AU1995888A - Hepatitis b surface antigen vaccine - Google Patents

Hepatitis b surface antigen vaccine

Info

Publication number
AU1995888A
AU1995888A AU19958/88A AU1995888A AU1995888A AU 1995888 A AU1995888 A AU 1995888A AU 19958/88 A AU19958/88 A AU 19958/88A AU 1995888 A AU1995888 A AU 1995888A AU 1995888 A AU1995888 A AU 1995888A
Authority
AU
Australia
Prior art keywords
peptide
hbv
dna molecule
recombinant dna
host cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU19958/88A
Other versions
AU619753B2 (en
Inventor
Hans A. Thoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medeva Holdings BV
Original Assignee
Medeva Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medeva Holdings BV filed Critical Medeva Holdings BV
Publication of AU1995888A publication Critical patent/AU1995888A/en
Application granted granted Critical
Publication of AU619753B2 publication Critical patent/AU619753B2/en
Assigned to MEDEVA HOLDINGS B.V. reassignment MEDEVA HOLDINGS B.V. Alteration of Name(s) in Register under S187 Assignors: MCCORMICK AND JONES ENGINEERING LTD.
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • C07K14/445Plasmodium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/735Fusion polypeptide containing domain for protein-protein interaction containing a domain for self-assembly, e.g. a viral coat protein (includes phage display)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32411Hepatovirus, i.e. hepatitis A virus
    • C12N2770/32422New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/82Proteins from microorganisms
    • Y10S530/826Viruses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

