AU1650500A - Method of producing superconducting tapes - Google Patents

Method of producing superconducting tapes Download PDF

Info

Publication number
AU1650500A
AU1650500A AU16505/00A AU1650500A AU1650500A AU 1650500 A AU1650500 A AU 1650500A AU 16505/00 A AU16505/00 A AU 16505/00A AU 1650500 A AU1650500 A AU 1650500A AU 1650500 A AU1650500 A AU 1650500A
Authority
AU
Australia
Prior art keywords
tape
sheath
wire
density
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU16505/00A
Inventor
Wei Guo Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Superconductor Corp
Original Assignee
American Superconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Superconductor Corp filed Critical American Superconductor Corp
Publication of AU1650500A publication Critical patent/AU1650500A/en
Assigned to AMERICAN SUPERCONDUCTOR CORPORATION reassignment AMERICAN SUPERCONDUCTOR CORPORATION Alteration of Name(s) of Applicant(s) under S113 Assignors: NORDIC SUPERCONDUCTOR TECHNOLOGIES A/S
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

WO 00/38251 PCT/DK99/00710 Title: Method of producing superconducting tapes Technical Field The present invention relates to a method for producing superconducting Ag-sheathed ceramic tapes. In particular, the invention relates to a mechanical deformation met 5 hod including a placing of oxide Ag sheathed composite bar into a metallic outer tube, deforming the resultant bar to a wire and rolling the wire to a tape. Background Art The powder-in-tube method offers a simple approach to produce superconducting wires and tapes having good and reproducible properties (K. Heine et al. "High-field critical 10 current densities in Bi 2 Sr 2 CaiCu 2 0 8 +/Ag wires " Appl. Phys. Lett. 55(23), 4 December 1989). A great potential market is expected in the Bi-based supercondutors produced by the powder-in-tube method. In particular, Bi-2223 and Bi-2212 tapes have been used to obtain high temperature superconducting prototypes, such as cables, magnets, motors, generators, fault current limiters, transformers, as well as superconducting magnetic energy 15 storage units. Brief Description of the Invention It has been indicated that the cost/performance must be reduced if the products should have a commercial interest. A high engineering critical current density J. (Ic/Ao) could reduce the cost/performance. J, can be enhanced by increasing J, (I, /A.xide) of the super 20 conducting core and reducing the silver matrix. However, by a strip cutting technique experiments demonstrate that there are very large local variations of J, in a single filament tape . Tapes with average Je values of 12-15000A/cm 2 (77"K, OT) had local J, values up to 76000 A/cm 2 which, however, depend on the local microstructure. (D.C. Labalestier, X.Y. Cai, Y. Feng, H. Edelman, A. Umezawa, G.N. Riley Jr. and W.L. Carter, "Position- WO 00/38251 PCT/DK99/00710 2 sensitive measurements of the local critical current density in Ag sheathed high-tempera ture superconductor (Bi,Pb)2Sr 2 Ca 2 Cu 3 0, tapes," Physica C, vol. 221, pp. 299-303, 1994.) Great differences in the microstructure of filaments were found in a 55 filaments tape and depend on the position in the cross section of the tapes. A variation of Je by a factor of 5 about 10 of the outer filaments compared to the filaments in the centre of the tape was observed. (Th. Schuster, et al., "Current capability offilaments depending on their position in (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 0l,+-multifilament tapes," Appl. Phys. Lett., vol. 69, pp. 1954-1956, 1996). This phenomenon was due to the inhomogeneous deformation of the tapes during the mechanical deformation which caused the irregular shape and inhomogeneous density 10 distribution of the filament. Measurements of Vickers hardness also demonstrated the variation of the density in the oxide core. After a heat treatment the density was highest in the centre region (Vickers hardness was 120 kg/mm 2 ) and lowest in the edge region (Vic kers hardness was 90 kg/mm 2 ), (Y. Yamada, M. Satou, T. Masegi, S. Nomura, S. Murase, T. Koizumi, and Y. Kamisada, microstructural effect on critical current density in 15 (Bi,Pb) 2 Sr 2 Ca 2 CuOAg sheathed tape, Advances in Superconductivity VI, T. Fujita and Y. Shiohara (Eds.), 1994, 609.) This density distribution resulted in a corresponding variation in the local current density in the direction of width. This is probably due to variable stress distribution induced during cold rolling. Two aspects in connection with powder-in-tube method are to be considered. The first one 20 is the low oxide density in a tape compared with the theoretical density. The second is the inhomogeneous distribution of the filaments in the direction of width. Densification effect on the microstructure and Jc in a Bi-2223 single filament tape has been reported by M. Satou, et al.. The highest relative density (true density/theoretical density) of a drawn wire was about 80 %. A green tape having a relative density of up to 90 % can be obtained by 25 rolling the highest density wire (M. Satou, Y. Yamada, S. Murase, T. Kitamura and Y. Kamisada, Densification effect on the microstructure and critical current density in (Bi,Pb) 2 Sr 2 Ca 2 CuOAg sheathed tape, Appl. Phys. Lett. 64, 1994, 640.) By increasing the density of