AU2001241833A2 - A process for purifying lovastatin and simvastatin with reduced levels of dimeric impurities - Google Patents
A process for purifying lovastatin and simvastatin with reduced levels of dimeric impuritiesInfo
- Publication number
- AU2001241833A2 AU2001241833A2 AU2001241833A AU2001241833A AU2001241833A2 AU 2001241833 A2 AU2001241833 A2 AU 2001241833A2 AU 2001241833 A AU2001241833 A AU 2001241833A AU 2001241833 A AU2001241833 A AU 2001241833A AU 2001241833 A2 AU2001241833 A2 AU 2001241833A2
- Authority
- AU
- Australia
- Prior art keywords
- mixture
- lovastatin
- simvastatin
- solvent
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 57
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 title claims description 55
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 title claims description 55
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 title claims description 55
- 229960004844 lovastatin Drugs 0.000 title claims description 53
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 title claims description 41
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 title claims description 39
- 229960002855 simvastatin Drugs 0.000 title claims description 39
- 239000012535 impurity Substances 0.000 title claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 27
- 239000011877 solvent mixture Substances 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- GJRQTCIYDGXPES-UHFFFAOYSA-N isobutyl acetate Chemical compound CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 claims description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 15
- 238000002425 crystallisation Methods 0.000 claims description 14
- 230000008025 crystallization Effects 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 12
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 10
- 150000002148 esters Chemical class 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical group CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 8
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000908 ammonium hydroxide Substances 0.000 claims description 8
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 7
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 150000004982 aromatic amines Chemical class 0.000 claims description 5
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 claims description 4
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 claims description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 4
- -1 aromatic alcohols Chemical class 0.000 claims description 4
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 claims description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 claims description 4
- 239000003208 petroleum Substances 0.000 claims description 4
- 229940090181 propyl acetate Drugs 0.000 claims description 4
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 claims description 4
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 3
- 238000001556 precipitation Methods 0.000 claims 1
- 150000002596 lactones Chemical group 0.000 description 28
- 238000007273 lactonization reaction Methods 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000000539 dimer Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 239000002253 acid Chemical group 0.000 description 8
- 150000001261 hydroxy acids Chemical class 0.000 description 7
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 229940043379 ammonium hydroxide Drugs 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000003377 acid catalyst Substances 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 5
- 230000004151 fermentation Effects 0.000 description 5
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 5
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- GZGUDHDMNATZDU-CRMSOXFQSA-N [(4r)-2-[2-[(1s,2s,6r,8s,8ar)-2,6-dimethyl-8-[(2s)-2-methylbutanoyl]oxy-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]ethyl]-6-oxooxan-4-yl] (3r,5r)-7-[(1s,2s,6r,8s,8ar)-2,6-dimethyl-8-[(2s)-2-methylbutanoyl]oxy-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydrox Chemical compound C([C@@H]1C)=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@H]2[C@H]1CCC(OC(=O)C1)C[C@H]1OC(=O)C[C@H](O)C[C@H](O)CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@H]12 GZGUDHDMNATZDU-CRMSOXFQSA-N 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 description 3
- 239000001888 Peptone Substances 0.000 description 3
