AU2001261134A1 - A cooling system with brushless DC ring motor fan - Google Patents

A cooling system with brushless DC ring motor fan

Info

Publication number
AU2001261134A1
AU2001261134A1 AU2001261134A AU2001261134A AU2001261134A1 AU 2001261134 A1 AU2001261134 A1 AU 2001261134A1 AU 2001261134 A AU2001261134 A AU 2001261134A AU 2001261134 A AU2001261134 A AU 2001261134A AU 2001261134 A1 AU2001261134 A1 AU 2001261134A1
Authority
AU
Australia
Prior art keywords
motor
cooling
cooling system
fan
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001261134A
Other versions
AU2001261134B2 (en
Inventor
Christopher A. Nelson
Bradford K. Palmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horton Inc
Original Assignee
Horton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horton Inc filed Critical Horton Inc
Priority claimed from PCT/US2001/014188 external-priority patent/WO2001084063A2/en
Publication of AU2001261134A1 publication Critical patent/AU2001261134A1/en
Application granted granted Critical
Publication of AU2001261134B2 publication Critical patent/AU2001261134B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

BRUSHLESS DC RING MOTOR COOLING SYSTEM
BACKGROUND OF THE INVENTION The present invention relates to an electric cooling fan, and more particularly to a brushless DC ring motor cooling system for use in diesel power applications such as over-the-road trucks.
Diesel power applications such as over-the-road trucks, off-road equipment and agricultural equipment require a cooling system to serve a variety of cooling needs in the equipment. These systems typically contain a number of heat exchangers, a cooling fan, and in some cases a fan drive. In cases where a fan drive is not used, the fan is driven by a belt and continually rotates at a fixed ratio to engine speed. At least three sub-systems are served by the cooling fan, including the engine cooling system, the charge air system and air conditioning system. Other systems such as a transmission cooling system and hydraulic cooling system could also be served by the cooling fan.
Typical fan drives may be implemented as on/off clutches, viscous clutches or hydraulic systems, for example. On/off clutches are usually mounted to the front of the engine block, and the clutch is belt driven by the crankshaft pulley. In some cases, the on/off clutch is mounted on the water pump, which also turns at a speed related to engine revolutions-per-minute (RPM). On/off clutches may be pneumatic, hydraulic, electric or spring engaging.
Viscous clutches are driven by the same general mechanisms as on/off clutches, except that the clutch is engaged and disengaged by varying the flow path of a viscous fluid through the clutch. Hydraulic clutches may be implemented in several ways, such as by a multiple interface clutch or a self-contained pump and motor assembly. Some hydraulic systems allow the cooling system to be remotely mounted, where belting from the crankshaft is impractical.
A cooling fan is mounted to the fan drive. Typically the fan is an axial flow, circular, plastic injection molded device. Alternatively, the fan could be constructed of a lightweight metal. The fan is located in a fan shroud which is attached to the heat exchanger adjacent to the front of the engine. The fan shroud serves as an adapter which directs the flow from the circular fan through the rectangular heat exchangers. A typical spacing between the fan and the fan shroud is about 0.5 inches to 2.0 inches per side. The large tip clearance is necessary due to the fact that the fan is engine mounted and the shroud is frame mounted, with the potential for displacement between the engine and the frame.
The cooling system can be controlled either by discrete sensors on one or more of the cooling sub-systems to turn the fan on and off, or by electronic controls received from the engine control module (ECM). Many diesel power systems currently employed in the vehicular industry are electronically controlled by an ECM, which is part of an overall communications network used to supply operational information to system components of the vehicle. The ECM may additionally be programmed to engage the fan during exhaust braking, unrelated to a cooling need, in order to draw additional horsepower from the diesel power plant to help stop the vehicle.
In most over-the-road trucks, a spring or air engaged on/off clutch is employed along with a solenoid valve, a cooling fan and a fan shroud. Electronic control is usually utilized so that the fan drive turns on and off based on a signal from the ECM. In addition, a pressure switch in the air conditioning system turns the fan on and off as required. The exhaust brake also is operable to control the operation of the fan as a braking aid.
Typical engine speeds are between 600 RPM (low idle) and 2100 RPM (rated speed). Operating engine speeds are usually between 1200 RPM and 1800 RPM. A typical fan ratio is 1.2:1 , thus, operating fan speeds are usually between 1440 RPM and 2160 RPM. At the rated engine speed of 2100 RPM, the fan speed can reach 2520 RPM in such a system. In an exemplary system, the typical horsepower (Hp) for a 32-inch diameter fan ranges between about 13 Hp (at 1140 RPM) and 75 Hp (at 2520 RPM), with fan horsepower increasing cubically with fan speed. The powerto drive the cooling fan comes from the engine, reducing the power to the system driven by the engine and consuming fuel.
The fan has two basic operating states. Either the fan clutch is engaged and the fan is on, or the fan clutch is disengaged and the fan is off. Fan engagements can occur in response to parameters associated with a number of sub-systems. The ECM controls engagements of the fan to keep engine coolant within an operating window, typically 182°F - 210°F for an exemplary vehicle system. The ECM will also turn the fan on in order to keep charge air below a threshold temperature, such as 150°F in an exemplary system. The A/C system's pressure switch is typically engaged at approximately 240 p.s.i. in an exemplary vehicle system, which will turn the fan on until the pressure falls below the set point. Fan engagements due to exhaust brake application generally occur at higher engine speeds.
The duty cycle of the fan and drive is usually between 5% and 20% on time. The on time can be broken down into a percentage of fan engagements due to sub-system or ECM control (see Table 1 ), and into a percentage of fan engagements at operating speeds (see Table 2). Both of these are important in analyzing the requirements of the fan, because Table 1 describes which system drives cooling system engagement and Table 2, combined with actual on time, allows calculation of energy expended and clutch life. Table 1 and Table 2 are based on fan engagements observed in an exemplary vehicle engine cooling system, and will vary somewhat for different types of vehicles, engines and cooling systems.
Table 2. Approximate Percentage of Engagements at Engine Operating S eeds.
Generally, engagements above 1800 RPM are in the 40.5% exhaust brake category and engagements below 1200 RPM are in the 45.6% A/C category.
Analyzing the relationships in clutch driven cooling systems between the fan speeds (which are related to engine speeds) and the type of cooling needed reveals that the power diverted to the fan is not well tailored to the power required for the type of cooling requested. One of the more problematic situations is when an engine coolant fan request is made during a low engine RPM, high torque condition. In this situation, the engine is experiencing high heat rejection and requires a high fan speed to achieve the required cooling. However, the low engine RPM during this situation would require a high belt ratio (ratio of fan speed to engine speed) to turn the fan at the necessary speed. Since the belt ratio of the fan is fixed, accommodating this condition with a high belt ratio results in overspeeding of the fan during situations where the engine speed is higher, drawing more power than is needed to achieve proper cooling in that situation. This dilemma has been a necessary shortcoming in clutch driven cooling systems, since the power provided to operate the fan comes directly from the engine itself. It would be a useful improvement in the art to provide a cooling system in which the operation of the fan is directly related to the type of cooling requested, without diverting unnecessary power from the other components of the engine. Such a cooling system, employing a novel brushless DC ring motor that provides efficient performance with an advantageous geometry, is the subject of the present invention. BRIEF SUMMARY OF THE INVENTION
