AU2001255820A1 - Nested turnstile antenna - Google Patents

Nested turnstile antenna

Info

Publication number
AU2001255820A1
AU2001255820A1 AU2001255820A AU2001255820A AU2001255820A1 AU 2001255820 A1 AU2001255820 A1 AU 2001255820A1 AU 2001255820 A AU2001255820 A AU 2001255820A AU 2001255820 A AU2001255820 A AU 2001255820A AU 2001255820 A1 AU2001255820 A1 AU 2001255820A1
Authority
AU
Australia
Prior art keywords
antenna
reflector
dipole
mhz
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001255820A
Other versions
AU2001255820B2 (en
AU2001255820C1 (en
Inventor
H. Clark Bell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NavCorn Technology Inc
Original Assignee
NavCorn Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/540,747 external-priority patent/US6342867B1/en
Application filed by NavCorn Technology Inc filed Critical NavCorn Technology Inc
Publication of AU2001255820A1 publication Critical patent/AU2001255820A1/en
Publication of AU2001255820B2 publication Critical patent/AU2001255820B2/en
Application granted granted Critical
Publication of AU2001255820C1 publication Critical patent/AU2001255820C1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

NESTED TURNSTILE ANTENNA
FIELD OF THE INVENTION
The present invention generally relates to circularly polarized (CP) radio antennas and, more particularly, to an antenna comprising at least two pairs of crossed dipole antennas.
BACKGROUND OF THE INVENTION
Conventional CP radio antennas in a crossed-dipole or "turnstile" configuration are well known in the art. An exemplary conventional CP radio antenna includes crossed dipole antennas fed by a balanced four-phase transmission line and located above a reflecting screen. Its dipole legs of the crossed dipole antennas incline downward toward the screen in order to increase the CP radiation at lower elevation angles relative to the plane of the screen. Antennas of this type can be constructed using simple wires, rods, or printed conductors for the dipole legs. A CP radio antenna having the above discussed features is depicted in Fig. 28-7 of the 3rd edition of the Antenna Engineering
Handbook, published by McGraw-Hill, relevant portions of which are incorporated herein by reference.
In U.S. Patent No. 5,519,407, a CP dual frequency antenna is described. This CP antenna includes four identical antenna elements each of which includes an inductor-capacitor trap positioned along the length of each antenna element. This configuration permits the disclosed CP antenna to operate at two different frequency bands.
Furthermore, in U.S. Patent No. 5,526,009, a linearly polarized (LP) dual frequency antenna is described. This LP antenna includes an antenna assembly that comprises four antenna elements. Each antenna element includes a coil and an elongated arm. Pairs of the elongate arms form dipoles which are of differing lengths so that each pair of antenna elements resonates at a different frequency. SUMMARY OF THE INVENTION
The present invention provides a nested turnstile antenna structure capable of transmitting and/or receiving CP electromagnetic waves in more than one frequency band. The antenna of the present invention also has a capability to achieve desired elevation radiation patterns within each frequency band.
The present invention is preferably used in reception of CP signals from Global Positioning System (GPS) satellites, and for transmission and reception of L-band communications satellite CP signals (e.g., signals used in the International Maritime Satellite System (INMARSAT) service), but it is not limited to use with above-discussed systems. For instance, the present invention may also be used for multifrequency communications using CP signals, for which omnidirectional, elevation-tailored radiation patterns are required.
In the present invention two or more turnstile antenna structures share a common symmetry axis and common reflector. Various design characteristics (e.g., lengths, positions along its symmetry axis, inclinations to a reflector and like) of radiating elements of crossed dipole pairs are preferably selected to achieve the aforementioned radiation characteristics.
In particular the present invention provides a circularly polarized multifrequency antenna. The antenna includes a reflector having a first side and a second side, a first crossed dipole pair having a first resonant frequency and a second crossed dipole pair having a second resonant frequency. The first and second dipole pair are symmetrically disposed on the first side of the reflector.
BRIEF DESCRIPTION OF THE DRAWINGS Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:
FIG. 1 is a top view of an antenna according to one embodiment of the present invention; FIG. 2 is an elevation view of the antenna of FIG. 1 illustrating one of the two sets of crossed dipoles; FIG. 3 is a schematic diagram illustrating the relative phase between the dipole elements in the arrangement of FIG. 1 ; and
FIG. 4 is a perspective view of the antenna of FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGs. 1-3, an antenna of the present invention preferably includes a reflector 10 supporting a pair of circuit boards 40a and 40b. Reflector 10 is preferably planar. It should be noted that reflector 10 is not required to be planar. Therefore, in alternative embodiments, reflector 10 may have curved or cavity surfaces or other shaped surfaces as known in the art. The antenna is enclosed in a radome (not shown) for weather protection.