- 108010080698 Peptones Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 235000019319 peptone Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- GUEULYYYHDURDF-CWZAOXTASA-N [(2r,4r)-2-[2-[(1s,2s,6r,8s,8ar)-8-(2,2-dimethylbutanoyloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]ethyl]-6-oxooxan-4-yl] (3r,5r)-7-[(1s,2s,6r,8s,8ar)-8-(2,2-dimethylbutanoyloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydro Chemical compound C([C@@H]1C)=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@H]2[C@H]1CC[C@@H](OC(=O)C1)C[C@H]1OC(=O)C[C@H](O)C[C@H](O)CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@H]12 GUEULYYYHDURDF-CWZAOXTASA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 239000012296 anti-solvent Substances 0.000 description 2
- 239000003529 anticholesteremic agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 1
- IPVYMXZYXFFDGW-UHFFFAOYSA-N 1-methylpiperidin-4-ol;hydrochloride Chemical compound Cl.CN1CCC(O)CC1 IPVYMXZYXFFDGW-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-N 2,2-dimethylbutyric acid Chemical compound CCC(C)(C)C(O)=O VUAXHMVRKOTJKP-UHFFFAOYSA-N 0.000 description 1
- 101710158485 3-hydroxy-3-methylglutaryl-coenzyme A reductase Proteins 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- 241001312183 Coniothyrium Species 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 102000000853 LDL receptors Human genes 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 241001330696 Leptosphaeria coniothyrium Species 0.000 description 1
- LXZBFUBRYYVRQJ-UHFFFAOYSA-M Lovastatin hydroxy acid Chemical compound [Na+].C1=CC(C)C(CCC(O)CC(O)CC([O-])=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 LXZBFUBRYYVRQJ-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000228347 Monascus <ascomycete fungus> Species 0.000 description 1
- 241000031003 Monascus ruber Species 0.000 description 1
- 240000001462 Pleurotus ostreatus Species 0.000 description 1
- 241000392433 Pleurotus sapidus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 102400001190 Vastatin Human genes 0.000 description 1
- 101800000422 Vastatin Proteins 0.000 description 1
- SPIVMHAGTHFLMO-OCAGQIGWSA-N [(1s,3r,7s,8s,8ar)-3,7-dimethyl-8-[2-[(2r)-6-oxo-2,3-dihydropyran-2-yl]ethyl]-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1CC=CC(=O)O1 SPIVMHAGTHFLMO-OCAGQIGWSA-N 0.000 description 1
- PCZOHLXUXFIOCF-KVVRZSONSA-N [(1s,3r,7s,8s,8ar)-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-KVVRZSONSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 1
- 230000020176 deacylation Effects 0.000 description 1
- 238000005947 deacylation reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N hexane carboxylic acid Natural products CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- BOZILQFLQYBIIY-INTXDZFKSA-N mevinic acid Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)CCC=C21 BOZILQFLQYBIIY-INTXDZFKSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- BBFCIBZLAVOLCF-UHFFFAOYSA-N pyridin-1-ium;bromide Chemical compound Br.C1=CC=NC=C1 BBFCIBZLAVOLCF-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- ZDYVRSLAEXCVBX-UHFFFAOYSA-N pyridinium p-toluenesulfonate Chemical compound C1=CC=[NH+]C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 ZDYVRSLAEXCVBX-UHFFFAOYSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003431 steroids Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 229940072168 zocor Drugs 0.000 description 1
- 238000011911 α-alkylation Methods 0.000 description 1
Description
A PROCESS FOR PURIFYING LOVASTATIN AND SIMVASTATIN WITH REDUCED LEVELS OF DIMERIC IMPURITIES
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. provisional application Serial No. 60/186868, filed March 3, 2000, the content of which is incorporated herein by reference.
FIELD OF THE INVENTION
The invention relates to a process of purifying Lovastatin or Simvastatin, which reduces the level of dimeric impurities in the resulting product.
BACKGROUND OF THE INVENTION
Lovastatin and its analogs, e.g. simvastatin, are potent antihyper-cholesterolemic agents that function by limiting cholesterol biosynthesis. Lovastatin is one of the most important known cholesterol lowering agents. Lovastatin (CAS Registry No. 75330-75-5) is also known as mevinolin or monacolin K and is chemically known as: β,6-dihydroxy-7- [ 1,2,6,7, 8,8a-hexahydro-2,6-dimethyl-8-(2-methyl-butyryloxy)-l-napthalen-l-yl]- heptanoic acid 6-lactone of the formula:
lovastatin
Lovastatin, is one member of a class of compounds, which are referred to generally s statins, are known to exist in open ring hydroxy acid and also in lactone form. The
lactone form of Lovastatin is shown above.