The present invention is a cooling system for a vehicle.
The cooling system includes a shroud attachable to a fixed portion of the vehicle. A stator assembly for a brushless DC ring motor is attached to at least one mounting support of the shroud. A cooling fan is piloted on the stator assembly, and includes a ring supporting a plurality of fan blades for sweeping an area inside the shroud. A rotor assembly for the brushless DC ring motor is attached to the ring of the cooling fan. The rotor assembly confronts the stator assembly around an outer diameter of the stator assembly. The cooling system is controlled by an electronic controller to rotate the cooling fan to provide appropriate cooling for the vehicle.
One aspect of the invention is the configuration and operation of the electronic controller. The electronic controller includes a control/communications system operatively connected to an engine control module (ECM) of the vehicle. A DC-to-DC converter is operatively connected to a power source. A commutation switching segment is operatively connected to the DC-to-DC converted and to the control/communications system, and is operable to provide signals for operating the brushless DC ring motor to rotate the cooling fan.
Another aspect of the invention is the configuration of the brushless DC ring motor. The stator assembly of the motor includes a plurality of laminations exposed around the outer diameter thereof. The rotor assembly includes a back-iron ring and a plurality of permanent magnets on an inner diameter of the back-iron ring confronting the plurality of laminations exposed around the outer diameter of the stator assembly.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be further explained with reference to the attached figures, wherein like structure is referred to by like numerals throughout the several views. FIG. 1 is a perspective view of an exemplary brushless DC ring motor cooling system according to the present invention.
FIG. 2 is an exploded perspective view of a brushless DC ring motor cooling system according to a first exemplary embodiment of the present invention.
FIG. 3 is an enlarged exploded perspective view of the brushless DC ring motor cooling system shown in FIG. 2, as viewed from a rearward perspective.
FIG. 4 is a front elevational view of the brushless DC ring motor cooling system shown in FIG. 2.
FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4.
FIG. 6 is an enlarged exploded perspective view of a brushless DC ring motor cooling system according to a second exemplary embodiment of the present invention.
FIG. 7 is a front elevational view of the brushless DC ring motor cooling system shown in FIG. 6 with a shroud.
FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. 7 FIG. 9 is a block diagram illustrating the electronic drive and controls for the brushless DC ring motor cooling system of the present invention.
FIGS. 10a and 10b are flow diagrams of an exemplary algorithm for controlling the speed of the brushless DC ring motor cooling system of the present invention based on temperature signals obtained from a vehicle serial communication line.
While the above-identified drawing figures set forth preferred embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the present invention by way of representation and no limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
DETAILED DESCRIPTION FIG. 1 is a generally frontal perspective view of brushless DC ring motor cooling system 10 according to the present invention. Cooling system 10 includes brushless DC (BLDC) ring motor 12, fan 14, fan shroud 16 and controller 18. Shroud 16 is physically mountable to a fixed portion of a vehicle such as vehicle radiator R, motor 12 is mounted to shroud 16, and fan 14 is integrally connected to motor 12. Because brushless DC ring motor cooling system 10 is not belted or otherwise connected to the rotating engine crankshaft, radiator R and cooling system 10 can be mounted in a number of locations on the vehicle remote from the engine. Controller 18 is mounted on fan shroud 16, and is operatively connected to the engine control module (ECM) of the vehicle system in which cooling system 10 is utilized. Controller 18 is also coupled to a power supply (not shown), and is connected to supply appropriate control signals for operating motor 12.
FIG. 2 is an exploded perspective view of brushless DC ring motor cooling system 10, showing the construction and relationships of motor 12, fan 14 and shroud 16 in more detail. Shroud 16 includes outer frame 20 and motor mounting ring 22. Shroud 16 is mountable to a vehicle radiator in an exemplary configuration. Motor 12 includes stator assembly 23 attached to backing plate 24, which is in turn attached to motor mounting ring 22 for mounting stator assembly 23 to shroud 16. Rotor assembly 25 is supported and configured around the outer circumference of stator assembly 23 so that the inner circumference of rotor assembly 25 faces and confronts the outer circumference of stator assembly 23 across a gap therebetween. Rotor assembly 25 supports a plurality of fan blades 26 around its outer perimeter. In the exemplary embodiment shown in FIG. 2, fan blades 26 are insertable and removable into the body of rotor assembly 25 for easy replacement. Retaining ring 27 may be employed, removably attached to rotor assembly 25, to retain fan blades 26 in position for operation of cooling system 10.
FIG. 3 is a an exploded perspective view (from a generally rearward perspective), FIG. 4 is a front elevational view, and FIG. 5 is a cross-sectional view taken along line 5-5 of FIG.4, of cooling system 10, illustrating the construction of motor 12 and fan 14 in more detail. Motor 12 is a three phase motor arranged as a ring. Aluminum core 28 of stator assembly 23 supports a plurality of laminations 29 and windings 30. In an exemplary embodiment, laminations 29 and windings 30 are configured with eighteen poles, and laminations 29 are integrally formed with aluminum core 28 and covered by a potting compound so that only an end of each of the poles is exposed. Windings 30 are configured to wrap around laminations 29 in a three phase arrangement generally known in the art. The three wires of windings 30 used to wind the phases of motor 12 preferably exit the potting compound through a single point, and through holes in the potting compound allow for mounting of stator assembly 23 onto mounting ring 22 while accommodating electrical connection to windings 30. A plurality of spokes 32 extend from aluminum core 28 all the way to the center of the ring of stator assembly 23, meeting in the ring center to support journal 34, which extends along the axis of the ring. Bearing set 36 is located on one end of journal 34 to support rotor assembly 25. Rotor assembly 25 has center hub 37, piloted by bearing set 36, and a plurality of spokes 38 which extend radially outward from hub 37. In one exemplary embodiment, spokes 38 are configured in an airfoil shape to provide cooling to the inner radial portions of motor 12. Spokes 38 support ring 40, which extends back over the faces of the exposed poles of laminations 29 of stator assembly 23. Back-iron ring 42 and a plurality of permanent magnets 44 are located between the pole faces of laminations 29 of stator assembly 23 and ring 40 of rotor assembly 25. In an exemplary embodiment, permanent magnets 44 are equally spaced around back-iron ring 42. Fan blades 26 are removably attached around rotor ring 40 and project radially outward from rotor ring 40. Fan blades 26 may be configured in a number of shapes or orientations known in the art to generate a desired pattern of air flow when rotor assembly 25 is rotated.
In operation, power is delivered by controller 18 to motor 12, causing rotor assembly 25 to turn radially with respect to stator assembly 23. Fan blades 26 and spokes 38 therefore turn as well, with fan blades 26 performing the system cooling function of the fan and spokes 38 providing air flow through the open center of motor 12. The air flow through the center of motor 12 passes through spokes 32 of stator assembly 23 for cooling of stator assembly 23.