Reflector 10 preferably is in the shape of a circle as illustrated in FIG. 1. The diameter of the circular shaped reflector is approximately 8 inches. Alternatively, reflector 10 may have any quadranal symmetrical shape such as a square or an octagon. A vertical axis perpendicular to reflector 10 passes through the center thereof. The vertical axis is also the symmetry axis of the antenna. The transmission and reception characteristics of the antenna are of concern primarily in the "half-space" above a plane containing reflector 10. Reflector 10 also establishes a ground plane below the antenna for electromagnetically isolating circuits and other structures underneath reflector 10 from the antenna.
Circuit boards 40a and 40b include a pair of opposing slots (not shown), cut at least halfway across the center of the two circuit boards, allowing the two boards to be slipped together, resulting in an interlocking structure. Each circuit board is preferably fabricated from high frequency circuit material, 0.031 inch thick, with electro-deposited copper on both sides (e.g., type RO4003 from Rogers Corporation, Chandler, AZ). Other circuit board material may be used depending on the electrical characteristics of the material at the desired operating frequencies. Using standard printed circuit technology, circuit boards 40a and 40b are etched to remove the electro-deposited copper. This leaves copper lines on opposite sides of circuit boards 40a and 40b which form the radiating elements 20a-d, 30a-d and feed lines 22a-d, 32a-d. The widths of the copper lines are substantially equal to 0.1 inch. To maintain equal electric field potential between the conductors on opposite sides of the boards, plated through holes 50 are preferably placed every 0.2 inch along the center of the copper lines as shown in FIG. 2 with black dots. Subsequently, the copper lines on circuit boards 40a and 40b are tin-lead plated for corrosion prevention. The above-mentioned values given for the circuit board thickness, conductor line width, and spacing of the plated through holes may be chosen as a matter of convenience, although they preferably should be no more than 5% of the wavelength at the highest operating frequency of the antenna.
The copper lines (i.e., conductors) on circuit boards 40a and 40b form a first turnstile antenna (i.e., a first pair of crossed dipole antennas) operating within a first frequency band and a second turnstile antenna (i.e., a second pair of crossed dipole antennas) operating within a second frequency band. The first antenna comprises radiating elements 20a-d, that are connected to feed lines 22a- d. The second turnstile antenna comprises radiating elements 30a-d, that are connected to feed lines 32a-d. In reflector 10, holes 24a-d, for the first turnstile antenna, and holes 34a-d, for the second turnstile antenna, allow connection of the corresponding feed lines to circuits (not shown) located beneath reflector 10.
Radiating elements 20a-d of the first turnstile antenna, and corresponding feed lines 22a-d, and radiating elements 30a-d of the second turnstile antenna, and corresponding feed lines 32a-d, are spaced at 90° intervals about the vertical axis of reflector 10. This allows each of the first and second turnstile antennas, in combination with the reflector, to exhibit quadranal symmetry about the vertical axis. As a result, when signals of equal magnitude, in the relative phase rotation of 0°, 90°, 180° and 270° as illustrated in FIG. 4, propagate either on feed lines 22a-d in combination, or on feed lines 32a-d in combination, the corresponding first or second turnstile antenna transmits or receives a CP electromagnetic wave along the vertical axis.
There are many well known dividing/phasing circuits which can divide a signal into four equal amplitude signals having relative phase of 0°, 90°, 180° and 270°. Examples of suitable dividing/phasing circuits include, but are not limited to, an 180° hybrid coupler which feeds into two 90° hybrid couplers or a 90° hybrid coupler which feeds into two 180° hybrid couplers; and a four-way in-phase divider which feeds four transmission lines each progressively increasing in length by 90°.
Returning back to the discussion of the circuit boards 40a and 40b, the spacings of the centers of the first antenna feed lines 22a-d and the second antenna feed lines 32a-d from the vertical axis discussed above in connection with reflector 10 are substantially equal to 0.1 inch and 0.3 inch. The lengths of the first and second antenna feed lines 22a-d, 32a-d are substantially equal to 3.762 and 3.562 inches, and the lengths of the first and second antenna radiating elements 20a-d, 30a-d are substantially equal to 2.593 and 2.360 inches. Radiating elements 20a-d of the first (low band) turnstile antenna are preferably inclined at an angle substantially equal to 12.5° below the horizontal, and radiating elements 30a-d of the second (high band) turnstile antenna are preferably inclined at an angle substantially equal to 60° below the horizontal.