a green tape, a final tape having a Jc value of more than 60000 A/cm 2 was obtained. A monotonously sharp increase of Jc with the relative density of the wire was 30 observed. By increasing the degree of cold working during drawing and rolling, the forma- WO 00/38251 PCT/DK99/00710 3 tion of a strong linked microstructure was promoted. It has been reported by Wang et al. that the stress-strain distribution of the superconduc ting oxide core can be controlled in response to curvature and hardness of a steel sheet in a "sandwich" rolling process. In this process, the tape was deformed between two steel 5 sheets and a high density and a smooth interface were obtained. (W.G. Wang, H.K. Liu, Y.C. Guo, P. Bain and S.X. Dou, Mechanism of deformation and sandwich rolling process in Ag-clad Bi-based composite tapes, Appl. Supercond., 3, 1995, 599.) A high compressive stress is essential for obtaining a high density in a green tape. A higher tensile sheath material than a pure Ag sheath would be effective to constrain the sheath in 10 order to obtain this condition. An Ag alloy is a possibility. However, Cu or a Cu alloy would be even better. According to 4-294008 (A) 1992-10-19 (JP), Appln. No. 3-58957 in the name of K. Matsumoto and concerning a method of manufacturing of a compound (A 3 B type) super conducting wire, a Cu-Ni alloy was used as an outer additional sheath to support a super 15 conducting wire in the drawing process. After an initial drawing, the outer Cu-Ni alloy sheath was removed by means of nitric acid. An outer Cu sheath has been used in pre paration of Bi-2223 single filament tapes which has been reported by I. Husek et al. (I. Husek et al., "Microhardness profiles in BSCCO/Ag composites made by various techno logical steps," Supercond. Sci. Technol. Vol. 8, 1995, pp. 617-625.) In one ofthese proces 20 ses, the Cu sheath was used as an additional outer sheath in the drawing process, then etched away before rolling. In another process, a Cu sheath was used as a supporting sheath in a hot extrusion process, whereafter a drawing and a rolling were performed to provide the final product. The highest densities were obtained for large deformation in one passage during extrusion. However, a hydrostatic extrusion does not allow a production 25 of superconductors in their final form as reported in this paper. This paper claimed that the highest density and homogeneity were obtained in the tapes by conventional wire drawing and rolling without an additional Cu sheath. In another paper reported by W. Pachla et al., the effect of hydrostatic pressure on precursor core densification, densifica- WO 00/38251 PCT/DK99/00710 4 tion of the billets for further processing, deformation at high strains and strain rates and core densities in composite wires and final tapes are demonstrated and discussed. (W. Pachla, et al., The effects of hydrostatic pressure on the BSCCO compound for the OPIT procedure," Supercond. Sci. Technol. Vol. 9, 1996, pp. 957-964.) Accordingto this article, 5 "application of harder sheath materials, such as alloyed silver or copper-clad silver makes the OPIT technology more difficult due to the strain-hardening phenomena and the decrea se in the conductor's fill factor" and according to "such texturisation ratios cannot be generated easily or at all in as-drawn or as-swaged wires. Before the further stages of deformation such as drawing and rolling, the external copper layer of bimetallic sleeve can 10 (but need not) be removed by chemical etching conf. Fig. 6, page 960. One of the figures (Fig. 6) illustrates a rolled single filament tape by using outer Cu sheath. There are no density measurements and Je results for this tape, no further information at all. This prior art only discloses that the single filament tape can be made with an outer Cu sheath, but no advantage has been indicated and no further results were obtained by this outer Cu 15 sheath. According to this article, no improvement of final tape performance was obtained by using an outer Cu sheath. It was demonstrated that a wire with a higher density resulted in a tape with a higher density after rolling to a certain degree. However, optimized rolling processes are needed to further increasing of the density of the tape. The prior art has not indicated the advanta 20 ge of using an additional outer metal strong sheath. How to achieve high density of the final tape that leads to ahigh performance oftheproduct has not been indicated too. There has been no report concerning multifilament wires and tapes that have been used for all types of applications by using an additional outer metal sheath. The object of the invention is to provide a method of improving superconducting 25 performance of oxide superconductors and superconducting composites by enhancing density of the oxide core, reducing secondary non-superconducting phases, reducing the inhomogenity of the filament distribution during processing of oxide superconductors and superconducting composites.