Fan shroud 16 is molded or formed so that it is attachable to a vehicle radiator and provides support for motor 12 and fan 14. The inside diameter profile of shroud 16 is designed to cooperate with the outer diameter profile of fan 14. The tip clearance between fan blades 26 and shroud 16 is quite small (no greater than about 0.125 inches in an exemplary embodiment), due to the fact that the assembly of motor 12 and fan 14 is directly mounted to shroud 16. The corner of shroud 16, outside of the swept area of fan 14, is used to house controller 18, which is comprised of the power and communication electronics required to operate motor 12. In an exemplary embodiment, a three- conductor wire harness is routed through a selected portion of the mounting supports of shroud 16 to provide power to motor 12. Laminations 29 of motor 12 are made up of steel sheets.
In an exemplary embodiment, there are 95 to 100 steel sheets around the outer circumference of aluminum core 28, each having a thickness of just under 0.01 inches. The gaps between adjacent ones of laminations 29 are insulated, and laminations 29 are stacked and permanently held together to form stator assembly 23.
The inner diameter of ring 40 of rotor assembly 25 is machined or otherwise formed to accept steel back-iron ring 42. In an exemplary embodiment, the back-iron material of ring 42 is pressed into rotor ring 40. Alternatively, rotor ring 40 is formed by a method such as injection molding and back-iron ring 42 may be inserted during the formation/molding process. In an exemplary embodiment, eighteen permanent magnets 44 are arranged on back-iron ring 42. Magnets 44 magnetically adhere to back-iron ring 42 as they are placed. In one exemplary embodiment, an indexing ring may be attached to back-iron ring 42 and used to properly space magnets 44 and hold them in place. According to an exemplary assembly method of cooling system 10, shroud 16 is initially mounted to the vehicle radiator. Stator assembly 23 is then mounted to mounting ring 22 and electrically coupled to controller 18. Rotor assembly 25 is assembled to stator assembly 23 by pressing bearing set 36 of rotor assembly 25 onto exposed journal 34 of stator assembly 23 and fastening them with a retaining ring. Cooling fan 14 is either integral to rotor assembly 25 or is attached to rotor assembly 25. Finally, controller 18 is electrically connected to a power supply (not shown) and to the engine ECM.
Stator assembly 23 and rotor assembly 25 are preassembled assemblies, forming brushless DC ring motor 12 as a device that is essentially separate from the assembly of cooling fan 14. Fan blades 26 are insertable and removable from rotor assembly 25 without affecting any components of motor 12. This feature of the present invention minimizes the effect of occasional breakage of portions of the fan such as the fan blades, by allowing replacement of parts of the fan in a manner that does not require the expertise and tools that would be necessary to disassemble motor 12.
In the exemplary embodiment shown in FIGS. 2-5, fan blades 26 are insertable and removable from rotor ring 40. One option for the configuration of fan blades 26 is to arrange fourteen blades around the outer perimeter of ring 40. In this arrangement, fan blades 26 have a small clearance from shroud 16 and from each other. Another option is to partially overlap fan blades 26 with each other, allowing a greater number of fan blades 26 to be employed. The choice of the shape, arrangement and orientation of fan blades 26 is made in order to achieve a desired air flow pattern. The configuration of the present invention enables a very small clearance between fan blades 26 and shroud 16, with a clearance of about one-eighth of an inch in an exemplary embodiment.
FIG. 6 is a an exploded perspective view (from a generally rearward perspective), FIG. 7 is a front elevational view, and FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. 7, of cooling system 10 employing an alternate configuration of cooling fan 14. Specifically, the embodiment shown in FIGS. 6-8 employs cooling fan 14 that includes fan hub 48 supporting fixedly attached fan blades 26 around its outer perimeter. Fan hub 48 and fan blades 26 are attachable and removable from rotor ring 40 as an entire assembly, again without affecting any components of motor 12. In an exemplary embodiment, retaining ring 27 is employed to secure fan hub 50 to rotor ring 40. However, other embodiments would not necessarily require retaining ring 27 for this purpose, instead utilizing another mechanism for removably attaching fan hub 50 to rotor ring 40. FIG. 9 is a block diagram illustrating the electronic drive and controls for the brushless DC motor of the present invention. The three main parts of the electronics of the system are DC-to-DC converter 50, commutation switching segment 52 and control/communications system 54. DC-to-DC converter 50 and switching segment 52 make up the drive section of the electronics, while control/communications system 54 serves as an interface for signals received from ECM 62 of the engine.
DC-to-DC converter 50 converts the low DC voltage and high current available from power source 56 , which in an exemplary embodiment is the battery of the vehicle, to high DC voltage and low current suitable for use by BLDC ring motor 12. In general, DC-to-DC converter 50 provides a signal having at most the same total power of the signal provided by power source 56, where power (P) is defined by the relationship P = VI, where V represents the voltage of the signal and I represents the current of the signal. The maximum speed of cooling fan 14 is therefore ultimately related to the amount of power provided by power source 56. In an exemplary embodiment, DC-to-DC converter 50 is a resonant converter design which features a soft switching arrangement for the lowest possible conversion losses, such as is described in an article entitled "Novel soft-switching dc-dc converter with full ZVS-range and reduced filter requirement" by R. Ayyanar and N. Mohan, published in the IEEE Transactions on Power Electronics, March 2001 , volume 16, pp. 184-200, and incorporated herein by reference. DC-to-DC converter 50 is also capable of varying the output voltage over a 2 to 1 range (that is, reducing the output voltage by up to half), in response to control signals relayed by commutation switching segment 52 from control/communications system 54. The output side of DC-to-DC converter 50 is the drive's DC bus, and the actual wires carrying the high voltage for the three phases of motor 12 are represented as rail 60.
Commutation switching segment 52 of the control includes one or more switches that control the voltage and current to each of the phases of motor 12. These switches are arranged in a three phase full bridge configuration between the DC bus rail and ground, in a manner generally known in the art.
Control/communications system 54 of the electronic control is a low voltage device that functions to convert the control signal from ECM 62 of the engine to the proper fan speed by controlling the drive section of the electronic control. The control signal from ECM 62 is typically in the form of a pulse width modulated signal with the pulse width being proportional to the requested fan speed, or in the form of a digital message received over the vehicle's serial communications system. Control/communications system 54 converts this signal appropriately and varies the pulse width of the switches in the drive section of the electronics control, until the desired fan speed is reached. The speed of a BLDC motor is proportional to the driving voltage. In traditional systems for driving a BLDC motor, the DC bus voltage is fixed and the commutation bridge switches are pulse width modulated to control the motor's speed. However, the configuration of the present invention utilizes a dual-stage speed adjustment system. DC-to-DC converter 50 has a variable output level, controlled by input signals relayed by commutation switching segment 52 from control/communications system 54, which is employed to selectively reduce the bus voltage to give a gross adjustment of speed. The commutation bridge switches of commutation switching segment 52 are then used for fine speed adjustment. This control arrangement reduces the power lost in the bridge switches, since the power lost in these switches is proportional to the DC bus voltage.