It should be noted that one skilled in the art will recognize that there is a wide variation of possible dimensions, depending on the operating frequencies and desired performance, which will provide a useful multifrequency CP antenna. The resulting antenna impedances may require additional impedance matching structures. The lengths of the radiating elements will nominally be 0.25λ at the corresponding operating frequencies but may be longer or shorter by substantial amounts depending on the other dimensions and whether or not impedance matching circuits are included. For instance, it can be in the range of 0.20λ-0.35λ. Similarly, the lengths of the feed lines will nominally be 0.5λ but may also vary substantially. For instance, it can be in the range of 0.35λ-0.55λ. The inclination angles of the radiating elements and the spacings of the feed lines from the vertical axis will also influence the performance and be subject to a substantial range of dimensions.
Even though the above discussed crossed dipole pairs of the present invention use linear dipole elements, other types of elements in various combinations may also be used such as, but not limited to, segmented linear, arcuate, folded dipole elements, as well as elements with more general two- dimensional shapes.. In addition, the invention is not limited to the geometry of the preferred embodiment in which the crossed dipole antennas are rotationally aligned. For example, the crossed dipole antennas may be disposed, relative to each other, at an angle of rotation of 45° about the common symmetry axis (i.e., the vertical axis discussed above in connection with reflector 10). Furthermore, a transmission line feed as described herein with quadranal symmetry and comprising four conductors may additionally include, for example, a single shield, grounded to the reflector, which surrounds all feed line conductors, or grounded shields each surrounding a feed line conductor so that each conductor-shield pair constitutes a coaxial transmission line.
It should be noted that additional turnstile antennas may be included in embodiments of the present invention, thus providing operational capability at corresponding additional frequencies. Moreover, the crossed dipole pairs and the transmission line feeds may be connected in various combinations which may seem more advantageous when used in combination with particular system components including transmitters, receivers, multiplexers and phasing networks. For example, one set of feed lines may be connected to two sets of radiating elements.
The antenna of the present invention is preferably utilized in a system which operates from a terrestrial vehicle, with the antenna mounted atop the vehicle such that the reflector 10 is parallel to the ground when the vehicle is level. Because the vehicle may be oriented in an arbitrary direction, it is desirable that the antenna radiation pattern be substantially omnidirectional (i.e., having little variation in azimuth) and further that there be reasonable pattern coverage from zenith down to low elevation angles for operation from the equator to higher latitudes.
The preferred operating frequencies of the antenna of the present invention are:
Signal Frequency GPS L2 1227.6 MHz
L-band Receive 1520-1560 MHz
GPS L1 1575.42 MHz 30 L-band Transmit 1620-1660 MHz
It should be noted that satisfactory performance can be obtained by operating the antenna in two frequency bands, a low band for the GPS L2 signal and a high band encompassing the L-band Receive, GPS L1 and L-band Transmit signals. The first turnstile antenna, comprising radiating elements 20a-d preferably operates in the low band, and the second turnstile antenna, comprising radiating elements 30a-d preferably operates in the high band. Operation in the high band results in strong signal coupling from the second turnstile antenna to the first turnstile antenna, which may cause severe detuning or loss of signal strength caused by coupling of high band signals to the low band circuits located beneath reflector 10. These effects are mitigated by using a set of open-circuited transmission-line stubs. Each stub is approximately a quarter wavelength long in the high band. One stub is connected in shunt to each of the low band circuits beneath reflector 10, close to each of holes 24a-d through which the corresponding low band feed lines 22a-d are connected. Each stub presents a very low shunt impedance in the high band, thus decoupling the corresponding low band circuit. Operation in the low band results in negligible signal coupling from the first turnstile antenna to the second turnstile antenna, and therefore corresponding low band decoupling stubs are not required.
Although the invention has been described with respect to a preferred embodiment which comprises the best mode contemplated within the present invention, it will be obvious to those skilled in the art that many changes could be made and many apparently different embodiments thus derived without departing from the spirit and scope of the invention. Consequently, it will be appreciated by those skilled in the art that the scope of the invention should not be limited by any of the aforementioned embodiments, but rather that it be interpreted only from the following claims.