WO 00/38251 PCT/DK99/00710 5 It is a further object ofthe inventionto prepare oxide superconducting tapes having higher Jc, Je and Ic than conventionally-processed tapes. A feature of the invention is an improved mechanical deformation which involves an outer additional strong metal sheath during wire drawing and tape rolling processes. 5 A method according to the invention of preparing an Ag alloy/ceramic superconducting tape includes a putting of a precursor powder into an Ag or Ag alloyed tube, drawing the bar into a wire of a predetermined diameter, cutting the wire to form a multifilament bar with an outer Ag or Ag alloyed tube, putting the resultant bar into a metal tube of e.g. Cu, Cu alloy, Al or steel. Deforming the multifilament bar by drawing, groove rolling, extru 10 sion, to form a wire and rolling the wire into a tape. The outer metal sheath will be remo ved either chemically or mechanically before heat treatment. Advantages of the invention are as follows: 1. Achievement of a higher density of the rolled tape. 2. Preventing contamination during deformation steps. 15 3. Achievement of a high superconducting fill factor. 4. By removing the Cu, especially at the edge part of the tape, the low density part is reduced. 5. Achievement of higher Jc, Jc and Ic. The term "ceramic" refers to oxide superconductor, e.g. Bi(Pb)SrCaCuO, TlBaCaCuO, 20 HgBaCaCuO, Y(Nd)BaCuO superconductors. Brief Description of the Drawings Fig. I is a flow diagram illustrating the processing steps of the method according to the invention.
WO 00/38251 PCT/DK99/00710 6 Fig. 2 is a cross section of a superconducting composite bar and Fig. 3 is a cross section of a superconducting tape. Best Mode for Carryin out the Invention 5 The present invention is a method of improving the critical current density of oxide superconductor wires and tapes by a novel mechanical deformation process with an addi tional outer metal sheath. By applying an outer strong metal sheath in additional to the Ag alloy sheath 3, an enhanced density of the oxide core 1, reduced non-superconducting secondary phases, improved texture of the grains, as well as increased oxide/Ag ratio were 10 obtained in the tapes resulting in a higher critical current density. The high compressive stress can be induced in the oxide core 1 by an additional outer strong sheath 4. The high tensile strength and toughness materials such as Cu can carry high deformation stress and strain without breaking so thatworking tools densify the oxide into a highly constrained condition. The fast transformation and diffusion are obtained by 15 the highly dense oxide core 1. This results in a phase with a high purity and good texture. Theouter Cu sheath4 also gives strong supportfor deforming high ratio superconducting oxide wires and tapes without breaking. During mechanical deformation, a contamination of the surface can be omitted by means of an outer protecting sheath. Fig. 1 shows the flow diagram of the processsing steps. The powder or powder bar was 20 loaded into a pure Ag or Ag alloyed tube 2. In case of a BiPbSrCaCuO superconductor, a nominal composition (B i,Pb) 2 Sr 2 Ca 2 Cu 3 0, is used. The precursor powder consists of Bi 2212 and secondary phases. In the first stage of making single filament wire, the outer Cu tube may be used to prepare very high oxide ratio single filament. If so, the outer Cu sheath 4 have to be removed before bundling the single filament wires to form a multifila 25 ment bar. Bundled wires will be put into an Ag alloy tube 3 and then fit into a Cu tube 4 as shown in Fig. 2. The resultant bar will be deformed by swaging, drawing, extrusion, or WO 00/38251 PCT/DK99/00710 7 groove rolling to a wire. The wires are rolled into a tape shown in Fig. 3. Examples The following example compares the critical current characteristics of a sample prepared by the process combined with an outer Cu sheath according to the invention to those of 5 conventionally processed samples (control sheath). Precursor powder was prepared by spray pyrolysis with a nominal stoichiometry of Bij.xPbo.
33 Sri. 87 Ca 2 Cu 3 0,. The powder was pressed to a round bar with diameter of 16 mm and a length of 40 cm. The billet was put into an Ag tube with an inner diameter of 18 mm and an outer diameter of 20 mm. Closing end and drawing the single filament wire down 10 to 2 mm were performed. 55 wires were bundled together and put into an Ag alloy tube with an inner diameter of 18mm and an outer diameter of 20 mm. This multifilament bar is thereafter put into a Cu tube with an inner diameter of 21 mm and an outer diameter of 23 mm. The rod was drawn through a series of dies down to a 1.4 mm wire. The round wire was rolled to form a 0.2x3.5 mm 2 multifilament tape approximately about 250 meters. 15 The Cu sheath was stripped away before heat treatment. A control tape to be compared with a tape according to the invention was made in same way but without an additional outer Cu sheath. Short tapes were cut from the long tape and heat treated. The critical current of the samples were measured using a criterion of 1 p V/cm, 77 K and self-field. The results are indicated 20 in Table 1 and show that samples processed according to the invention exhibited an impro vement of almost a factor two in critical current properties. Table 1. A comparative study of the method of the invention with a conventional process.
WO 00/38251 PCT/DK99/00710 8 Sample No. Tape size (mm 2 ) Ic (A) J, (A/cm 2 ) Example 1 0.51 52.5 10000 Example 2 0.51 52.7 10330 Example 3 0.51 53 10400 5 Control 1 0.51 27 5300 Control 2 0.51 30 5900 Control 3 0.51 32 6300