Hepatitis B surface antigen vaccine.
FIELD OF THE INVENTION
The invention relates to Hepatitis B surface antigen ("HBs antigen" or "HBsAG") particles which are composed of polypeptides prepared by recombinant DNA processes, DNA sequences coding for these polypeptides end cell lines for the expression of the same. The present invention relates especially to new particles having increased immunogenicity.
BACKGROUND OF THE INVENTION
Expression in Host Cells
Advances in vaccine production techniques have made it possible to synthesize polypeptides corresponding to the HBs antigen in bacteria, yeast and mammalian cells. Transcription of eukaryotic genes in bacteria and yeast, however, adversely affects the efficaciousness of these polypeptides as antigens due to several drawbacks concerning the glycosilation and secretion of the polypeptides and composition of the particle formed therefrom.
For example, in the case of the Hepatitis B virus, the polypeptide antigens produced in vivo are heavily glycosilated (Gerlich, 1984: J. Virol.: 52 (2), 396). In prokaryotes, glycosilation is not an essential process so that polypeptides produced by genetically engineered bacteria are either not glycosilated or are incompletely glycosilated. In either case, polypeptides corresponding to HBsAg, when expressed in bacteria, do not raise antibodies which will see HBsAg sufficiently well for an effective vaccine. Although yeast as a eukaryotic host is capable of more complete glycosilation, polypeptides corresponding to HbsAg expressed in yeast share the same deficiency as in the case of bacterial expression. (Murray et al., 1979: Nature, 282, 575; Valenzuela et al., 1982: Nature, 298, 347; Miyanohara et al., 1983: PNAS, 80, 1). As a further example, in bacteria the eukaryotic structural gene of the HBsAg is in most cases not efficiently transcribed. Furthermore the structure and function of the eukaryotic HBsAg gene product may be dependent on the additional post-translational processes of the linkage of disulfide bonds which can not be accomplished by the bacterial host.
Still further, the expressed polypeptide is rarely secreted from the bacterial host cells. They must be lysed to harvest the expressed polypeptide. During the purification process bacterial wall components may contaminate the polypeptide and cause serious allergic reactions or lead to anaphylactic shock in patients.
Finally, eukaryotic promoters usually do not work in bacteria and must be substituted by a bacterial promoter which can result in modification of the polypeptide expressed. (Offensperger et al., 1985: PNAS, 82, 7540; Valenzuela et al., 1980: ICN-UCLA Symp, Mol. Cell. Biol., 18 57).
FORMATION AND SECRETION OF PARTICLES
The natural forms of Hepatitis B virus ("HBV") and HBV protein occur in three distinct morphologies:
the HBV-virion (Dane particle), which is thought to be the infectious material, - the filaments, and the 20 or 22 nm particles (hereinafter "20 nm particle") which consist only of a protein envelope.
The most interesting form for an efficient vaccine is the 20 nm particle because 1) the coding sequences are entirely known, 2) it is completely uninfectious, and 3) it causes some useful immunogenicity in a human organism.
The three known components of HBV particles differ in their relative amounts of the protein composition. There are three monomers called the major protein with 226 amino acids, the middle protein with 281 amino acids , and the large protein with 389 or 400 amino acids, depending on the subtype ayw and adw. respectively. The large protein is encoded by the complete sequence of the pre-S1-, pre-S2- and S-regions, whereas the middle protein is derived from only the pre-S2- and S- regions, and finally the major protein from only the S-region (Tiollais et al., 1985: Nature, 317, 489; Dubois et al., 1980: PNAS, 77, 4549; McAlzer et al., 1984: Nature, 307, 178).
The infectious virion of HBV (Dane particle) contains 40-80 times more of the high molecular monomers - the pre-S1 and Pre-S2 peptides - compared to the 20 nm particle. It is now known that these pre-S polypeptides may be associated with some biological and clinical implications. The polyalbumin receptor on the pre-S polypeptides can bind polymerized albumins from humans and chimpanzees which are susceptible to HBV (Thung et al., 1983: Liver, 3, 290; Machida et al., 1984: Gastroenterology, 86, 910). This narrow host range and the known receptor for poly human serum albumin on human hepatocytes explain the hepatotropism of HBV: Dane particles are able to contact hepatocytes via poly human serum albumin taken up by hepatocytes from circulation. Based on this evidence the pre-S peptides should be helpful for an efficient vaccine against HBV because its antibody could be expected to block the significant site on Dane particles that are required for entering hepatocytes (Tiollais et al., 1985: Nature, 317, 489; Millich et al., 1985: Science, 228, 1195).
Literature data would also suggest a better protection against the infectious Dane-particle where the pre-S, epitope is present in much higher ratio than on the envelope particles.
The vaccine obtained from natural sources (e.g., donor blood), which causes a limited immunogenic protection, contains (almost) none of the pre-S proteins; this is due to two different reasons. First, the purification process is focused on the noninfectious 20 nm particles. These contain at most 1% pre-S1 peptide compared to 15-20% in the Dane particle (Gerlich, 1984: J. Vir., 52 (2), 396; Tiollais et al., 1985: Nature, 317, 489; Gerlich, 1982: virology, 123, 436). Second, the 20 nm particles are isolated from sera of anti-HBE positive carriers (Hevac B, HepaVac B) or are digested by proteases during the purification process. This proteolytic digestion has been shown to cut the pre-S-polypeptides leaving only the S monomers. As a result these vaccines contain none or very little pre-S polypeptides.
Therefore there is a demand for a vaccine in the form of HBs antigen particles which possess a high immunogenicity due to the composition of the particle, which undergo glycosilation in the cell and which are secreted continuously from the particle-producing cell.
REFERENCES AND PATENTS
EP-A-72 318 describes the expression of HBsAg in yeast cells, which have been transformed by a vector comprising a yeast replicon, a yeast promoter and a DNA sequence coding for the S peptide,
Laub et al., J. Virol., Vol. 48, No. 1, pp. 271-280, 1983, disclose the construction of a vector starting from simian virus 40 into which the HBsAg including the 163 codon precursor sequence was incorporated. Laub et al. report that CV-1 cells transformed with said vector yield a better expression when the vector contains only the coding sequence for the S protein as compared to the above vector which comprises additionally also the 163 codon precursor sequence.
Also Takeda Chemical Ind., Japanese Patent Application No. J5-8194-897-A describes the expression of the entire pre-S and S peptides. Reference is also made to the expression of the adw subtype.
Feitilson et al., Virology, Vol. 130, pp. 75-90, 1983, have described the partial expression of polypeptides within the pre-S coding sequence, including species with 24000, 26000, 32000, 43000 and 50000 dalton.
Further, DE-OS 34 39 400 describes the expression of an immunogenic polypeptide sequence of Hepatitis B virus.
Said sequence represents a partial sequence of the pre-S. polypeptide, comprises 108 or 119 codons and starts with the first starting codon of HBsAg, and terminates 281 codons in front of the stop codon. EP-A-154 902 discloses a Hepatitis B vaccine which contains a peptide with an amino acid chain of at least six consecutive amino acids within the pre-S chain coding region of the envelope of Hepatitis B virus. This vaccine is free of an amino acid sequence corresponding to the naturally occurring envelope proteins of Hepatitis B virus.
Also Kent et al. have described in Pept. Chem., Vol 22, pp. 16770, 1984, that a chemically synthesized peptide comprising the N-terminal 26 amino acids of the pre-S2 region can serve as an antigen and may therefore be suitable as a synthetic vaccine.
OBJECTS OF THE INVENTION
None of the above discussed references consider the possibility that, by altering the composition of the monomers making up the 20 nm particles and approaching thereby the natural composition of the Dane particle, the antigenicity of the particle can be improved.
As discussed mentioned above, the immunogenicity of the peptide monomers of the virus envelope protein is very poor compared to assembled protein particles. The object of this invention is the development of protein particles which contain an amount of the pre-S polypeptide epitopes comparable to the natural composition of the surface structure of the infectious Dane particle.
It is a further object to utilize additional pre-S peptides containing important protective epitopes in the development of a better immune response, a longer protection and lower non-responder rate as compared to all the other products either already marketed or under development.
It is a further object to express HBsAg in mammalian cells. This requires overcoming known difficulties where expression of the desired peptide in a mammalian cell can result in: - different regulatory mechanisms for the three translational/(transcriptional) products - promoter-promoter inhibition - different strength of the start codons - not all peptides expressed.
SU MMARY OF THE INVENTION
The term "HBV S peptide" as used herein refers to the peptide encoded by the entire S region of the HBV genome. The term "HBV pre-S, peptide" as used herein refers to the peptide encoded by the entire pre-S2 and S regions of the HBV genome. The term "HBV pre-S1 peptide" as used herein refers to the polypeptide encoded by the entire pre-S1, pre-S2 and
S regions of the HBV genome. The term "epitope" as used herein refers to a sequence of at least six consecutive amino acids encoded by the designated genome region (e.g., a "HBV pre-S, epitope" refers to a sequence of at least six amino acids encoded by the pre-S2 region of the HBV genome). As used herein "antigenicity" means the ability to provoke an immune response (e.g., acting as a vaccine or an antigen), the ability to cause the production of antibodies (e.g. acting as an antigen) and/or the ability to interact with a cell surface receptor so as to enhance an immune response or production of antibodies (e.g., reacting with a T-cell surface receptor to enhance immune response).
The term "HBV" means any subtype of the virus, particularly adw, ayw, adr and ayr, described in the literature (P. Valenzue Nature Vol. 280, p. 815 (1979), Gerlich, EP-A-85 111 361, Neura EP-A-85 102 250). Examples of peptide sequences thereof, from which the epitopes of this invention can be derived, are shown in
Figures XVI to XX. In accordance with the present invention, recombinant DNA molecules are disclosed which comprise a first DNA sequence an a second DNA sequence. The first DNA sequence encodes for expression of an amino acid sequence a portion of which displays the antigenicity of an epitope selected from the grou consisting of an HBV pre-S1 epitope and an HBV pre-S2 epitope. The second DNA sequence encodes for expression of a peptide which upon secretion will form particles which are at least 10 nm in diameter. These particles are believed to be the smallest particles which will effectively form a good vaccine. Preferably the peptide which upon secretion will for particles which are at least 10 nm in diameter is either HBV S peptide, HBV core antigen, polio surface antigen. Hepatitis A surface antigen, Hepatitis A core antigen, HIV surface antigen