Lovastatin and its analogs inhibit the enzyme 3-hydroxy-3-methyl- glutarylcoenzyme A reductase ("HMG-CoA reductase"). HMG-CoA reductase catalyzes the formation of mevalonic acid, an early intermediate of cholesterol biosynthesis.
Lovastatin is specifically advantageous because, as a result of its application, biosynthetic intermediates that have a toxic steroid skeleton, formed at a later stage of biosynthesis fail to accumulate. Lovastatin also increases the number of LDL-receptors at the surface of the cell membrane, which remove the LDL cholesterol circulating in the blood, thereby inducing the lowering of blood plasma cholesterol level.
Lovastatin is routinely produced via fermentation. GB 2,046,737 discloses that Lovastatin can be produced by some strains belonging to the Monascus genus, e.g., by M. ruber 1005 cultivated between 7° and 40 °C. As a culture medium, an aqueous solution of glucose, peptone, corn steep liquor and ammonium chloride was used. The fermentation was carried out for 10 days in aerobic conditions, and 87 mg Lovastatin was obtained from the filtrate of 5 liters of broth.
U.S. Patent. No. 4,294,926 discloses the biosynthesis of Lovastatin preferably by the application of microorganisms under the deposited numbers ATCC 20541 or 20542 belonging to the Aspergillus terreus species on a culture medium containing carbohydrates, e.g., glucose, fructose, maltose, as carbon source; nitrogen sources, e.g., yeast, hydrolyzed yeast, hydrolyzed casein, corn steep liquor, and mineral salts, e.g., calcium carbonate, magnesium sulfate, cobalt, iron, and manganese salts at a temperature of 20-37°C. Similar procedures are described in U.S. Patent Nos. 4,420,491; 4,342,767;
4,319,039 and 4,294,846 where the fermentations are carried out for 3-5 days on media containing 1-6% carbohydrates and 0.2-6% nitrogen sources.
German Patent No. 4,402,591 discloses biosynthesis of Lovastatin by microorganisms belonging to the Plenrotus genus, e.g., P. ostreatus, P. sapidus and P. saca, at 25-35 °C during 7-14 days cultivation time on surface or submerged cultures.
Canadian Patent No. 2, 129,416 discloses the preparation of Lovastatin with a microorganism belonging to the Coniothyrium genus, e.g., under the deposited number Coniothyrium fuckelii ATCC 74227 on a culture medium containing 3- 15% glucose, 0.5- 4% peptone, 0.5-5% amylase, 0.2-1 % ammonium sulphate, 0.01-0.1 % magnesium sulphate, 0.05-0.2% antifoaming agent, 0.2-1.5% L-isoleucine, 0.2-1.5%) L-aspartic acid in the pH range of 5-6. According to the examples, the active ingredient concentration of the broth was within 19-430 mg/liter.
Hungarian Patent No. HU 208,997 discloses the application of the holotype strain Aspergillus obscnrus numbered as MV- 1 , deposited under the number NCAIM(P)F 001 189. The fermentation is preferably carried out on a medium containing yeast extract and/or peptone and/or casein as nitrogen source(s) and glucose and/or maltose or sucrose as carbon source(s). The activity of the broth at the end of the laboratory scale cultivation is between 400-850 mg/liter.
Simvastatin is a synthetic analog of Lovastatin, wherein the 8-acyl moiety is 2,2- dimethylbutyryl. Simvastatin is an even more potent HMG-CoA reductase inhibitor than Lovastatin. Simvastatin is chemically designated as 2,2-dimethylbutanoic acid (4R,6R)-6- [2[1S,2S, 6R,8S,8aR)-l,2,6,7,8,8a-hexahydro-2,6-dimethyl-l-[2-(tetrahydro-4-hydroxy-6- oxo-2H-pyran-2-yl)ethyl]-l-napthalenyl ester (CAS Registry No. 79902-63-9). The chemical structure of Simvastatin is:
s im vastatin
R N 79902 -63-9
Simvastatin is now commercially available as ZOCOR© in some markets. The preparation of Simvastatin was originally described in U.S. Pat. No. 4,444,784. The process involves deacylation of Lovastatin followed by a subsequent acylation with the 2,2-dimethylbutyryl moiety. Simvastatin has also been prepared by the alpha alkylation of the Lovastatin ester moiety as described in U.S. Pat. Nos. 4,582,915 and 4,820,850.