As mentioned above, signals from the vehicle engine requesting operation of the cooling fan generally come in the form of a pulse width modulated (PWM) signal generated by ECM 62 or a digital signal carried by the serial communication system of the vehicle and shared by a number of vehicle components including ECM 62. The PWM signal generated by ECM 62 has a signal range that is proportional to the amount of cooling required by the vehicle's cooling system. In one exemplary embodiment, the working speed range of the cooling system of the present invention is 0-1800 RPM. In this embodiment, if the PWM signal is 50% of its maximum, the motor and fan will turn at 900 RPM. If the PWM signal is 90% of its maximum, the motor and fan will turn at 1620 RPM. By employing the electric motor drive of the present invention, this linear, proportional relationship can be produced, with fan speeds that are related to the amount of cooling requested by the engine rather than to the speed of the engine, as would be the case in clutch driven systems. Where digital signals from the serial communication line of the vehicle are used, more complex and varied information is available. For example, charge air intercooler temperature and engine coolant temperature are represented by digital, real-time signals passed along the serial communication line that is shared by ECM 62. Obtaining and interpreting these temperature signals through suitable sensors is generally known in the art, and those functions are performed in an exemplary embodiment by control/communications system 54. Control/communications system 54 is operable to utilize these parameters to proactively determine the necessary cooling requirements for the engine, and along with commutation switching segment 52 and DC-to-DC converter 50, control the rotational speed of cooling fan 14 accordingly. In one exemplary embodiment, control/communications system 54 may employ an algorithm for determining the cooling requirements for the engine, and thus the appropriate speed of cooling fan 14, similar to the algorithm disclosed in U.S. Application No. 09/349,274 filed July 7, 1999 for "Control System For Cooling Fan Assembly Having Variable Pitch Blades" by B. Palmer, X. Feng and C. Nelson. U.S. Application No. 09/349,274 is hereby incorporated by reference and made a part of this application.
An exemplary algorithm for controlling the speed of cooling fan 14 based on temperature signals obtained from the vehicle serial communication line is shown in the flow diagram of FIGS. 10a and 10b. The algorithm shown in FIGS. 10a and 10b assumes that control/communications system 54 (FIG. 9) employs a microcontroller of a type generally known in the art. The microcontroller is initialized and a connection with the serial data communication line of the vehicle is established at block 70. Following initialization, the microcontroller obtains the temperature of the engine coolant (Tc) and the temperature at the outlet of the charge air cooler (Ta), i.e., the intake manifold temperature of the engine, at block 72. Once these values are read, the microcontroller calculates an error value for the charge air temperature by subtracting a set point value from the charge air temperature (Tea = Ta - Tas) at block 74. This error value is compared to zero at decision block 76, and if the value is greater than zero (i.e., positive), an offset is calculated for the coolant temperature set point (offset = Kc * Tea) at block 78. If the error value for the charge air temperature is less than zero (i.e., negative), the offset for the coolant temperature set point is established as zero at block 80. Next, the microcontroller calculates an error value (Tec) of the engine coolant temperature relative to a set point value (Tcs), such that the engine coolant temperature is equal to the coolant temperature minus the set point value minus the established offset (Tec = Tc - Tcs - offset) at block 82. The microcontroller then determines the rate of change (i.e., derivative) of the coolant error (DTec = (Tec0 - Tec.^/time lapse) and the integral of the coolant error (ITec = ITec (previous) + (Tec * time lapse)) at block 84 (FIG. 10b). It is then determined whether the air conditioning (A/C) switch is activated at decision block 86. Id the A/C switch is activated, the fan simply needs to be run at full speed, as indicated by block 88. If the A/C switch is not activated , the microcontroller calculates the fan speed needed to service the cooling need of the system, as indicated by block 90. The fan speed is calculated based on the engine coolant temperature error (Tec), the derivative of the coolant temperature error (DTec) and the integral of the coolant temperature error (ITec), according to a proportional-integral- derivative (PID) control scheme of a type generally known in the art. A signal is generated at block 92 to control the cooling fan to rotate at the calculated speed, and the algorithm is re-iterated as indicated by block 94, returning to block 72 (FIG. 10a) after an optional delay is introduced. Variations to this control algorithm, within the spirit and scope of the present invention, will be apparent to those skilled in the art.
At peak torque (1200 engine RPM in an exemplary vehicle system), when typically greater cooling is required, the cooling system of the present invention can be operated to provide its maximum fan speed. In order to provide the necessary power during this condition, the cooling fan can temporarily draw its power from the vehicle's batteries or another stored power source, meeting the cooling requirement without taking power from the vehicle's drive line. After the peak torque condition (such as a hill climb) is complete, the vehicle's electrical system can replace power in the batteries. If the A/C system calls for fan engagement, the cooling fan can respond with a preset fan speed. The cooling system of the present invention can provide any fan speed at any time for any system, in a range between 0 and the maximum RPM. The cooling system's motor and control design also allows for driving the fan in reverse at any speed from 0 to the maximum RPM. This capability is particularly useful for systems in which lodging of debris in the radiator is a problem, such as heavy industrial and agricultural systems. The cooling system motor may be periodically controlled to drive the fan in reverse to expel any debris in the radiator, or may be controlled manually or automatically to drive the fan in reverse in response to detection of debris in the radiator, so that the debris can be expelled. Other control arrangements for reverse driving of the fan will be apparent to those skilled in the art. The present invention provides an electric cooling system for use in a vehicle in an exemplary embodiment. The electric cooling system employs a brushless DC ring motor having a rotational speed that is controllable independent of the speed of the vehicle engine, allowing power to be utilized more efficiently by the cooling system in a manner that is specifically tailored to dynamic cooling requirements. The motor is controlled by an electronic controller that receives either a pulse width modulated (PWM) signal from the engine control module (ECM) or digital signals from the vehicle's serial communication line and responds with a signal for operating the motor at a speed that will provide appropriate cooling.
Although the present invention has been described as it pertains to the exemplary embodiment of a cooling fan for a vehicle, it should be understood by those skilled in the art that there are several features of the invention whose novelty does not depend on the particular details of the cooling fan. For example, the geometric configuration of motor 12 is itself believed to be novel. The present invention should therefore be understood for the teachings it provides to those skilled in the art, without limitation to the particular exemplary embodiments described herein. Workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (30)