and HIV core antigen. A substantial portion or all of the HBV S peptide is especially preferred as the peptide encoded by the second DNA sequence. In the recombinant DNA molecules encoding for the first and second DNA sequences must be (1) in the same reading frame, (2) encode for respective discrete regions of a single peptide, and (3) be operatively linked to an expression control sequence. Finally, these recombinant DNA molecules are free of DNA sequences encoding for the expression of the entire HBV pre-S1 peptide or HBV pre-S2 peptide. Specific recombinant DNA molecules of the present invention are also disclosed wherein the first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of (I) the HBV pre-S1 and pre-S2 regions from which the pre-S2 start codon ATG has been deleted, (2) the HBV pre-s1 and pre-S2 regions and wherein the sequences flanking the pre-S-1 ATG have been changed from the natural sequence, (3) the HBV pre-S1 and pre-S2 regions and wherein the sequences flanking the pre-S2 ATG have been changed from the natural sequence, (4) the HBV pre-S1 and pre-S2 regions and wherein the 5' terminus of the pre-S1 region has been deleted, (5) the HBV pre-S1 and pre-S2 regions and wherein the 5' terminus of the pre-S2 region has been deleted, (6) the HBV pre-S1 region and wherein the 3' terminus of the pre-S1 region has been deleted, (7) the HBV pre-S2 region and wherein the 3' terminus of the pre-S2 region has been deleted, (8) the HBV pre-S1 and pre-S2 regions from which the pre-S2 ATG has been deleted and the second DNA sequence comprises a sequence corresponding to the nucleotide sequence of the HBV S region from which the S ATG has been deleted, and/or (a) an oligonucleotide described in Table I.
Host cells transfected with the recombinant DNA molecules of the present invention are also disclosed. As used herein, "transfected" or "transfection" refer to the addition of exogenous DNA to a host cell whether by transfection, transformation or other means. Host cells include any unicellular organism capable of"transcribing and translating recombinant DNA molecules including without limitation mammalian cells, bacteria and yeast. Host cells of the present invention may also be cotransfected with a second recombinant DNA molecule comprising a DNA sequence encoding for expression of an ammo acid sequence corresponding to a substantial portion or all of the amino acid sequence of the HBV s peptide. Peptides are also disclosed comprising a first discrete region and a second discrete region. The first region displays the antigenicity of an epitope of an HBV prs-S1 epitope or an HBV pre-S2 epitope. The second region correspond to a substantial portion of a peptide which upon secretion will form particles which are at least 10 nm in diameter. Preferably the peptide which upon secretion will form particles which are at least 10 nm in diameter is either HBV S peptide, HBV core antigen, polio surface antigen. Hepatitis A surface antigen. Hepatitis A core antigen, HIV surface antigen and HIV core antigen. A substantial portion or all of the HBV S peptide is especially preferred. Preferably, the first region is located closer to the N-terminus of the peptide than the second region.
Immunogenic particles ara also disclosed which comprise a plurality of first peptide monomers. Each of said first peptide monomers comprises a first discrete region and a second discrete region which can be the same as the first and second discrete regions of the peptides described . above. Immunogenic particles are also disclosed which further comprise a plurality of second peptide monomers and wherein the first and second peptide monomers are bound together by interactive forces between the monomers. Each of said second peptide monomers comprising an amino acid sequence corresponding to a substantial portion of or all of the amino acid sequence of the HBV S peptide.
Immunogenic particles are also disclosed which contain substantially more than one percent, preferably more than five percent, of the pre-S. epitope. As used herein, a particle "contains one percent" of a designated epitope if peptide monomers having the designated epitope constitute one percent of all protein in the particle. Immunogenic particles which contain substantially more than ten percent, preferably more than fifteen percent, of the pre-S2 epitope are also disclosed.
Pharmaceutical preparations and preparations useful for production of antibodies comprising the above-described immunogenic particles in sufficient concentration to elicit an immune response upon administration of said preparation and a suitable carrier are also disclosed. Suitable carriers are known to those skilled in the art and may include simple buffer solutions. Other preparations useful for production of antibodies are disclosed comprising the above-described immunogenic particles in sufficient concentration to elicit an immune response upon administration of said preparation and a suitable carrier. Suitable carriers are known to those skilled in the art and may include simple buffer solutions.
A process for producing a transfected host cell is disclosed which comprises providing host cells which have been made competent for uptake of DNA, exposing the host calls to a first preparation of DNA comprising one of the above-described recombinant DNA molecules, allowing under suitable conditions the host cells to take up DNA from the first preparation of DNA, and selecting for host cells which have taken up exogenous DNA. The process may further comprise exposing the host cells to a second preparation of DNA comprising a DNA molecule encoding for a peptide includinσ the amino acid sequence of the HBV S peptide and allowing under suitable conditions the host cell's to take up DNA from the second preparation of DNA. The exposure and uptake of the second preparation of DNA can be done before or after exposure to and uptake of the first DNA preparation. Alternatively, the first DNA preparation can also include a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
A method for producing a peptide is also disclosed which comprises preparing an above-described recombinant DNA molecule, transfecting a host cell with the recombinant DNA molecule, culturing the host cell under conditions allowing expression and secretion of protein by the host cell, and collecting the peptide produced as a result of expression of DNA sequences within the recombinant DNA molecule. The peptide produced by such method can contain less than the entire amino acid encoded by the coding region of the recombinant DNA molecule. This may result from transcription and/or translation of only a portion of the coding region of the recombinant molecule or by deletions made in the peptide after translation.
A method of producing immunogenic particles is disclosed comprising preparing an above-described recombinant DNA molecule, transfecting a host cell with the recombinant DNA molecule, culturing the host cell under conditions allowing expression and secretion of protein by the host cell, and allowing under suitable conditions the aggregation of peptide monomers produced as a result of expression of exogenous DNA sequences within the host cell. A method of producing immunogenic particles is also disclosed which further comprises transfecting (cotransfection) the host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide. The cotransfection can occur before, after or simultaneous with the transfection of the above-described recombinant DNA molecule. Presence of peptides encoded by the cotransfected DNA molecule are necessary to obtain more than trace amounts of particles secreted from the host cell.
Methods of manufacturing a pharmaceutical preparation and a preparation useful for production of antibodies are disclosed comprising preparing an above-described recombinant DNA molecule, transfecting a host cell with the recombinant DNA molecule, culturing the host cell under conditions allowing expression and secretion of protein by the host cell, allowing under suitable conditions the aggregation of peptides produced as a result of expression of DNA sequences within the host cell to form immunogenic particles, and combining the immunogenic particles with a suitable carrier such that the immunogenic particles are present in sufficient concentration to cause production of antibodies upon administration of a preparation to an individual. Host cells used in these methods can also be cotransfected as previously described.
BRIEF DESCRIPTION OF THF FIGURES
Figures I to X show gene constructs according to the present invention.
Figures XI and XII show the results obtained by caesium chloride sedimentation of immunogenic particles according to example 10.
Figure XIII shows a prior art construct shown in Table XI.
Figure XIV shows the characterisation of particles derived from a construct according to a further embodiment of the present invention. Figure XV shows the oligo sequence of Figure X-2.
Figure XVI to XX show examples of peptide sequences from which the epitopes of this invention can be derived.
DESCRIPTION OF THE PREFERRED EMBODTMENTS
Preferred DNA constructs of the present invention are characterized by the presence of a selection marker selected from the group consisting of dhfr (dihydrofolate reductase), MT-neo (a neomycin resistance sequence coupled to a methallothionein and MT-ecogpt (a resistance seguence coupled to a methallothionein promoter). The expression rate may be further enhanced by adding to the constructs a dhfr gene as an amplification gene.
HBV nucleotide sequences used in certain constructs of the present invention can be formed or isolated by any means including isolation and ligation of restriction fragments and synthetic oligonucleotides. Constructs specifically described herein were formed by the ligation of synthetic oligonucleotides to a 5' Xbal-Bglll 3' fragment from the S region of the HBV genome shown in Figure IX (hereinafter the "Xbal-Bglll fragment") which is derived from a Bglli-Bglll HBV fragment including the entire pre-S1-pre-S2-S regions (the "BgllI-Bglll Fragment"), The pre-S1pre-S2-S region of the HBV genome is shown in Figure IX. Oligonucleotides used in making such constructs are summarized in Table I.
The oligonucleotides in Table I were combined with the Xbal-Bglll fragment to produce constructs with desired features. In certain constructs adapter oligonucleotide sequences (Table II) were used to create proper matching sticky ends on the oligonucleotides and other construct components.
Other adapter sequences may be used to combine desired oligonucleotides from Table I with the Xbal-Bglll fragment, other restriction fragments, oligonucleotides and other construct components. The necessary sequences of such other adapter sequences will be readily apparent to those skilled in the art from consideration of tables of restriction sites [e.g., that found at pages 121-128 of Mathods in Enzymology. volume 152, "Guide to Molecular Cloning Techniques," ed, Berger and Kimmel (Academic Press 1987) which is incorporated herein in its entirety by reference] and the sequences of tha various nucleotides to be combined. Adapter sequences can also ba used to introduce additional restriction sites into constructs of the present invention. It should be noted that adapter sequences must be selected or designed so that the proper reading frame is maintained throughout the HBV sequence.