After the fermentation is complete, Lovastatin is present in the broth in both lactone and acid forms. The open hydroxy acid form of the statins is the biologically active form. However, the statins are generally administered to a patient in the lactone form, which is converted to its active metabolite, the hydroxy acid form, in the body.
Thus, since only the lactone form is of commercial interest, the acid form is converted into the lactone form through a process called lactonization. The process of lactonization is an equilibrium reaction whereby the open dihydroxy acid form is converted into the closed lactone form. Because lactonization is an equilibrium process, to obtain a high yield of the lactone product, some means must be employed to shift the equilibrium to the lactone side of the equation. This equilibrium equation can be depicted as follows:
Lactonization is an intramolecular esterification. Intermolecular esterification, which leads to dimer formation and higher oligomeric species competes with lactonization:
Lactonization methods are known in the art and many such methods are discussed below. Following lactonization of Lovastatin or following synthesis of Simvastatin, the statins are isolated using crystallization techniques known in the art.
Processes known in the literature for the lactonization of the free, hydroxy acid or its salts are either carried out under high temperature conditions, i.e. refluxing with inert solvents, or catalyzed by strong acids when lactonization is effected at ambient temperature. The process disclosed in U.S. Pat. No. 4,820,850 involves heating the free acid or its salts, e.g. the ammonium salt, to reflux temperature (usually 100-1 10°C) in high boiling carbohydrate solvents such as toluene for 7-8 hours. The ambient acidity of the acid is believed to be responsible for the lactonization reaction at these high temperatures. In addition, water that is formed as a by-product of the reaction is continuously removed by azeotropic distillation, which forces the reaction to near completion (shifts the position of equilibrium to the lactone side). The process of lactonization under heat conditions of reflux temperatures is complicated by the formation of dimer impurities which lower the quality of the final lactone product. Once formed, the dimer impurity is difficult to remove and is often present at the levels between 0.4 to 0.08%> in the product. To minimize dimerization, high dilutions are often used in the lactonization reaction at the cost of the efficiency of the reaction and process, which is disadvantageous on a commercial manufacturing scale.
U.S. Patent No. 4,916,239 discloses lactonization at room temperature by treating the free ammonium salt of mevinic acid in a mixture of acetic acid and water, and in the presence of a strong acid catalyst. After the free hydroxy acid-lactone equilibrium is established (reaction has proceeded to 50% conversion), water is gradually added in an amount sufficient to effect crystallization of the lactone from the reaction medium. Removal of the lactone from solution favors lactone formation and thus drives the lactonization to completion. Since the lactone is continuously removed from solution, dimer formation is minimized. The disadvantages of this process stem from the inconvenience of using a strong acid catalyst in a large scale synthesis. The strong acid catalysts (e.g. formic, phosphoric, trifluoroacetic, sulphuric, hydrochloric, p-toluene, sulphonic, methanesulphonic acids) that are often used in quantities varying from 1.2 to
1.5 molar equivalents, can be difficult to handle and can pose environmentally unacceptable disposal problems, especially on an industrial scale. Furthermore, the excess acid catalyst that is used requires neutralization by adding a strong base before filtration of the product. Additionally, the lactonization reaction is only about 50% complete after the equilibrium is achieved. Any fast or premature addition of water can lead to serious crystallization and filtration problems. Additionally, reaction and subsequent work-up takes about 9-12 hours for completion, thereby decreasing the efficiency of the process.