Claims (6)

1. A method of preparing an Ag or an alloy/ceramic superconducting tape comprising the following steps: a) putting a precursor powder into an Ag or in an Ag alloy tube to form a preform, 5 b) drawing the preform into a wire and c) surrounding the preform by a metal tube of e.g. Cu.
2. A method according to claim 1, wherein before step c: bI) the wire is cutted and bundled to provide a multifilament preform.
3. A method according to claim 2,wherein that after step bI) the multifilament bar is 10 surrounded by a metal tube of Ag or Ag alloy.
4. A method according to one of the claims 1-3, wherein after step c) the wire is treated by drawing or grove rolling or by rolling, e.g. flat rolling or extrusion or a combination there of.
5. A method according to one of the claims 1-4, wherein the Cu is removed by a chemical 15 etching or by a mechanical stripping.
6. A method according to one of the claims 1-5, c h a r a c t e r i s e d in that in the manu facturing of the superconducting tape, BiPbSrCaCuO is used as superconducting material.
AU16505/00A 1998-12-22 1999-12-20 Method of producing superconducting tapes Abandoned AU1650500A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA199801705 1998-12-22
DKPA199801705 1998-12-22
PCT/DK1999/000710 WO2000038251A1 (en) 1998-12-22 1999-12-20 Method of producing superconducting tapes