Claims (12)

THE CLAIMSWhat is claimed is:
1. A circularly polarized multifrequency antenna comprising: a first crossed dipole pair having a first resonant frequency; and a second crossed dipole pair having a second resonant frequency and being disposed symmetrically with the first dipole pair, wherein the first and second dipole pairs are configured to be fed with equal power in a relative phase rotation of 0°, 90°, 180° and 360°.
2. The antenna of claim 1 further comprising: a reflector, wherein the first and second dipole pairs are disposed on one side of the reflector.
3. The antenna of claim 1 wherein the reflector has a planar circular shape and a diameter of the planar circular reflector is substantially equal to an average wavelength between the first and second resonance frequencies.
4. The antenna of claim 1 wherein the first resonant frequency is substantially equal to 1227.6 MHz and the second resonant frequency is substantially equal to 1575.42 MHz.
5. The antenna of claim 1 wherein the second cross dipole pair is further configured to receive a signal having a frequency range of 1520-1560 MHz and transmit a signal having a frequency range of 1620-1660 MHz.
6. The antenna of claim 1 further comprising: a pair of circuit boards having conductive lines formed thereon, wherein the first and second crossed dipole pairs are formed by the conductive lines.
7. The antenna of claim 6 wherein the conductive lines are etched from electro-deposited copper.
8. The antenna of claim 6 wherein the conductive lines includes a plurality of feed lines and a plurality of radiating lines each of which is coupled to one of the plurality of feed lines.
9. The antenna of claim 8 wherein each feed line of the first cross dipole antenna has a length substantially equal to 0.46 times an average wavelength an operating frequency range of the first and second cross dipole antennas.
10. The antenna of claim 9 wherein the operating frequency range of the first and second cross dipole antennas is between 1227.6 MHz and 1660 MHz.
11. The antenna of claim 8 wherein each radiating line of the first cross dipole antenna is inclined approximately at 12.5° compared with a planar surface of the planar reflector.
12. The antenna of claim 8 wherein each radiating line of the second cross dipole antenna is inclined approximately at 60° compared with a planar surface of the planar reflector.
AU2001255820A 2000-03-31 2001-03-28 Nested turnstile antenna Ceased AU2001255820C1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/540,747 2000-03-31
US09/540,747 US6342867B1 (en) 2000-03-31 2000-03-31 Nested turnstile antenna
PCT/US2001/040397 WO2001076012A1 (en) 2000-03-31 2001-03-28 Nested turnstile antenna

Publications (3)

Publication Number Publication Date
AU2001255820A1 true AU2001255820A1 (en) 2002-01-03
AU2001255820B2 AU2001255820B2 (en) 2004-06-10
AU2001255820C1 AU2001255820C1 (en) 2009-06-11

Family

ID=24156770

Family Applications (2)

Application Number Title Priority Date Filing Date
AU5582001A Pending AU5582001A (en) 2000-03-31 2001-03-28 Nested turnstile antenna
AU2001255820A Ceased AU2001255820C1 (en) 2000-03-31 2001-03-28 Nested turnstile antenna

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU5582001A Pending AU5582001A (en) 2000-03-31 2001-03-28 Nested turnstile antenna

Country Status (10)