U.S. Patent 5,917,058 discloses a process of lactonization which avoids the use of strong corrosive acids and drastic heat conditions. The process involves treating the open hydroxy acid form of statins, preferably in their ammonium salt form, with acetic acid under inert anhydrous conditions at ambient or moderate temperatures. The acetic acid serves both as a solvent and as a catalyst. The lactonization proceeds without the addition of strong acid catalysts. The lactonized product is isolated after completion of reaction by the addition of an anti-solvent that has the ability to crystallize out the lactonized product.
The anti-solvents disclosed are water, hexane, heptane, or cyclohexane. Since lactonization is an equilibrium reaction, the reaction by-products - water and ammonia - have to be removed to shift the equilibrium to the lactone side. The acetic acid used in the process consumes, in situ, the ammonia, resulting in the generation of ammonium acetate. The ammonium acetate, since it is hygroscopic in nature, absorbs the other by-product - water. This procedure is reported to yield 85-95%. yield with 95-98%) purity.
U.S. Patent 5,939,564 also discloses a method of lactonization which avoids the use of strong corrosive acids. The open hydroxy acid in its salt form is heated in an organic solvent at a temperature ranging from ambient to the reflux temperature of the solvent under anhydrous conditions. This mixture is then treated with a mild catalyst at a temperatures ranging from about ambient temperature to about 50 °C. The mild catalysts are the salts of organic bases with inorganic or organic acids, such as pyridine hydrobromide, pyridine hydrocholoride, or pyridine p-toluene sulfonate. The lactonized product is then precipitated by the addition of water and finally the crystalline product is collected from the mixture. This method produces at the most, 98.7 % pure Lovastatin.
While the above methods of lactonization have decreased the environmental burden and lead to improved yields and purity, these methods still result in significant formation of dimers of Lovastatin. Additionally, during the synthesis of Simvastatin from Lovastatin, dimer impurities form during lactonization. Thus, there remains a need for a purification process that reduces the level of dimer impurity. The present invention addresses this need.
SUMMARY OF THE INVENTION
It has now been found that dimeric impurities may be removed from Lovastatin or Simvastatin by treatment with mild bases which selectively hydrolyze the dimers without concomitant ring opening of the lactone ring of Simvastatin or Lovastatin.
The preferred mild bases include aliphatic mono- or di- or triamines, aromatic amines, ammonium hydroxide, ammonia gas and an aqueous solution of the above agents.
Using the process of purification of the present invention, Lovastatin or Simvastatin containing less than about 0.08% dimeric impurities can be obtained. Thus, another aspect of the invention provides the compounds, Lovastatin and Simvastatin having less than about 0.08% dimeric impurities.
DETAILED DESCRIPTION OF THE INVENTION
As discussed above, known processes of synthesizing Simvastatin or lactonization of Lovastatin, result in the formation of unwanted dimer impurities. The dimer impurities are hard to remove as they co-crystallize with the Lovastatin and Simvastatin. The present invention provides a process of purification of Lovastatin or Simvastatin, which reduces the level of these dimer impurities. The present invention provides a method of purifying Lovastatin or Simvastatin in substantially pure lactone forms. The process of the present invention produces Lovastatin or Simvastatin having less than about 0.08%) dimeric impurities.
The process of the present invention utilizes a slightly alkaline condition in a solvent mixture containing Lovastatin or Simvastatin, to hydrolyze Lovastatin dimer or
Simvastatin dimer and other ester-like impurities, without concomitantly opening up the lactone ring. A mild base agent of 0.4 molar equivalent or less is added to the solvent mixture to produce alkaline condition. The preferred mild base agents include aliphatic mono-, di- or triamines, aromatic amines, ammonium hydroxide, ammonia gas and aqueous solutions of the foregoing agents and mixtures thereof. The most preferred mild base agent is ammonium-hydroxide.