Preferred gene constructs which were used to transfect host cells were prepared by recombinant DNA techniques in accordance with the present invention. Preferred embodiments of constructs with an enhanced expression rate are shown in Figures I-VIII and are schematically represented by the following:
pU2-structural gene pU2-structural gene-dhfr pU2-structural gene-dhfr-MT-neo pU2-structural gene-dhfr-MT-egpt pMT-structural gene-dhfr pMT-structural gene-dhfr-MT-neo pMT-structural gene-dhfr-MT-egpt pH2K-structural gene-dhfr pH2K-structural gene-MT-neo pH2K-structural gene-MT-egpt pH2K-structural gene-dhfr-MT-neo pH2K-structural gene-dhfr-MT-egpt
Each of the constructs shown in Figures I-VIII contain, in addition to a HBV sequence, a neomycin selection marker with the MT promoter, an ampicillin selection marker, a dhfr selection/amplification gene and a promoter for the HBV sequence. The promoter for the HBV sequence is preferably the U2 promoter, the MT promoter or the H2K promoter. Isolation of fragments containing the various promoters, the selection markers and amplification gene is described below. Tha HBV sequences in the constructs of Figures I-VIII are schematically- represented by a rectangular bar in each figure which indicates the oligonucleotides and/or adapter sequences from Tables I and Iϊ which were combined with the Xbal-Bglll fragment. Shaded areas within the bar indicate generally regions of the entire pre-S1-pre-S2-S region which are not found in the specific construct. Oligonucleotides from Table I which can be used to construct each type of HBV sequence are indicated in the figures,
Figure X depicts two additional constructs for expression of peptides including sequence from the pre-S2 region under the control of the MT promoter.
Constructs have also been made which include the entire Bglli-Bglll fragment from the HBV genome under the control of the US promoter. These constructs have produced peptides which include a deletion in the S region as indicated by Western Blot analysis.
The above-cited promoters are specially preferable when their use is coupled with a modulation method using the dhfr gene and methotrexate to enhance the expression. This is achieved when in addition to the selection marker the dhfr minigene is also introduced into the plasmid sequence. It is essential that the dhfr gene is located on the same plasmid together with the structural gene to be expressed. An enhancement of the expression rate of the structural gene can then be obtained by adding methotrexate in the micromolar concentration range. Thereby a rnanyfold enhancement of the expression rate is achieved.
Suitable cells are e.g. VERO cells (monkey kidney cell line), 3T3-cells (murine fibroblast line), C127-cells (murine fibroblast line), L-cells and CHO - cells (Chinese hamster cells, which are either positive or negative in dehydrofolate reductase).
As a stop signal it is preferred to use a stop signal from a eukaryotic cell. Preferably the stop signal of the caseine DNA-sequence is used. As used throughout the following examples, "HBV protein" refers generically to any protein produced in accordance with the present invention which corresponds to HBsAg sequences. EXAMPLE 1
Particle Purification Procedures
1. Fractionated precipitation with polyethylene glycol (PEG)
The supernatant of HBV protein producing cultures was collected and split into portions of 2,400 ml. To each portion 144 g of PEG 6000 (Serva) were added and dissolved by stirring at room temperature for 20 minutes and was stirred for another 6 hours at 4ºC. The precipitate was separated by centrifugation in 500 ml bottles in a GS 3 rotor at 9,000 rpm (15,000 x g) for 30 minutes at 10 C The supernatant was collected and 144 g of PEG 6000 were addsd and dissolved as described above. The solution was stirred at 4 C for 3 hours. The precipitate from this solution was harvested as described above except that centrifugation was continued for 60 minutes.
2. Gel Chromatography
The material obtained after PEG precipitation was redissolved in 20 ml PBS and submitted to gel chromatography on A-5m (BioRad). Column dimensions were 25 x 1000 mm and 480 ml bed volume. In a typical fractionation run 1,000 ug of PEG precipitated HBV protein in 10 to 15 ml was loaded and eluted with PBS at a speed of 6 drops/min (18 ml/h) 3 ml fractions were collected. HBV protein eluted with the first peak. Collected fractions were submitted to a CsCl gradient.
3. Sedimentation in CsCl Gradient
About 30 fractions covering the first peak in column chromatography on A-5m and containing prepurified HBV protein were collected to approximately 100 ml. This solution was adjusted to a density of 1.30 g/cc with CsCl and subsequently transferred to a nitrocellulose tube fitting into a SW 27/28 rotor (Beckman). A gradient was set by underlaying 4 ml of a CsCl solution of 1.35 g/cc and by overlaying 4 ml of 1.25 g/cc followed by 4 ml of 1.20 g/cc density. This gradient had been run at 28,000 rpm for 50 hours at 10 C. Thereafter the gradient was fractionated and purified HBV protein floating in the 1.20 g/cc density layer was collected. The solution was desalted by three cycles of dialysis in bags against water.
Example 2
Quantitative Determination of HBV protein
1. with Radioimmunoassay
In the AUSRIA II-125 "sandwich" radioimmunoassay (commercially available from Abbot), beads coated with guinea pig antibody to Hepatitis B Surface Antigen (Anti-HBs) were incubated with serum or plasma or purified protein and appropriate controls. Any HBsAg present was bound to the solid phase antibody. After aspiration of the unbound material and washing of the bead, human 125T-Anti-HBs was allowed to react with the antibody-antigen complex on the bead. The beads were then washed to remove unbound 125I-Anti-HBs.
)-Anti-HBs HBsAg
)-Anti-HBs . HBsAg 125I-Anti-HBs
)-Anti-HBs . HBsAg . 125-Anti-HBs
The radioactivity remaining on the beads was counted in a gamma scintillation counter.
2. with ELISA
In the Enzygπost HBsAg micro "sandwich" assay (commercially available from Behring), wells were cpated with anti-HBs. Serum plasma or purified protein and appropriate controls were added to the wells and incubated. After washing, peroxidase-labelled antibodies to HBsAg were reacted with the remaining antigenic determinants. The unbound enzyme-linked antibodies are removed by washing and the enzyme activity on the solid phase is determined. The enzymatically catalyzed reaction of hydrogen peroxide and chromogen was stopped by adding diluted sulfuric acid. The colour intensity was proportional to the HBsAg concentration of the sample and was obtained by photometric comparison of the colour intensity of the unknown samples with tha colour intensities of the accompanying negative and positive control sera.
Example 3
Preparation of a construct of the present invention containing the methallothionein promoter.
1) Isolation of the MI promoter
The plasmid pBPV-342-12 (commercially available from ATCC) was digested with the endonucleases Bglil and BamHI. Three DNA molecules were generated. The fragment of interest contains the methallothionein promoter and a pBR322 sequence comprising 4.5 kb and is easily detectable from the other fragments (2.0 kb and 7.6 kb).
The reaction was performed in a total volume of 200 ul of reaction buffer at a final concentration of 0.5 ug/ul DNA including 100 units of each restriction enzyme. The completion of the digestion was checked after incubation at 37°C for three hours by agarose gel electrophoresis at a 0.8% agarose gel. The reaction was stopped by adding 4 ul 0.5 M EDTA.
The 4 .5 kb fragment was separated from the other f ragments by preparative 1.2% agarose gel electrophoresis. The DNA was eluted from the agarose gel on DE-81 Whatman filter paper from which the DNA was removed in a high salt buffer. The DNA was purified by a phenol/chloroform extraction and two ethanol precipitations. 2) Ligation of the 2.3 kb HBV BgllI-Bglll fragment
A 2.3 kb Bglli-Bglll fragment containing the HBV pre-S1,pre-S2 and S coding regions was isolated from HBV-containing DNA. The 2-3kb fragment was ligated together with the 4.5 kb fragment (obtained as described in Cl) containing the methallothionein promoter,
2 ul of the 2.3 kb fragment were mixed with 3 ul of the 4.5 kb fragment and ligated together in a total volume of 10 ul ligation buffer, containing 2 units T4-DHA ligasa and 2mM ATP at 14°C overnight.
The ligation mixture was added to 150 ul competent bacterial cell suspension for DNA up-take. After the DNA up-date the bacterial cells were spread on LB agar plate containing 50 ug/ml ampicillin at volumes of 50 to 300 ul cell suspension per plate. The agar plates were incubated at 37ºC overnight. Single isolated bacterial colonies were screened for the presence of a plasmid containing the desired fragments.
3) Screening for desired plasmid containing bacterial colonies.
Single colonies were picked with a toothpick and transferred to a LB-ampicillin media containing tube (5 ml). The tubes were incubated overnight at 37°C by shaking rapidly. A mini-plasmid preparation of each grown bacterial suspension was made. The different resulting DNAs were proved by digestion with the restriction endonuclease EcoRI. Two molecules were expected, a 2.2 kb fragment and a 4.6 kb fragment. The digestion was analysed by agarose gel electrophoresis. Plasmid DNA was isolated from the bacterial cells.
4) Conversion of a part of the HBV-gene sequence.
The plasmid resulting from (3) above was digested with the endonucleases Bglll and Xbal. Two molecules were expected, one 550 bp fragment and one 6.250 kb fragment which was isolated after agarose gel electrophoresis. The 6.250 kb fragment was ligated together with oligomecleotide No.55 from Table I. The ligation mixture was added to 150 ul competent bacterial cell suspension for DNA up-take. single isolated bacterial colonies were screened for the presence of the desired plasmid. The new plasmid was proved by a digestion with the endonucleases EcoRI and Bglli. Two molecules were expected, one 1.9 kb and one 4.450 kb.
5) Insertion of a neomycin selection marker.
The plasmid resulting from (4) above was linearized by digestion with the restriction enzyme EcoRI. The reaction was performed in a total volume of 50 ul and a final concentration of 1 ug/ul plasmid DNA. 50 units of EcoRI were added and the digestion was proved after incubation at 37ºC for three hours by agarose gel electrophoresis. The reaction was stopped by adding 1 ul of 0.5 M EDTA and the DNA was precipitated with a final concentration of 0.3 M sodium acetate and 3-4 volumes of ethanol at -80°C for 30 minutes. The precipitated DNA was dissolved in 50 ul distilled water.
2 ul of the linearized plasmid were mixed with 3 ul of the DNA fragment containing the methallothionein promoter and the neomycin selection gene [isolated from the plasmid pMT-neo-E (available from. ATCC ) by digestion with the endonuclease EcoRI as a 4kb fragment], and ligated together. Single bacterial colonies were screened for the presence of the desired plasmid.
6) Additional of the dhfr Amplification Gene dhfr
The plasmid pdhfr3.2 (available from ATCC) was digested with the restriction endonuclease Hindlll. Two molecules were generated, one of 3,000 bp containing the dhfr gene sequence and one of 3,400 bp. The 3,000 bp fragment was isolated and ligated into the plasmid resulting from (5) above which was previously opened by digestion with Hindlll. The resulting plasmid is represented by Fig. I-2. Example 4
1) Isolation of a fragment containing the U2 promoter sequence
