AU2001269826A1 - Computer immune system and method for detecting unwanted code in a computer system - Google Patents
Computer immune system and method for detecting unwanted code in a computer systemInfo
- Publication number
- AU2001269826A1 AU2001269826A1 AU2001269826A AU6982601A AU2001269826A1 AU 2001269826 A1 AU2001269826 A1 AU 2001269826A1 AU 2001269826 A AU2001269826 A AU 2001269826A AU 6982601 A AU6982601 A AU 6982601A AU 2001269826 A1 AU2001269826 A1 AU 2001269826A1
- Authority
- AU
- Australia
- Prior art keywords
- program
- behavior pattern
- virtual machine
- behavior
- virtual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
- G06F21/562—Static detection
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Virology (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Debugging And Monitoring (AREA)
- Storage Device Security (AREA)
Description
Computer Immune System and Method for Detecting Unwanted Code in a Computer System
PRIORITY APPLICATION NOTICE
This application claims priority from United States provisional patent application Serial No. 60/218,489, filed July 17, 2000, which application is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of computer security and specifically to the detection of computer programs that exhibit malicious or self-propagating behavior including, for example, computer viruses and trojans.
2. Discussion of the Related Art Detection of viruses has been a concern throughout the era of the personal computer. With the growth of communication networks such as the Internet and increasing interchange of data, including the rapid growth in the use of e-mail for communications, the infection of computers through communications or file exchange is an increasingly significant consideration. Infections take various forms, but are typically related to computer viruses, trojan programs, or other forms of malicious code. Recent incidents of e-mail mediated virus attacks have been dramatic both for the speed of propagation and for the extent of damage, with Internet service providers (ISPs) and companies suffering service problems and a loss of e-mail capability. In many instances, attempts to adequately prevent file exchange or e-mail mediated
infections significantly inconvenience computer users. Improved strategies for detecting and dealing with virus attacks are desired.
One conventional technique for detecting viruses is signature scanning. Signature scanning systems use sample code patterns extracted from known malicious code and scan for the occurrence of these patterns in other program code. In some cases program code that is scanned is first decrypted through emulation, and the resulting code is scanned for signatures or function signatures. A primary limitation of this signature scanning method is that only known malicious code is detected, that is, only code that matches the stored sample signatures of known malicious code is identified as being infected. All viruses or malicious code not previously identified and all viruses or malicious code created after the last update to the signature database will not be detected. Thus, newly created viruses are not detected by this method; neither are viruses with code in which the signature, previously extracted and contained in the signature database, has been overwritten.
In addition, the signature analysis technique fails to identify the presence of a virus if the signature is not aligned in the code in the expected fashion. Alternately, the authors of a virus may obscure the identity of the virus by opcode substitution or by inserting dummy or random code into virus functions. Nonsense code can be inserted that alters the signature of the virus to a sufficient extent as to be undetectable by a signature scanning program, without diminishing the ability of the virus to propagate and deliver its payload.
Another virus detection strategy is integrity checking. Integrity checking systems extract a code sample from known, benign application program code. The code sample is stored, together with information from the program file such as the executable program header and the file length, as well as the date and time of the sample. The program file is checked at regular intervals against this database to ensure that the program file has not been modified. Integrity checking programs generate long lists of modified files when a user upgrades the operating system of the computer or installs or
upgrades application software. A main disadvantage of an integrity check based virus detection system is that a great many warnings of virus activity issue when any modification of an application program is performed. It is difficult for a user to determine when a warning represents a legitimate attack on the computer system.
Checksum monitoring systems detect viruses by generating a cyclic redundancy check (CRC) value for each program file. Modification of the program file is detected by a variation in the CRC value. Checksum monitors improve on integrity check systems in that it is more difficult for malicious code to defeat the monitoring. On the other hand, checksum monitors exhibit the same limitations as integrity checking systems in that many false warnings issue and it is difficult to identify which warnings represent actual viruses or infection.
Behavior interception systems detect virus activity by interacting with the operating system of the target computer and monitoring for potentially malicious behavior. When such malicious behavior is detected, the action is blocked and the user is informed that a potentially dangerous action is about to take place. The potentially malicious code can be allowed to perform this action by the user. This makes the behavior interception system somewhat unreliable, because the effectiveness of the system depends on user input. In addition, resident behavior interception systems are sometimes detected and disabled by malicious code.
Another conventional strategy for detecting infections is the use of bait files. This strategy is typically used in combination with other virus detection strategies to detect an existing and active infection. This means that the malicious code is presently running on the target computer and is modifying files. The virus is detected when the bait file is modified. Many viruses are aware of bait files and do not modify files that are either too small, obviously a bait file because of their structure or have a predetermined content in the file name.
It is apparent that improved techniques for detecting viruses and other malicious types of code are desirable.
SUMMARY OF THE PREFERRED EMBODIMENTS One aspect of the present invention provides a method for identifying presence of malicious code in program code within a computer system, including initializing a virtual machine within the computer system. The initialized virtual machine comprises software simulating functionality of a central processing unit and memory. The virtual machine virtually executes a target program so that the target program interacts with the computer system only through the virtual machine. The method includes analyzing behavior of the target program following virtual execution to identify occurrence of malicious code behavior and indicating in a behavior pattern the occurrence of malicious code behavior. The virtual machine is terminated at the end of the analysis process, thereby removing from the computer system a copy of the target program that was contained within the virtual machine.
Another aspect of the present invention provides a method for identifying the presence of malicious code in program code within a computer system. The method includes initializing a virtual machine within the computer system, the virtual machine comprising software simulating functionality of a central processing unit, memory and an operating system including interrupt calls to the virtual operating system. A target program is virtually executed within the virtual machine so that the target program interacts with the virtual operating system and the virtual central processing unit through the virtual machine. Behavior of the target program is monitored during virtual execution to identify presence of malicious code and the occurrence of malicious code behavior is indicated in a behavior pattern. The virtual machine is terminated, leaving behind a record of the behavior pattern characteristic of the analyzed target program.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a behavior pattern generated according to the analytical behavior method, showing the behavior pattern for code that is not infected and is infected with a computer virus. Each bit may be a flag indicating an action. The total stream of bits is a value indicative of the behavior of the program.
FIG. 2 shows a block diagram of components used in a preferred implementation of the analytical detection method.
FIG. 3 schematically illustrates the COM file format, used as an example of the function of the program structure extractor and program loader.
FIG. 4 illustrates an interface of the virtual PC to various program file formats. Before virtualization can take place, the program loader preferably extracts the correct entry point, code and initialized data from the program file. The file offset to the entry point code is given in the program header and varies depending on the type of file that contains the program.
FIG. 5 schematically illustrates the virtual PC memory map after loading a binary image (.COM) program and after loading a MZ-executable program. To virtualize the code in the desired manner, the structure of the virtual PC and its memory map contains the same information as it would if the code was executed on the physical PC which runs the virtual machine containing the Virtual PC.
FIG. 6 provides a detailed diagram showing components of a preferred implementation of the Virtual PC. The virtual PC contains the same components that are used in a physical computer, except that all Virtual PC components are simulated in software running as a virtual machine on a physical computer.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A particularly preferred embodiment of the present invention provides an automated analysis system that detects viruses and other types of
malicious code within a computer system by generating and subsequently analyzing a behavior pattern for each computer program introduced to the computer system. New or modified computer programs are analyzed before being executed by the computer system. Most preferably the computer system initiates a virtual machine representing a simulation of the computer system and the virtual machine executes the new or modified computer program to generate a behavior pattern prior to the new computer program being executed by the physical computer system. An initial analysis is performed on the behavior pattern to identify infected programs upon initial presentation of the program to the computer system. The analysis system also stores behavior patterns and corresponding analysis results in a database. Newly infected programs can be detected by subtracting the stored behavior pattern for that program from a newly generated behavior pattern, and analyzing the resulting pattern to identify an infection or payload pattern associated with malicious code.
A variety of different terms are used in programming to describe different functional programming subunits. At different times and for different programming languages subunits of various sorts have been called functions, routines, subprograms, subroutines and other names. Such designations and the context or differences they represent are not significant to the present discussion and so this discussion is made simply in terms of programs, intending the term program to refer to functional programming units of any size that are sufficient to perform a defined task within a computer system or computing environment. Such specialized functions as those performed by macros within certain word processing programs, including for example, in Visual Basic macros for Microsoft Word documents, are included within this general discussion. In this sense, individual documents may be considered to be programs within the context of this discussion. For convenience and brevity, this discussion references viruses in the known sense of that term as being a self -propagating program generally
undesired in the infected computer system. As used here, the term Windows is intended to reference any of the personal desktop operating systems sold by the Microsoft Corporation under the Windows brand name. The term PC or personal computer is used, unless specifically modified to indicate otherwise, to indicate a computer system based on the well-known x86 architecture, including those machines that presently are based on the microprocessor sold by Intel Corporation under its Pentium brand name and successors to that microprocessor and architecture. This discussion is provided to illustrate implementation of aspects of the invention. Aspects of the present invention find application in a range of different computer systems in addition to the illustrated personal computer systems.
The present inventor has analyzed the behavior of a variety of different viruses and other malignant source code. Certain general characteristics of viruses have been identified. A virus needs to infect other programs and eventually other computers to propagate. Viruses consequently include infection loops that copy the virus into another executable program or sometimes into documents, in the exemplary case of Visual Basic macro viruses. Viruses and trojans generally contain payloads. The payload allows the virus to affect the infected system or communicate its presence. A payload might be, for example, a message that pops up to announce the virus or a malicious function that damages the infected computer, for example by corrupting or erasing the data on the hard disk or by altering or disabling the BIOS within the BIOS flash or EEPROM.
Another common characteristic of viruses is that the virus becomes resident in the memory. DOS viruses need to copy themselves into memory and stay resident. Most viruses do not use the obvious terminate and stay resident (TSR) call but instead use a procedure that copies the virus into high memory. The virus then can directly modify the data in the high memory blocks. In an additional aspect of this infection scheme, the interrupt vector is modified to point at memory blocks that have been modified by the memory resident virus or other malignant procedure. These modified memory blocks
store the infection procedure. Windows specific viruses bump themselves into ringO, for example using a callgate or DPMI call, and go resident in a system utility such as the system tray.
These behaviors are characteristic of a virus and are not, in the aggregate, characteristic of other, non-malignant programs. Consequently, a program can be identified as a virus or infected with a virus if it possesses certain ones of these behaviors, certain collections of these behaviors or all of these behaviors. In preferred embodiments of the present invention, the occurrence of these behaviors or combinations of the behaviors is indicated by collections of bits in a behavior pattern data set representing behavior characteristic of the infected program. An example of behavior patterns for a normal and an infected file are illustrated in FIG. 1.
In preferred embodiments of the present invention, the behavior of a newly loaded or called program is analyzed in a virtual machine that simulates a complete PC, or a sufficiently complete PC, in software and it is that virtual PC that generates the behavior pattern. The virtual PC simulates execution of the new or modified program, simulating a range of system functions, and the virtual PC monitors the behavior of the suspect program and makes a record of this behavior that can be analyzed to determine that the target program exhibits virus or malignant behaviors. The result of the virtual execution by the virtual machine is a behavior pattern representative of the new program. As discussed in greater detail below, the behavior pattern generated by the virtual PC identifies that a program is infected with a virus or is itself a virus. An advantage for the use of virtual execution and analysis of new programs for viruses is that the virtual machine is virtual and so, if the virtualized new program contains a virus, only the virtual machine is infected. The infected instance of the virtual machine is deleted after the simulation, so the infection is incomplete and the virus does not propagate. The behavior pattern survives the deletion of the virtual machine, allowing an analysis program to identify the existence of the virus and of the infection within the new program.
Most preferably, each time a new program is analyzed a new instance of the virtual machine is generated, free of modification by any previously virtualized programs including any earlier analyzed viruses. The new program then is run on the new instance of the virtual machine preferably followed by initiation of a modified interrupt caller procedure, described in greater detail below. While the virtual machine is executing the new program in cooperation with the modified interrupt caller procedure, the virtual machine monitors all system calls, DPMI/DOS interrupts and I/O port read/write (r/w) operations, setting bits in the behavior pattern register according to the observed behaviors. It is these bits in the behavior pattern that are retained after the simulation is complete and the virtual PC has been terminated. The bits stored in the behavior pattern register are the behavior pattern and indicate whether the virtually-executed program includes behaviors indicative of the presence of a virus or other malignant code. The modified interrupt caller procedure calls the interrupts that the program being analyzed has modified within the virtual PC and generates a behavior pattern for each of those interrupt service routines as well. This allows particularly preferred embodiments of the present invention to identify certain types of viruses that initially modify only the interrupt service routines and do not begin propagating until the modified interrupt or interrupts are called by another program. By allowing the various interrupt service routines in the virtual machine to be modified and then analyzing the modified interrupts, these embodiments of the invention can detect this delayed propagation mechanism. In some presently preferred embodiments, only the static, final version of the behavior pattern is analyzed. It is possible, and in some circumstances desirable, to monitor the sequence in which the bits in the behavior pattern register are set. The order in which the behavior pattern bits are set provides additional information allowing identification of additional virus behaviors. Tracking of the order in which the behavior pattern bits are set is accomplished within the virtual machine.
Preferred implementations of the analytical behavior method (ABM) proceed by extracting a behavior pattern and sequence from a modified, new, unknown or suspect program. The behavior pattern is preferably used to analyze the behavior of the unknown program to determine if the behavior of the unknown program is malicious. Identification of malicious behavior in this manner allows identification of virus carrying files prior to infection of the host computer system. The behavior pattern can also be stored in a database and the virtual machine can subsequently analyze the behavior of the program following modification to determine if its functionality has been modified in a suspect (malicious) manner. This provides post-infection analysis.
The described analytical behavior method differs from conventional virus detection methods in that it does not match program code to a set of stored patterns as do signature scanners and integrity checkers. Rather, a virtual machine is used to generate a behavior pattern and a sequence. The generated behavior pattern does not change significantly between version updates, but does change dramatically when a virus infects a program. For example, a word processor will still behave like a word processor when the program is replaced or updated with a new version of the program but the word processor changes significantly when the word processor is infected with a virus. The differences reflected in the behavior patterns are illustrated in FIG. 1. When a word processor is infected with a file infector computer virus, the word processor now opens executable files and inserts the viral code into them, thereby infecting additional files. This is clearly reflected in the illustrated behavior patterns.