The lactone forms of simvastatin or lovastatin (the "statin lactones") substantially differ in their solubility from the hydroxy acid forms and can be separated accordingly. Lovastatin dimer may be hydrolized to lovastatin hydroxy acid, anhydrolovastatin and lovastatin lactone. The observed ratio of anhydrolovastatimlovastatin depends on the presence of water. The presence of water is limited because it helps the opening of the lactone form. The statin lactones recovered from the solvent mixture. The statin lactones may be recovered by crystallization from an appropriate solvent, using methods known in the art. Crystallization may be performed by cooling the solvent mixture used for hydrolyzing the lactone. Alternatively, the solvent mixture used for hydrolysis may be evaporated and the solid resuspended in a crystallizing solution. Preferred crystallization solvents include isobutyl acetate, ethanol, butylacetate, acetonitrile, mixtures of the afformentioned solvents, mixtures of ethanol-water and mixtures of methanol-water. A preferred solvent mixture is isobutyl acetate: ethanol at a ratio of about 3:1. For crystallization with ethanol and water, a preferred ratio is 0.8: 1.1. For crystallization with methanol and water, a preferred ratio is 0.7:1.0. Preferably the crystallization is performed at a temperature of about -20°C to about +25 °C. More preferably the crystallization is performed at a temperature of about -15°C to about +15 °C, and most preferably at about - 15°C to about +5°C.
Another aspect of the present invention is directed to the solvent mixture used to purify the Lovastatin or Simvastatin. In one aspect of the invention, the solvent mixture comprises an alcohol and another solvent component or components. The alcohol in the solvent mixture can be any alkyl alcohol, aromatic alcohol, or a mixture of such alcohols.
The preferred alcohols include, but are not limited to, methanol, ethanol, i-propanol, n- propanol, i-butanol, n-butanol, t-butanol or mixtures thereof. The most preferred alcohols
are methanol and ethanol. A preferred solvent mixture of the present invention comprises an alcohol in an amount from 1-70 v/v%. More preferably the alcohol is present at 5-50 v/v% and most preferably the alcohol is present at 10-30 v/v %.
The other solvent component of the solvent mixture is believed to prevent the hydrolysis or lactone ring opening of Lovastatin and Simvastatin. Preferred solvent components, other than the alcohol of the solvent mixture, include alkane, alkyl-derivative solvents, and ester derivative solvents. Preferred solvents include dichloromethane, dichloroethane, chloroform, carbon tetrachloride, acetonitrile, petroleum ether, heptane, hexane, cyclohexane, acetone, and butyl-methyl keton, methyl acetate, ethyl acetate, propyl acetate, i-butyl acetate, n-butyl acetate, t-butyl acetate, methyl formate, ethyl formate, propyl formate and mixtures thereof. The most preferred solvents are alcohols, such as methanol and ethanol and acetates, such as i-butyl acetate and ethyl acetate.
Another advantage of the present invention is that the solvent mixture dissolves more Lovastatin and Simvastatin than pure solvents and can also be used in the crystallization. Thus, the present method results in increased yield of Lovastatin and Simvastatin in comparison to method previously known in the art.
The process of the present invention results in the production of Lovastatin and
Simvastatin containing less than about 0.08%> dimeric impurities. Thus, one aspect of the present invention is directed to the compounds of Lovastatin and Simvastatin having less than about 0.08%> dimeric impurities.
EXAMPLES
Example 1
100-220 gm of lovastatin (in its lactone forms) are dissolved in one liter solvent mixture of isobutyl acetate: ethanol at a ratio of about 3: 1. This mixture is heated at 40-
70°C. Concentrated ammonium hydroxide solution at 1.0-2.0%) (calculated on the active substance) is added to the solution. This solution is mixed at 40-85 °C for 1-6 hours, then cooled to 20-30°C in 1 -3 hours. The suspension is further cooled at -5 to +10°C for 2-10 hours. A final cooling at -5 to -20°C is performed for 15-24 hours. The yield is 90%>.
HPLC analysis reveals that the Lovastatin dimer is reduced below 0.08 %.
Example 2
100 - 220 gm of simvastatin (in its lactone forms) are dissolved in one liter solvent mixture of isobutyl acetate: ethanol at a ratio of about 3: 1. This mixture is heated at 40-70 °C. Concentrated ammonium-hydroxide solution (0.1-3.0%) calculated on the active substance) is added to the solution. This solution is mixed at 40-70°C for 1-6 hours, then cooled to 20-30°C in 1-3 hours. The suspension is further cooled at -5 to + 10°C for 2-10 hours. A final cooling at -5 to -20°C is performed for 15-24 hours. The yield is 90%o. HPLC analysis reveals that the simvastatin dimer is reduced below 0.08 %.
Example 3
The process of examples 1 or 2 is performed as above but the solvent mixture is altered as follows. The isobutyl acetate is substituted by one of the following solvents, or a mixture thereof: dichloromethane, dichloroethane, chloroform, carbon tetrachloride, acetonitrile, petroleum ether, heptane, hexane, cyclohexane, acetone, cyclohexanon, butyl- methyl keton, methyl acetate, ethyl acetate, propyl acetate, i-butyl acetate, n-butyl acetate, t-butyl acetate, methyl formate, ethyl formate, propyl formate or another ester. Further, the ethanol is substituted by one of the following alcohols or a mixture thereof: alkyl and aromatic alcohols including methanol, ethanol, i-propanol, n-propanol, i-butanol, n- butanol, t-butanol. The solvent mixture used for hydrolysis is evaporated in vacuum after mixing at 40°-85°C. The solid is dissolved in 20 times ethanol by heating to 50°C. The statin is precipitated by colling to 10°-25°C and adding of 28 times water. The crystals are filtered and dried.
Example 4
The procedure of examples 1 or 2 is performed with the following modifications: The ammonium hydroxide is substituted with either an aliphatic mono- or di- or triamine, an aromatic amine, or a water solution of the above mentioned amines, or ammonia gas.
Example 5
The procedure of example 1 or 2 is performed, but the alcohol is present at 1-70
v/v% in the solvent mixture. At a 5% ethanol content, the yield is 94%o. HPLC analysis reveals that the Lovastatin dimer is below 0.08%.
Claims (19)
1. A process for reducing the dimeric impurities in Lovastatin or Simvastatin comprising: a) dissolving or suspending Lovastatin or Simvastatin containing greater than 0.08%) dimeric impurities in a solvent mixture; b) treating said solution or suspension with a mild base; and c) isolating Lovastatin or Simvastatin containing less than about 0.08% dimeric imputities.
2. The process of claim 1, wherein said mild base is added to said solvent mixture with either stirring of said solvent mixture or mixing said solution.
3. The process of claim 1, further comprising the step of isolating Lovastatin or Simvastatin from said solvent mixture by crystallization.
4. The process of claim 2, wherein said step of stirring or mixing occurs at a temperature from about 5°C to about the boiling point of said solvent mixture.
5. The process of claim 2, wherein said step of stirring or mixing is carried out for 1 to 10 hours.
6. The process of claim 3, wherein said crystallization is performed at a temperature of about -20°C to about +25 °C.
7. The process of claim 1, wherein the solvent mixture comprises an alcohol and another solvent component.
8. The process of claim 7, wherein the solvent mixture comprises an alcohol in an amount of from about 1 to about 70 v/v%.
9. The process of claim 7, wherein said alcohol is selected from the group consisting of alkanols, aromatic alcohols, or mixture of said alcohols.
10. The process of claim 7, wherein said alcohol is selected from the group consisting of Methanol, Ethanol, i-Propanol, n-Propanol, i-Butanol, n-Butanol, t-Butanol or a mixture thereof.
11. The process of claim 7, wherein said solvent component is selected from the group consisting of esters or a mixture of esters, acetonitrile, a mixture of an ester and further solvent components, a mixture of acetonitrile and further solvent components, a mixture of an ester and acetonitrile, a mixture of esters and acetonitrile, or a mixture of esters and further solvent components.
12. The process of claim 1 1, wherein the ester is selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, i-butyl acetate, n-butyl acetate, t-butyl acetate, methyl formate, ethyl formate, and propyl formate and mixtures thereof.