The plasmid pUC-8-42 (available from Exogene ) was digested with the restriction endonucleases EcoRI and Apal. Two DNA molecules were generated. The fragment of interest contains the U2-promoter comprising 340 bp and is easily detectable from the other fragment (3160 bp). The digestion was performed in a total volume of 200 ul of reaction buffer at a final concentration of 0.5 ug/ul DNA including 100 Units of each restriction enzyme. The completion of the digest was checked after incubation at 37ºC for three hours by agarose gel electrophoresis in a 0.7% agarose gel. The reaction was stopped by adding 4 ul 0.5 M EDTA. The 340 bp fragment was separated from the plasmid DNA by preparative 1.2% agarose gel electrophoresis. The DNA was eluted from the agarose gel on DE-81 Whatman filter paper from which the DNA was removed in a high salt buffer. The DNA was purified by a phenol/chloroform extraction and two ethanol precipitations.
2) Insertion of the fragment containing the promoter sequence into a polylinker plasmid.
The plasmid pSP165 (commercially available from Promega Biotec) containing a polylinker sequence (containing the following restriction sites: EcoRI, SacI, Smal, Aval, BamHI, Bglll, Sail, Pstl, Hindlli) was linearized with the restriction enzyme EcoRI. The reaction was performed in a total volume of 50 ul and a final concentration of lug/ul plasmid DNA. 50 Units of EcoRI wer added an the digestion was proved after incubation at 37ºC for three hours by agarose gel electrophores. The reaction was stopped by adding 1 ul of 0.5 M EDTA and the DNA was precipitated with a final concentration of 0.3 M sidium acetate and 3-4 volumes of ethanol at -80ºC for 30 minutes. The precipitated DNA was dissolved in 50 ul distilled water.
2 ul of plasmid DNA were mixed with 10 ul of the fragment DNA containing the V2 promoter sequence, and ligated together in a total volume of 25 ul of ligation buffer containing 2 units T4-DNA ligase and 2 mM ATP at 14ºC overnight. Thereafter the DNA was purified by phenol/ chloroform extractions followed by two ethanol precipitations and dissolved in 10 ul distilled water. The resulting sticky ends of EcoRI and Apal had to be converted into blunt ends and ligated. The blunt ends were converted by a removing reaction with the Mung bean nuclease as follows: to 25 ul DNA (1 ug/ul concentration) reaction buffer, 20 units of enzyme and a final concentration of 1% glycerol to the reaction volume of 35 ul were added. After an incubation for 30 minutes at 30 C tha DNA was purified by phenol/chloroform extractions followed by two ethanol precipitations. The DNA was dissolved again in 5 ul distilled.water. The resulting blunt ends were ligated together in 15 ul reaction volume containing 10 x more T4 ligase then used above and 2 mM ATP at 14°C overnight.
The ligation mixture was added to 150 ul competent bacterial cell suspension for DNA up-take. After the DNA up-take the bacterial cells were spread on LB agar plates containing 50 ug/ml ampicillin at volumes of 50 to 300 ul cell suspension per plate. The agar plates were incubated at 37ºC overnight. Single isolated bacterial colonies were screened for the presence of a plasmid containing the desired U2-promoter fragment.
3. Screening for desired plasmid containing bacterial colonies
Single colonies were picked with a toothpick and transferred to a LB-ampicillin containing tube (5 ml). The tubes were incubated overnight at 37ºC by shaking rapidly. A mini plasmid preparation of each grown bacterial suspension was made. The different resulting plasmid was proved by digestion with both restriction endonucleases EcoRI and Hindlll. Two molecules were found, a 400 bp fragment containing the U2 promoter sequence and the Plasmid of 2,700 bp. The digestion was analysed by agarose gel electrophoresis. The resulting plasmid was isolated from the bacterial cells. 4) insertion of the neomycine selection marker.
The plasmid pBPV-342-12 (commercially available from ATCC) was digested with the endonucleases EcoRI and BamHl. Two molecules were isolated, one containing the MT promoter together with the neomycin selection gene of 4,000 bp and the plasmid of 10,000 bp.
The plasmid resulting from (3) above was linearized with EcoRI and ligated together with the 4,000 bp fragment containing the MT-promoter together with tha neomycin selection gene. The resulting sticky ends were also converted into blunt ends and ligated together as described above.
After bacterial transformation, colony selection and mini plasmid preparation, the resulting plasmids were analysed by a digestion with the restriction enzymes EcoRI and Hindlll. Two DNA molecules were isolated, a 400 bp fragment and a 6,700 bp fragment.
5) Ligation of the Bglli-Bglll fragment
The plasmid resulting from (4) above was linearized with Bglll. The 2.3 kb-Bglll-Bglll fragment was ligated together with the linearized plasmid. Bacterial colonies were analysed to find the resulting plasmid. The plasmid-DNA was digested with EcoRI and two resulting fragments were obtained, a 700 bp fragment (containing the promoter and a part of the HBV-sequence) and a 8,700 bp fragment (containing the rest of the HBV-sequence, MT-neo and plasmid).
6) Alterations within the HBV-sequence
The plasmid resulting from (5) above was digested with the endonucleases Bglll and Mstll. Two molecules were generated, one of 300 bp containing part of the pre-S sequence and the other (9,100 bp) which was eluted as described above. This 9,100 bp fragment was ligated to another Bglll/Mstll 216 bp fragment (sequence AGATCTACAGCATGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGA Bglll S1 CCAGTTGGATCCAGCCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCC
CAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCGGCCTGGGTTT
CCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGG )
Mstll coding for an altered pre-S1 gene sequence.
The desired plasmid was digested with EcoRI and two resulting fragments were isolated, a 616 bp fragment and a 8,700 bp fragment.
Example 5
Isolation of the H2K Promoter
The H2K promoter was isolated as an EcoRI/Bglll fragment (2kb) from psp65H2 (available from Exogene).
Isolation of the egpt selection marker
The fragment containing the methallothionein promoter and the egpt-selection gene was isolated by digestion of the plasmid pMSG (available from Pharmacia) with the . restriction enzyme EcoRI as a 3.6 kb fragment.-
All other plasmid constructions were made in similar ways by combining fragments containing the necessary components and employing desired oligonucleotides and adapter sequences (where necessary).
Example 6
Transfection of Mammalian Cells with Constructs of the Present Invention.
In order to achieve secretion of substantial amounts of the HBV peptides encoded by constructs of the present invention, mammalian cells must be transfected with both the construct of the present invention and a construct which will express entire S protein. The cotransfection was performed in two steps (i.e., a separate transfection for each construct) or in a single step (i.e., one transfection using preparation of both constructs). Cotransfection was confirmed either by use of different selection markers on the two constructs or by detection of secretion of expression products of both constructs by immunoassay. Alternatively, a sequence encoding the HBV peptide sequence of the present invention and a separate sequence encoding the entire S protein could be combined in a single construct.
Example 7
General Procedures
General procedures useful in practicing the present invention may be found in (1) Methods of Enzymology, volume 152, "Guide to Molecular Cloning Techniques," ed. Berger and Ximmel (Aeadamic Press 1987), and (2) Maniatis et al "Molecular Cloning: A Laboratory Manual," (Cold Spring Harber Laboratory 1932), both of which are incorporated herein in their antirety by reference. Specific techniques employed are described below.
1) Digestion with Endonucleases and Isolation of Fragments
The restriction endonucleases used were: Bglll, BamHl, Hindlll, EcoRI, xbal, Mstil, Xhol, PflMI commercially available from Gibco/BRL with their respective restriction buffers (10x).
Unless otherwire indicated, restriction digests were performed and fragments were isolated as follows. Reactions typically contained 1-5 ug DNA. distilled water was added to the DNA in an eppendorf tube to a final volume of 8 ul
1 ul of the appropriate 10x digestion buffer was added
1 ul (containing 5-10 U) restriction enzyme was added and mixed carefully the reaction tube was incubated for 1 hour at 37ºc digestion was stopped by adding 0.5 M EDTA (pH 8.0) to a final concentration of 10 mM if the DNA was analysed directly on a gel, 1 ul of gel-loading dye III (Maniatis) was added, mixed and the sample was loaded into the slots of a 0.8% agarose gel. The agarose gel normally contains 0.8% agarose 1 x running buffer (TBE, Maniatis). Where a fragment (about 100-1000bp) was isolated from an agarose gel the agarose was increased to 1.2 to 1.4%.
2) Competent Bacterial Cells
From a dense overnight culture, 1 ml of the bacterial cell suspension was added to 100 ml fresh growth medium (L-broth). The cells were grown at 37ºC to a density of
OD 600 = 0.7 which was reached within 2 hours with vigorous shaking in a 500 ml Erlenmeyer flask. Growth was stopped by chilling the culture on ice for 10 minutes. From this culture, 3 ml were taken for harvesting the exponential bacterial cells at 3,000 rpm for 5 minutes. The cells were resuspended in 1.5 ml of 50 mM CaCl2 in 10 mM Tris, pH 8.0, and incubated on ice for another 15 minutes. The cells were harvested once more by centrifugation at 3,000 rpm for 5 minutes and resuspended in 200 ul of 50 mM CaCl2 in 10 mM Tris, pH 8.0, and used directly.
3) Transformation of Competent Bacterial Cells
The DNA to be transformed was suspended in 10 mM Tris, pH 7.5, 1 mM EDT 70 ul and added to the 200 ul bacterial cell suspension for DNA take-up. The mixture was incubated on ice for 30 minutes and then 1 ml L-broth was added. The mixture was incubated at 42°C for 2 minutes and at 37ºC for 40 minutes.
After the incubation, the cells were spread on agar plates containing 50 ug ampicillin/ml agar at volumes of 50-300 ul cell suspension per plate. The agar plates were incubated at 37ºC overnight. After this incubation period, single isolated bacterial colonies were formed.
4) Plasmid DNA Isolation
1 liter of plasmid-bearing cells was grown to 0.5 OD600 in L-broth and amplified for 20 hours with 200 ug/ml chloramphenicol. The culture was then centrifuged at 4,000 rpm for 20 minutes in JA-10 rotor, 4 °C . The pellet was resuspended in 18 ml cold 25% sucrose, 50 mM Tris, pH 8.0, transferred to a 250 ml Erlenmeyer flask and kept on ice. 6 ml 5mg/ml lysozyme in 250 mM Tris, pH 8.0 was added and the mixture was left to stand 10-15 minutes. 6 ml 250 mM EDTA, pH 8.0, was added, mixed gently and incubated for 15 minutes on ice. 30 ml detergent (0.01% Triton X-100; 60 mM EDTA, pH 8.0; 50 mM Tris, pH 8.0) was added and the mixture was ineubated for 30 minutes on ice. After incubation, the mixture was centrifuged at 25,000 rpm 90 minutes in SW28 rotor, 4ºC.
Pronase was added to supernatant fluid to 250 ug/ml and incubated 30 minutes, 37ºC. The solution was extracted with phenol once with 1/2 volume phenol equilibrated with 10 mM Tris, pH 8.0, 1 mM EDTA. The aqueous layer was removed. Sodium acetate was then added to a final concentration of 300 mM, followed by the addition of 3volumes cold 100% ethanol and thorough mixing. The mixture was stored at -20ºC overnight.