Country Link
US (1) US6342867B1 (en)
EP (1) EP1301967B1 (en)
CN (1) CN100420094C (en)
AT (1) ATE328375T1 (en)
AU (2) AU5582001A (en)
BR (1) BR0109678A (en)
CA (1) CA2404406C (en)
DE (1) DE60120174T2 (en)
RU (1) RU2258286C2 (en)
WO (1) WO2001076012A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741220B2 (en) 2000-03-10 2004-05-25 Nippon Antena Kabushiki Kaisha Cross dipole antenna and composite antenna
US6529172B2 (en) * 2000-08-11 2003-03-04 Andrew Corporation Dual-polarized radiating element with high isolation between polarization channels
US6512488B2 (en) * 2001-05-15 2003-01-28 Time Domain Corporation Apparatus for establishing signal coupling between a signal line and an antenna structure
US6642903B2 (en) * 2001-05-15 2003-11-04 Time Domain Corporation Apparatus for establishing signal coupling between a signal line and an antenna structure
US6515557B1 (en) * 2001-08-13 2003-02-04 Raytheon Company Isolating signal divider/combiner and method of combining signals of first and second frequencies
JP2003243922A (en) * 2002-02-15 2003-08-29 Toyota Central Res & Dev Lab Inc Antenna system
US7095383B2 (en) * 2003-05-01 2006-08-22 Intermec Ip Corp. Field configurable radiation antenna device
US20050012676A1 (en) * 2003-07-16 2005-01-20 Mccarthy Robert Daniel N-port signal divider/combiner
KR100922001B1 (en) * 2007-09-10 2009-10-14 한국전자통신연구원 Folded Dipole, Folded Diple Module, Array Antenna and Multipul Input Multipul Output Antenna
US8068066B2 (en) * 2008-08-25 2011-11-29 Bae Systems Information And Electronic Systems Integration Inc. X-band turnstile antenna
FR2939569B1 (en) * 2008-12-10 2011-08-26 Alcatel Lucent RADIANT ELEMENT WITH DUAL POLARIZATION FOR BROADBAND ANTENNA.
US8466837B2 (en) * 2008-12-31 2013-06-18 Navcom Technology Inc. Hooked turnstile antenna for navigation and communication
WO2010135862A1 (en) 2009-05-26 2010-12-02 华为技术有限公司 Antenna device
FR2946806B1 (en) 2009-06-11 2012-03-30 Alcatel Lucent RADIANT ELEMENT OF MULTIBAND ANTENNA
DE102010004470B4 (en) * 2010-01-13 2013-05-08 Continental Automotive Gmbh Antenna structure for a vehicle
US8754819B2 (en) * 2010-03-12 2014-06-17 Agc Automotive Americas R&D, Inc. Antenna system including a circularly polarized antenna
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna
RU2464681C1 (en) * 2011-07-04 2012-10-20 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Dipole antenna
GB2493373A (en) * 2011-08-03 2013-02-06 Harada Ind Co Ltd Antenna with a bent conductor for multiple frequency operation
FR2984493B1 (en) * 2011-12-14 2013-12-27 Centre Nat Rech Scient DEVICE FOR MEASURING THE POLARIZATION STATE OF AN INCIDING WAVE OF FREQUENCY FROM 10 GHZ TO 30 THZ
US20140111396A1 (en) * 2012-10-19 2014-04-24 Futurewei Technologies, Inc. Dual Band Interleaved Phased Array Antenna
WO2014114932A1 (en) * 2013-01-25 2014-07-31 Bae Systems Plc Dipole antenna array
US8686913B1 (en) 2013-02-20 2014-04-01 Src, Inc. Differential vector sensor
GB201314293D0 (en) 2013-08-09 2013-09-25 Orban Mircowave Products Nv Dual inverted l-antenna for use as a base station antenna
SE537935C2 (en) * 2014-07-24 2015-11-24 Icomera Ab Wireless train communication system
TWI552444B (en) * 2015-04-07 2016-10-01 啟碁科技股份有限公司 Antenna device
US10096908B2 (en) * 2015-04-07 2018-10-09 Wistron Neweb Corporation Antenna device
TWI599102B (en) * 2015-10-15 2017-09-11 啟碁科技股份有限公司 Radio-Frequency Transceiver System
CN106611893A (en) * 2015-10-23 2017-05-03 启碁科技股份有限公司 RF transmitting-receiving system
CN107845854B (en) * 2016-09-19 2021-02-09 启碁科技股份有限公司 Composite antenna
EP3503291B1 (en) * 2017-12-20 2023-04-26 Advanced Automotive Antennas, S.L. Antenna system and side mirror for a vehicle incorporating said antenna system
US11367964B2 (en) * 2018-01-02 2022-06-21 Optisys, LLC Dual-band integrated printed antenna feed
US10615496B1 (en) 2018-03-08 2020-04-07 Government Of The United States, As Represented By The Secretary Of The Air Force Nested split crescent dipole antenna
US11165138B2 (en) * 2018-04-09 2021-11-02 Qorvo Us, Inc. Antenna element and related apparatus
WO2019222197A1 (en) 2018-05-15 2019-11-21 John Mezzalingua Associates, LLC Patch antenna design for easy fabrication and controllable performance at high frequency bands
US11239535B2 (en) 2018-11-19 2022-02-01 Optisys, LLC Waveguide switch rotor with improved isolation
CN110380193B (en) * 2019-06-04 2020-11-13 西安电子科技大学 Miniaturized multiband common-caliber circularly polarized antenna
KR102590941B1 (en) * 2019-07-11 2023-10-19 삼성전자주식회사 Antenna module comprising dipole antenna and electronic device comprising the same
JPWO2021153179A1 (en) * 2020-01-28 2021-08-05
TW202201851A (en) * 2020-06-20 2022-01-01 愛爾蘭商陶格拉斯集團控股有限公司 Antenna device
US11824266B2 (en) 2020-09-23 2023-11-21 Antcom Corporation Encapsulated multi-band monopole antenna
CN112821045B (en) * 2020-12-31 2023-05-30 京信通信技术(广州)有限公司 Radiating element and base station antenna
JP7018539B1 (en) * 2021-10-15 2022-02-10 株式会社Maruwa Cross dipole antenna
CN114284698A (en) * 2021-12-08 2022-04-05 南京理工大学 50-degree circular polarization cone-shaped beam antenna with frequency of 2.15GHz

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031539A (en) * 1975-12-11 1977-06-21 Rca Corporation Broadband turnstile antenna
US4686536A (en) * 1985-08-15 1987-08-11 Canadian Marconi Company Crossed-drooping dipole antenna
US5208603A (en) * 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
US5418544A (en) * 1993-04-16 1995-05-23 Apti, Inc. Stacked crossed grid dipole antenna array element
DE19617140C2 (en) * 1996-04-29 1999-07-15 Siemens Ag Radio station for sending and receiving digital information in a mobile communication system

Similar Documents

Publication Publication Date Title
AU2001255820B2 (en) Nested turnstile antenna
AU2001255820A1 (en) Nested turnstile antenna
US10381732B2 (en) Antennas with improved reception of satellite signals
EP3241257B1 (en) Circularly polarized connected-slot antenna
US6094177A (en) Planar radiation antenna elements and omni directional antenna using such antenna elements
EP3930098A1 (en) Circularly polarized connected-slot antennas
US6317099B1 (en) Folded dipole antenna
CA1264373A (en) Flat wide - band antenna
US20040140942A1 (en) Dual-polarized radiating assembly
CA2330037C (en) A left-hand circular polarized antenna for use with gps systems
EP0965151B1 (en) Apparatus for receiving and transmitting radio signals
NZ526494A (en) Single piece twin folded dipole antenna
JP2003514422A (en) Printed antenna
US11271319B2 (en) Antennas for reception of satellite signals
US5304998A (en) Dual-mode communication antenna
EP0824766A1 (en) Antenna unit
EP0251818B1 (en) Omnidirectional antenna assembly
JPH0998019A (en) Shared antenna for polarized wave
JP2000517113A (en) Low wind resistance antenna using cylindrical radiation and reflector unit
Hori et al. Broadband circularly polarized microstrip array antenna with coplanar feed
Hirose et al. A dual-spiral slot array antenna with a tilted beam
WO2002071546A1 (en) Enhancement of the field pattern of a device for transferring electromagnetic waves