CLAIM(S):
1. A cooling system for a vehicle, the cooling system comprising: a shroud attachable to a fixed portion of the vehicle, the shroud including at least one mounting support; a stator assembly for a brushless DC ring motor attached to the at least one mounting support, the stator assembly having an outer diameter; a cooling fan piloted on the stator assembly, the cooling fan including a ring supporting a plurality of fan blades for sweeping an area inside the shroud; and a rotor assembly forthe brushless DC ring motor attached to the ring of the cooling fan, the rotor assembly confronting the stator assembly around the outer diameter of the stator assembly.
2. The cooling system of claim 1 , wherein the stator assembly forthe brushless DC ring motor is configured in a three phase arrangement.
3. The cooling system of claim 1 , wherein the stator assembly for the brushless DC ring motor comprises a plurality of laminations exposed around the outer diameter of the stator assembly to confront the rotor assembly.
4. The cooling system of claim 3, wherein the rotor assembly comprises a back-iron ring attached to the ring of the cooling fan and a plurality of permanent magnets attached to the back-iron ring to confront the plurality of laminations of the stator assembly.
5. The cooling system of claim 1 , wherein a clearance between the shroud and the plurality of fan blades of the cooling fan is no greater than about one-eighth of an inch.
6. The cooling system of claim 1 , wherein the plurality of fan blades are individually removable from the ring of the cooling fan.
7. The cooling system of claim 1 , wherein the ring supporting the plurality of fan blades is removable from the cooling fan.
8. The cooling system of claim 1 , wherein the fixed portion of the vehicle is a radiator.
9. The cooling system of claim 8, wherein the rotor assembly is drivable to rotate the cooling fan in a first direction for cooling and in a second direction for expelling debris from the radiator.
10. The cooling system of claim 8, wherein the radiator is mounted remotely from an engine of the vehicle.
11. The cooling system of claim 1 , further comprising an electronic controller operatively connected to an engine control module (ECM) of the vehicle for controlling operations of the cooling system.
12. The cooling system of claim 11 , wherein the electronic controller comprises: a control/communications system operatively connected to the ECM of the vehicle; a DC-to-DC converter operatively connected to a power source; and a commutation switching segment operatively connected to the DC-to-DC converter and to the control/communications system, the commutation switching segment being connected to provide signals for operating the brushless DC ring motor.
13. The cooling system of claim 12, wherein the control/communications system is operable to receive pulse width modulated (PWM) signals from the ECM of the vehicle to control the brushless DC ring motor.
14. The cooling system of claim 12, wherein the control/communications system is operable to receive digital signals from a serial line of the ECM of the vehicle to control the brushless DC ring motor.
15. The cooling system of claim 12, wherein an output of the DC-to-DC converter is variable for gross adjustment of a speed of the motor and an output of the commutation switching segment is variable for fine adjustment of the speed of the motor.
16. The cooling system of claim 12, wherein the power source is a vehicle battery.
17. The cooling system of claim 16, wherein the DC-to-DC converter is operable to selectively draw power from the vehicle battery in demanding cooling conditions.
18. A cooling system for a vehicle, the cooling system comprising: a cooling fan assembly attached to a fixed portion of the vehicle, the cooling fan assembly including a cooling fan driven by a brushless DC ring motor; a control/communications system operatively connected to an engine control module (ECM) of the vehicle; a DC-to-DC converter operatively connected to a power source; and a commutation switching segment operatively connected to the DC-to-DC converter and to the control/communications system, the commutation switching segment being connected to provide signals for operating the brushless DC ring motor of the cooling fan assembly.
19. The cooling system of claim 18, wherein the control/communications system is operable to receive pulse width modulated (PWM) signals from the ECM of the vehicle to control the brushless DC ring motor.
20. The cooling system of claim 18, wherein the control/communications system is operable to receive digital signals from a serial line of the ECM of the vehicle to control the brushless DC ring motor.
21. The cooling system of claim 18, wherein an output of the DC-to-DC converter is variable for gross adjustment of a speed of the motor and an output of the commutation switching segment is variable for fine adjustment of the speed of the motor.
22. The cooling system of claim 18, wherein the power source is a vehicle battery.
23. The cooling system of claim 22, wherein the DC-to-DC converter is operable to selectively draw power from the vehicle battery in demanding cooling conditions.
24. A brushless DC ring motor comprising: a stator assembly having an outer diameter and a plurality of laminations exposed around the outer diameter; and a rotor assembly piloted on the stator assembly, the rotor assembly having a back-iron ring and a plurality of permanent magnets on an inner diameter of the back-iron ring confronting the plurality of laminations exposed around the outer diameter of the stator assembly.
25. The brushless DC ring motor of claim 24, wherein the stator assembly is configured in a three phase arrangement.
26. A method of operating a cooling fan in a cooling system for a vehicle, the method comprising: determining a required speed of the cooling fan; and providing first and second signals to a motor controller operatively connected to a motor having a rotatable portion connected to the cooling fan, the first signal coarsely controlling a rotational speed of the motor and the second signal finely controlling the rotational speed of the motor so that the cooling fan rotates at the required speed.
27. The method of claim 26, wherein the step of determining the required speed of the cooling fan comprises: analyzing a pulse width modulated (PWM) signal from the engine control module (ECM) of the vehicle.
28. The method of claim 26, wherein the step of determining the required speed of the cooling fan comprises: analyzing digital signals from a serial line of the engine control module (ECM) of the vehicle.
29. A method of operating a cooling fan in a cooling system for a vehicle, the method comprising: analyzing digital signals from a serial line of the engine control module (ECM) of the vehicle to determine a required speed of the cooling fan; and providing at least one signal to a motor controller operatively connected to a motor having a rotatable portion connected to the cooling fan, the at least one signal being related to a rotational speed of the cooling fan in such a manner that the cooling fan rotates at the required speed.
30. The method of claim 29, wherein the step of providing at least one signal to the motor comprises: providing first and second signals to the motor controller, the first signal coarsely controlling the rotational speed of the motor and the second signal finely controlling the rotational speed of the motor so that the cooling fan rotates at the required speed.
AU2001261134A 2000-05-03 2001-05-03 A cooling system with brushless DC ring motor fan Ceased AU2001261134B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US20146600P 2000-05-03 2000-05-03
US60/201,466 2000-05-03
US22094200P 2000-07-26 2000-07-26
US60/220,942 2000-07-26
PCT/US2001/014188 WO2001084063A2 (en) 2000-05-03 2001-05-03 A cooling system with brushless dc ring motor fan