The mixture was thawed and centrifuged. The pellet was resuspended in 6 ml 10 mM Tris, 10 mM EDTA, pH 8.0. 9.4 g CsCl and 0.65 ml of 6 mg/ml ethidium bromide were added and the volume was brought up to 10 ml with sterile double-distilled water. The 10 ml alignots were put into Beckman heat-sealable gradient tubes and centrifuged, 50,000 rpm, 48 hours in Ti70.1 Beckman rotor.
Plasmid bands were visualized with UV and removed with syringe and 18 gauge needle by piercing the side of the tube. Ethidium bromide was removed from the plasmid fractions by 3 successive extractions with equal volumes of isobutanol. Fractions were then (1) dialyzed against one 2-liter lot of 10 mM Tris, pH 7.4, 1 mM EDTA, pH 7.5, 5 mM NaCl for 2 hours or more at 4 °C; and (2) phenol extracted once with 1/3 volume phenol equilibrated as above. Sodium acetate was then added to a final concentration of 300 mM, followed by addition of two volumes of 100% ethanol. Precipitate formed at -20ºC overnight, or at -70ºC for 30 minutes. 5) Mini-Plasmid Preparation
1 ml of an overnight bacteria culture was put into an eppendorf tube and centrifugated for 20 minutes. The supernatant was removed. 100 ul of 50 mM glucose, 25 mM
Tris (pH 8.0), 10 mM EDTA (pH 8.0) was added to the pellet, mixed by vortex and incubated for 5 minutes at room temperature. 200 ul of 0.2 N NaOH, 1% SDS was added, mixed by vortex and incubated for 5 minutes on ice. 150 ul 3 M Sodium acetate (pH 4.8) was added, mixed by vortex and incubated for 5 minutes on ice. After centrifugation for 5 minutes at 13,000 rpm the supernatant was decanted into a fresh eppendorf tube. 3 volumes of 100% ethanol were supplemented, mixed well and incubated for 30 minutes at -80ºC, then centrifuged for 10 minutes at 13,000 rpm. The ethanol was removed, the pellet washed with 70% ethanol, lyophilized and dissolved in 20 ul distilled water. 5 ul of this plasmid DNA solution were used directly for restriction analysis.
6) Nick Translation
Nick translation was performed according to Rigby et al., J. Mol. Biol., Vol. 113, pp. 237-251, 1977, which is incorporated herein by reference. The reaction mixture for
32 P-labeling of DNA contained 0.5 ug of a HBV fragment, in a total volume of 30 ul with 50 mM Tris, pH 7.8, 5 mM
MgCl2, 10 mM mercaptoethanol, 0.1 mM dATP, 0.1 mM dGTP,
0.1 mM dTTP, 50 uCi 32P-dCTP, 10 units DNA polymerase I,
3 ul of a 2 x 10-5 fold dilution of 1 mg/ml DNase I and is incubated for 90 minutes at 15°C, yielding 3 x 106 to
12 x 106 total cpm, i.e. 1 x 10 to 5 x 107 cpm/ug
DNA.
7) Southern Blot Analysis
To characterize the organization within the host cell genome of the vectors of this invention, chromosomal DNA from cell lines producing particles of this invention were isolated and digested with the appropriate restriction enzyme(s) and analysed by the method of Southern (J. Mol. Biol., Vol. 98, pp. 503-517, 1975), which is incorporated herein by reference, using a 32P-labeled DNA probe.
Following digestion of the chromosomal DNA (20 ug) with the restriction enzyme Bglll, the resulting fragments were separated by 0.7% agarose gel electrophoresis. Thereafter, the DNA was denatured by exposing to 366 nm UV light for 10 minutes and by incubation in a solution of 0.5 M NaOH and 1 M NaCl for 45 minutes. The gels were neutralized by incubation in 0.5 M Tris, 1,5 M NaCl, pH 7.5 for 60 minutes. The DNA was transferred to a nitrocellulose filter by soaking in 3 M NaCl, 0.3 M Sodiumcitrate (20 x SSC) for 20 hours through tha gel by covering the top of the nitrocellulose filter with a staple of dry paper towels. The nitrocellulose filter was kept for 2 hours in a vacuum oven at 80 C. A radioactive DNA probe from the Bglll fragment of the pHBV (2.3 kb) was prepared by nick translation.
For hybridization with the DNA probe, the nitrocellulose filter was sealed in a plastic bag containing 10 ml of prehybridization mixture: 50% formamide, 5 x SSC, 50 mM Sodiumphosphate, pH 7.0, 5 x Denhardt's solution, 250 ug/ml denatured salmon sperm DNA. The filter was incubated in this mixture for 4 hours at 45°C, after which the pre-hybridization mixture was replaced by the hybridization mixture: 50% formamide, 5 x SSC, 20 mM Sodiumphosphate, pH
7.0, 1 x Denhardt's solution, 100 ug/ml denatured salmon sperm DNA, 5 x 105 cmp/ml P-probe. The filter, after incubating in the hybridization mix for 18 hours at 45ºC, was washed three times, 5 minutes each, .in 0.1 x SSC, 0.1%
SDS at 50ºC. The filter was dried at 60ºC for 10 minutes and exposed to two X-ray films (XAR-5, KODAK) between two intensifying screens and kept at -80ºC. The first X-ray film is developed after 3 days' exposure; the second film after 7 days' exposure.
8) Preparation of Mammalian Cells and DNA Precipitate for
Transfection
The recipient cells (C127 or CHO-cells available from ATCC)we seeded in normal growth medium (DMEM+10% Fetal Calf Serum,Glyco Glutamin) into petri-dishes (1-2 x 10 cells per dish, 4 10 cm) at day 1. The next day the medium was removed (4 hours before the DNA precipitate was added onto the cells), and the cells were washed twice with 1 x PBS. Then 8 ml DMEM without FCS were added. 4 hours later the DNA precipitate (prepared as described below) was added to tha cells. Again after 4 hours the medium.was removed, 3 ml of Glycerol-Mix (50 ml 2.x TBS buffer, 30 ml glycerol, 120 ml distilled water) were added. The Glycerol-Mix was immediately removed after an incubation at 37ºC for 3 minutes and the cells were washed with 1 x PBS. The cells were cultivated overnight with 8 ml of DMEM with 10% FCS.
After 48 hours, the calls ware recovered from the dish by- treating With Trypsin-EDTA-Solution (0.025% Trypsiπ + 1 mM EDTA). Afterwards, to remove the Trypsin-EDTA the cells were washed with 1 x PBS, suspended in DMEM with 10% FCS and distributed into 24 costar-well-plates (cells from one dish into four 24-well-plates). when the cells had grown well, selection medium was added (concentration 0.5 - lmg/ml of neomycin,or xanthine: 250 μg/ml, hypoxanthine: 15 μg/ml (or adenine: 25 μg/ml), thymidine: 10 μg/ml, aminopterine 2 μg/ml mycophenolic acid: 25 μg/ml for eco-gpt, for example).
The medium was changed every week. The first growing cell colonies were seen after 2 weeks.
To 10 ug of plasmid DNA and 20 ug of carrier-DNA (salmon-sperm DNA, calf-thymus DNA) TE-buffer (10 mM Trix-HCl, 1 mM EDTA, pH 7.05) was added to a final volume of 440 ul and mixed together with 60 ul 2 M CaCl2. Then the same amount of 2x TBS (Hepes 50 mM, NaCl 280 mM, Na2HPO4 1.5 mM, pH 7.05) was added and mixed well. The precipitation solution was incubated for 30 minutes at 37ºC and added directly to the cells which should be transfected.
Example 8
Culturing of Transfected Cells to Secrete Protein
The selected cells are treated for further cultivation in normal growth medium as described in section 8. E xample 9
F) preparation of the Adjuvant of Purified Particles
To the desired concentration of antigen particles suspended in sterile saline, 1 : 10,000 volume Thimerosol, 1/10 volume of filter-sterilijsed 0.2 M Al K(SO4)2 : 12 H2O were added. The pH was adjusted to 5.0 with sterile 1 N NaOH and the suspension was stirred at room temperature for 3 hours. The alum-precipitated antigen was recovered by centrifugation for 10 minutes at 2,000 rpm, resuspended in sterile normal saline containing 1:10,000 Thimerosol and aliquotad under sterile conditions.
Example 10
Tables III - X give some of the results of ELISA analysis of immunogenic particles of the present invention as described below:
Table III: shows the ELISA data of the purified HBs antigen particle produced from any HBV sequence construct of the present invention including the pre-S1 region with total deletion of pre-S2 and deletions upstream of the pre-S2 ATG and the S region with deletion of the S ATG and downstream the S ATG through the XBal site (e.g. the construct of Fig. 1-1) with the anti-pre-S1 monoclonal antibody MA 18/7. The fractions 9-15 (Fig. XI) were pooled after CsCl sedimentation.
Table IV: shows the ELISA data of the purified HBS antigen particle produced from any HBV sequence construct of the present invention including the pre-S1 region with total deletion of pre-S2 and deletions upstream of the pre-S2 ATG and the S region with deletion of the S ATG and downstream the S ATG through the XBal site (e.g., the construct of Fig. 1-1) with the anti-pre-S2 monoclonal antibody MQ 19/10. The fractions 9-15 (Fig. XI) were pooled after CsCl sedimentation.
Table V: shows the ELISA data of tha purified HBs antigen particle produced from an HBV sequence construct of the present invention including the pre-S2 region with none of the pre-S1 region and deletions upstream of the S ATG and downstream of the S ATG through the XBal site, and the S region with deletion of the S ATG (e.g. the construct of Fig. II-1), with the anti-pre-S1 monoclonal antibody MA 18/7.
The fractions 9-15 (Fig. XII) were pooled after CsCl sedimentation.
Table VI: shows the ELISA data of the purified HBS antigen particle produced from an HBV sequence construct of the present invention including the pre-S2 region with none of the pre-S1 region and deletions upstream of the S ATG and downstream of the S ATG through the XBal site, and the S region with deletion of the S ATG (e.g. the construct of Fig. II-l) with the anti-pre-S2 monoclonal antibody MQ 19/10. The fractions 9-15 (Fig. XII) were pooled after CsCl sedimentation.
Table VII: shows the ELISA data of the purified HBs antigen particle produced from any HBV sequence construct of the present invention including the pre-S1 region with total deletion of pre-S2 and deletions upstream of the pre-S2 ATG and the S region with deletion of the S ATG .
(e.g., the construct of Fig. VI-2) with the anti-pre-S1 monoclonal antibody MA 18/7. The fractions 9-15 (Fig. XI) were pooled after CsCl sedimentation.
Table VIII: shows the ELISA data of the purified HBs antigen particle produced from any HBV sequence construct of the present invention including the pre-S1 region with deletions upstream of the pre-S2 ATG with deletion of the S ATG (e.g., the construct of Fig. VI-4) with the anti-pre-S2 monoclonal antibody MQ 19/10. The fractions 9-15 (Fig. XT) were pooled after CsCl sedimentation.
Table IX: shows the ELISA data of the purified HBs antigen particle produced from an HBV sequence construct of the present invention including the pre-S2 region with none of the pre-S1 region and deletions upstream of the S ATG . and the S region with deletion of the S ATG
(e.g., the construct of Fig. VII-2) with the anti-pre-S1 monoclonal antibody MA 18/7. The fractions 9-15 (Fig. XII) were pooled after CsCl sedimentation. Table X: shows the ELISA data of the purified HBs antigen particle produced from an HBV sequence construct of the present invention including the pre-S2 region with deletions upstream of the S ATG with deletion of the S ATG (e.g., the construct of Fig. VII-4) with the anti-pre-S2 monoclonal antibody MQ 19/10. The fractions 9-15 (Fig. XII) were pooled after CsCl sedimentation.
Table XI shows the ELISA data of purified HBs antigen particles produced by construct including the entire pre-S1 - pre-S2 - S region under control of the LTR region of rous sarcoma virus, after stimulation with stimulating substances (e.g. PMA) and the additional cotransfection with S (Fig. XIII).
From the foregoing, it will be obvious to those skilled in the art that various modifications in the above-described compositions and methods can be made without departing from the spirit and scope of the invention. Accordingly, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Present embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (55)

  1. CLAIMS 1. A recombinant DNA molecule comprising a first DNA sequence and a second DNA sequence, said first DNA sequence encoding for expression of an amino acid sequence a portion of which displays the antigenicity of an epitope selected from the group consisting of an HBV pre-S1 epitope and an HBV pre-S2 epitope, said second DNA sequence encoding for expression of a peptide which upon secretion will form particles which are at least 10 nm in diameter, said first DNA sequence and second DNA sequence (1) being in the same reading frame, (2) encoding for respective discrete regions of a single peptide, and (3) being operatively linked to an expression control sequence in said recombinant DNA molecule, said DNA molecule being free of a DNA sequence encoding for the expression of HBV pre-S1 peptide or HBV pre-S2 peptide.
  2. 2. The recombinant DNA molecule of claim 1 wherein said second DNA sequence encodes for expression of an amino acid corresponding to a substantial portion of or all of the amino acid sequence of a peptide selected from the group consisting of HBV S peptide, HBV core antigen, polio surface antigen, Hepatitis A surface antigen, Hepatitis A core antigen, HIV surface antigen and HIV core antigen.
  3. 3 . The recombinant DNA molecule of claim 2 wherein said second DNA sequence encodes for expression of an amino acid corresponding to a substantial portion or all of the HBVS peptide.
  4. 4. A recombinant DNA molecule of claim 3 wherein said second DNA sequence encodes for expression of an amino acid sequence corresponding to all of the amino acid sequence of the HBV S peptide.
  5. 5. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions from which the pre-S2 start codon ATG has been deleted.
  6. 6. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions and wherein the sequences flanking the pre-S1 ATG have been changed from the natural sequence.
  7. 7. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions and wherein the sequences flanking the pra-S2 ATG have been changed from the natural sequence.
  8. 8. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions and wherein the 5' terminus of the pre-S. region has been deleted.
  9. 9. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions and wherein the 5' terminus of the pre-S2 region has been deleted.
  10. 10. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 region and wherein the 3' terminus of the pre-S1 region has been deleted.
  11. 11. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S2 region and wherein the 3' terminus of the pre-S2 region has been deleted.
  12. 12. A recombinant DNA molecule of claim 3 wherein said first DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV pre-S1 and pre-S2 regions from which the pre-S2 start codon ATG has been deleted and said second DNA sequence comprises a nucleotide sequence corresponding to the nucleotide sequence of the HBV S region from which the S start codon ATG has been deleted.
  13. 13. A recombinant DNA molecule of claim 3 wherein said recombinant DNA molecule contains at least one nucleotide sequence corresponding to the nucleotide sequence of an oligonucleotide described in Table I.
  14. 14. A recombinant DNA molecule of claim 3, said recombinant DNA molecule being described by Figure I-1, 1-2, 1-3, II-1, II-2, II-3, III-1, III-2, III-3, IV-1, IV-2, IV-3, V-1, V-2, V-3, VI-1, VI-2, VI-3, VII-1, VII-2, VII-3, VIII-1, VIII-2 or VIII-3.
  15. 15. A host cell transfected with the recombinant UNA molecule of claim 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13 or 14.
  16. 16. A host cell cotransfecled with a first recombinant DNA molecule and a second recombinant DNA molecule , said first recombinant DNA molecule being a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14. and said second recombinant DNA molecule comprising a DNA sequence encoding for expression of an amino acid sequence corresponding to a substantial portion of the amino acid sequence of the HBV S peptide.
  17. 17. A host cell of claim 16 wherein said second recombinant DNA molecule comprises a DNA sequence encoding for expression of an amino acid sequence corresponding to all of the amino acid sequence of the HBV S peptide.
  18. 18. A peptide comprising a first discrete region and a second discrete region, said first region displaying the antigenicity of an epitope selected from the group consisting of an HBV pre-S1 epitope and an HBV pre-S2 epitope, said second region corresponding to a substantial portion of a peptide which upon secretion will form particles which are at least 10 nm in diameter.
  19. 19. A peptide of claim 18 wherein said peptide which upon secretion will form particles which are at least 10 nm in diometer is selected from the group concicting of HBV s peptide, HBV core antigen, polio surface antigen, Hepatitis A surface antigen. Hepatitis A core antigen, HIV surface antigen and HIV core antigen.
  20. 20. A peptide comprising a first discrete region and a second discrete region, said first region displaying the antigenicity of an epitope selected from the group consisting of an HBV pra-S1 epitope and an HBV pre-S2 epitope, said second region corresponding to a substantial portion of tha amino acid sequence of tha HBV S peptide.
  21. 21. A peptide of claim 20 wherein said second region corresponds to all of the amino acid sequence of the HBV S peptide.
  22. 22. A peptide of claim 20 wherein said first region is located closer to the N-terminus than said second region.
  23. 23. An immunogenic particle comprising a plurality of first peptide monomers, each of said peptide monomers comprising: a first discrete region and a second discrete region, said first region displaying the antigenicity of an epitope selected from the group consisting of an HBV pre-S1 epitope and an HBV pre-S2 epitope, said second region corresponding to a substantial portion of a peptide which upon secretion will form particles which are at least 10 nm in diameter.
  24. 24. An immunogenic particle of claim 23 wherein said peptide which upon secretion will form particles which are at least 10 nm in diameter is selected from the group consisting of HBV S peptide, HBV core antigen, polio surface antigen, Hepatitis A surface antigen, Hepatitis A core antigen, HIV surface antigen and HIV core antigen.
  25. 25. An immunogenic particle comprising a plurality of first peptide monomers, each of said peptide monomers comprising: a first discrete region and a second discrete region, said first region displaying the antigenicity of an epitope selected from the group consisting of an HBV pre-S1 epitope and an HBV pre-S2 epitope, said second region corresponding to a substantial portion of or all of the amino acid sequence of the HBV S peptide.
  26. 26. An immunogenic particle of claim 25 wherein said second region corresponds to all of t he amino acid sequence of the HBV S peptide.
  27. 27. An immunogenic particle of claim 25 wherein said first region is located closer to tha N-Terminus than said second region.
  28. 28. An immunogenic particle of claim 25 further comprising a plurality of sacond peptide monomers, said first peptide monomers and said second peptide monomers being bound together, each of said second peptide monomers comprising an amino acid sequence corresponding to a substantial protion of the amino acid sequence of the HBV s peptide.
  29. 29. An immunogenic particle of claim 28 wherein each of said second peptide monomers comprises an amino acid sequence corresponding to all of the amino acid sesquence of the HBV S peptide.
  30. 30. An immunogenic particle of claim 25 wherein each of said first peptide monomers is a peptide encoded by the first DNA sequence and the second DNA sequence of a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14.
  31. 31. An immunogenic particle containing substantially more than percent pre-S1 epitope.
  32. 32. An immunogenic particle of claim 31 containing more than five percent pre-S1 epitope.
  33. 33. An immunogenic particle containing substantially more than ten percent pre-S2 epitope.
  34. 34. An immunogenic particle of claim 33 containing more than fifteen percent pre-S2 epitope.
  35. 35. A Pharmaceutical preparation comprising. immunogenic particles of claim 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 or 34 in sufficient concentrations to elicit an imune response upon administration of said preparation, and a suitable carrier.
  36. 36. A preparation useful for production of antibodies, said preparation comprising:
    Immunogenic particles of claim 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 or 34 in sufficient concentrations to cause production of antibodies upon administration of said preparation to an individual, and a suitable carrier.
  37. 37. A preparation useful for production of antibodies, said prep-aration comprising: peptides of claim 18, 19, 20, 21 or 22 in sufficient concentration to cause production of antibodies upon administration of said preparation to an individual, and a suitable carrier.
  38. 38. A process for producing a transfected host cell, said process comprising: providing host cells which have been made competent for uptake of DNA, exposing said host cells to a first preparation of DNA comprising a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, allowing under suitable conditions said host cells to take up DNA from said first preparation of DNA, and selecting for host cells which have taken up exogenous DNA.
  39. 39. A process for producing a transfected host cell of claim 38, said process further comprising, prior to exposing said host cells to said first DNA preparation, exposing said host cells to a second preparation of DNA comprising a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide and allowing under suitable conditions said host cells to take up DNA from the second preparation of DNA.
  40. 40. A process for producing a transfected host cell of claim 38, said process further comprising, after exposing said host cells to said first DNA preparation, exposing said host cells to a second preparation of DNA comprising a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide and allowing under suitable conditions said host cell to take up DNA from said second preparation of DNA.
  41. 41. A process for producing a transfected host cell of claim 38, said first DNA preparation further comprising a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  42. 42. A method of producing a peptide, said method comprising: preparing a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, transfecting a host cell with said recombinant DNA molecule, culturing said host cell under conditions allowing expression and secretion of protein by said host cell, and collecting the peptide produced as a result of expression of DNA sequences within said recombinant DNA molecule.
  43. 43. A method of producing a peptide of claim 42 wherein said peptide produced as a result of the expression of DNA sequences within said recombinant DNA molecule contains an amino acid sequence corresponding to less than the entire coding region of said recombinant DNA molecule.
  44. 44. A method of producing immunogenic particles, said method comprising; preparing a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, transfecting a host cell with said recombinant DNA molecule, culturing said host cell under conditions allowing expression and secretion of protein by said host cell, and allowing under suitable conditions the aggregation of peptide monomers produced as a result of expresssion of exogenous DNA sequences within said host cell.
  45. 45. A method of producing immunogenic particles of claim 44, said mathod further comprising, prior to transfacting said host cell with said recombinant DNA molecule, transfecting said host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  46. 46. A method of producing immunogenic particles of claim 44 , said method further comprising, after transfecting said host cell with said recombinant DNA molecule, transfecting said host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  47. 47. A method of producing immunogenic particles of claim 44, said method further comprising, simultaneously transfecting said host cell with said recombinant DNA molecule and DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  48. 48. A method of manufacturing a pharmaceutical preparation, said method comprising: preparing a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, transfecting a host cell with said recombinant DNA molecule, culturing said host cell under conditions allowing expression and secretion of protein by said host cell, allowing under suitable conditions the aggregation of peptides produced as a result of cxprcooion o£ DNA eoquonces within said host call to form immunogenic particles, and combining said immunogenic particles with a suitable carrier such that said immunogenic particles are present in sufficient concentration to cause prodution of antibodies upon administration of said preparation to an individual.
  49. 49. A method of manufacturing a pharmaceutical preparation of claim 48, said method further comprising, prior to transfecting said host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  50. 50. A method of manufacturing a pharmaceutical preparation of claim 48, said method further comprising, after transfecting said host cell with said recombinant DNA molecule, transfecting said host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  51. 51. A method of manufacturing a pharmaceutical preparation of claim 48, said method further comprising, simultaneously transfecting said host cell with said recombinant DNA molecule and a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
  52. 52. A method of manufacturing a preparation useful for production of antibodies, said method comprising: preparaing a recombinant DNA molecule of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, transfecting a host cell with said recombinant DNA molecule, culturing said host cell under conditions allowing expression and secretion of protein by said host cell, allowing under suitable conditions the aggregation of peptides produces as a result of expression of DNA sequences within said host cell to form immunogenic particles, and combining said immunogenic particles with a suitable carrier such that said immunogenic particles are present in sufficient concentration to cause production of antibodies upon administration of said preparation to an individual.
  53. 53. A method of manufacturing apreparation useful for production of antibodies of claim 52, said method further comprising, prior to transfecting said host cell with said recombinant DNA molecule, transfecting said host call with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide,
  54. 54. A method of manufacturing a preparation useful for production of antibodies of claim 52 said method further comprising, after transfecting said host cell with said recombinant DNA molecule, transfecting said host cell with a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide,
  55. 55. A method of manufacturing a preparation useful for production of antibodies of claim 52, said method further comprising, simultaneously transfecting said host cell with said recombinant DNA molecule and a DNA molecule encoding for a peptide including the amino acid sequence of the HBV S peptide.
AU19958/88A 1987-06-22 1988-06-22 Hepatitis b surface antigen vaccine Ceased AU619753B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP87108914 1987-06-22
EP87108915 1987-06-22
EP87108914 1987-06-22
EP87108915 1987-06-22
PCT/EP1988/000551 WO1988010301A1 (en) 1987-06-22 1988-06-22 Hepatitis b surface antigen vaccine

