and R18 is a halogen, more preferably chloro or bromo. Compound (I) and its iron complexes (the oligomerization catalyst) may be prepared by a variety of methods, see for instance previously incorporated US5955555 and US6103946, as well as US6232259 and WO00/08034, both of which are also incorporated by reference herein for all purposes as if fully set forth.
It is preferred herein to react an iron complex of (I) , such as a complex of (I) with FeCl2, with the cocatalyst (e.g., the alkylaluminum compound), preferably an aluminox- ane such as methylaluminoxane, to form an active ethylene oligomerization species. The molar ratio of aluminum (as alkylaluminum compound) to iron (as a complex) in the oligomerization preferably is about 2000 or less. A more preferred upper limit is about 1500 or less, still more preferably about 1000 or less, and especially about 700 or less; and as a lower limit is about 5 or more, more preferably about 10 or more, still more preferably about 100 or more, even more preferably about 300 or more, and especially about 500 or more. For clarity, any combination of the aforementioned upper and lower limits may be used to define a preferred range herein such as, for example, from about 5 to about 1500, from about 5 to about 1000, from about 100 to about 1000, from about 500 to about 700, and other other such combination.
Another preferred range in accordance with the present invention is from about 5 to about 300. Within this range, a more preferred lower limit is about 10 or more, more preferably about 20 or more, still more preferably about 30 or more, and especially about 50 or more; and a more preferred upper limit about 200 or less, still more preferably about 150 or less, and especially about 100 or less. Again for clarity, any combination of the aforementioned upper and lower limits may be used to define a preferred range herein. It should be noted that the above ranges refer to steady state operating conditions. Under certain circumstances, it may be beneficial to start the reaction under higher Al:Fe ratios then, in the course of the process stabilizing, lower the Al:Fe ratio to the desired steady state level. For example, the reaction could be started at above any of the upper ratio limits mentioned above, then reduced to the desired level at or above any of the lower ratio limits mentioned above.
Preferred alkylaluminum compounds include one or more of R51 3A1, R51A1C12, R51 2A1C1, and "R51A10" (alkylaluminoxanes) , wherein R51 is alkyl containing 1 to 25 carbon atoms, preferably 1 to 4 carbon atoms. Specific alkylaluminum compounds include methylaluminoxane (which is an oligomer with the general formula (MeAlO)n) , (C2H5)2A1C1, C2H5AlCl2, (C2H5)3A1 and ( (CH3)2CHCH2) 3A1. A preferred alkylaluminum compound is an aluminoxane, especially methyl aluminoxane.
The conditions for the oligomerization described in previously incorporated US6103946 and United States Appl . Ser. No. 09/906,974 (filed July 17, 2001), entitled "MANUFACTURING PROCESS FOR ALPHA-OLEFINS" (corresponding to PCT Appln. PCT/US01/22628, filed July 18, 2001), may otherwise be followed.
For example, the oligomerization reaction may be run at a wide range of temperatures generally ranging from about -100°C to about +300°C, preferably about 0°C to about 200°C, and more preferably about 20°C to about 100°C. Pressures may also vary widely, ranging from an ethylene pressure (gauge) of from about 0 kPa to about 35 MPa, more preferably from about 500 kPa to about 15 MPa.
The process may be run in gas or liquid phase, but is typically run in liquid phase, preferably using an aprotic organic liquid. The process ingredients and products may or may not be soluble in these liquids, but obviously these liquids should not prevent the oligomerization from ocur- ring. Suitable liquids include alkanes, alkenes, cycloal- kanes, selected halogenated hydrocarbons and aromatic hydrocarbons. Specific useful liquids include hexane, toluene, benzene and the α-olefins themselves.
The ethylene oligomerizations herein may also initially be carried out in the solid state by, for instance, supporting and active catalyst and/or aluminum compound on a substrate such as silica or alumina. Alternatively a solution of the catalyst precursor may be exposed to a support having an alkylaluminum compound on its surface. These "heterogeneous" catalysts may be used to catalyze oligomerization in the gas phase or the liquid phase. By "gas phase" is meant that the ethylene is transported to contact with the catalyst particle while the ethylene is in the gas phase. In general, the oligomerization may be run as a continuous gas phase, solution or slurry processes.
It is particularly preferred to run the oligomerization as "essentially single phase liquid full", which means that at least 95 volume percent of the reactor volume is occupied by a liquid that is a single phase. Small amounts of the reactor volume may be taken up by gas, for example ethylene may be added to the reactor as a gas, which dissolves rapidly under the process conditions. Nevertheless, some small amount of dissolving ethylene gas may be present. Not counted in the reactor volume is any solid resulting from fouling of the reactor. See, for example, previously incorporated United States Appl. Ser. No. 09/ Ser. No. 09/906,974 (filed July 17, 2001), entitled "MANUFACTURING PROCESS FOR ALPHA-OLEFINS" (corresponding to PCT Appln. PCT/US01/22628 , filed July 18, 2001) . These molar ratios of Al:Fe described herein are .based on the process ingredients, that is, the ingredients comprising the reactor feed; therefore, it is preferred at such low molar Al:Fe ratios to purify the process ingredients so that the alkylaluminum compounds are not "used up" reacting with moisture or other impurities.
Using the oligomerization catalysts described herein a mixture of α-olefins is obtained. A measure of the molecular weights of the olefins obtained is factor K from the Schulz-Flory theory (see for instance B. Elvers, et al . , Ed. Ullmann's Encyclopedia of Industrial Chemistry, Vol. A13, VCH Verlagsgesellschaft mbH, Weinheim, 1989, p. 243-247 and 275-276). This is defined as:
K = n(Cn+2 olefin) /n(Cn olefin) wherein n(Cn olefin) is the number of moles of olefin containing n carbon atoms, and n(Cn+2 olefin) is the number of moles of olefin containing n+2 carbon atoms, or in other words the next higher oligomer of Cn olefin. From this can be determined the weight (mass) fractions of the various olefins in the resulting oligomeric reaction product mixture. The K factor is preferred to be in the range of about
0.65 to about 0.8 to make the α-olefins of the most commercial interest. This factor can be varied to some extent, see for instance previously incorporated US6103946 and United States Appln. Ser. No. 09/906,974 (filed July 17, 2001) , entitled "MANUFACTURING PROCESS FOR ALPHA-OLEFINS" (corresponding to PCT Appln. PCT/US01/22628, filed July 18, 2001) .

Claims (8)

CLAIMSWhat is claimed is:
1. A method for reducing the formation of polyethylene waxes and polymers in a continous process for the production of a linear α-olefin product, said continuous process comprising the step of contacting, in a continuous reactor, process ingredients comprising an ethylene oligomerization catalyst composition, ethylene and a cocatalyst, wherein:
(a) the ethylene oligomerization catalyst composition comprises an iron complex of a compound of the formula
wherein:
R1, R2 and R3 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R1, R2 and R3 vicinal to one another taken together may form a ring;
R4 and R5 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;
R6 and R7 are each independently a substituted aryl having a first ring atom bound to the imino nitrogen, provided that: in R6, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that in R6, when said second ring atom is bound to a halogen or a primary carbpn group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the re- mainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in Rδ and R7 adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; and
(b) the cocatalyst comprises an alkyl aluminum compound; said method for reducing comprising the step of contacting said process ingredients in amounts such that the molar ratio of Al in the cocatalyst to Fe in the ethylene oligomerization catalyst is about 2000 or less.
2. The method of claim 1, wherein said molar ratio is from about 100 to about 1500.
3. The method of claim 1, wherein said molar ratio is from about 300 to about 1000.
4. The method of claim 1, wherein said molar ratio is from about 500 to about 700.
5. The method of claim 1, wherein said molar ratio is from about 5 to about 300.
6. The method of claim 1, wherein the continuous reactor is essentially single phase liquid full.
7. A continuous process for the production of a linear α-olefin product, the process comprising the step of contacting, in a continuous reactor, process ingredients com- prising an ethylene oligomerization catalyst composition, ethylene and a cocatalyst, wherein:
(a) the ethylene oligomerization catalyst composition comprises an iron complex of a compound of the formula
wherein:
R1, R2 and R3 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R1, R2 and R3 vicinal to one another taken together may form a ring;
R4 and R5 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;
R6 and R7 are each independently a substituted aryl having a first ring atom bound to the imino nitrogen, provided that: in R6, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that in R6, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R5, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or in R6, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R6 and R7 adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; and
(b) the cocatalyst comprises an alkyl aluminum compound; characterized in that the molar ratio of Al in the cocatalyst to Fe in the ethylene oligomerization catalyst is from about 5 to about 300.
8. The process of claim 7, wherein the continuous reactor is essentially single phase liquid full.
AU2001279158A 2000-08-03 2001-08-03 Continuous manufacturing process for alpha-olefins Abandoned AU2001279158A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22278600P 2000-08-03 2000-08-03
US60222786 2000-08-03
PCT/US2001/024297 WO2002012151A1 (en) 2000-08-03 2001-08-03 CONTINUOUS MANUFACTURING PROCESS FOR α-OLEFINS

Publications (1)

Publication Number Publication Date
AU2001279158A1 true AU2001279158A1 (en) 2002-02-18

Family

ID=22833672

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2001279158A Abandoned AU2001279158A1 (en) 2000-08-03 2001-08-03 Continuous manufacturing process for alpha-olefins

Country Status (10)

Country Link
EP (1) EP1305271B1 (en)
JP (1) JP2004511437A (en)
KR (1) KR20030046401A (en)
CN (1) CN1321956C (en)
AU (1) AU2001279158A1 (en)
BR (1) BR0113137A (en)
CA (1) CA2413751A1 (en)
DE (1) DE60137850D1 (en)
MX (1) MXPA03000777A (en)
WO (1) WO2002012151A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710006B2 (en) 2000-02-09 2004-03-23 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
DE10215754A1 (en) 2002-04-10 2003-10-30 Basf Ag Process for oligomerizing olefins
US7053020B2 (en) 2002-09-25 2006-05-30 Shell Oil Company Catalyst systems for ethylene oligomerisation to linear alpha olefins
KR102428770B1 (en) 2016-07-14 2022-08-04 에스케이이노베이션 주식회사 Oligomerisation of ethylene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906344B2 (en) * 1996-06-17 2009-02-18 ExxonMobil Chemical Patents Inc. Elevated pressure polymerization processes with late transition metal catalyst systems
IL129929A0 (en) * 1996-12-17 2000-02-29 Du Pont Polymerization of ethylene with specific iron or cobalt complexes novel pyridinebis (imines) and novel complexes of pyridinebis(imines) with iron and cobalt
US6103946A (en) * 1997-07-15 2000-08-15 E. I. Du Pont De Nemours And Company Manufacture of α-olefins
GB9817004D0 (en) * 1998-08-06 1998-09-30 Bp Chem Int Ltd Preparation of polymerisation catalysts
GB9819847D0 (en) * 1998-09-12 1998-11-04 Bp Chem Int Ltd Novel compounds
US6291733B1 (en) * 1999-06-02 2001-09-18 Chevron Chemical Company Llc Process for dimerizing olefins
ID28180A (en) * 1999-06-11 2001-05-10 Idemitsu Petrochemical Co CATALYST FOR PRODUCING ALVA-OLEFIN AND METHODS FOR PRODUCING ALVA OLEFIN
WO2001023444A1 (en) * 1999-09-29 2001-04-05 E.I. Du Pont De Nemours And Company Polymerization of olefins with bimetallic polymerisation catalyst system
US6534691B2 (en) * 2000-07-18 2003-03-18 E. I. Du Pont De Nemours And Company Manufacturing process for α-olefins

Also Published As

Publication number Publication date
BR0113137A (en) 2003-07-01
EP1305271B1 (en) 2009-03-04
CA2413751A1 (en) 2002-02-14
EP1305271A1 (en) 2003-05-02
CN1444551A (en) 2003-09-24
WO2002012151A1 (en) 2002-02-14
CN1321956C (en) 2007-06-20
KR20030046401A (en) 2003-06-12
DE60137850D1 (en) 2009-04-16
JP2004511437A (en) 2004-04-15
MXPA03000777A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US6555723B2 (en) Continuous manufacturing process for alpha-olefins
US6489497B1 (en) Manufacture of α-olefins
EP1311464B1 (en) Manufacturing process for alpha-olefins
EP1740598B1 (en) Transition metal complexes
RU2275349C2 (en) Method for production of higher alpha-olefins and/or alkyl-branched alpha-olefins and composition based on the same
US7001964B2 (en) Selective isomerization and linear dimerization of olefins using cobalt catalysts
US6740715B2 (en) Manufacture of alpha-olefins
JP4857269B2 (en) Process for the preparation of linear alpha olefins
US6911505B2 (en) Selective isomerization and linear dimerization of olefins using cobalt catalysts
US20020177744A1 (en) Linear alpha-olefin dimers possessing substantial linearity
EP1539659B1 (en) Process for producing alpha-olefins
US7982085B2 (en) In-line process for generating comonomer
US20040143147A1 (en) Process for producing alpha-olefins
JPH06199919A (en) Catalyst composition for oligomeration reaction and cooligomeration reaction of alkene
EP1305271B1 (en) Continuous manufacturing process for alpha-olefins
JPH08509518A (en) Catalyst composition for alkene oligomerization and co-oligomerization
MXPA99011976A (en) Manufacture of alpha-olefins