Publications (2)

Publication Number Publication Date
AU2001261134A1 true AU2001261134A1 (en) 2002-01-31
AU2001261134B2 AU2001261134B2 (en) 2004-10-14

Family

ID=26896776

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001261134A Ceased AU2001261134B2 (en) 2000-05-03 2001-05-03 A cooling system with brushless DC ring motor fan
AU6113401A Pending AU6113401A (en) 2000-05-03 2001-05-03 Brushless dc ring motor cooling system

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU6113401A Pending AU6113401A (en) 2000-05-03 2001-05-03 Brushless dc ring motor cooling system

Country Status (7)

Country Link
US (3) US6600249B2 (en)
EP (1) EP1279214A4 (en)
AU (2) AU2001261134B2 (en)
BR (1) BR0110238A (en)
CA (1) CA2404768C (en)
MX (1) MXPA02010777A (en)
WO (1) WO2001084063A2 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02010777A (en) 2000-05-03 2003-03-27 Horton Inc A cooling system with brushless dc ring motor fan.
DE50111700D1 (en) * 2001-11-30 2007-02-01 Borgwarner Inc Control for a fan of a cooling system of an internal combustion engine
AU2003216880A1 (en) * 2002-04-11 2003-10-20 Ebm-Papst St. Georgen GmnH & Co. Kg Electronically commutated dc motor comprising a bridge circuit
US20030216893A1 (en) * 2002-05-17 2003-11-20 Warren Hendrickson Method of designing and constructing a power plant
DE10231834A1 (en) * 2002-07-12 2004-02-05 Behr Gmbh & Co. Cooling module for an engine of a motor vehicle
EP1480327B1 (en) * 2003-05-20 2007-11-21 Grundfos A/S Electric motor
DE10336377A1 (en) * 2003-08-06 2005-03-03 Robert Bosch Gmbh Integrated module for controlling a fan motor
US20050173926A1 (en) * 2004-02-06 2005-08-11 Soqi Kabushiki Kaisha Generating apparatus
DE102004014640A1 (en) * 2004-03-23 2005-11-10 Andree Altmikus Ultra-light high torque electric motor has compound fiber parts as supporting structural components; supporting structure of rotating part is essentially annular and interior can largely remain free
EP1744855B1 (en) * 2004-04-21 2008-01-16 Starragheckert GmbH Machine-tool
CN100398839C (en) 2004-07-20 2008-07-02 台达电子工业股份有限公司 Shading fan
US7327587B2 (en) * 2004-09-30 2008-02-05 General Electric Company System and method for power conversion
US7438169B2 (en) 2004-10-21 2008-10-21 Kit Masters Inc. Clutch system
US7104382B2 (en) * 2004-10-21 2006-09-12 Kit Masters Inc. Clutch system
US7332881B2 (en) 2004-10-28 2008-02-19 Textron Inc. AC drive system for electrically operated vehicle
US7066114B1 (en) * 2004-12-10 2006-06-27 General Motors Corporation Reverse fan operation for vehicle cooling system
US7377751B2 (en) * 2005-07-19 2008-05-27 International Business Machines Corporation Cooling fan and shroud with modified profiles
US20080030158A1 (en) * 2006-08-04 2008-02-07 Nidec Corporation Centrifugal Fan
DE102006036589A1 (en) * 2006-08-04 2008-02-07 Deere & Company, Moline Driving device for an agricultural or industrial utility vehicle and method for operating a drive device
US7789622B2 (en) * 2006-09-26 2010-09-07 Delphi Technologies, Inc. Engine cooling fan assembly
TWI340534B (en) 2006-10-25 2011-04-11 Sunonwealth Electr Mach Ind Co Pwm motor drive circuit
FI121613B (en) * 2006-12-21 2011-01-31 Abb Oy Method and system in connection with a motor fed by a voltage converter
US20080164106A1 (en) * 2007-01-04 2008-07-10 Textron Inc. Electric Brake for Utility Vehicles
US8398378B2 (en) * 2007-07-24 2013-03-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Tangential drive module assembly and method of assembly for airflow induction
US20090058327A1 (en) * 2007-08-28 2009-03-05 Vladimir Maron Pumping driver for linear motor with constant battery power/current
WO2009048736A2 (en) * 2007-10-10 2009-04-16 Prime Datum, Inc. Integrated fan drive system for cooling tower
US7926889B2 (en) * 2007-10-29 2011-04-19 Textron Innovations Inc. Hill hold for an electric vehicle
US8100239B2 (en) * 2008-01-18 2012-01-24 Kit Masters Inc. Clutch device and methods
EP3537081A1 (en) * 2008-03-24 2019-09-11 Prime Datum, Inc. Integrated fan drive system for air-cooled heat exchangers (ache)
SE532306C2 (en) * 2008-04-28 2009-12-08 Scania Cv Abp Cooling
TWI326332B (en) * 2008-07-29 2010-06-21 Sunonwealth Electr Mach Ind Co Mini-fan
US20100119389A1 (en) * 2008-11-07 2010-05-13 Robert Lazebnik Modular, brushless motors and applications thereof
DE102008059599A1 (en) * 2008-11-28 2010-06-02 Aeg Electric Tools Gmbh power tool
JP5368136B2 (en) * 2009-03-04 2013-12-18 プライムアースEvエナジー株式会社 Battery cooling system for vehicles
US8295995B2 (en) * 2009-04-22 2012-10-23 Hamilton Sundstrand Corporation Distributed approach to electronic engine control for gas turbine engines
US8109375B2 (en) * 2009-05-07 2012-02-07 Kit Masters Inc. Clutch systems and methods
US8476794B2 (en) * 2009-05-27 2013-07-02 Empire Technology Development Llc Wheel motor with rotating outer rotor
US9046137B2 (en) 2010-01-22 2015-06-02 Kit Masters Inc. Fan clutch apparatus and methods
US8360219B2 (en) 2010-04-26 2013-01-29 Kit Masters, Inc. Clutch system and methods
US8267673B1 (en) * 2011-05-04 2012-09-18 John Pairaktaridis Brushless cooling fan
US8714116B2 (en) * 2011-05-12 2014-05-06 Cnh Industrial America Llc Engine cooling fan speed control system
US20120112461A1 (en) * 2011-12-21 2012-05-10 Earth Sure Renewable Energy Corporation Dual use fan assembly for hvac systems and automotive systems to generate clean alternative elecric energy
EP2610176B1 (en) 2011-12-28 2018-02-07 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Electrical powered tail rotor of a helicopter
US8479378B1 (en) * 2012-02-09 2013-07-09 John Pairaktaridis Methods of manufacturing a stator core for a brushless motor
US9664104B2 (en) 2012-10-30 2017-05-30 Ford Global Technologies, Llc Condensation control in a charge air cooler by controlling charge air cooler temperature
GB201300450D0 (en) 2013-01-10 2013-02-27 Agco Int Gmbh Control of cooling fan on current
JP6126421B2 (en) * 2013-03-21 2017-05-10 三菱重工オートモーティブサーマルシステムズ株式会社 Motor fan
EP2876780A1 (en) * 2013-11-26 2015-05-27 Siemens Aktiengesellschaft Device with electric machine in lightweight construction
US9567893B2 (en) 2013-12-23 2017-02-14 Modine Manufacturing Company System and method for controlling an engine cooling fan
WO2015195371A1 (en) * 2014-06-17 2015-12-23 Borgwarner Inc. Dual mode fan reverse flow function
US9383414B2 (en) 2014-08-29 2016-07-05 Atieva, Inc Method of diagnosing a blocked heat exchanger
US9337769B2 (en) 2014-08-29 2016-05-10 Atieva, Inc. Method of diagnosing a malfunctioning DC fan motor
US9385644B2 (en) * 2014-08-29 2016-07-05 Atieva, Inc. Sensorless DC fan speed controller
US10081250B2 (en) * 2014-12-15 2018-09-25 Dayton-Phoenix Group, Inc. Cooling fan vane assembly for a resistor grid
TWI554011B (en) * 2015-09-11 2016-10-11 Sunonwealth Electr Mach Ind Co Motor structure of unmanned aerial vehicle
US10638881B1 (en) * 2015-11-24 2020-05-05 Michael W. Holt Grill temperature controller
KR101846722B1 (en) 2016-10-20 2018-04-09 현대자동차주식회사 Cooling system for vehicle and control method thereof
JP6981226B2 (en) * 2017-12-20 2021-12-15 トヨタ自動車株式会社 Blower fan
JP2019113000A (en) * 2017-12-22 2019-07-11 日本電産株式会社 Centrifugal fan
CN109973404A (en) * 2017-12-25 2019-07-05 北汽福田汽车股份有限公司 Electricity generation system, fan and vehicle
US11050322B2 (en) * 2017-12-26 2021-06-29 Hamilton Sundstrand Corporation Flywheel energy storage with PM, induction, or variable reluctance machine
JP7160646B2 (en) * 2018-11-22 2022-10-25 キャタピラー エス エー アール エル construction machinery
US10862371B2 (en) * 2018-12-14 2020-12-08 Bendix Commercial Vehicle Systems Llc Perimeter liquid-cooled electric machine and integrated power inverter
US11668228B2 (en) * 2020-05-28 2023-06-06 Deere & Company Variable pitch fan control system
CN112127983B (en) * 2020-08-17 2021-11-05 江苏超力电器有限公司 Four-mode brushless double-fan control system
AT523925B1 (en) * 2020-10-16 2022-01-15 Thomas Euler Rolle cooler
EP4015792A1 (en) * 2020-12-17 2022-06-22 Volvo Truck Corporation Apparatus and method for cooling components of a heavy-duty electric vehicle
US11873619B1 (en) * 2022-09-06 2024-01-16 Caterpillar Inc. Guard for radiator blower units of machines