In particularly preferred embodiments of the invention, the analysis procedure specifically targets infection methods such as, but not limited to, the insertion of code to other executables or documents, submitting code to other applications to be transmitted or stored, insertion of code into high memory blocks and the modification of memory control blocks. Preferred implementations of the analysis method further look for destructive content,
such as, but not limited to, functions that overwrite disk areas or the BIOS ROM, or delete files or directories. Most preferably, the analysis makes an exception and does not identify as infected a program whose other behavior characteristics indicate that the program is a development tool or software debugging tool and where the modifying behavior is an integral part of the tool's normal function. A viral infection of a development tool can be detected where an expressed function is not part of the tool's normal function, that is, within the development process. Both active (1) and inactive (0) flags present in the behavior pattern are significant in this analysis, as well as the sequence in which actions take place.
In accordance with preferred embodiments of the present invention, the virtual machine or virtual PC represents a simulation of a complete computer system. A complete computer system preferably includes an emulated central processing unit (CPU), emulated memory, input/output (I/O) ports, BIOS firmware, operating system and the operating system data areas. This stands in contrast to simple emulation of a processor, in which only the processor processes are emulated. In emulation, program instructions are converted from their native form to a stream of instructions that perform the same function on a different hardware platform. Some signature scanning software employs emulation to decrypt the body of a suspect program before the suspect program is scanned for signatures. In virtualization, the entire computer is simulated including operating system calls, which are not actually executed but seem to the calling program to perform the desired functions and return the correct values as if they were executed. As discussed above, the virtual PC includes a CPU, memory, I/O ports, a program loader, and the operating system application program interface (API's) entry points and interface. Using such a complete virtual PC is particularly preferred because it gives the analytical behavior method a high level of control over the virtualized program, including over the sophisticated direct calls to the operating system API. The virtualized program is not given access to any of the facilities of the physical machine, thereby avoiding the
risk that the potential virus or other malicious code escapes from the controlled environment to infect the host computer system.
FIG. 2 provides an overview of the preferred analytic behavior method architecture including the relationship between the virtual machine and components of the host computer system. Program code is delivered to the ABM engine and analysis system by direct access to the hard disk through I/O port bit manipulation, hooking into the operating system file system or by sequentially scanning the hard disk. The program code is checked against the database for 'known' files. If the file is new or modified, it is processed. The resulting behavior signature is analyzed or compared and stored. A virus warning is returned when analysis shows that the file contains malicious code. The analytical behavior method preferably includes: (1) file structure extraction; (2) change detection; (3) virtualization; (4) analysis; and (5) decision. Before the program can be virtualized, the file format containing the target program has to be evaluated. The entry point code is extracted and loaded into the virtual computer's memory at the correct simulated offset. In a physical computer this function would be performed by the program loader function, which is part of the operating system. The operating system can execute programs that are held in a collection of different file formats, such as:
DOS 1.0 and/or CP/M COM Binary image file, loaded at lOOh in memory, maximum size: 64K. DOS 2.0 - DOS 7.1 EXE MZ-type executable, header determines CS:IP of load address.
Windows 3.0 executables NE-type executable which contains both the
DOS MZ-header pointing at a DOS code area and a New Executable (NE) header containing the entry point of the Windows (protected mode) code. NE files are segmented.
OS/2 executables LE /LX type executable which contains both the DOS MZ-header and DOS code area and a protected mode section which is determined by the LE-header following the DOS code segment. Linear Executable (LE) files are used in Windows 3 for system utilities and device drivers. LE files are segmented. LX files incorporate some differences in the way the page table is stored and are intended for the OS/2 operating system. LE files are segmented and the segments are paged.
32-bit executables PE-type executable which contains both the DOS MZ-header and DOS code area and the Portable Executable header containing the entry point and file offset of the protected mode code. PE files are segmented.
OLE Compound Files OLE compound files (COM) are document files that can contain executable format streams, usually referred to as Macros. All office components incorporate Visual Basic for Applications, as does Internet Explorer versions 4 and 5. Windows98 systems can execute Visual Basic code directly from a script file. The Visual Basic code is compiled and stored in a stream, which is paged according to its file offset references stored in a linked list in the file header.
Binary Image A binary image is used for the boot sector and Master Boot and Partition table. Both the boot-sector and the MBR contain executable
code which is loaded into memory at 0:7C00 during the start-up process. Driver files System Drivers are stored as a binary image with a header. The header contains information about the drivers stored within the file. Multiple drivers can be stored within the same file.
The virtual computer loader function is capable of dealing with the file formats and binary image files shown above. The loader function is performed by virtualizing the operating system program loader and so varies depending on the operating system used in the host computer. The file structure analysis procedure looks in the file header and file structure to determine the file format, rather than using the file extension because file extensions are unreliable in general use. The .EXE formats described above therefore include DLL, AX, OCX and other executable file format extensions.
Compound document files can contain executable streams such as Visual Basic code or macros. The structure of a compound document file is illustrated in the diagram shown in FIG. 3. The header of a compound document file contains a linked list (or File Allocation Table) which is referenced in a directory structure that points to the entry point of the linked list. Each entry in the linked list refers to the next entry and a file offset. A value of -1 in the linked list indicates the end of a chain. Streams exist out of blocks, which may be scattered anywhere in the file in any order. In particularly preferred embodiments of the invention, code extracted from a compound document file is passed through a Visual Basic decompiler before it is presented to a Visual Basic emulator. Not all compound document files contain compiled Visual Basic code. Hypertext markup language (HTML) and Visual Basic Script (VBS) files can contain Visual Basic Script code as text. This code is preferably extracted and treated as a Visual Basic stream within the virtual machine.
The NE /PE /LE executable file formats are similar in complexity, except that no linked list is used; rather these file formats use a segment or page table. The PE file format is based on the COFF file specification. FIG. 4 illustrates how these file formats interface with the preferred virtual PC in accordance with certain embodiments of the present invention. In evaluating how aspects of the preferred virtual PC interfaces to a particular file, the file loader preferably decides if the file presented is a document file or a binary file.
After the file format has been evaluated and the entry point-file offset has been calculated, the file is opened and the virtual machine reads the relevant code into memory as a data stream. The length of the code is calculated from fields in the header of the file. This information is passed to the virtual program loader. The virtual program loader uses information in the file header to load the extracted code at the correct simulated offset in a virtual memory array.
A memory mapping utility maps the virtual memory map to the offset for the file type that is virtualized:
DOS (CP/m) binary image files (.COM) offset CS:100h DOS (2.0 up) Executable format files (MZ-EXE) offset CS:IP from header
Windows NE, PE, LE offset C0000000+CS:IP from header
Binary Image MBR, Boot sector code offset 0:7C00h
Document COM files, HTML and VBS files no specific offset, VBA code
The Loader utility dynamically assigns physical memory to the virtual computer memory array each time a program is virtualized, and proceeds to build a new virtual machine. Each virtual machine contains a BIOS data area, a filled environment string area, DOS data area, memory control blocks, program segment prefix area, the interrupt vector table and descriptor tables.
The final structure of the virtual machine depends on the type of program that is virtualized. Each virtualized program therefore runs in a fresh memory area, created when that program is loaded into the virtual PC. Previous instances, where infected programs may have been virtualized, therefore cannot affect the performance of subsequent programs. The virtual machine is shut down and its memory resources are released when the virtualized program terminates and the virtual machine completes assembly of the behavior pattern for the target, virtualized.
FIG. 5 illustrates how the virtual memory is configured for (COM) binary image files and DOS program (MZ-EXE) files. The memory map and mapper utility are adjusted depending on the file type.
The program loader simulates the loader functions of the operating system and creates system areas that represent similar system areas in the physical computer. This is particularly advantageous functionality because the code under evaluation most preferably runs in the same manner as if executed on a physical computer system. The virtualized program is executed by fetching instructions from the virtual memory array into a pre-fetch instruction queue. The instructions in the queue are decoded and their length is determined by their operational parameters. The instruction pointer is incremented accordingly so that the instruction loader is ready to fetch the next instruction. The virtual machine determines from the r/m field of the instruction parameters where data on which the instruction operates is to be fetched. The data fetch mechanism fetches this data and presents the data to the logic unit, which then performs the operation indicated by the code. The destination of the processed data is determined from the parameters of the instruction code. The data write mechanism is used to write the processed data to emulated memory or the emulated processor register set. This process accurately reflects what takes place in a physical CPU (central processing unit). All areas of this process are simulated, as generally illustrated in FIG.
6. The memory exists as an array of 400 Kbyte elements into which all
memory accesses are mapped by a memory mapping mechanism. The size of the memory array may be adjusted in future implementations to accommodate larger programs. The video display is simulated from a system viewpoint as 128 Kbyte of memory mapped between A000:0 and BFFF:F (inclusive) in the virtual computer's memory map. The standard IBM PC input/output area is simulated as an array of 1024 bytes representing I/O ports 0-3FFh. The CPU is simulated by performing the same low-level functions as the physical CPU, but in high-level software.
The operating system is implemented as an area in the memory array of 700h bytes containing the BIOS data fields, the DOS data area, Memory
Control Blocks and DOS devices. The interrupt vector table takes up the first 1024 (400h) positions in the memory array as it would in a physical PC. The DOS interrupt structure is implemented as simulated functions that return the correct values and by filling the memory array with the correct values expected by simulating DOS functions.
The operating system is implemented as a virtual API (VAPI) that simulates the results returned by all operating system API's.
During the virtualization process, flags are set in the behavior pattern (Tstruct) field as the functions represented by those fields are virtualized. The sequence in which these functions are called is recorded in the sequencer. The behavior pattern therefore matches closely the behavior of the program under evaluation to the behavior of that program in a physical PC environment. Simulated interrupt vectors modified during the process of executing the virtualized program are called after program virtualization terminates, thus acting as applications that would call such interrupt vectors in a physical computer following modification of these vectors.
To illustrate this functionality, consider the following set of operations might be performed in operation of the analytical behavior method:
Search for the first EXE file in this directory ;set FindFirst Flag
(Tstruct Structure)
Is this a PE executable (examine header)? ;set EXEcheck Flag
If not, jump far
Else: Open the executable file set EXEaccess Flag
Write to the section table set EXEwrite Flag Search for the end-of-file set EXEeof Flag
Write to file set EXEwrite Flag
Close file Search next EXE file ;set EXEFindNext Flag
Bit+1 64 1
Returned: 001001001010101010010101001011110010101000100100010010010000 0101
Value: 2 4 A A 9 5 2 F 2 A 2 4 4 9 0 5 Sequencer: 21,22, 23)24,26,29,3E)1)36,38,3B,3, 9,C,F,13,16,1A,1C,1E, 2B,2D,30,32,34,
The resulting behavior pattern is: 24AA952F2A244905
The behavior pattern contains flags that indicate that the user has not had the opportunity to interact with this process through user input (the userlnput flag is not set). The sequencer contains the order in which the bits were set, identifying the infection sequence shown above. Therefore this observed behavior is most likely viral.
Many viruses are encrypted, polymorphic or use 'tricks' to avoid detection by signature scanners. Wherever such 'tricks' are used, the behavior pattern points more obviously towards a virus since such tricks are not normally used in normal applications. In any case, preferred implementations of the present invention require that an infection procedure be present to trigger a virus warning to avoid false positive warnings. Encrypted viruses are no problem, because the execution of the code within the virtual machine, which generates the behavior pattern, effectively decrypts any encrypted or polymorphic virus, as it would in a physical PC environment. Because all parts of the virtual computer are virtualized in preferred embodiments, and at
no time is the virtualized program allowed to interact with the physical computer, there is no chance that viral code could escape from the virtual machine and infect the physical computer.
The change detection module compares existing files at 6 levels to determine if the file was analyzed previously:
• The file is the same (entry point code, sample, file-name and file-size are the same).
• The file is not in the database (new file).
• The behavior pattern matches a stored pattern. • The file's entry code is modified. The behavior pattern is binary subtracted from the previous stored pattern. The resulting bit pattern is analyzed.
• The file's entry code, CRC and header fields are the same, but the file is renamed. No other fields are modified.
• The file's behavior pattern is found in the database and matches a known viral behavior pattern.
• The file's behavior pattern is found in the database and matches a known benign behavior pattern.
The program is virtualized if the executable part of the file is modified. A file that does not contain modified executable code cannot contain a virus, unless the original file was infected. If this is the case, a previous analysis would have detected the virus. When an existing program is updated, its function remains the same, and therefore its behavior pattern closely matches its stored behavior pattern. If the altered bits indicate that an infection procedure has been added then the file is considered as infected.
Two detection mechanisms operate side-by-side, both using the behavior pattern: Pre-infection detection
This is the most desirable case. In pre-infection detection, the behavior pattern is analyzed and is found to represent viral behavior for those new or modified programs introduced to the system. The program file under
evaluation can be repaired by removing the virus or erased if the virus infection proves too difficult to remove or if parts of the original code were overwritten. The infected program has not yet been executed on the physical PC at this time and so nothing need be done to repair the physical PC after discovery of the virus. Post-infection detection
Post-infection detection takes place in cases when initial infection is missed by pre-infection detection. A virus could be missed by pre-infection detection when it does not perform any viral function on first execution and does not modify interrupt vectors that point to an infection routine. This is the case with so-called slow infectors and similarly behaving malignant code. In post-infection detection the virus is caught the moment it attempts to infect the first executable on the PC. The file hook mechanism detects this attempted change to an executable (including documents). The ABM engine then analyzes the first executable program and finds that its behavior pattern is altered in a manner indicating that a virus is active.
Database Structure:
File ID area: Behavior pattern, program name, file size and path. Repair Structures Header fields, section table and relocation tables.
Segment tables Size and Offset of each section in the section table
(Windows programs only).
Macro viruses in documents are treated as if they were executables. The original Visual Basic code is recovered by decryption (where applicable) and reverse compiling the Visual Basic document (COM) stream. The resulting source code is neither saved nor shown to protect the rights of the original publishers of legitimate Visual Basic software. After virtualization the source code is discarded. One drawback to the described virus detection system is that the initial analysis is slower than pattern scanning. This drawback is more than offset
by the advantages of the system. Using file system hooking means all new files are reported and analyzed 'on the fly' in background. This means that once a computer is virus-free, a complete scan is typically not required again, unless the protection system has been deactivated during a period in which new programs have been installed. In signature scanning based protection systems, the computer needs to be completely rescanned every time the virus signature database is updated. Unaltered files are not again virtualized when the user initiates subsequent disk scans, so that the process is at least as fast as pattern scanning, but with a higher degree of security. The stored information also helps to repair viral damage to files or system areas, securing complete or effectively complete recovery in most cases.
In tests of a prototype implementation ABM system, the combination of pre-infection (96%) and post-infection detection (4%) resulted in 100% detection of all known viral techniques, using a combination of new, modified and well-known viruses. Other methods detected only 100% of known viruses and scored as low as 0% for the detection of new, modified and unknown viruses. No exact figure can be quoted for tests involving signature scanner based products. The results for such products are a direct representation of the mix of known, modified and new, unknown viruses; e.g. if 30% of the virus test set is new, modified or unknown then the final score reflected close to 30% missed viruses. No such relationship exists for the implementations of preferred aspects of the present system, where the detection efficiency does not appreciably vary for alterations of the presented virus mix.
The present invention has been set forth with reference to certain particularly preferred embodiments thereof. Those of ordinary skill in the art will appreciate that the present invention need not be limited to these presently preferred embodiments and will understand that various modifications and extensions of these embodiments might be made within the general teachings of the present invention. Consequently, the present invention is not to be limited to any of the described embodiments but is instead to be defined by the claims, which follow.
Claims (17)
1. A method for identifying presence of malicious code in program code within a computer system, the method comprising: initializing a virtual machine within the computer system, the virtual machine comprising software simulating functionality of a central processing unit and memory; virtually executing a target program within the virtual machine so that the target program interacts with the computer system only through the virtual machine; analyzing behavior of the target program following virtual execution to identify occurrence of malicious code behavior and indicating in a behavior pattern the occurrence of malicious code behavior; and terminating the virtual machine after the analyzing process, thereby removing from the computer system a copy of the target program that was contained within the virtual machine.
2. The method of claim 1, wherein the virtual machine simulates functionality of input/output ports, operating system data areas, and an operating system application program interface.
3. The method of claim 2, wherein the virtual machine further includes a virtual Visual Basic engine.
4. The method of claim 2, wherein virtual execution of the target program causes the target program to interact with the simulated operating system application program interface.
5. The method of claim 1, wherein the target program is newly introduced to the computer system and not executed prior to virtually executing the target program.
6. The method of claim 1, wherein after a first instance of a first program is analyzed by the virtual machine and a first behavior pattern is generated and stored in a database within the computer system, the method further comprising: determining that the first program is modified; analyzing the modified first program by executing the modified first program in the virtual machine to provide a second behavior pattern; and comparing the first behavior pattern to the second behavior pattern.
7. The method of claim 6, wherein a new behavior pattern is generated each time the first program is modified.
8. The method of claim 6, wherein introduction of malignant code during modification of the first program is detected by comparing the first behavior pattern to the second behavior pattern.
9. The method of claim 6, wherein the first behavior pattern is substantially similar to the second behavior pattern when the modified first program is a new version of the first program.
10. The method of claim 1, wherein the behavior pattern identifies functions executed in the virtual execution of the target program, the method further comprising tracking an order in which the functions are virtually executed by the target program within the virtual machine.
11. A method for identifying presence of malicious code in program code within a computer system, the method comprising: initializing a virtual machine within the computer system, the virtual machine comprising software simulating functionality of a central processing unit, memory and an operating system including interrupt calls to the virtual operating system; virtually executing a target program within the virtual machine so that the target program interacts with the virtual operating system and the virtual central processing unit through the virtual machine; monitoring behavior of the target program during virtual execution to identify presence of malicious code and indicating in a behavior pattern the occurrence of malicious code behavior; and terminating the virtual machine, leaving behind a record of the behavior pattern characteristic of the analyzed target program.
12. The method of claim 11, wherein the record is in a behavior register in the computer system.
13. The method of claim 11, wherein after a first instance of a first program is analyzed by the virtual machine and a first behavior pattern is generated and stored in a database within the computer system, the method further comprising: determining that the first program is modified; analyzing the modified first program by executing the modified first program in the virtual machine to provide a second behavior pattern; and comparing the first behavior pattern to the second behavior pattern.
14. The method of claim 13, wherein a new behavior pattern is generated each time the first program is modified.
15. The method of claim 13, wherein introduction of malignant code during modification of the first program is detected by comparing the first behavior pattern to the second behavior pattern.
16. The method of claim 13, wherein the first behavior pattern is substantially similar to the second behavior pattern when the modified first program is a new version of the first program.
17. The method of claim 13, wherein the behavior pattern identifies functions executed in the virtual execution of the target program, the method further comprising tracking an order in which the functions are virtually executed by the target program within the virtual machine.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21848900P | 2000-07-14 | 2000-07-14 | |
US60218489 | 2000-07-14 | ||
US09/642,625 US7093239B1 (en) | 2000-07-14 | 2000-08-18 | Computer immune system and method for detecting unwanted code in a computer system |
US09642625 | 2000-08-18 | ||
PCT/US2001/019142 WO2002006928A2 (en) | 2000-07-14 | 2001-06-14 | Computer immune system and method for detecting unwanted code in a computer system |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001269826A1 true AU2001269826A1 (en) | 2002-01-30 |
Family
ID=26912956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001269826A Abandoned AU2001269826A1 (en) | 2000-07-14 | 2001-06-14 | Computer immune system and method for detecting unwanted code in a computer system |
Country Status (7)
Country | Link |
---|---|
US (2) | US7093239B1 (en) |
EP (1) | EP1358526A2 (en) |
JP (1) | JP4741782B2 (en) |
AU (1) | AU2001269826A1 (en) |
CA (1) | CA2416066A1 (en) |
TW (1) | TW518463B (en) |
WO (1) | WO2002006928A2 (en) |
Families Citing this family (416)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL143592A0 (en) | 1998-12-07 | 2002-04-21 | Network Ice Corp | A method and apparatus for remote installation of network drivers and software |
AU2001262958A1 (en) | 2000-04-28 | 2001-11-12 | Internet Security Systems, Inc. | Method and system for managing computer security information |
US6907531B1 (en) | 2000-06-30 | 2005-06-14 | Internet Security Systems, Inc. | Method and system for identifying, fixing, and updating security vulnerabilities |
US7093239B1 (en) * | 2000-07-14 | 2006-08-15 | Internet Security Systems, Inc. | Computer immune system and method for detecting unwanted code in a computer system |
US9027121B2 (en) | 2000-10-10 | 2015-05-05 | International Business Machines Corporation | Method and system for creating a record for one or more computer security incidents |
WO2002065285A1 (en) * | 2001-02-14 | 2002-08-22 | Invicta Networks, Inc. | Systems and methods for creating a code inspection system |
WO2002093334A2 (en) * | 2001-04-06 | 2002-11-21 | Symantec Corporation | Temporal access control for computer virus outbreaks |
AU2002305490B2 (en) * | 2001-05-09 | 2008-11-06 | Sca Ipla Holdings, Inc. | Systems and methods for the prevention of unauthorized use and manipulation of digital content |
US7562388B2 (en) | 2001-05-31 | 2009-07-14 | International Business Machines Corporation | Method and system for implementing security devices in a network |
US7657935B2 (en) | 2001-08-16 | 2010-02-02 | The Trustees Of Columbia University In The City Of New York | System and methods for detecting malicious email transmission |
US7356736B2 (en) * | 2001-09-25 | 2008-04-08 | Norman Asa | Simulated computer system for monitoring of software performance |
US9306966B2 (en) | 2001-12-14 | 2016-04-05 | The Trustees Of Columbia University In The City Of New York | Methods of unsupervised anomaly detection using a geometric framework |
US7225343B1 (en) | 2002-01-25 | 2007-05-29 | The Trustees Of Columbia University In The City Of New York | System and methods for adaptive model generation for detecting intrusions in computer systems |
US7533101B2 (en) * | 2002-03-04 | 2009-05-12 | Microsoft Corporation | Extensible loader |
JP2004005436A (en) * | 2002-03-28 | 2004-01-08 | Seiko Epson Corp | Information collecting system using e-mail |
CA2480475A1 (en) * | 2002-04-17 | 2003-10-30 | Computer Associates Think, Inc. | Detecting and countering malicious code in enterprise networks |
US7103913B2 (en) * | 2002-05-08 | 2006-09-05 | International Business Machines Corporation | Method and apparatus for determination of the non-replicative behavior of a malicious program |
US7370360B2 (en) * | 2002-05-13 | 2008-05-06 | International Business Machines Corporation | Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine |
US7487543B2 (en) | 2002-07-23 | 2009-02-03 | International Business Machines Corporation | Method and apparatus for the automatic determination of potentially worm-like behavior of a program |
GB2391965B (en) * | 2002-08-14 | 2005-11-30 | Messagelabs Ltd | Method of, and system for, heuristically detecting viruses in executable code |
US7469419B2 (en) | 2002-10-07 | 2008-12-23 | Symantec Corporation | Detection of malicious computer code |
US7941854B2 (en) * | 2002-12-05 | 2011-05-10 | International Business Machines Corporation | Method and system for responding to a computer intrusion |
US7793346B1 (en) * | 2003-01-17 | 2010-09-07 | Mcafee, Inc. | System, method, and computer program product for preventing trojan communication |
US7293290B2 (en) * | 2003-02-06 | 2007-11-06 | Symantec Corporation | Dynamic detection of computer worms |
JP2004258777A (en) * | 2003-02-24 | 2004-09-16 | Fujitsu Ltd | Security monitoring device, its system, its method and its program |
KR100509650B1 (en) * | 2003-03-14 | 2005-08-23 | 주식회사 안철수연구소 | Method to detect malicious scripts using code insertion technique |
KR20040080844A (en) * | 2003-03-14 | 2004-09-20 | 주식회사 안철수연구소 | Method to detect malicious scripts using static analysis |
JP4196989B2 (en) * | 2003-03-17 | 2008-12-17 | セイコーエプソン株式会社 | Method and system for preventing virus infection |
US8171551B2 (en) * | 2003-04-01 | 2012-05-01 | Mcafee, Inc. | Malware detection using external call characteristics |
US7552473B2 (en) * | 2003-08-12 | 2009-06-23 | Symantec Corporation | Detecting and blocking drive sharing worms |
US8539063B1 (en) | 2003-08-29 | 2013-09-17 | Mcafee, Inc. | Method and system for containment of networked application client software by explicit human input |
US7166418B2 (en) | 2003-09-03 | 2007-01-23 | Matsushita Electric Industrial Co., Ltd. | Sulfonamide compound, polymer compound, resist material and pattern formation method |
US8079034B2 (en) * | 2003-09-15 | 2011-12-13 | Intel Corporation | Optimizing processor-managed resources based on the behavior of a virtual machine monitor |
US7840968B1 (en) | 2003-12-17 | 2010-11-23 | Mcafee, Inc. | Method and system for containment of usage of language interfaces |
US8627458B2 (en) * | 2004-01-13 | 2014-01-07 | Mcafee, Inc. | Detecting malicious computer program activity using external program calls with dynamic rule sets |
US7555777B2 (en) * | 2004-01-13 | 2009-06-30 | International Business Machines Corporation | Preventing attacks in a data processing system |
US7721334B2 (en) * | 2004-01-30 | 2010-05-18 | Microsoft Corporation | Detection of code-free files |
US7707634B2 (en) * | 2004-01-30 | 2010-04-27 | Microsoft Corporation | System and method for detecting malware in executable scripts according to its functionality |
US7539871B1 (en) * | 2004-02-23 | 2009-05-26 | Sun Microsystems, Inc. | System and method for identifying message propagation |
US7984304B1 (en) * | 2004-03-02 | 2011-07-19 | Vmware, Inc. | Dynamic verification of validity of executable code |
US7783735B1 (en) | 2004-03-22 | 2010-08-24 | Mcafee, Inc. | Containment of network communication |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US7587537B1 (en) | 2007-11-30 | 2009-09-08 | Altera Corporation | Serializer-deserializer circuits formed from input-output circuit registers |
US8793787B2 (en) | 2004-04-01 | 2014-07-29 | Fireeye, Inc. | Detecting malicious network content using virtual environment components |
US8549638B2 (en) * | 2004-06-14 | 2013-10-01 | Fireeye, Inc. | System and method of containing computer worms |
US8881282B1 (en) | 2004-04-01 | 2014-11-04 | Fireeye, Inc. | Systems and methods for malware attack detection and identification |
US8561177B1 (en) | 2004-04-01 | 2013-10-15 | Fireeye, Inc. | Systems and methods for detecting communication channels of bots |
US8528086B1 (en) | 2004-04-01 | 2013-09-03 | Fireeye, Inc. | System and method of detecting computer worms |
US9027135B1 (en) | 2004-04-01 | 2015-05-05 | Fireeye, Inc. | Prospective client identification using malware attack detection |
US8539582B1 (en) | 2004-04-01 | 2013-09-17 | Fireeye, Inc. | Malware containment and security analysis on connection |
US8566946B1 (en) | 2006-04-20 | 2013-10-22 | Fireeye, Inc. | Malware containment on connection |
US9106694B2 (en) | 2004-04-01 | 2015-08-11 | Fireeye, Inc. | Electronic message analysis for malware detection |
US8171553B2 (en) | 2004-04-01 | 2012-05-01 | Fireeye, Inc. | Heuristic based capture with replay to virtual machine |
US8584239B2 (en) | 2004-04-01 | 2013-11-12 | Fireeye, Inc. | Virtual machine with dynamic data flow analysis |
US8375444B2 (en) | 2006-04-20 | 2013-02-12 | Fireeye, Inc. | Dynamic signature creation and enforcement |
US8006305B2 (en) * | 2004-06-14 | 2011-08-23 | Fireeye, Inc. | Computer worm defense system and method |
US8204984B1 (en) | 2004-04-01 | 2012-06-19 | Fireeye, Inc. | Systems and methods for detecting encrypted bot command and control communication channels |
US20050240780A1 (en) * | 2004-04-23 | 2005-10-27 | Cetacea Networks Corporation | Self-propagating program detector apparatus, method, signals and medium |
US20050257263A1 (en) * | 2004-05-13 | 2005-11-17 | International Business Machines Corporation | Andromeda strain hacker analysis system and method |
CN100344106C (en) * | 2004-05-26 | 2007-10-17 | 华为技术有限公司 | Method and system for implementing white box virtual network element in optical transmission network management system |
WO2005121953A1 (en) * | 2004-06-04 | 2005-12-22 | Fortify Software, Inc. | Apparatus and method for developing, testing and monitoring secure software |
US20050273860A1 (en) * | 2004-06-04 | 2005-12-08 | Brian Chess | Apparatus and method for developing, testing and monitoring secure software |
US20050273859A1 (en) * | 2004-06-04 | 2005-12-08 | Brian Chess | Apparatus and method for testing secure software |
US7975306B2 (en) * | 2004-06-04 | 2011-07-05 | Hewlett-Packard Development Company, L.P. | Apparatus and method for monitoring secure software |
US20060015939A1 (en) * | 2004-07-14 | 2006-01-19 | International Business Machines Corporation | Method and system to protect a file system from viral infections |
KR100599451B1 (en) * | 2004-07-23 | 2006-07-12 | 한국전자통신연구원 | Device for Treatment of Internet Worm and System Patch using Movable Storage Unit and Method thereof |
EP1622009A1 (en) * | 2004-07-27 | 2006-02-01 | Texas Instruments Incorporated | JSM architecture and systems |
US7873955B1 (en) | 2004-09-07 | 2011-01-18 | Mcafee, Inc. | Solidifying the executable software set of a computer |
US7690033B2 (en) * | 2004-09-28 | 2010-03-30 | Exobox Technologies Corp. | Electronic computer system secured from unauthorized access to and manipulation of data |
US7650640B1 (en) * | 2004-10-18 | 2010-01-19 | Symantec Corporation | Method and system for detecting IA32 targeted buffer overflow attacks |
US7493654B2 (en) * | 2004-11-20 | 2009-02-17 | International Business Machines Corporation | Virtualized protective communications system |
US8117659B2 (en) | 2005-12-28 | 2012-02-14 | Microsoft Corporation | Malicious code infection cause-and-effect analysis |
US7941856B2 (en) * | 2004-12-06 | 2011-05-10 | Wisconsin Alumni Research Foundation | Systems and methods for testing and evaluating an intrusion detection system |
US20060129603A1 (en) * | 2004-12-14 | 2006-06-15 | Jae Woo Park | Apparatus and method for detecting malicious code embedded in office document |
US20060136374A1 (en) * | 2004-12-17 | 2006-06-22 | Microsoft Corporation | System and method for utilizing a search engine to prevent contamination |
TWI252976B (en) * | 2004-12-27 | 2006-04-11 | Ind Tech Res Inst | Detecting method and architecture thereof for malicious codes |
US20060161982A1 (en) * | 2005-01-18 | 2006-07-20 | Chari Suresh N | Intrusion detection system |
US20070067844A1 (en) * | 2005-09-16 | 2007-03-22 | Sana Security | Method and apparatus for removing harmful software |
US8719924B1 (en) | 2005-03-04 | 2014-05-06 | AVG Technologies N.V. | Method and apparatus for detecting harmful software |
US8646080B2 (en) * | 2005-09-16 | 2014-02-04 | Avg Technologies Cy Limited | Method and apparatus for removing harmful software |
US7640587B2 (en) * | 2005-03-29 | 2009-12-29 | International Business Machines Corporation | Source code repair method for malicious code detection |
US7725735B2 (en) * | 2005-03-29 | 2010-05-25 | International Business Machines Corporation | Source code management method for malicious code detection |
US7631356B2 (en) * | 2005-04-08 | 2009-12-08 | Microsoft Corporation | System and method for foreign code detection |
US7591016B2 (en) | 2005-04-14 | 2009-09-15 | Webroot Software, Inc. | System and method for scanning memory for pestware offset signatures |
US7349931B2 (en) * | 2005-04-14 | 2008-03-25 | Webroot Software, Inc. | System and method for scanning obfuscated files for pestware |
US7571476B2 (en) * | 2005-04-14 | 2009-08-04 | Webroot Software, Inc. | System and method for scanning memory for pestware |
US7603712B2 (en) * | 2005-04-21 | 2009-10-13 | Microsoft Corporation | Protecting a computer that provides a Web service from malware |
ATE398305T1 (en) * | 2005-04-22 | 2008-07-15 | Trumpf Laser Gmbh & Co Kg | DEVICE FOR SECURE REMOTE ACCESS |
US8060860B2 (en) * | 2005-04-22 | 2011-11-15 | Apple Inc. | Security methods and systems |
US7480836B2 (en) * | 2005-04-25 | 2009-01-20 | Hewlett-Packard Development Company, L.P. | Monitoring error-handler vector in architected memory |
US7603552B1 (en) * | 2005-05-04 | 2009-10-13 | Mcafee, Inc. | Piracy prevention using unique module translation |
US7607122B2 (en) * | 2005-06-17 | 2009-10-20 | Microsoft Corporation | Post build process to record stack and call tree information |
GB0513375D0 (en) | 2005-06-30 | 2005-08-03 | Retento Ltd | Computer security |
US7856661B1 (en) | 2005-07-14 | 2010-12-21 | Mcafee, Inc. | Classification of software on networked systems |
CN101228509B (en) * | 2005-07-27 | 2010-05-26 | 松下电器产业株式会社 | Device and method for generating binary image |
US8161548B1 (en) | 2005-08-15 | 2012-04-17 | Trend Micro, Inc. | Malware detection using pattern classification |
US20070056035A1 (en) * | 2005-08-16 | 2007-03-08 | Drew Copley | Methods and systems for detection of forged computer files |
WO2007022454A2 (en) | 2005-08-18 | 2007-02-22 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media protecting a digital data processing device from attack |
WO2007025279A2 (en) * | 2005-08-25 | 2007-03-01 | Fortify Software, Inc. | Apparatus and method for analyzing and supplementing a program to provide security |
US20070079375A1 (en) * | 2005-10-04 | 2007-04-05 | Drew Copley | Computer Behavioral Management Using Heuristic Analysis |
US7725737B2 (en) * | 2005-10-14 | 2010-05-25 | Check Point Software Technologies, Inc. | System and methodology providing secure workspace environment |
US20070094733A1 (en) * | 2005-10-26 | 2007-04-26 | Wilson Michael C | System and method for neutralizing pestware residing in executable memory |
US8572606B1 (en) | 2005-12-29 | 2013-10-29 | Vmware, Inc. | System and method for avoiding synchronization bugs through virtualization |
US20070152854A1 (en) * | 2005-12-29 | 2007-07-05 | Drew Copley | Forgery detection using entropy modeling |
WO2007076624A1 (en) * | 2005-12-30 | 2007-07-12 | Intel Corporation | Virtual machine to detect malicious code |
US8255992B2 (en) | 2006-01-18 | 2012-08-28 | Webroot Inc. | Method and system for detecting dependent pestware objects on a computer |
US8418245B2 (en) * | 2006-01-18 | 2013-04-09 | Webroot Inc. | Method and system for detecting obfuscatory pestware in a computer memory |
US7757269B1 (en) | 2006-02-02 | 2010-07-13 | Mcafee, Inc. | Enforcing alignment of approved changes and deployed changes in the software change life-cycle |
KR100791290B1 (en) | 2006-02-10 | 2008-01-04 | 삼성전자주식회사 | Apparatus and method for using information of malicious application's behavior across devices |
US7840958B1 (en) * | 2006-02-17 | 2010-11-23 | Trend Micro, Inc. | Preventing spyware installation |
US7895573B1 (en) * | 2006-03-27 | 2011-02-22 | Mcafee, Inc. | Execution environment file inventory |
US9171157B2 (en) * | 2006-03-28 | 2015-10-27 | Blue Coat Systems, Inc. | Method and system for tracking access to application data and preventing data exploitation by malicious programs |
US8572138B2 (en) * | 2006-03-30 | 2013-10-29 | Ca, Inc. | Distributed computing system having autonomic deployment of virtual machine disk images |
US8479174B2 (en) * | 2006-04-05 | 2013-07-02 | Prevx Limited | Method, computer program and computer for analyzing an executable computer file |
US7870387B1 (en) | 2006-04-07 | 2011-01-11 | Mcafee, Inc. | Program-based authorization |
US8352930B1 (en) | 2006-04-24 | 2013-01-08 | Mcafee, Inc. | Software modification by group to minimize breakage |
WO2007130034A1 (en) * | 2006-05-03 | 2007-11-15 | Chubb International Holdings Limited | Security system design analysis |
US8176485B2 (en) * | 2006-05-15 | 2012-05-08 | Microsoft Corporation | Launching hypervisor under running operating system |
US8555404B1 (en) | 2006-05-18 | 2013-10-08 | Mcafee, Inc. | Connectivity-based authorization |
US20080010538A1 (en) * | 2006-06-27 | 2008-01-10 | Symantec Corporation | Detecting suspicious embedded malicious content in benign file formats |
US20080016572A1 (en) * | 2006-07-12 | 2008-01-17 | Microsoft Corporation | Malicious software detection via memory analysis |
US8151352B1 (en) | 2006-07-14 | 2012-04-03 | Bitdefender IPR Managament Ltd. | Anti-malware emulation systems and methods |
US7877806B2 (en) * | 2006-07-28 | 2011-01-25 | Symantec Corporation | Real time malicious software detection |
US8190868B2 (en) | 2006-08-07 | 2012-05-29 | Webroot Inc. | Malware management through kernel detection |
US8056134B1 (en) * | 2006-09-10 | 2011-11-08 | Ogilvie John W | Malware detection and identification via malware spoofing |
US7870612B2 (en) * | 2006-09-11 | 2011-01-11 | Fujian Eastern Micropoint Info-Tech Co., Ltd | Antivirus protection system and method for computers |
US8024815B2 (en) | 2006-09-15 | 2011-09-20 | Microsoft Corporation | Isolation environment-based information access |
US8584109B2 (en) * | 2006-10-27 | 2013-11-12 | Microsoft Corporation | Virtualization for diversified tamper resistance |
WO2008055156A2 (en) | 2006-10-30 | 2008-05-08 | The Trustees Of Columbia University In The City Of New York | Methods, media, and systems for detecting an anomalous sequence of function calls |
WO2008053723A1 (en) * | 2006-11-02 | 2008-05-08 | Nec Corporation | Semiconductor integrated circuit and method for detecting fault in operation unit |
JP2008129707A (en) * | 2006-11-17 | 2008-06-05 | Lac Co Ltd | Program analyzing device, program analyzing method, and program |
KR101252811B1 (en) | 2006-11-27 | 2013-04-09 | 주식회사 엘지씨엔에스 | Apparatus and method for preventing worm an IRC order |
US8332929B1 (en) | 2007-01-10 | 2012-12-11 | Mcafee, Inc. | Method and apparatus for process enforced configuration management |
US9424154B2 (en) | 2007-01-10 | 2016-08-23 | Mcafee, Inc. | Method of and system for computer system state checks |
US8561176B1 (en) * | 2007-01-24 | 2013-10-15 | Mcafee, Inc. | System, method and computer program product for monitoring and/or analyzing at least one aspect of an invocation of an interface |
KR101303643B1 (en) * | 2007-01-31 | 2013-09-11 | 삼성전자주식회사 | Apparatus for detecting intrusion code and method using the same |
US8955122B2 (en) | 2007-04-04 | 2015-02-10 | Sri International | Method and apparatus for detecting malware infection |
US8011010B2 (en) * | 2007-04-17 | 2011-08-30 | Microsoft Corporation | Using antimalware technologies to perform offline scanning of virtual machine images |
US8584094B2 (en) * | 2007-06-29 | 2013-11-12 | Microsoft Corporation | Dynamically computing reputation scores for objects |
US8245295B2 (en) * | 2007-07-10 | 2012-08-14 | Samsung Electronics Co., Ltd. | Apparatus and method for detection of malicious program using program behavior |
KR101421136B1 (en) * | 2007-07-10 | 2014-07-21 | 더 리젠츠 오브 더 유니버시티 오브 미시건 | Method and apparatus for modeling computer program behavior for behavioral detection of malicious program |
US8713680B2 (en) * | 2007-07-10 | 2014-04-29 | Samsung Electronics Co., Ltd. | Method and apparatus for modeling computer program behaviour for behavioural detection of malicious program |
KR101427357B1 (en) * | 2007-07-23 | 2014-08-11 | 삼성전자주식회사 | Apparatus and method for curing computer system infected by malware |
US8601451B2 (en) * | 2007-08-29 | 2013-12-03 | Mcafee, Inc. | System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof |
US7620992B2 (en) * | 2007-10-02 | 2009-11-17 | Kaspersky Lab Zao | System and method for detecting multi-component malware |
KR100945247B1 (en) * | 2007-10-04 | 2010-03-03 | 한국전자통신연구원 | The method and apparatus for analyzing exploit code in non-executable file using virtual environment |
US8195931B1 (en) | 2007-10-31 | 2012-06-05 | Mcafee, Inc. | Application change control |
KR100942795B1 (en) * | 2007-11-21 | 2010-02-18 | 한국전자통신연구원 | A method and a device for malware detection |
US8434151B1 (en) | 2008-01-04 | 2013-04-30 | International Business Machines Corporation | Detecting malicious software |
US8515075B1 (en) | 2008-01-31 | 2013-08-20 | Mcafee, Inc. | Method of and system for malicious software detection using critical address space protection |
US8719936B2 (en) * | 2008-02-01 | 2014-05-06 | Northeastern University | VMM-based intrusion detection system |
US20100031353A1 (en) * | 2008-02-04 | 2010-02-04 | Microsoft Corporation | Malware Detection Using Code Analysis and Behavior Monitoring |
US9264441B2 (en) * | 2008-03-24 | 2016-02-16 | Hewlett Packard Enterprise Development Lp | System and method for securing a network from zero-day vulnerability exploits |
US8782615B2 (en) * | 2008-04-14 | 2014-07-15 | Mcafee, Inc. | System, method, and computer program product for simulating at least one of a virtual environment and a debugging environment to prevent unwanted code from executing |
KR20090109154A (en) * | 2008-04-15 | 2009-10-20 | 한국전자통신연구원 | Device, system and method for preventing malicious code |
US8615502B2 (en) | 2008-04-18 | 2013-12-24 | Mcafee, Inc. | Method of and system for reverse mapping vnode pointers |
US20090300423A1 (en) * | 2008-05-28 | 2009-12-03 | James Michael Ferris | Systems and methods for software test management in cloud-based network |
US8543998B2 (en) * | 2008-05-30 | 2013-09-24 | Oracle International Corporation | System and method for building virtual appliances using a repository metadata server and a dependency resolution service |
US8862633B2 (en) | 2008-05-30 | 2014-10-14 | Novell, Inc. | System and method for efficiently building virtual appliances in a hosted environment |
US9779234B2 (en) * | 2008-06-18 | 2017-10-03 | Symantec Corporation | Software reputation establishment and monitoring system and method |
JP5009244B2 (en) * | 2008-07-07 | 2012-08-22 | 日本電信電話株式会社 | Malware detection system, malware detection method, and malware detection program |
EP2157525B1 (en) * | 2008-08-21 | 2018-01-10 | Unify GmbH & Co. KG | Method for recognising malware |
US9626511B2 (en) * | 2008-08-26 | 2017-04-18 | Symantec Corporation | Agentless enforcement of application management through virtualized block I/O redirection |
US9117078B1 (en) * | 2008-09-17 | 2015-08-25 | Trend Micro Inc. | Malware behavior analysis and policy creation |
US8997219B2 (en) | 2008-11-03 | 2015-03-31 | Fireeye, Inc. | Systems and methods for detecting malicious PDF network content |
US8850571B2 (en) | 2008-11-03 | 2014-09-30 | Fireeye, Inc. | Systems and methods for detecting malicious network content |
US8544003B1 (en) | 2008-12-11 | 2013-09-24 | Mcafee, Inc. | System and method for managing virtual machine configurations |
US9529573B2 (en) * | 2009-01-28 | 2016-12-27 | Microsoft Technology Licensing, Llc | Graphical user interface generation through use of a binary file |
US11489857B2 (en) | 2009-04-21 | 2022-11-01 | Webroot Inc. | System and method for developing a risk profile for an internet resource |
JP5073719B2 (en) * | 2009-08-20 | 2012-11-14 | 株式会社パロマ | Heat exchanger |
US8341627B2 (en) | 2009-08-21 | 2012-12-25 | Mcafee, Inc. | Method and system for providing user space address protection from writable memory area in a virtual environment |
US8381284B2 (en) | 2009-08-21 | 2013-02-19 | Mcafee, Inc. | System and method for enforcing security policies in a virtual environment |
US8832829B2 (en) | 2009-09-30 | 2014-09-09 | Fireeye, Inc. | Network-based binary file extraction and analysis for malware detection |
US8566943B2 (en) * | 2009-10-01 | 2013-10-22 | Kaspersky Lab, Zao | Asynchronous processing of events for malware detection |
US9552497B2 (en) | 2009-11-10 | 2017-01-24 | Mcafee, Inc. | System and method for preventing data loss using virtual machine wrapped applications |
US8356354B2 (en) | 2009-11-23 | 2013-01-15 | Kaspersky Lab, Zao | Silent-mode signature testing in anti-malware processing |
US9501644B2 (en) * | 2010-03-15 | 2016-11-22 | F-Secure Oyj | Malware protection |
US8566944B2 (en) | 2010-04-27 | 2013-10-22 | Microsoft Corporation | Malware investigation by analyzing computer memory |
US9449175B2 (en) * | 2010-06-03 | 2016-09-20 | Nokia Technologies Oy | Method and apparatus for analyzing and detecting malicious software |
KR101182346B1 (en) | 2010-06-10 | 2012-09-20 | 성균관대학교산학협력단 | Apparatus and method for dynamic binary instrumentaion |
US8925101B2 (en) | 2010-07-28 | 2014-12-30 | Mcafee, Inc. | System and method for local protection against malicious software |
US8938800B2 (en) | 2010-07-28 | 2015-01-20 | Mcafee, Inc. | System and method for network level protection against malicious software |
US8707441B1 (en) * | 2010-08-17 | 2014-04-22 | Symantec Corporation | Techniques for identifying optimized malicious search engine results |
US8352522B1 (en) * | 2010-09-01 | 2013-01-08 | Trend Micro Incorporated | Detection of file modifications performed by malicious codes |
US8549003B1 (en) | 2010-09-12 | 2013-10-01 | Mcafee, Inc. | System and method for clustering host inventories |
CN101959193A (en) * | 2010-09-26 | 2011-01-26 | 宇龙计算机通信科技(深圳)有限公司 | Information safety detection method and a mobile terminal |
RU2444056C1 (en) | 2010-11-01 | 2012-02-27 | Закрытое акционерное общество "Лаборатория Касперского" | System and method of speeding up problem solving by accumulating statistical information |
KR101216708B1 (en) * | 2010-11-12 | 2012-12-28 | 단국대학교 산학협력단 | Method and system for culture of computer virus |
RU2454714C1 (en) | 2010-12-30 | 2012-06-27 | Закрытое акционерное общество "Лаборатория Касперского" | System and method of increasing efficiency of detecting unknown harmful objects |
US9075993B2 (en) | 2011-01-24 | 2015-07-07 | Mcafee, Inc. | System and method for selectively grouping and managing program files |
US10574630B2 (en) | 2011-02-15 | 2020-02-25 | Webroot Inc. | Methods and apparatus for malware threat research |
US9112830B2 (en) | 2011-02-23 | 2015-08-18 | Mcafee, Inc. | System and method for interlocking a host and a gateway |
US9733934B2 (en) * | 2011-03-08 | 2017-08-15 | Google Inc. | Detecting application similarity |
US9087199B2 (en) | 2011-03-31 | 2015-07-21 | Mcafee, Inc. | System and method for providing a secured operating system execution environment |
US9038176B2 (en) | 2011-03-31 | 2015-05-19 | Mcafee, Inc. | System and method for below-operating system trapping and securing loading of code into memory |
US9317690B2 (en) | 2011-03-28 | 2016-04-19 | Mcafee, Inc. | System and method for firmware based anti-malware security |
US8813227B2 (en) | 2011-03-29 | 2014-08-19 | Mcafee, Inc. | System and method for below-operating system regulation and control of self-modifying code |
US8650642B2 (en) * | 2011-03-31 | 2014-02-11 | Mcafee, Inc. | System and method for below-operating system protection of an operating system kernel |
US8966629B2 (en) | 2011-03-31 | 2015-02-24 | Mcafee, Inc. | System and method for below-operating system trapping of driver loading and unloading |
US8966624B2 (en) | 2011-03-31 | 2015-02-24 | Mcafee, Inc. | System and method for securing an input/output path of an application against malware with a below-operating system security agent |
US8863283B2 (en) | 2011-03-31 | 2014-10-14 | Mcafee, Inc. | System and method for securing access to system calls |
US9032525B2 (en) | 2011-03-29 | 2015-05-12 | Mcafee, Inc. | System and method for below-operating system trapping of driver filter attachment |
US8925089B2 (en) | 2011-03-29 | 2014-12-30 | Mcafee, Inc. | System and method for below-operating system modification of malicious code on an electronic device |
US9262246B2 (en) | 2011-03-31 | 2016-02-16 | Mcafee, Inc. | System and method for securing memory and storage of an electronic device with a below-operating system security agent |
US8959638B2 (en) | 2011-03-29 | 2015-02-17 | Mcafee, Inc. | System and method for below-operating system trapping and securing of interdriver communication |
JP5665188B2 (en) * | 2011-03-31 | 2015-02-04 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | System for inspecting information processing equipment to which software update is applied |
US8707434B2 (en) | 2011-08-17 | 2014-04-22 | Mcafee, Inc. | System and method for indirect interface monitoring and plumb-lining |
US9594881B2 (en) | 2011-09-09 | 2017-03-14 | Mcafee, Inc. | System and method for passive threat detection using virtual memory inspection |
CN103617069B (en) * | 2011-09-14 | 2017-07-04 | 北京奇虎科技有限公司 | Malware detection methods and virtual machine |
US9495541B2 (en) | 2011-09-15 | 2016-11-15 | The Trustees Of Columbia University In The City Of New York | Detecting return-oriented programming payloads by evaluating data for a gadget address space address and determining whether operations associated with instructions beginning at the address indicate a return-oriented programming payload |
US8694738B2 (en) | 2011-10-11 | 2014-04-08 | Mcafee, Inc. | System and method for critical address space protection in a hypervisor environment |
US8973144B2 (en) | 2011-10-13 | 2015-03-03 | Mcafee, Inc. | System and method for kernel rootkit protection in a hypervisor environment |
US9069586B2 (en) | 2011-10-13 | 2015-06-30 | Mcafee, Inc. | System and method for kernel rootkit protection in a hypervisor environment |
US8713668B2 (en) | 2011-10-17 | 2014-04-29 | Mcafee, Inc. | System and method for redirected firewall discovery in a network environment |
US8800024B2 (en) | 2011-10-17 | 2014-08-05 | Mcafee, Inc. | System and method for host-initiated firewall discovery in a network environment |
US9519782B2 (en) | 2012-02-24 | 2016-12-13 | Fireeye, Inc. | Detecting malicious network content |
US8739272B1 (en) | 2012-04-02 | 2014-05-27 | Mcafee, Inc. | System and method for interlocking a host and a gateway |
US9319427B2 (en) * | 2012-05-13 | 2016-04-19 | Check Point Mobile Security Ltd | Anti-malware detection and removal systems and methods |
US9245120B2 (en) * | 2012-07-13 | 2016-01-26 | Cisco Technologies, Inc. | Method and apparatus for retroactively detecting malicious or otherwise undesirable software as well as clean software through intelligent rescanning |
US9575813B2 (en) * | 2012-07-17 | 2017-02-21 | Microsoft Technology Licensing, Llc | Pattern matching process scheduler with upstream optimization |
US9792432B2 (en) * | 2012-11-09 | 2017-10-17 | Nokia Technologies Oy | Method and apparatus for privacy-oriented code optimization |
RU2514142C1 (en) | 2012-12-25 | 2014-04-27 | Закрытое акционерное общество "Лаборатория Касперского" | Method for enhancement of operational efficiency of hardware acceleration of application emulation |
US8973146B2 (en) | 2012-12-27 | 2015-03-03 | Mcafee, Inc. | Herd based scan avoidance system in a network environment |
US10572665B2 (en) | 2012-12-28 | 2020-02-25 | Fireeye, Inc. | System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events |
US9525700B1 (en) | 2013-01-25 | 2016-12-20 | REMTCS Inc. | System and method for detecting malicious activity and harmful hardware/software modifications to a vehicle |
WO2014116888A1 (en) * | 2013-01-25 | 2014-07-31 | REMTCS Inc. | Network security system, method, and apparatus |
CN103971052B (en) * | 2013-01-28 | 2017-06-30 | 腾讯科技(深圳)有限公司 | The recognition methods of disk leading viruses and device |
US9367681B1 (en) | 2013-02-23 | 2016-06-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application |
US8990944B1 (en) | 2013-02-23 | 2015-03-24 | Fireeye, Inc. | Systems and methods for automatically detecting backdoors |
US9195829B1 (en) | 2013-02-23 | 2015-11-24 | Fireeye, Inc. | User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications |
US9176843B1 (en) | 2013-02-23 | 2015-11-03 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9159035B1 (en) | 2013-02-23 | 2015-10-13 | Fireeye, Inc. | Framework for computer application analysis of sensitive information tracking |
US9009822B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for multi-phase analysis of mobile applications |
US9009823B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications installed on mobile devices |
US9824209B1 (en) | 2013-02-23 | 2017-11-21 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications that is usable to harden in the field code |
US9239922B1 (en) * | 2013-03-11 | 2016-01-19 | Trend Micro Inc. | Document exploit detection using baseline comparison |
US9355247B1 (en) * | 2013-03-13 | 2016-05-31 | Fireeye, Inc. | File extraction from memory dump for malicious content analysis |
US9626509B1 (en) | 2013-03-13 | 2017-04-18 | Fireeye, Inc. | Malicious content analysis with multi-version application support within single operating environment |
US9104867B1 (en) | 2013-03-13 | 2015-08-11 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US9565202B1 (en) | 2013-03-13 | 2017-02-07 | Fireeye, Inc. | System and method for detecting exfiltration content |
US9311479B1 (en) | 2013-03-14 | 2016-04-12 | Fireeye, Inc. | Correlation and consolidation of analytic data for holistic view of a malware attack |
US9430646B1 (en) | 2013-03-14 | 2016-08-30 | Fireeye, Inc. | Distributed systems and methods for automatically detecting unknown bots and botnets |
US10713358B2 (en) | 2013-03-15 | 2020-07-14 | Fireeye, Inc. | System and method to extract and utilize disassembly features to classify software intent |
WO2014145805A1 (en) | 2013-03-15 | 2014-09-18 | Mandiant, Llc | System and method employing structured intelligence to verify and contain threats at endpoints |
US9251343B1 (en) | 2013-03-15 | 2016-02-02 | Fireeye, Inc. | Detecting bootkits resident on compromised computers |
US9495180B2 (en) | 2013-05-10 | 2016-11-15 | Fireeye, Inc. | Optimized resource allocation for virtual machines within a malware content detection system |
US9635039B1 (en) | 2013-05-13 | 2017-04-25 | Fireeye, Inc. | Classifying sets of malicious indicators for detecting command and control communications associated with malware |
CN104134034B (en) * | 2013-06-13 | 2015-10-21 | 腾讯科技(深圳)有限公司 | Control the method and apparatus that application runs |
US10133863B2 (en) | 2013-06-24 | 2018-11-20 | Fireeye, Inc. | Zero-day discovery system |
US9536091B2 (en) | 2013-06-24 | 2017-01-03 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US9300686B2 (en) | 2013-06-28 | 2016-03-29 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
US9888016B1 (en) | 2013-06-28 | 2018-02-06 | Fireeye, Inc. | System and method for detecting phishing using password prediction |
US8955138B1 (en) * | 2013-07-11 | 2015-02-10 | Symantec Corporation | Systems and methods for reevaluating apparently benign behavior on computing devices |
US9294501B2 (en) | 2013-09-30 | 2016-03-22 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US10515214B1 (en) | 2013-09-30 | 2019-12-24 | Fireeye, Inc. | System and method for classifying malware within content created during analysis of a specimen |
US9736179B2 (en) | 2013-09-30 | 2017-08-15 | Fireeye, Inc. | System, apparatus and method for using malware analysis results to drive adaptive instrumentation of virtual machines to improve exploit detection |
US9628507B2 (en) | 2013-09-30 | 2017-04-18 | Fireeye, Inc. | Advanced persistent threat (APT) detection center |
US9171160B2 (en) | 2013-09-30 | 2015-10-27 | Fireeye, Inc. | Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses |
US9690936B1 (en) | 2013-09-30 | 2017-06-27 | Fireeye, Inc. | Multistage system and method for analyzing obfuscated content for malware |
US10192052B1 (en) | 2013-09-30 | 2019-01-29 | Fireeye, Inc. | System, apparatus and method for classifying a file as malicious using static scanning |
US10089461B1 (en) | 2013-09-30 | 2018-10-02 | Fireeye, Inc. | Page replacement code injection |
US10075460B2 (en) | 2013-10-16 | 2018-09-11 | REMTCS Inc. | Power grid universal detection and countermeasure overlay intelligence ultra-low latency hypervisor |
CN105580023B (en) | 2013-10-24 | 2019-08-16 | 迈克菲股份有限公司 | The malicious application of agency's auxiliary in network environment prevents |
US9921978B1 (en) | 2013-11-08 | 2018-03-20 | Fireeye, Inc. | System and method for enhanced security of storage devices |
US9178900B1 (en) * | 2013-11-20 | 2015-11-03 | Trend Micro Inc. | Detection of advanced persistent threat having evasion technology |
US10242080B1 (en) | 2013-11-20 | 2019-03-26 | Google Llc | Clustering applications using visual metadata |
US9189627B1 (en) | 2013-11-21 | 2015-11-17 | Fireeye, Inc. | System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection |
US9323929B2 (en) * | 2013-11-26 | 2016-04-26 | Qualcomm Incorporated | Pre-identifying probable malicious rootkit behavior using behavioral contracts |
US9747446B1 (en) | 2013-12-26 | 2017-08-29 | Fireeye, Inc. | System and method for run-time object classification |
US9756074B2 (en) | 2013-12-26 | 2017-09-05 | Fireeye, Inc. | System and method for IPS and VM-based detection of suspicious objects |
US9292686B2 (en) | 2014-01-16 | 2016-03-22 | Fireeye, Inc. | Micro-virtualization architecture for threat-aware microvisor deployment in a node of a network environment |
US9262635B2 (en) | 2014-02-05 | 2016-02-16 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
TWI553503B (en) * | 2014-02-27 | 2016-10-11 | 國立交通大學 | Method of generating in-kernel hook point candidates to detect rootkits and system thereof |
US9241010B1 (en) | 2014-03-20 | 2016-01-19 | Fireeye, Inc. | System and method for network behavior detection |
US10242185B1 (en) | 2014-03-21 | 2019-03-26 | Fireeye, Inc. | Dynamic guest image creation and rollback |
US9591015B1 (en) | 2014-03-28 | 2017-03-07 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US9432389B1 (en) | 2014-03-31 | 2016-08-30 | Fireeye, Inc. | System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object |
US9223972B1 (en) | 2014-03-31 | 2015-12-29 | Fireeye, Inc. | Dynamically remote tuning of a malware content detection system |
US9769198B1 (en) * | 2014-03-31 | 2017-09-19 | Juniper Networks, Inc. | Malware detection using internal and/or external malware detection operations |
US9594912B1 (en) | 2014-06-06 | 2017-03-14 | Fireeye, Inc. | Return-oriented programming detection |
US9973531B1 (en) | 2014-06-06 | 2018-05-15 | Fireeye, Inc. | Shellcode detection |
US9438623B1 (en) | 2014-06-06 | 2016-09-06 | Fireeye, Inc. | Computer exploit detection using heap spray pattern matching |
US9015814B1 (en) | 2014-06-10 | 2015-04-21 | Kaspersky Lab Zao | System and methods for detecting harmful files of different formats |
US10084813B2 (en) | 2014-06-24 | 2018-09-25 | Fireeye, Inc. | Intrusion prevention and remedy system |
US9398028B1 (en) | 2014-06-26 | 2016-07-19 | Fireeye, Inc. | System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers |
US10805340B1 (en) | 2014-06-26 | 2020-10-13 | Fireeye, Inc. | Infection vector and malware tracking with an interactive user display |
US10002252B2 (en) | 2014-07-01 | 2018-06-19 | Fireeye, Inc. | Verification of trusted threat-aware microvisor |
US9710648B2 (en) | 2014-08-11 | 2017-07-18 | Sentinel Labs Israel Ltd. | Method of malware detection and system thereof |
US10102374B1 (en) | 2014-08-11 | 2018-10-16 | Sentinel Labs Israel Ltd. | Method of remediating a program and system thereof by undoing operations |
US11507663B2 (en) | 2014-08-11 | 2022-11-22 | Sentinel Labs Israel Ltd. | Method of remediating operations performed by a program and system thereof |
US9363280B1 (en) | 2014-08-22 | 2016-06-07 | Fireeye, Inc. | System and method of detecting delivery of malware using cross-customer data |
US10325094B2 (en) * | 2014-08-28 | 2019-06-18 | Mitsubishi Electric Corporation | Process analysis apparatus, process analysis method, and process analysis for determining input/output relation of a block of execution trace to detect potential malware |
US10671726B1 (en) | 2014-09-22 | 2020-06-02 | Fireeye Inc. | System and method for malware analysis using thread-level event monitoring |
US9449173B2 (en) * | 2014-09-23 | 2016-09-20 | Intel Corporation | Techniques for enabling co-existence of multiple security measures |
US9773112B1 (en) | 2014-09-29 | 2017-09-26 | Fireeye, Inc. | Exploit detection of malware and malware families |
US10027689B1 (en) | 2014-09-29 | 2018-07-17 | Fireeye, Inc. | Interactive infection visualization for improved exploit detection and signature generation for malware and malware families |
US20160125094A1 (en) * | 2014-11-05 | 2016-05-05 | Nec Laboratories America, Inc. | Method and system for behavior query construction in temporal graphs using discriminative sub-trace mining |
US9690933B1 (en) | 2014-12-22 | 2017-06-27 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US10075455B2 (en) | 2014-12-26 | 2018-09-11 | Fireeye, Inc. | Zero-day rotating guest image profile |
US9934376B1 (en) | 2014-12-29 | 2018-04-03 | Fireeye, Inc. | Malware detection appliance architecture |
US9838417B1 (en) | 2014-12-30 | 2017-12-05 | Fireeye, Inc. | Intelligent context aware user interaction for malware detection |
DE102015101388A1 (en) | 2015-01-30 | 2016-08-04 | Deutsche Telekom Ag | Test system for testing a computer of a computer system in a test network |
KR20160099160A (en) * | 2015-02-11 | 2016-08-22 | 한국전자통신연구원 | Method of modelling behavior pattern of instruction set in n-gram manner, computing device operating with the method, and program stored in storage medium configured to execute the method in computing device |
US10148693B2 (en) | 2015-03-25 | 2018-12-04 | Fireeye, Inc. | Exploit detection system |
US9690606B1 (en) | 2015-03-25 | 2017-06-27 | Fireeye, Inc. | Selective system call monitoring |
US9438613B1 (en) | 2015-03-30 | 2016-09-06 | Fireeye, Inc. | Dynamic content activation for automated analysis of embedded objects |
US10474813B1 (en) | 2015-03-31 | 2019-11-12 | Fireeye, Inc. | Code injection technique for remediation at an endpoint of a network |
US9483644B1 (en) | 2015-03-31 | 2016-11-01 | Fireeye, Inc. | Methods for detecting file altering malware in VM based analysis |
US10417031B2 (en) | 2015-03-31 | 2019-09-17 | Fireeye, Inc. | Selective virtualization for security threat detection |
US9654485B1 (en) | 2015-04-13 | 2017-05-16 | Fireeye, Inc. | Analytics-based security monitoring system and method |
US9594904B1 (en) | 2015-04-23 | 2017-03-14 | Fireeye, Inc. | Detecting malware based on reflection |
US10726127B1 (en) | 2015-06-30 | 2020-07-28 | Fireeye, Inc. | System and method for protecting a software component running in a virtual machine through virtual interrupts by the virtualization layer |
US10642753B1 (en) | 2015-06-30 | 2020-05-05 | Fireeye, Inc. | System and method for protecting a software component running in virtual machine using a virtualization layer |
US10454950B1 (en) | 2015-06-30 | 2019-10-22 | Fireeye, Inc. | Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks |
US11113086B1 (en) | 2015-06-30 | 2021-09-07 | Fireeye, Inc. | Virtual system and method for securing external network connectivity |
US10715542B1 (en) | 2015-08-14 | 2020-07-14 | Fireeye, Inc. | Mobile application risk analysis |
US10176321B2 (en) | 2015-09-22 | 2019-01-08 | Fireeye, Inc. | Leveraging behavior-based rules for malware family classification |
US10033747B1 (en) | 2015-09-29 | 2018-07-24 | Fireeye, Inc. | System and method for detecting interpreter-based exploit attacks |
US9825976B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Detection and classification of exploit kits |
US10210329B1 (en) | 2015-09-30 | 2019-02-19 | Fireeye, Inc. | Method to detect application execution hijacking using memory protection |
US10601865B1 (en) | 2015-09-30 | 2020-03-24 | Fireeye, Inc. | Detection of credential spearphishing attacks using email analysis |
US10817606B1 (en) | 2015-09-30 | 2020-10-27 | Fireeye, Inc. | Detecting delayed activation malware using a run-time monitoring agent and time-dilation logic |
US9825989B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Cyber attack early warning system |
US10706149B1 (en) | 2015-09-30 | 2020-07-07 | Fireeye, Inc. | Detecting delayed activation malware using a primary controller and plural time controllers |
US10284575B2 (en) | 2015-11-10 | 2019-05-07 | Fireeye, Inc. | Launcher for setting analysis environment variations for malware detection |
US10846117B1 (en) | 2015-12-10 | 2020-11-24 | Fireeye, Inc. | Technique for establishing secure communication between host and guest processes of a virtualization architecture |
US10447728B1 (en) | 2015-12-10 | 2019-10-15 | Fireeye, Inc. | Technique for protecting guest processes using a layered virtualization architecture |
US10108446B1 (en) | 2015-12-11 | 2018-10-23 | Fireeye, Inc. | Late load technique for deploying a virtualization layer underneath a running operating system |
US10133866B1 (en) | 2015-12-30 | 2018-11-20 | Fireeye, Inc. | System and method for triggering analysis of an object for malware in response to modification of that object |
US10565378B1 (en) | 2015-12-30 | 2020-02-18 | Fireeye, Inc. | Exploit of privilege detection framework |
US10621338B1 (en) | 2015-12-30 | 2020-04-14 | Fireeye, Inc. | Method to detect forgery and exploits using last branch recording registers |
US10050998B1 (en) | 2015-12-30 | 2018-08-14 | Fireeye, Inc. | Malicious message analysis system |
US11552986B1 (en) | 2015-12-31 | 2023-01-10 | Fireeye Security Holdings Us Llc | Cyber-security framework for application of virtual features |
US10581874B1 (en) | 2015-12-31 | 2020-03-03 | Fireeye, Inc. | Malware detection system with contextual analysis |
US9824216B1 (en) | 2015-12-31 | 2017-11-21 | Fireeye, Inc. | Susceptible environment detection system |
RU2628921C1 (en) * | 2016-03-18 | 2017-08-22 | Акционерное общество "Лаборатория Касперского" | System and method for performing anti-virus scan of file on virtual machine |
US10601863B1 (en) | 2016-03-25 | 2020-03-24 | Fireeye, Inc. | System and method for managing sensor enrollment |
US10671721B1 (en) | 2016-03-25 | 2020-06-02 | Fireeye, Inc. | Timeout management services |
US10476906B1 (en) | 2016-03-25 | 2019-11-12 | Fireeye, Inc. | System and method for managing formation and modification of a cluster within a malware detection system |
US10785255B1 (en) | 2016-03-25 | 2020-09-22 | Fireeye, Inc. | Cluster configuration within a scalable malware detection system |
US10826933B1 (en) | 2016-03-31 | 2020-11-03 | Fireeye, Inc. | Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints |
US10893059B1 (en) | 2016-03-31 | 2021-01-12 | Fireeye, Inc. | Verification and enhancement using detection systems located at the network periphery and endpoint devices |