Publications (2)

Publication Number Publication Date
AU1995888A true AU1995888A (en) 1989-01-19
AU619753B2 AU619753B2 (en) 1992-02-06

Family

ID=27222717

Family Applications (1)

Application Number Title Priority Date Filing Date
AU19958/88A Ceased AU619753B2 (en) 1987-06-22 1988-06-22 Hepatitis b surface antigen vaccine

Country Status (3)

Country Link
KR (1) KR970007153B1 (en)
AU (1) AU619753B2 (en)
WO (1) WO1988010301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU616976B2 (en) * 1988-06-03 1991-11-14 Merck & Co., Inc. Method for producing nonhyperglycosylated hepatitis b virus proteins

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297048B1 (en) 1992-02-04 2001-10-02 Chiron Corporation Hepatitis therapeutics
EP1288296A3 (en) * 1992-05-11 2003-03-12 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting HBV viral replication
JP4383530B2 (en) 1996-04-05 2009-12-16 ノバルティス バクシンズ アンド ダイアグノスティックス, インコーポレーテッド Alphavirus vectors with reduced inhibition of cellular macromolecular synthesis
CA2266656A1 (en) 1996-09-17 1998-03-26 Chiron Corporation Compositions and methods for treating intracellular diseases
US7001760B2 (en) * 2000-04-20 2006-02-21 Wang-Schick Ryu Hepatitis B virus vectors for gene therapy
US9714284B2 (en) * 2013-07-16 2017-07-25 National Health Research Institutes Antibodies and method for determining deletions in HBV pre-S2 region

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2560890B1 (en) * 1984-03-07 1987-10-16 Grp Genie Genetique COMPOSITION USEFUL FOR THE MANUFACTURE OF VACCINES CONTAINING PARTICLES CARRYING THE SURFACE ANTIGEN OF HEPATITIS B VIRUS AND THE POLYMERIZED HUMAN SERUM ALBUMIN RECEPTOR, ANIMAL CELLS CAPABLE OF PRODUCING SUCH PARTICLES
EP0180012A1 (en) * 1984-10-27 1986-05-07 Wolfram H. Prof. Dr. Gerlich Immunogenic polypeptide sequence of hepatits B virus
DE3507628A1 (en) * 1985-03-05 1986-09-18 Veba Oel Entwicklungs-Gesellschaft mbH, 4650 Gelsenkirchen METHOD AND DEVICE FOR EJECTING ASHES OR ALSO SLAG PARTIES FROM A PRESSURE GASIFICATION REACTOR
FI861417A0 (en) * 1985-04-15 1986-04-01 Endotronics Inc HEPATITIS B YTANTIGEN FRAMSTAELLD MED REKOMBINANT-DNA-TEKNIK, VACCIN, DIAGNOSTISKT MEDEL OCH CELLINJER SAMT FOERFARANDEN FOER FRAMSTAELLNING DAERAV.
FI95045C (en) * 1985-04-15 1995-12-11 Endotronics Inc A method for producing a protein comprising the proteins encoded by the coding region of the PreS1-PreS2-S protein of the hepatitis B virus surface antigen, and the recombinant DNA vectors and contaminants and mammalian cells used in the method
US4816564A (en) * 1986-01-31 1989-03-28 Merck & Co., Inc. Method for producing hepatitis B virus proteins in yeast
CA1310602C (en) * 1986-06-03 1992-11-24 Hajime Horii Yeast promoter and process for preparing heterologous protein
WO1987007896A1 (en) * 1986-06-20 1987-12-30 Scripps Clinic And Research Foundation T and b cell epitopes of the pre-s region of hepatitis b virus surface antigen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU616976B2 (en) * 1988-06-03 1991-11-14 Merck & Co., Inc. Method for producing nonhyperglycosylated hepatitis b virus proteins

Also Published As

Publication number Publication date
WO1988010301A1 (en) 1988-12-29
KR970007153B1 (en) 1997-05-03
AU619753B2 (en) 1992-02-06
KR890701743A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
EP0304578B1 (en) Peptide comprising hepatitis B surface antigen
US6110706A (en) Hepatitis B surface antigen vaccine
US6306625B1 (en) Method for obtaining expression of mixed polypeptide particles in yeast
EP0421635B1 (en) Chimaeric hepadnavirus core antigen proteins
KR0181940B1 (en) Novel antigens and methods for their preparation
JP2634371B2 (en) Vector expressing DNA encoding hepatitis B surface antigen in vertebrate cells
EP0563093B1 (en) A composition used as a therapeutic agent against chronic viral hepatic diseases
US5098704A (en) Hepatitis surface antigen particle vaccine
JPH08198897A (en) Particle having immunogenicity of hbs antigen and carrying foreign antigen site against epitope carried by hbs antigen,and its production
CA1222707A (en) Preparation of hepatitis b virus vaccine
AU619753B2 (en) Hepatitis b surface antigen vaccine
CA1341021C (en) Hepatitis surface antigen particle vaccine
EP0241021A2 (en) Method of producing HBsAg containing amino acid sequence encoded by the late pre S region of HB virus and the said HBsAg
AU625348B2 (en) Heterologous viral peptide particle immunogens
KR960004264B1 (en) Hepatitis b surface antigen, formed by recombinant dna techniques, vaccines, diagnostics, cell lines and method