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621822A (en) 1970-05-20 1971-11-23 Ford Motor Co Induction motor driven cooling fan
US3663850A (en) 1970-08-03 1972-05-16 Phelon Co Inc Field means for a dynamoelectric machine, magnet preassembly for use therein
GB1432334A (en) 1972-04-07 1976-04-14 Lucas Electrical Ltd Cooling fan operating circuits for road vehicles
US3789393A (en) * 1972-10-26 1974-01-29 Inductosyn Corp Digital/analog converter with amplitude and pulse-width modulation
FR2373697A1 (en) * 1976-12-13 1978-07-07 Ferodo Sa COOLED MOTOR FAN UNIT
US4249119A (en) * 1978-12-18 1981-02-03 Rca Corporation Digital drive circuit for electric motor or the like
US4426960A (en) 1979-10-09 1984-01-24 Square D Company Control circuitry for multistage fans
US4313402A (en) 1979-11-30 1982-02-02 General Motors Corporation Internal combustion engine radiator cooling fan drive motor control system
US4313155A (en) * 1980-01-14 1982-01-26 General Electric Company High input voltage DC to DC power converter
US4360751A (en) * 1980-06-06 1982-11-23 Kollmorgen Technologies Corporation Fan with integral disc-shaped drive
FR2484532B1 (en) 1980-06-16 1985-08-23 Peugeot Aciers Et Outillage DEVICE FOR CONTROLLING THE VENTILATION MEANS OF AN INTERNAL COMBUSTION ENGINE
JPS5872368A (en) * 1981-10-23 1983-04-30 Hitachi Ltd Power source for vehicle
US4685513A (en) 1981-11-24 1987-08-11 General Motors Corporation Engine cooling fan and fan shrouding arrangement
US4459087A (en) 1982-06-02 1984-07-10 Aciers Et Outillage Peugeot Fan unit for an internal combustion engine of automobile vehicle
US4472666A (en) * 1982-09-21 1984-09-18 Matsushita Electric Industrial Co., Ltd. Brushless DC motor
US4588936A (en) * 1983-06-02 1986-05-13 Sharp Kabushiki Kaisha Digitalized position control for a D.C. motor
US4548548A (en) 1984-05-23 1985-10-22 Airflow Research And Manufacturing Corp. Fan and housing
US4882511A (en) * 1984-06-01 1989-11-21 Papst-Motoren Gmbh & Co. Kg Brushless three-phase D.C. motor
US4554491A (en) * 1984-08-10 1985-11-19 Msl Industries, Inc. Brushless DC motor having a laminated stator with a single stator winding
JPS61261618A (en) 1985-05-15 1986-11-19 Toyota Motor Corp Radiator cooling fan controller
US4628235A (en) * 1985-09-19 1986-12-09 Gulf & Western Manufacturing Company Control circuit for motor driver
US4667480A (en) * 1986-09-22 1987-05-26 General Electric Company Method and apparatus for controlling an electrically driven automotive air conditioner
US4875521A (en) 1987-02-27 1989-10-24 Roger Clemente Electric fan assembly for over-the-road trucks
DE3711392C1 (en) 1987-04-04 1989-01-12 Behr Thomson Dehnstoffregler Cooling device for an internal combustion engine and method for controlling such a cooling device
US4811185A (en) 1987-10-15 1989-03-07 Sundstrand Corporation DC to DC power converter
US5079488A (en) * 1988-02-26 1992-01-07 General Electric Company Electronically commutated motor driven apparatus
US4962734A (en) 1990-03-14 1990-10-16 Paccar Inc. Electrically driven, circumferentially supported fan
US5164622A (en) * 1990-06-14 1992-11-17 Applied Motion Products, Inc. High pole density three phase motor
EP0564522B1 (en) * 1991-01-03 1995-08-09 Siemens Aktiengesellschaft Automotive vehicle engine bay ventilation by ducted-fan-operated ejector
DE4216135A1 (en) 1991-05-16 1992-11-19 Mazda Motor CONTROL DEVICE FOR A ROTATION BODY FOR COOLING A MOTOR
US5363003A (en) * 1991-06-06 1994-11-08 Nippon Densan Corporation Motor and circuitry for protecting same
US5272428A (en) * 1992-02-24 1993-12-21 The United States Of America As Represented By The U.S. Environmental Protection Agency Fuzzy logic integrated control method and apparatus to improve motor efficiency
JPH06199146A (en) * 1992-11-12 1994-07-19 Honda Motor Co Ltd Motor-driven vehicle control device
US5291106A (en) * 1992-11-23 1994-03-01 General Motors Corporation Single current regulator for controlled motoring and braking of a DC-fed electric motor
US5275012A (en) * 1993-01-07 1994-01-04 Ford Motor Company Climate control system for electric vehicle
JP3232844B2 (en) 1993-03-29 2001-11-26 株式会社デンソー Blower
US5476138A (en) 1993-08-16 1995-12-19 Calsonic International, Inc. Motor vehicle with improved radiator and condenser mounting device
US5529114A (en) * 1994-06-10 1996-06-25 Northrop Grumman Corporation Electric vehicle coolant pump assembly
TW328190B (en) * 1994-06-14 1998-03-11 Toshiba Co Ltd Control device of brushless motor and method of fault detection and air conditioner
DE4421835A1 (en) 1994-06-22 1996-01-04 Behr Gmbh & Co Heat exchangers, in particular coolers for internal combustion engines of commercial vehicles
US5672950A (en) * 1994-08-16 1997-09-30 Itt Corporation Voltage, phase and frequency control by miniature inverter system
DE19535676C2 (en) * 1994-10-14 1997-10-23 Telefunken Microelectron Method for controlling the power of an induction motor
DE4437793C2 (en) * 1994-10-21 1998-05-07 Agie Ag Ind Elektronik Method and device for controlling an electric motor
FR2730009B1 (en) 1995-01-30 1997-04-04 Valeo Thermique Moteur Sa SET INCLUDING A MOTOR FAN FIXED ON A HEAT EXCHANGER
JP3545846B2 (en) * 1995-06-14 2004-07-21 株式会社ミツバ Drain structure of fan motor
US5675196A (en) * 1995-11-20 1997-10-07 Quantum Corporation High speed ten pole/twelve slot D.C. brushless motor with minimized net radial force and low cogging torque
US6016774A (en) 1995-12-21 2000-01-25 Siemens Canada Limited Total cooling assembly for a vehicle having an internal combustion engine
KR100200667B1 (en) * 1996-01-18 1999-06-15 윤종용 Brushless dc motor
US5744921A (en) * 1996-05-02 1998-04-28 Siemens Electric Limited Control circuit for five-phase brushless DC motor
US5623893A (en) 1996-05-20 1997-04-29 Caterpillar Inc. Adjustable fan shroud arrangement
US5783872A (en) * 1996-07-25 1998-07-21 Northrop Grumman Corporation Auxiliary battery voltage/temperature compensation for automotive 12 volt system for electric vehicles
US5835873A (en) * 1997-02-21 1998-11-10 Breed Automotive Technology, Inc. Vehicle safety system with safety device controllers
DE19725522B4 (en) * 1997-06-17 2009-09-17 Robert Bosch Gmbh Electronically commutated motor
US5962938A (en) * 1997-10-21 1999-10-05 General Electric Company Motor with external rotor
JP3783812B2 (en) * 1997-11-11 2006-06-07 株式会社トプコン Surveying device focus control device
US6045482A (en) 1998-03-02 2000-04-04 Cummins Engine Company, Inc. System for controlling air flow to a cooling system of an internal combustion engine
US6276472B1 (en) * 1998-04-01 2001-08-21 Denso Corporation Control system for hybrid vehicle
US6129528A (en) * 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
JP3967012B2 (en) * 1998-08-24 2007-08-29 カルソニックカンセイ株式会社 Brushless motor control device
US6249099B1 (en) * 1999-06-30 2001-06-19 Stmicroelectronics, S.R.L. Silent phase commutation in a three-phase brushless DC motor
US6253716B1 (en) * 1999-07-07 2001-07-03 Horton, Inc. Control system for cooling fan assembly having variable pitch blades
KR100306009B1 (en) * 1999-07-15 2001-09-13 조영석 Cooling fan driving apparatus for car with obstacle sensing function
DE10007212A1 (en) * 2000-02-17 2001-08-23 Zeiss Carl Jena Gmbh Method for accelerating the adjustment movement in a positioning system with stepper motors
DE10019675C1 (en) * 2000-04-19 2001-11-08 Webasto Vehicle Sys Int Gmbh Solar system for a vehicle
MXPA02010777A (en) 2000-05-03 2003-03-27 Horton Inc A cooling system with brushless dc ring motor fan.
US6404150B1 (en) * 2000-06-27 2002-06-11 General Motors Corporation Accessory motor drive power supply system for an electric vehicle
KR100348588B1 (en) * 2000-07-07 2002-08-14 국방과학연구소 Cooling system for vehicles
JP4442006B2 (en) * 2000-08-23 2010-03-31 株式会社デンソー Control device for vehicle cooling fan
US6459230B1 (en) * 2001-02-13 2002-10-01 Rockwell Automation Technologies, Inc. Method and system for measuring a parameter of motor operation
JP2003003990A (en) * 2001-06-25 2003-01-08 Minebea Co Ltd Speed controller for brushless direct current fan motor
US6597135B2 (en) * 2001-09-24 2003-07-22 Siemens Vdo Automotive Inc. Combination of resistor and PWM electronic device to control speed of a permanent magnet DC motor
JP3958593B2 (en) * 2002-01-29 2007-08-15 三菱電機株式会社 Vehicle power supply