US10169585B1 (en) | 2016-06-22 | 2019-01-01 | Fireeye, Inc. | System and methods for advanced malware detection through placement of transition events |
US10462173B1 (en) | 2016-06-30 | 2019-10-29 | Fireeye, Inc. | Malware detection verification and enhancement by coordinating endpoint and malware detection systems |
US10264002B2 (en) * | 2016-07-14 | 2019-04-16 | Mitsui Bussan Secure Directions, Inc. | Program, information processing device, and information processing method |
US10169581B2 (en) * | 2016-08-29 | 2019-01-01 | Trend Micro Incorporated | Detecting malicious code in sections of computer files |
US10592678B1 (en) | 2016-09-09 | 2020-03-17 | Fireeye, Inc. | Secure communications between peers using a verified virtual trusted platform module |
US10169190B2 (en) * | 2016-09-21 | 2019-01-01 | Lenvio Inc. | Call trace generation via behavior computation |
US10491627B1 (en) | 2016-09-29 | 2019-11-26 | Fireeye, Inc. | Advanced malware detection using similarity analysis |
RU2634178C1 (en) * | 2016-10-10 | 2017-10-24 | Акционерное общество "Лаборатория Касперского" | Method of detecting harmful composite files |
US10795991B1 (en) | 2016-11-08 | 2020-10-06 | Fireeye, Inc. | Enterprise search |
US10587647B1 (en) | 2016-11-22 | 2020-03-10 | Fireeye, Inc. | Technique for malware detection capability comparison of network security devices |
US11695800B2 (en) | 2016-12-19 | 2023-07-04 | SentinelOne, Inc. | Deceiving attackers accessing network data |
US11616812B2 (en) | 2016-12-19 | 2023-03-28 | Attivo Networks Inc. | Deceiving attackers accessing active directory data |
US10581879B1 (en) | 2016-12-22 | 2020-03-03 | Fireeye, Inc. | Enhanced malware detection for generated objects |
US10552610B1 (en) | 2016-12-22 | 2020-02-04 | Fireeye, Inc. | Adaptive virtual machine snapshot update framework for malware behavioral analysis |
US10523609B1 (en) | 2016-12-27 | 2019-12-31 | Fireeye, Inc. | Multi-vector malware detection and analysis |
JP2018109910A (en) | 2017-01-05 | 2018-07-12 | 富士通株式会社 | Similarity determination program, similarity determination method, and information processing apparatus |
JP6866645B2 (en) | 2017-01-05 | 2021-04-28 | 富士通株式会社 | Similarity determination program, similarity determination method and information processing device |
US10592664B2 (en) * | 2017-02-02 | 2020-03-17 | Cisco Technology, Inc. | Container application security and protection |
EP3376423A1 (en) * | 2017-03-14 | 2018-09-19 | Gemalto Sa | Self-adaptive countermeasures |
US10904286B1 (en) | 2017-03-24 | 2021-01-26 | Fireeye, Inc. | Detection of phishing attacks using similarity analysis |
US10798112B2 (en) | 2017-03-30 | 2020-10-06 | Fireeye, Inc. | Attribute-controlled malware detection |
US10902119B1 (en) | 2017-03-30 | 2021-01-26 | Fireeye, Inc. | Data extraction system for malware analysis |
US10791138B1 (en) | 2017-03-30 | 2020-09-29 | Fireeye, Inc. | Subscription-based malware detection |
US10848397B1 (en) | 2017-03-30 | 2020-11-24 | Fireeye, Inc. | System and method for enforcing compliance with subscription requirements for cyber-attack detection service |
US10855700B1 (en) | 2017-06-29 | 2020-12-01 | Fireeye, Inc. | Post-intrusion detection of cyber-attacks during lateral movement within networks |
US10601848B1 (en) | 2017-06-29 | 2020-03-24 | Fireeye, Inc. | Cyber-security system and method for weak indicator detection and correlation to generate strong indicators |
US10503904B1 (en) | 2017-06-29 | 2019-12-10 | Fireeye, Inc. | Ransomware detection and mitigation |
US10893068B1 (en) | 2017-06-30 | 2021-01-12 | Fireeye, Inc. | Ransomware file modification prevention technique |
JP2020530922A (en) | 2017-08-08 | 2020-10-29 | センチネル ラボ, インコーポレイテッドSentinel Labs, Inc. | How to dynamically model and group edge networking endpoints, systems, and devices |
US10747872B1 (en) | 2017-09-27 | 2020-08-18 | Fireeye, Inc. | System and method for preventing malware evasion |
RU2659739C1 (en) * | 2017-09-29 | 2018-07-03 | Акционерное общество "Лаборатория Касперского" | Method of composite file access control |
US10805346B2 (en) | 2017-10-01 | 2020-10-13 | Fireeye, Inc. | Phishing attack detection |
US11108809B2 (en) | 2017-10-27 | 2021-08-31 | Fireeye, Inc. | System and method for analyzing binary code for malware classification using artificial neural network techniques |
US11005860B1 (en) | 2017-12-28 | 2021-05-11 | Fireeye, Inc. | Method and system for efficient cybersecurity analysis of endpoint events |
US11271955B2 (en) | 2017-12-28 | 2022-03-08 | Fireeye Security Holdings Us Llc | Platform and method for retroactive reclassification employing a cybersecurity-based global data store |
US11240275B1 (en) | 2017-12-28 | 2022-02-01 | Fireeye Security Holdings Us Llc | Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture |
US11470115B2 (en) | 2018-02-09 | 2022-10-11 | Attivo Networks, Inc. | Implementing decoys in a network environment |
US10628138B2 (en) | 2018-02-09 | 2020-04-21 | International Business Machines Corporation | Automated management of undesired code use based on predicted valuation and risk analysis |
US10826931B1 (en) | 2018-03-29 | 2020-11-03 | Fireeye, Inc. | System and method for predicting and mitigating cybersecurity system misconfigurations |
US11558401B1 (en) | 2018-03-30 | 2023-01-17 | Fireeye Security Holdings Us Llc | Multi-vector malware detection data sharing system for improved detection |
US11003773B1 (en) | 2018-03-30 | 2021-05-11 | Fireeye, Inc. | System and method for automatically generating malware detection rule recommendations |
US10956477B1 (en) | 2018-03-30 | 2021-03-23 | Fireeye, Inc. | System and method for detecting malicious scripts through natural language processing modeling |
CN108846287A (en) * | 2018-06-26 | 2018-11-20 | 北京奇安信科技有限公司 | A kind of method and device of detection loophole attack |
US11075930B1 (en) * | 2018-06-27 | 2021-07-27 | Fireeye, Inc. | System and method for detecting repetitive cybersecurity attacks constituting an email campaign |
US11314859B1 (en) | 2018-06-27 | 2022-04-26 | FireEye Security Holdings, Inc. | Cyber-security system and method for detecting escalation of privileges within an access token |
US11228491B1 (en) | 2018-06-28 | 2022-01-18 | Fireeye Security Holdings Us Llc | System and method for distributed cluster configuration monitoring and management |
US11316900B1 (en) | 2018-06-29 | 2022-04-26 | FireEye Security Holdings Inc. | System and method for automatically prioritizing rules for cyber-threat detection and mitigation |
US11182473B1 (en) | 2018-09-13 | 2021-11-23 | Fireeye Security Holdings Us Llc | System and method for mitigating cyberattacks against processor operability by a guest process |
US11763004B1 (en) | 2018-09-27 | 2023-09-19 | Fireeye Security Holdings Us Llc | System and method for bootkit detection |
US11368475B1 (en) | 2018-12-21 | 2022-06-21 | Fireeye Security Holdings Us Llc | System and method for scanning remote services to locate stored objects with malware |
US12074887B1 (en) | 2018-12-21 | 2024-08-27 | Musarubra Us Llc | System and method for selectively processing content after identification and removal of malicious content |
US11743290B2 (en) | 2018-12-21 | 2023-08-29 | Fireeye Security Holdings Us Llc | System and method for detecting cyberattacks impersonating legitimate sources |
US11176251B1 (en) | 2018-12-21 | 2021-11-16 | Fireeye, Inc. | Determining malware via symbolic function hash analysis |
US11601444B1 (en) | 2018-12-31 | 2023-03-07 | Fireeye Security Holdings Us Llc | Automated system for triage of customer issues |
US11310238B1 (en) | 2019-03-26 | 2022-04-19 | FireEye Security Holdings, Inc. | System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources |
US11677786B1 (en) | 2019-03-29 | 2023-06-13 | Fireeye Security Holdings Us Llc | System and method for detecting and protecting against cybersecurity attacks on servers |
US11636198B1 (en) | 2019-03-30 | 2023-04-25 | Fireeye Security Holdings Us Llc | System and method for cybersecurity analyzer update and concurrent management system |
EP3973427A4 (en) | 2019-05-20 | 2023-06-21 | Sentinel Labs Israel Ltd. | Systems and methods for executable code detection, automatic feature extraction and position independent code detection |
US11258806B1 (en) | 2019-06-24 | 2022-02-22 | Mandiant, Inc. | System and method for automatically associating cybersecurity intelligence to cyberthreat actors |
US11556640B1 (en) | 2019-06-27 | 2023-01-17 | Mandiant, Inc. | Systems and methods for automated cybersecurity analysis of extracted binary string sets |
US11392700B1 (en) | 2019-06-28 | 2022-07-19 | Fireeye Security Holdings Us Llc | System and method for supporting cross-platform data verification |
US11886585B1 (en) | 2019-09-27 | 2024-01-30 | Musarubra Us Llc | System and method for identifying and mitigating cyberattacks through malicious position-independent code execution |
US11637862B1 (en) | 2019-09-30 | 2023-04-25 | Mandiant, Inc. | System and method for surfacing cyber-security threats with a self-learning recommendation engine |
CN111028135B (en) * | 2019-12-10 | 2023-06-02 | 国网重庆市电力公司电力科学研究院 | Image file repairing method |
US11522884B1 (en) | 2019-12-24 | 2022-12-06 | Fireeye Security Holdings Us Llc | Subscription and key management system |
US11436327B1 (en) | 2019-12-24 | 2022-09-06 | Fireeye Security Holdings Us Llc | System and method for circumventing evasive code for cyberthreat detection |
US11838300B1 (en) | 2019-12-24 | 2023-12-05 | Musarubra Us Llc | Run-time configurable cybersecurity system |
US11321221B2 (en) * | 2019-12-31 | 2022-05-03 | Visa International Service Association | System and method to use past computer executable instructions to evaluate proposed computer executable instructions |
US12056239B2 (en) | 2020-08-18 | 2024-08-06 | Micro Focus Llc | Thread-based malware detection |
US11579857B2 (en) | 2020-12-16 | 2023-02-14 | Sentinel Labs Israel Ltd. | Systems, methods and devices for device fingerprinting and automatic deployment of software in a computing network using a peer-to-peer approach |
GB2605635A (en) * | 2021-04-08 | 2022-10-12 | Withsecure Corp | Arrangement and method of threat detection in a computer or computer network |
US20240291847A1 (en) * | 2021-06-24 | 2024-08-29 | Feroot Security Inc. | Security risk remediation tool |
US11899782B1 (en) | 2021-07-13 | 2024-02-13 | SentinelOne, Inc. | Preserving DLL hooks |
US20230185692A1 (en) | 2021-12-14 | 2023-06-15 | John D. Campbell | Highly Tested Systems |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55112651A (en) | 1979-02-21 | 1980-08-30 | Fujitsu Ltd | Virtual computer system |
US4819234A (en) | 1987-05-01 | 1989-04-04 | Prime Computer, Inc. | Operating system debugger |
US5121345A (en) | 1988-11-03 | 1992-06-09 | Lentz Stephen A | System and method for protecting integrity of computer data and software |
US4975950A (en) | 1988-11-03 | 1990-12-04 | Lentz Stephen A | System and method of protecting integrity of computer data and software |
EP0449242A3 (en) | 1990-03-28 | 1992-10-28 | National Semiconductor Corporation | Method and structure for providing computer security and virus prevention |
EP0510244A1 (en) * | 1991-04-22 | 1992-10-28 | Acer Incorporated | Method and apparatus for protecting a computer system from computer viruses |
US5774727A (en) | 1991-06-27 | 1998-06-30 | Digital Equipment Corporation | Parallel processing system for virtual processor implementation of machine-language instructions |
US5649095A (en) | 1992-03-30 | 1997-07-15 | Cozza; Paul D. | Method and apparatus for detecting computer viruses through the use of a scan information cache |
US5278901A (en) | 1992-04-30 | 1994-01-11 | International Business Machines Corporation | Pattern-oriented intrusion-detection system and method |
US5359659A (en) * | 1992-06-19 | 1994-10-25 | Doren Rosenthal | Method for securing software against corruption by computer viruses |
US5345595A (en) | 1992-11-12 | 1994-09-06 | Coral Systems, Inc. | Apparatus and method for detecting fraudulent telecommunication activity |
US5440723A (en) | 1993-01-19 | 1995-08-08 | International Business Machines Corporation | Automatic immune system for computers and computer networks |
JP2501771B2 (en) * | 1993-01-19 | 1996-05-29 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Method and apparatus for obtaining multiple valid signatures of an unwanted software entity |
US5586260A (en) | 1993-02-12 | 1996-12-17 | Digital Equipment Corporation | Method and apparatus for authenticating a client to a server in computer systems which support different security mechanisms |
US5630061A (en) | 1993-04-19 | 1997-05-13 | International Business Machines Corporation | System for enabling first computer to communicate over switched network with second computer located within LAN by using media access control driver in different modes |
US5398196A (en) | 1993-07-29 | 1995-03-14 | Chambers; David A. | Method and apparatus for detection of computer viruses |
US5414833A (en) | 1993-10-27 | 1995-05-09 | International Business Machines Corporation | Network security system and method using a parallel finite state machine adaptive active monitor and responder |
US5835726A (en) | 1993-12-15 | 1998-11-10 | Check Point Software Technologies Ltd. | System for securing the flow of and selectively modifying packets in a computer network |
US5606668A (en) | 1993-12-15 | 1997-02-25 | Checkpoint Software Technologies Ltd. | System for securing inbound and outbound data packet flow in a computer network |
US5675711A (en) | 1994-05-13 | 1997-10-07 | International Business Machines Corporation | Adaptive statistical regression and classification of data strings, with application to the generic detection of computer viruses |