13. The process of claim 1 1, wherein the solvent component is selected from the group consisting of dichloromethane, dichloroethane, chloroform, carbon tetrachloride, acetonitrile, petroleum ether, heptane, hexane, cyclohexane, acetone, and butyl- methyl keton and mixtures thereof.
14. The process of claim 1, wherein said basic agent is selected from the group consisting of aliphatic mono- or di- or triamines, aromatic amines, ammonium hydroxide, ammonia gas, an aqueous solution of any of the foregoing, and mixtures thereof.
15. Lovastatin containing less than about 0.08% dimeric impurities,produced by the process of claim 1.
16. Simvastatin containing less than about 0.08% dimeric impurities, produced by the process of claim 1.
17. A process for a statin selected from the group consisting of Lovastatin or
Simvastatin comprising: a) dissolving or suspending the statin in the solvent comprising 1-70% or an alcohol selected from the group consisting of Methanol, Ethanol, i-Propanol, n- Propanol, i-Butanol, n-Butanol, t-Butanol and a mixture thereof; and a second solvent selected from the group dichloromethane, dichloroethane, chloroform, carbon tetrachloride, acetonitrile, petroleum ether, heptane, hexane, cyclohexane, acetone, butyl-methyl keton, methyl acetate, ethyl acetate, propyl acetate, i-butyl acetate, n-butyl acetate, t-butyl acetate, methyl formate, ethyl formate, propyl formate; and a mixture of said solvents; b) adding a mild base selected from the group aliphatic mono- or di- or triamines, aromatic amines, ammonium hydroxide, ammonia gas, an aqueous solution of any of the foregoing, and mixtures thereof; c) treating of the solution; and d) isolating lovastatin or simvastatin from said solvent mixture by crystallization or precipitation, at about -20°C to about +25 °C.
18. Lovastatin containing less than about 0.08%> dimeric impurities produced by the process of claim 17.
19. Simvastatin containing less than about 0.08%> dimeric impurities produced by the process of claim 17.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60186868 | 2000-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001241833A2 true AU2001241833A2 (en) | 2003-03-20 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100699368B1 (en) | New Salts of HMG-CoA Reductase Inhibitors | |
EP0702679B1 (en) | Process for the isolation of lovastatin | |
US4294846A (en) | Hypocholesteremic fermentation products and products of preparation | |
EP1055671B1 (en) | A process for producing a simvastatin precursor | |
US6521762B2 (en) | Process for purifying lovastatin and simvastatin with reduced levels of dimeric impurities | |
WO1994029292A9 (en) | Process for the isolation of lovastatin | |
IE53740B1 (en) | Mb-530b derivatives, their preparation and pharmaceutical compositions containing them | |
US4420491A (en) | Hypocholesteremic fermentation products and process of preparation | |
US7052886B2 (en) | Process for the isolation of lovastatin | |
CA2342361A1 (en) | Process for selective lactonization | |
AU2001241833A2 (en) | A process for purifying lovastatin and simvastatin with reduced levels of dimeric impurities | |
US7566792B2 (en) | Method for the manufacture of Lovastatin | |
US20030204105A1 (en) | Method for purification of pravastatin or a pharmacologically acceptable salt thereof | |
MXPA02005893A (en) | Process for the preparation of sodium salts of statins. | |
EP1732912B1 (en) | An improved method for manufacture of 4-hydroxy pyran-2-one derivatives | |
US6812007B1 (en) | Process for the isolation and purification of mevinolin | |
RU2261901C2 (en) | Fungus strain aspergillus terreus 44-62 as producer of lovastatin, industrial method for isolation of lovastatin and method for lactoninization of statins | |
US7189558B2 (en) | Process for producing pravastatin sodium salt using streptomyces flavidovirens dsm 14455 | |
US20060223150A1 (en) | Process for the isolation and purification of mevinolin | |
JP2003012607A (en) | Novel mevastatin derivative |