Similar Documents

Publication Publication Date Title
CA2404768C (en) Brushless dc ring motor cooling system
AU2001261134A1 (en) A cooling system with brushless DC ring motor fan
US8544575B1 (en) Lightweight internal combustion/electric hybrid power source for vehicles
US20060257251A1 (en) Rotary axial fan assembly
US6548929B2 (en) Eddy current fan drive
US9945281B2 (en) Cooling system for air-cooled engines
CA2302238A1 (en) Magnetic clutch system for cooling fan drive
CN102086799B (en) Electronic cooling water pump of variable-flow engine
JP2009510318A (en) Ventilation system for use in a rotating electrical machine comprising a device cooled by forced flow of fluid, and a rotating electrical machine comprising such a device
CN110843505B (en) Heat radiation system of hub motor vehicle and control method thereof
US20020021973A1 (en) Circumferential arc segment motor cooling fan
US6468037B1 (en) Fan clutch with central vanes to move air to fan blades
WO2007121168A2 (en) Rotary fan with encapsulated motor assembly
CN101694176B (en) Electrothermal speed controller of silicon oil fan
EP1077333A3 (en) Cooling module for an electronically controlled engine
CN116865488A (en) Mower wheel motor
CN201554542U (en) Electrothermic type silicon oil fan speed controller
CN113217171B (en) Diesel engine cooling fan with variable driving source and control method thereof
GB2404220A (en) variable speed mechanically-driven vehicular water pump with supplementary electrical drive
CN210239801U (en) Secondary air pump based on brushless motor drive
EP0422262A1 (en) Electric fan assembly for over-the-road trucks
CN209896859U (en) Generator with heat dissipation ribs
CN114718714B (en) Autonomous variable fan
CN221900680U (en) High-efficiency motor with self-cooling function
CN201063495Y (en) Torque motor for embedded air cooling DC brushless vehicle