ATE183592T1 (en) | 1994-06-01 | 1999-09-15 | Quantum Leap Innovations Inc | COMPUTER VIRUS TRAP |
DE4423650A1 (en) * | 1994-07-06 | 1996-01-11 | Bayer Ag | Azo dyes with a fiber reactive group |
US5623601A (en) | 1994-11-18 | 1997-04-22 | Milkway Networks Corporation | Apparatus and method for providing a secure gateway for communication and data exchanges between networks |
US5764890A (en) | 1994-12-13 | 1998-06-09 | Microsoft Corporation | Method and system for adding a secure network server to an existing computer network |
CA2138302C (en) | 1994-12-15 | 1999-05-25 | Michael S. Fortinsky | Provision of secure access to external resources from a distributed computing environment |
US5590331A (en) | 1994-12-23 | 1996-12-31 | Sun Microsystems, Inc. | Method and apparatus for generating platform-standard object files containing machine-independent code |
US5749066A (en) | 1995-04-24 | 1998-05-05 | Ericsson Messaging Systems Inc. | Method and apparatus for developing a neural network for phoneme recognition |
US6061795A (en) | 1995-07-31 | 2000-05-09 | Pinnacle Technology Inc. | Network desktop management security system and method |
US5623600A (en) | 1995-09-26 | 1997-04-22 | Trend Micro, Incorporated | Virus detection and removal apparatus for computer networks |
US5854916A (en) | 1995-09-28 | 1998-12-29 | Symantec Corporation | State-based cache for antivirus software |
US5696822A (en) | 1995-09-28 | 1997-12-09 | Symantec Corporation | Polymorphic virus detection module |
US5826013A (en) | 1995-09-28 | 1998-10-20 | Symantec Corporation | Polymorphic virus detection module |
US5765030A (en) | 1996-07-19 | 1998-06-09 | Symantec Corp | Processor emulator module having a variable pre-fetch queue size for program execution |
US6067410A (en) | 1996-02-09 | 2000-05-23 | Symantec Corporation | Emulation repair system |
US5838903A (en) | 1995-11-13 | 1998-11-17 | International Business Machines Corporation | Configurable password integrity servers for use in a shared resource environment |
US5832211A (en) | 1995-11-13 | 1998-11-03 | International Business Machines Corporation | Propagating plain-text passwords from a main registry to a plurality of foreign registries |
US5764887A (en) | 1995-12-11 | 1998-06-09 | International Business Machines Corporation | System and method for supporting distributed computing mechanisms in a local area network server environment |
GB9526129D0 (en) | 1995-12-21 | 1996-02-21 | Philips Electronics Nv | Machine code format translation |
US5761504A (en) | 1996-02-16 | 1998-06-02 | Motorola, Inc. | Method for updating a software code in a communication system |
US5950012A (en) | 1996-03-08 | 1999-09-07 | Texas Instruments Incorporated | Single chip microprocessor circuits, systems, and methods for self-loading patch micro-operation codes and patch microinstruction codes |
US5964839A (en) | 1996-03-29 | 1999-10-12 | At&T Corp | System and method for monitoring information flow and performing data collection |
US5822517A (en) * | 1996-04-15 | 1998-10-13 | Dotan; Eyal | Method for detecting infection of software programs by memory resident software viruses |
US6014645A (en) | 1996-04-19 | 2000-01-11 | Block Financial Corporation | Real-time financial card application system |
US5881236A (en) | 1996-04-26 | 1999-03-09 | Hewlett-Packard Company | System for installation of software on a remote computer system over a network using checksums and password protection |
US5884033A (en) | 1996-05-15 | 1999-03-16 | Spyglass, Inc. | Internet filtering system for filtering data transferred over the internet utilizing immediate and deferred filtering actions |
US5798706A (en) | 1996-06-18 | 1998-08-25 | Raptor Systems, Inc. | Detecting unauthorized network communication |
US5857191A (en) | 1996-07-08 | 1999-01-05 | Gradient Technologies, Inc. | Web application server with secure common gateway interface |
US5787177A (en) | 1996-08-01 | 1998-07-28 | Harris Corporation | Integrated network security access control system |
US5828833A (en) | 1996-08-15 | 1998-10-27 | Electronic Data Systems Corporation | Method and system for allowing remote procedure calls through a network firewall |
US5864665A (en) | 1996-08-20 | 1999-01-26 | International Business Machines Corporation | Auditing login activity in a distributed computing environment |
US5832208A (en) | 1996-09-05 | 1998-11-03 | Cheyenne Software International Sales Corp. | Anti-virus agent for use with databases and mail servers |
US6154844A (en) | 1996-11-08 | 2000-11-28 | Finjan Software, Ltd. | System and method for attaching a downloadable security profile to a downloadable |
US6167520A (en) | 1996-11-08 | 2000-12-26 | Finjan Software, Inc. | System and method for protecting a client during runtime from hostile downloadables |
US5796942A (en) | 1996-11-21 | 1998-08-18 | Computer Associates International, Inc. | Method and apparatus for automated network-wide surveillance and security breach intervention |
US5987611A (en) | 1996-12-31 | 1999-11-16 | Zone Labs, Inc. | System and methodology for managing internet access on a per application basis for client computers connected to the internet |
US5875296A (en) | 1997-01-28 | 1999-02-23 | International Business Machines Corporation | Distributed file system web server user authentication with cookies |
US6085224A (en) | 1997-03-11 | 2000-07-04 | Intracept, Inc. | Method and system for responding to hidden data and programs in a datastream |
US5983270A (en) | 1997-03-11 | 1999-11-09 | Sequel Technology Corporation | Method and apparatus for managing internetwork and intranetwork activity |
US5987606A (en) | 1997-03-19 | 1999-11-16 | Bascom Global Internet Services, Inc. | Method and system for content filtering information retrieved from an internet computer network |
US5964889A (en) | 1997-04-16 | 1999-10-12 | Symantec Corporation | Method to analyze a program for presence of computer viruses by examining the opcode for faults before emulating instruction in emulator |
US6119234A (en) | 1997-06-27 | 2000-09-12 | Sun Microsystems, Inc. | Method and apparatus for client-host communication over a computer network |
US5978917A (en) | 1997-08-14 | 1999-11-02 | Symantec Corporation | Detection and elimination of macro viruses |
US6275938B1 (en) | 1997-08-28 | 2001-08-14 | Microsoft Corporation | Security enhancement for untrusted executable code |
US6016553A (en) | 1997-09-05 | 2000-01-18 | Wild File, Inc. | Method, software and apparatus for saving, using and recovering data |
US6321337B1 (en) | 1997-09-09 | 2001-11-20 | Sanctum Ltd. | Method and system for protecting operations of trusted internal networks |
US5983348A (en) | 1997-09-10 | 1999-11-09 | Trend Micro Incorporated | Computer network malicious code scanner |
US6357008B1 (en) | 1997-09-23 | 2002-03-12 | Symantec Corporation | Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases |
US6003132A (en) | 1997-10-22 | 1999-12-14 | Rvt Technologies, Inc. | Method and apparatus for isolating a computer system upon detection of viruses and similar data |
US6081894A (en) | 1997-10-22 | 2000-06-27 | Rvt Technologies, Inc. | Method and apparatus for isolating an encrypted computer system upon detection of viruses and similar data |
US6041347A (en) | 1997-10-24 | 2000-03-21 | Unified Access Communications | Computer system and computer-implemented process for simultaneous configuration and monitoring of a computer network |
US6119165A (en) | 1997-11-17 | 2000-09-12 | Trend Micro, Inc. | Controlled distribution of application programs in a computer network |
US6108799A (en) | 1997-11-21 | 2000-08-22 | International Business Machines Corporation | Automated sample creation of polymorphic and non-polymorphic marcro viruses |
US6094731A (en) | 1997-11-24 | 2000-07-25 | Symantec Corporation | Antivirus accelerator for computer networks |
US6026442A (en) | 1997-11-24 | 2000-02-15 | Cabletron Systems, Inc. | Method and apparatus for surveillance in communications networks |
US6021510A (en) | 1997-11-24 | 2000-02-01 | Symantec Corporation | Antivirus accelerator |
US6118940A (en) | 1997-11-25 | 2000-09-12 | International Business Machines Corp. | Method and apparatus for benchmarking byte code sequences |
IL122314A (en) | 1997-11-27 | 2001-03-19 | Security 7 Software Ltd | Method and system for enforcing a communication security policy |
US6088803A (en) | 1997-12-30 | 2000-07-11 | Intel Corporation | System for virus-checking network data during download to a client device |
US6029256A (en) | 1997-12-31 | 2000-02-22 | Network Associates, Inc. | Method and system for allowing computer programs easy access to features of a virus scanning engine |
US6035423A (en) | 1997-12-31 | 2000-03-07 | Network Associates, Inc. | Method and system for providing automated updating and upgrading of antivirus applications using a computer network |
US6122738A (en) | 1998-01-22 | 2000-09-19 | Symantec Corporation | Computer file integrity verification |
US5987610A (en) * | 1998-02-12 | 1999-11-16 | Ameritech Corporation | Computer virus screening methods and systems |
US6397242B1 (en) | 1998-05-15 | 2002-05-28 | Vmware, Inc. | Virtualization system including a virtual machine monitor for a computer with a segmented architecture |
WO1999067713A1 (en) | 1998-06-22 | 1999-12-29 | Colin Constable | Virtual data storage (vds) system |
US6045311A (en) | 1998-09-10 | 2000-04-04 | Chang; Peter Jenn-Hai | Bolt, nut, and wrench in taper design for turning the bolt and the nut |
US6192512B1 (en) | 1998-09-24 | 2001-02-20 | International Business Machines Corporation | Interpreter with virtualized interface |
US6338141B1 (en) | 1998-09-30 | 2002-01-08 | Cybersoft, Inc. | Method and apparatus for computer virus detection, analysis, and removal in real time |
US6266774B1 (en) | 1998-12-08 | 2001-07-24 | Mcafee.Com Corporation | Method and system for securing, managing or optimizing a personal computer |
US6405318B1 (en) | 1999-03-12 | 2002-06-11 | Psionic Software, Inc. | Intrusion detection system |
US7185367B2 (en) | 1999-05-11 | 2007-02-27 | Cylant, Inc. | Method and system for establishing normal software system behavior and departures from normal behavior |
US6971019B1 (en) * | 2000-03-14 | 2005-11-29 | Symantec Corporation | Histogram-based virus detection |
US6775780B1 (en) | 2000-03-16 | 2004-08-10 | Networks Associates Technology, Inc. | Detecting malicious software by analyzing patterns of system calls generated during emulation |
AU2001262958A1 (en) | 2000-04-28 | 2001-11-12 | Internet Security Systems, Inc. | Method and system for managing computer security information |
US6973577B1 (en) * | 2000-05-26 | 2005-12-06 | Mcafee, Inc. | System and method for dynamically detecting computer viruses through associative behavioral analysis of runtime state |
US8341743B2 (en) * | 2000-07-14 | 2012-12-25 | Ca, Inc. | Detection of viral code using emulation of operating system functions |
US7093239B1 (en) * | 2000-07-14 | 2006-08-15 | Internet Security Systems, Inc. | Computer immune system and method for detecting unwanted code in a computer system |
US7146305B2 (en) | 2000-10-24 | 2006-12-05 | Vcis, Inc. | Analytical virtual machine |
ATE419574T1 (en) | 2001-01-10 | 2009-01-15 | Cisco Tech Inc | COMPUTER SECURITY AND MANAGEMENT SYSTEM |
US7370360B2 (en) * | 2002-05-13 | 2008-05-06 | International Business Machines Corporation | Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine |
-
2000
- 2000-08-18 US US09/642,625 patent/US7093239B1/en not_active Expired - Lifetime
-
2001
- 2001-06-14 AU AU2001269826A patent/AU2001269826A1/en not_active Abandoned
- 2001-06-14 EP EP01948369A patent/EP1358526A2/en not_active Withdrawn
- 2001-06-14 WO PCT/US2001/019142 patent/WO2002006928A2/en not_active Application Discontinuation
- 2001-06-14 CA CA002416066A patent/CA2416066A1/en not_active Abandoned
- 2001-06-14 JP JP2002512775A patent/JP4741782B2/en not_active Expired - Lifetime
- 2001-07-11 TW TW090116946A patent/TW518463B/en not_active IP Right Cessation
-
2005
- 2005-03-30 US US11/094,489 patent/US7854004B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2416066A1 (en) | 2002-01-24 |
EP1358526A2 (en) | 2003-11-05 |
WO2002006928A3 (en) | 2003-08-14 |
US20050268338A1 (en) | 2005-12-01 |
WO2002006928A2 (en) | 2002-01-24 |
TW518463B (en) | 2003-01-21 |
US7854004B2 (en) | 2010-12-14 |
JP4741782B2 (en) | 2011-08-10 |
US7093239B1 (en) | 2006-08-15 |
JP2004504662A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7093239B1 (en) | Computer immune system and method for detecting unwanted code in a computer system | |
US7900258B2 (en) | Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine | |
US7657419B2 (en) | Analytical virtual machine | |
US8479174B2 (en) | Method, computer program and computer for analyzing an executable computer file | |
US8904537B2 (en) | Malware detection | |
EP1800434B1 (en) | Proactive computer malware protection through dynamic translation | |
RU2698776C2 (en) | Method of maintaining database and corresponding server | |
US7146305B2 (en) | Analytical virtual machine | |
CA2304163C (en) | Dynamic heuristic method for detecting computer viruses | |
JP6706273B2 (en) | Behavioral Malware Detection Using Interpreted Virtual Machines | |
EP0636977B1 (en) | Method and apparatus for detection of computer viruses | |
Al Daoud et al. | Computer virus strategies and detection methods | |
Liţă et al. | Anti-emulation trends in modern packers: a survey on the evolution of anti-emulation techniques in UPA packers | |
Ries | Inside windows rootkits | |
Babar et al. | Generic unpacking techniques | |
Kapoor et al. | Rootkits part 2: A technical primer | |
Kasina et al. | Detection of polymorphic viruses in windows executables | |
Katangur et al. | Dynamic Analysis of Malicious Code and Response System | |
Singh et al. | SECURITY REIMAGINED |