Publications (1)

Publication Number Publication Date
AU1650500A true AU1650500A (en) 2000-07-12

Family

ID=8107371

Family Applications (1)

Application Number Title Priority Date Filing Date
AU16505/00A Abandoned AU1650500A (en) 1998-12-22 1999-12-20 Method of producing superconducting tapes

Country Status (6)

Country Link
EP (1) EP1142037A1 (en)
JP (1) JP2002533874A (en)
AU (1) AU1650500A (en)
NO (1) NO20013175L (en)
SK (1) SK7992001A3 (en)
WO (1) WO2000038251A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5673900A (en) * 1999-07-05 2001-03-26 Nordic Superconductor Technologies A/S Method of producing a superconducting tape
WO2002043161A2 (en) * 2000-11-21 2002-05-30 American Superconductor Corporation Methods and a means for the manufacture of a superconductor and superconductors manufactured by the methods
DE10216927B4 (en) * 2002-04-17 2005-06-02 Trithor Gmbh Process for the preparation of superconductors and superconductors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2119448T5 (en) * 1994-06-30 2004-07-01 Voco Draht Ag PROCESSING OF SUPERCONDUCTOR TRAFFICKING THAT ARE PRESENTED IN THE FORM OF THREADS.

Also Published As

Publication number Publication date
NO20013175L (en) 2001-07-09
WO2000038251A1 (en) 2000-06-29
EP1142037A1 (en) 2001-10-10
NO20013175D0 (en) 2001-06-22
SK7992001A3 (en) 2001-12-03
JP2002533874A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
US5635456A (en) Processing for Bi/Sr/Ca/Cu/O-2223 superconductors
US5683969A (en) Strongly-linked oxide superconductor and a method of its manufacture
EP0832050B1 (en) Multifilamentary BSCCO 2223 oxide superconductor articles and method for their preparation
AU729277B2 (en) Processing of oxide superconductor cables
AU1650500A (en) Method of producing superconducting tapes
EP1746667B1 (en) Superconductive elements containing Nb3Sn filaments with copper inclusions, and a composite and a method for their production
US5914297A (en) Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Ha et al. The effects of drawing parameters on sausaging and critical current density of Bi-2223/Ag HTS wires
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
US6571453B1 (en) Method for producing a superconductor, in strip form, having a high-Tc superconductor material
US6300285B1 (en) Cryogenic deformation of high temperature superconductive composite structures
Ashworth et al. Microstructure and superconducting properties of silver clad Bi-2223 tape produced by sequential pressing
US6205645B1 (en) Tensioning process for manufacture of superconducting ceramic composite conductors
Balachandran et al. Development of Ag-clad Bi-2223 superconductors for electric power applications
JP3051867B2 (en) Manufacturing method of oxide superconducting wire
JPH08171822A (en) Oxide superconductor wire and manufacture thereof
US6001777A (en) Method of texturing a superconductive oxide precursor
Tirumala et al. Effects of stoichiometric variation and cooling rate on the phase formation and critical current density of Bi-2223 powder-in-tube tapes made from aerosol precursor
US20020111277A1 (en) Oxide superconductor composite having smooth filament-matrix interface
WO1997044832A9 (en) Improved tensioning process for manufacture of superconducting ceramic composite conductors
WO2005050674A1 (en) Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
Oh et al. Texture development of a multi-filamentary Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/HTS tape during thermo-mechanical treatment
Podtburg Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
Liu et al. Microstructure observations of ag and ag-alloy sheathed Bi2223 tapes

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: AMERICAN SUPERCONDUCTOR CORPORATION

Free format text: THE FORMER OWNER WAS: NORDIC SUPERCONDUCTOR TECHNOLOGIES A/S

MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted