AU1478302A - Combination therapy comprising atorvastatin and an antihypertensive agent - Google Patents

Combination therapy comprising atorvastatin and an antihypertensive agent Download PDF

Info

Publication number
AU1478302A
AU1478302A AU14783/02A AU1478302A AU1478302A AU 1478302 A AU1478302 A AU 1478302A AU 14783/02 A AU14783/02 A AU 14783/02A AU 1478302 A AU1478302 A AU 1478302A AU 1478302 A AU1478302 A AU 1478302A
Authority
AU
Australia
Prior art keywords
pharmaceutical composition
pharmaceutically acceptable
prepared
antihypertensive agent
disclosed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU14783/02A
Other versions
AU784119B2 (en
Inventor
Robert Andrew Donald Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Inc
Original Assignee
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU84589/98A external-priority patent/AU740424B2/en
Application filed by Pfizer Inc filed Critical Pfizer Inc
Priority to AU14783/02A priority Critical patent/AU784119B2/en
Publication of AU1478302A publication Critical patent/AU1478302A/en
Application granted granted Critical
Publication of AU784119B2 publication Critical patent/AU784119B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

S&F Ref: 492560D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Pfizer Inc.
235 East 42nd Street New York New York 10017 United States of America Robert Andrew Donald Scott Spruson Ferguson St Martins Tower,Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Combination Therapy Comprising Atorvastatin and an Antihypertensive Agent The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c i~ COMBINATION THERAPY COMPRISING ATORVASTATIN AND AN ANTIHYPERTENSIVE AGENT This invention relates to pharmaceutical combinations of atorvastatin or a pharmaceutically acceptable salt thereof and antihypertensive agents, kits containing such combinations and methods of using such combinations to treat subjects suffering from angina pectoris, atherosclerosis, combined hypertension and hyperlipidemia and to treat subjects presenting with symptoms of cardiac risk, including humans. This invention also relates to additive and synergistic combinations of atorvastatin or a pharmaceutically acceptable salt thereof and antihypertensive agents whereby those additive and synergistic combinations are 10 useful in treating subjects suffering from angina pectoris, atherosclerosis, combined hypertension and hyperlipidemia and those subjects presenting with symptoms or signs of cardiac risk, including humans.
BACKGROUND OF THE INVENTION The conversion of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonate is an early and rate-limiting step in the cholesterol biosynthetic pathway.
This step is catalyzed by the enzyme HMG-CoA reductase. Statins inhibit HMG-CoA reducatase from catalyzing this conversion. As such, statins are collectively potent lipid lowering agents.
S.
Atorvastatin calcium, disclosed in U.S. Patent No. 5,273,995, which is incorporated herein by reference, is currently sold as Lipitor and has the formula o Atorvastatin calcium is a selective, competive inhibitor of MG-CoA. As such, atorvastatin calcium is a potent lipid lowering compound. The free carboxylic acid form of atorvastatin exists predominantly as the lactone of the formula: i.
'OH
N-H
F
and is disclosed in U.S. Patent No. 4,681,893, which is incorporated herein by reference.
Several classes of compounds are known to have activity as antihypertensive agents. These include calcium channel blockers, ACE inhibitors, A-II antagonists, diuretics, beta-adrenergic receptor blockers, vasodilators and alpha-adrenergic receptor blockers.
Atherosclerosis is a condition characterized by irregularly distributed lipid deposits in the intima of arteries, including coronary, carotid and peripheral arteries.
Atherosclerotic coronary heart disease (hereinafter termed "CHD") accounts for 53% of al deaths attributable to a cardiovascular event. CHD accounts for nearly one-half (about $50-60 billion) of the total U.S. cardiovascular healthcare expenditures and about 6% of the overall national medical bill each year. Despite attempts to modify secondary risk factors such as, inter alia, smoking, obesity and lack of exercise, and treatment of dyslipidemia with dietary modification and drug therapy, CHD remains the most common cause of death in the United States.
High levels of blood cholesterol and blood lipids are conditions involved in the onset of atherosderosis. It is well known that inhibitors of 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMG-CoA reductase) are effective in lowering the level of blood plasma cholesterol, especially low density lipoprotein cholesterol (LDL-C), in man (Brown and Goldstein, New England Journal of Medicine, 1981, 305, No. 9, 515- 517). It has now been established that lowering LDL-C levels affords protection from coronary heart disease (see, The Scandinavian Simvastatin Survival Study Group: Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study Lancet, 1994, 344, 1383- 89; and Shepherd, J. et al., Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia, New England Journal of Medicine, 1995, 333, 1301- 07).
Angina pectoris is a severe constricting pain in the chest, often radiating from the precordium to the left shoulder and down the left arm. Often angina pectoris is due to ischemia of the heart and is usually caused by coronary disease.
Currently the treatment of symptomatic angina pectoris varies significantly from country to country. In the patients Who present with symptomatic, stable angina pectoris are frequently treated with surgical procedures or PTCA. Patients 10 who undergo PTCA or other surgical procedures designed to treat angina pectoris frequently experience complications such as restenosis. This restenosis may be manifested either as a short term proliferative response to angioplasty-induced trauma or as long term progression of the atherosclerotic process in both graft vessels and angioplastied segments.
The symptomatic management of angina pectoris involves the use of a Snumber of drugs, frequently as a combination of two or more of the following classes: beta blockers, nitrates and calcium channel blockers. Most, if not al, of these patients require therapy with a lipid lowering agent as well The National Cholesterol *0 Education Program (NCEP) recognizes patients with existing coronary artery disease as a special class requiring aggressive management of raised LDL-C.
Amlodipine helps to prevent myocardial ischemia in patients with exertional angina pectoris by reducing Total Peripheral Resistance, or afterioad, which reduces the rate pressure product and thus myocardial oxygen demand at any particular level of exercise. In patients with vasospastic angina pectoris, amlodipine has been demonstrated to block constriction and thus restore myocardial oxygen supply.
Further, amlodipine has been shown to increase myocardial oxygen supply by dilating the coronary arteries.
Hypertension frequently coexists with hyperlipidemia and both are considered to be major risk factors for developing cardiac disease ultimately resulting in adverse cardiac events. This clustering of risk factors is potentially due to a common mechanism. Further, patient compliance with the management of hypertension is generally better than patient compliance with hyperlipidemia. It would therefore be advantageous for patients to have a single therapy which treats both of these conditions.
Coronary heart disease is a multifactorial disease in which the incidence and severity are affected by the lipid profile, the presence of diabetes and the sex of the subject Incidence is also affected by smoking and left ventricular hypertrophy which is secondary to hypertension. To meaningfully reduce the risk of coronary heart disease, it is important to manage the entire risk spectrum. For example, hypertension intervention trials have failed to demonstrate full normalization in cardiovascular mortality due to coronary heart disease. Treatment with cholesterol 10 synthesis inhibitors in patients with and without coronary artery disease reduces the risk of cardiovascular morbidity and mortality.
The Framingham Heart Study, an ongoing prospective study of adult men and women, has shown that certain risk factors can be used to predict the development of ooo coronary heart disease. (see Wilson et al., Am. J. Cardiol. 1987, 59(14):91G-94G).
These factors include age, gender, total cholesterol level, high density lipoprotein (HDL) level, systolic blood pressure, cigarette smoking, glucose intolerance and cardiac enlargement (left ventricular hypertrophy on electrocardiogram, echocardiogram or enlarged heart on chest X-ray). Calculators and computers can S".i easily be programmed using a multivariate logistic function that allows calculation of the conditional probability of cardiovascular events. These determinations, based on experience with 5,209 men and women participating in the Framingham study, S estimate coronary artery disease ris over variable periods of follow-up. Modeled incidence rates range from less than 1% to greater than 80% over an arbitrarily selected six year interval. However, these rates are typically less than 10% and rarely exceed 45% in men and 25% in women.
Kramsch et aL, Joumal of Human Hypertension (1995) (Suppl. 53-59 discloses the use of calcium channel blockers, including amlodipine, to treat atherosclerosis. That reference further suggests that atherosderosis can be treated with a combination of amlodipine and a lipid lowering agent Human trials have shown that calcium channel blockers have beneficial effects in the treatment of early atherosderotic lesions. (see, Lichtlen, P.R. et al., Retardation of angiographic progression o coronary artery disease by nifedipine, Lancet, 1990, 335, 1109-13; and Waters, D. et al., A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis, Circuaton, 1990, 82, 1940- 53.) U.S. 4,681,893 discloses that certain statins, indcling atorvastatin, are hyporipidemic agents and as such are useful in treating atherosclerosis. Jukema et al., Circulation. 1995 (Suppl. 1-1l97disclose that there is evidence that calcium channel blockers act synergistically in combination with lipid lowering agents (eg., HMG-CoA reductase inhibitors), specifically pravastatin. Orekhov et al., Cardiovascular Drugs and Therapy, 1997, 11. 350 dlisclose the use of arniodipine in combination with lovastatin for the treatinent of atherosclerosis.
SUMMARY OF THE INVENTION This invention is directed to a pharmaceutical composition, hereinafter termed "Composition comprising: a. an amount of atorvastatin or a pharmaceutically acceptable salt thereof; b. an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof; and c. a pharmaceutically acceptable carrier or diluent; provided that said antihypertensive agent is not amlodipine or a pharmaceutically 10 acceptable acid addition salt thereof.
This invention is particularly directed to a pharmaceutical composition, hereinafter termed "Composition AA" of Composition A wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-Il antagonist, a diuretic, a beta-adrenergic receptor blocker, a vasodilator or an alpha-adrenergic receptor blocker.
"This invention is more particularly directed to a pharmaceutical composition, hereinafter termed "Composition AB", of Composition AA comprising the hemicalcium .salt of atorvastatin.
This invention is still more particularly directed to a pharmaceutical composition, hereinafter termed "Composition AC", of Composition AB wherein said antihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, diltiazem mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine, nitrendipine or felodipine.
This invention is still more particularly directed to a pharmaceutical composition of composition AC wherein said calcium channel blocker is felodipine or nifedipine.
This invention is also more particularly directed to a pharmaceutical composition of Composition AB wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, captopril, enalapril, fosinopril, lisinopril, perindopril,quinapril ortrandolapril.
This invention is also more particularly directed to a pharmaceutical composition of Composition AB wherein said antihypertensive agent is an A-ll antagonist, said A-Il antagonist being losartan, irbesartan or valsartan.
i Y:i!l~ -62i-.~ This invention is also more particularly directed to a pharmaceutical composition of Composition AB wherein said antihypertensive agent is a diuretic, said diuretic being amiloride or bendroflumethiazide.
This invention is also more particularly directed to a pharmaceutical composition of Composition AB wherein said antihypertensive agent is a betaadrenergic receptor blocker, said beta-adrenergic receptor blocker being carvedilol.
This invention is also more particularly directed to a pharmaceutical composition of Composition AB wherein said antihypertensive agent is an alphaadrenergic receptor blocker, said alpha-adrenergic receptor blocker being doxazosin, 10 prazosin or trimazosin.
This invention is also directed to a first pharmaceutical composition, hereinafter termed "Composition B, for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the sum of the therapeutic effect achieved by administering said first and second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of an S" antiphypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent; provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
This invention is particularly directed to a pharmaceutical composition, hereinafter termed "Composition BA", of Composition B wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
This invention is more particularly directed to a pharmaceutical composition, hereinafter termed 'Composition BB", of Composition BA wherein said second pharmaceutical composition comprises the hemicalcium salt of atorvastatin.
This invention is still more particularly directed to a pharmaceutical composition, hereinafter termed 'Composition BC', of Composition BB wherein said antihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, diltiazem, mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine, nitrendipine or felodipine.
This invention is still more particulary directed to a pharmaceutical composition of Composition BC wherein said calcium channel blocker is felodipine or nifedipine.
This invention is still more particularly directed to a pharmaceutical composition of Composition BB wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, captopril, enalapnl, fosinopril, lisinopril, perindopril, quinapril or trandolapril 10 This invention is still more particularly directed to a pharmaceutical composition of Composition BB wherein said antihypertensive agent is an A-ll antagonist, said A-II antagonist being losartan, irbesartan or valsartan.
This invention is also more particularly directed to a pharmaceutical composition of Composition BB wherein said antihypertensive agent is a diuretic, said diuretic being amiloride or bendroflumethiazide.
S*This invention is also more particularly directed to a pharmaceutical composition of Composition BB wherein said antihypertensive agent is a betaadrenergic receptor blocker, said beta-adrenergic receptor blocker being carvedilol.
This invention is also more particularly directed to a pharmaceutical composition of Composition BB wherein said antihypertensive agent is an alphaadrenergic receptor blocker, said alpha-adrenergic receptor blocker being doxazosin, prazosin or trimazosin.
This invention is also directed to a first pharmaceutical composition, hereinafter termed "Composition for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the sum of the therapeutic effect achieved by administering said first and second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of atorvastatin agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent; provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
~1.~V~iji~ -i This invention is particularly directed to a pharmaceutical composition, hereinafter termed "Composition CA", of Composition C wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
This invention is more particularly directed to a pharmaceutical composition, hereinafter termed "Composition CB", of Composition CA comprising the hemicalcium salt of atorvastatin.
This invention is still more particularly directed to a pharmaceutical 10 composition hereinafter termed "Composition CC', of Composition CB wherein said antihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, diltiazem, mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine, nitrendipine or felodipine.
This invention is still more particularly directed to a pharmaceutical 15 composition of Composition CC wherein said calcium channel blocker is felodipine or nifedipine.
This invention is also more particularly directed to a pharmaceutical composition of Composition CB wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, captopnl, enalapnl, fosinopril, iisinopnil, perindopril, quinapril or trandolapril.
This invention is also more particularly directed to a pharmaceutical composition of Composition CB wherein said antihypertensive agent is an A-ll antagonist, said A-ll antagonist being losartan, irbesartan or valsartan.
This invention is also more particularly directed to a pharmaceutical composition of Composition CB wherein said antihypertensive agent is a diuretic, said diuretic being amiloride or bendroflumethiazide.
This invention is still more particularly directed to a pharmaceutical composition of Composition CB wherein said antihypertensive agent is a betaadrenergic receptor blocker, said beta-adrenergic receptor blocker being carvedilol.
This invention is still more particulariy directed to a pharmaceutical composition of Composition CB wherein said antihypertensive agent is an alphaadrenergic receptor blocker, said alpha-adrenergic receptor blocker being doxazosin, prazosin or trimazosin.
This invention is also particularly directed to a pharmaceutical composition of Composition B wherein said therapeutic effect is antianginal; antiatheroscerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is particularly directed to a pharmaceutical composition of Composition BB wherein said therapeutic effect is antianginal; antiatheroscerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also particularly directed to a pharmaceutical composition of Composition C wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management 10 This invention is also particularly directed to a pharmaceutical composition of i: Composition CB wherein said therapeutic effect is antianginal; antiatherosclerotic; *antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also directed to a first pharmaceutical composition, hereinafter termed "Composition for use with a second pharmaceutical 15 composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the therapeutic effect achieved by administering said first or second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable add addition salt thereof.
This invention is particularly directed to a pharmaceutical composition, hereinafter termed "Composition DA", of Composition D wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-I antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
This invention is more particularly directed to a pharmaceutical composition, hereinaftertermed "Composition DB', of Composition DA wherein said second pharmaceutical composition comprises the hemicalcium salt of atorvastatin.
.x j -11- This invention is also particularly directed to a pharmaceutical composition of Composition D wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also directed to a pharmaceutical composition of Composition DB wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management.
This invention is also directed to a first pharmaceutical composition, hereinafter termed "Composition for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which 10 effect is greater than the therapeutic effect achieved by administering said first or second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
S. This invention is particularly directed to a pharmaceutical composition, hereinafter termed "Composition EA', of Composition E wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-II 9* antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
This invention is more particularly directed to a pharmaceutical composition, hereinafter termed "Composition EB', of Composition EA comprising the hemicalcium salt of atorvastatin.
This invention is also particularly directed to a pharmaceutical composition of Composition E wherein said therapeutic effect is antianginal; antiatherosclerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also particularly directed to a pharmaceutical composition of Composition EB wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also directed to a kit, hereinafter termed "Kit for achieving a therapeutic effect in a mammal comprising: -12a. an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent in a first unit dosage form; b. an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent in a second unit dosage form; and c. container means for containing said first and second dosage forms, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
10 This invention is particularly directed to a kit, hereinafter termed "Kit AA", of i Kit A comprising the hemicalcium salt of atorvastatin.
This invention is more particularly directed to a kit, hereinafter termed "Kit AB', of Kit AA wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an 15 alpha-adrenergic receptor blocker.
This invention is still more particularly directed to a kit of Kit AB wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management This invention is also directed to a method, hereinafter termed "Method for treating a mammal in need of therapeutic treatment comprising administering to said mammal an amount of a first compound, said first compound being atorvastatin or a pharmaceutically acceptable salt thereof; and an amount of a second compound, said second compound being an antihypertensive agent or a pharmaceutically acceptable salt thereof; wherein said first compound and said second compound are each optionally and independently administered together with a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
This invention is particularly directed to a method, hereinafter termed "Method AA', of Method A comprising the hemicalcium salt of atorvastatin.
This invention is more particularly directed to a method, hereinafter termed 'Method AB', of Method AA wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker, or an alpha-adrenergic receptor blocker.
This invention is also particularly directed to a method, hereinafter termed "Method AC', of Method A wherein said first compound and said second compound are administered sequentially in either order.
This invention is also particularly directed to a method, hereinafter termed *Method AD', of Method A wherein said first compound and said second compound are administered simultaneously.
This invention is still more particularly directed to a method, hereinafter S 10 termed "Method AE', of Method AB wherein said first compound and said second compopund are administered sequentially in either order.
This invention is still more particularly directed to a method, hereinafter termed "Method AF, of Method AB wherein said first compound and said second compound are administered simultaneously.
This invention is also particularly directed to a method of Method A wherein t S. said therapeutic treatment comprises antihypertensive and antihyperlipidemic treatment This invention is also particularly directed to a method of Method AE wherein said therapeutic treatment comprises antihypertensive and antihyperlipidemic treatment ,This invention is also particularly directed to a method of Method AF wherein said therapeutic treatment comprises antihypertensive and antihyperipidemic treatment This invention is also particularly directed to a method of Method A wherein said therapeutic treatment comprises antianginal treatment This invention is also particularly directed to a method of Method AE wherein said therapeutic treatment comprises antianginal treatment This invention is also particularly directed to a method of Method AF wherein said therapeutic treatment comprises antianginal treatment This invention is also particularly directed to a method of Method A wherein said therapeutic treatment comprises cardiac risk management This invention is also particularly directed to a method of Method AE wherein said therapeutic treatment comprises cardiac risk management -14- This invention is also particularly directed to a method of Method AF wherein said therapeutic treatment comprises cardiac risk management This invention is also particularly directed to a method of Method A wherein said therapeutic treatment comprises the treatment of atherosclerosis.
This invention is also particularly directed to a method of Method AE wherein said therapeutic treatment comprises the treatment of atherosclerosis.
This invention is also particularly directed to a method of Method AF wherein said therapeutic treatment comprises the treatment of atherosclerosis.
Amlodipine is a racemic compound due to the symmetry at position 4 of the 10 dihydropyridine ring. The R and S enantiomers may be prepared as described by Arrowsmith et al., J. Med. Chem., 1986 29, 1696. The calcium channel blocking activity of amlodipine is substantially confined to the isomer and to the racemic mixture containing the and forms. (see International Patent Application Number PCT/EP94/02697). The isomer has little or no calcium channel blocking activity. However, the isomer is a potent inhibitor of smooth muscle cell migration. Thus, the isomer is useful in the treatment or prevention of atherosclerosis. (see International Patent Application Number PCT/EP95/00847).
Based on the above, a skilled person could choose the isomer, the isomer or the racemic mixture of the isomer and the isomer for use in the combination of this invention.
Where used herein, the term "cardiac risk" means the likelihood that a subject will suffer a future adverse cardiac event such as, myocardial infarction, cardiac arrest, cardiac failure, cardiac ischaemia. Cardiac risk is calculated using the Framingham Risk Equation as set forth above. The term 'cardiac risk management" means that the risk of future adverse cardiac events is substantially reduced.
It will be recognized by those skilled in the art that certain of the antihypertensive agents which are used in combination with atorvastatin or a pharmacuetically acceptable salt of atorvastatin contain either an acidic moiety or a basic moiety which may be reacted with either a base to form a cationic salt or an acid to form an acid addtion salt, respectively. All of the pharmaceutically acceptable salts of the antihypertensive agents disclosed herein are within the scope of the combination of this invention.
DETAILED DESCRIPTION OF THE INVENTION The pharmaceutical compositions of this invention comprise atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent or a pharmaceutically acceptable salt thereof.
Atorvastatin may readily be prepared as described in U.S. Patent No.
4,681,893, which is incorporated herein by reference. The hemicalcium salt of atorvastatin, which is currently sold as Lipitor®; may readily be prepared as described in U.S. Patent No. 5,273,995, which is incorporated herein by reference.
S.0 10 The expression "pharmaceutically acceptable salts' includes both pharmaceutically acceptable acid addition salts and pharmaceutically acceptable cationic salts. The expression "pharmaceutically-acceptable cationic salts" is intended to define but is not limited to such salts as the alkali metal salts, sodium and potassium), alkaline earth metal salts calcium and magnesium), aluminum salts, ammonium salts, and salts with organic amines such as benzathine (N,N'-dibenzylethylenediamine), choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), benethamine (N-benzylphenethylamine), diethylamine, piperazine, tromethamine (2-amino-2-hydroxymethyl-1,3-propanediol) and procaine. The expression "pharmaceutically-acceptable acid addition salts" is intended to define but is not limited to such salts as the hydrochloride, hydrobromide, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogenphosphate, acetate, succinate, citrate, methanesulfonate (mesylate) and p-toluenesuffonate (tosylate) salts.
Besides the hemicalcium salt, other pharmaceutically-acceptable cationic salts of atorvastatin may be readily prepared by reacting the free acid form of atorvastatin with an appropriate base, usually one equivalent, in a co-solvent Typical bases are sodium hydroxide, sodium methoxide, sodium ethoxide, sodium hydride, potassium methoxide, magnesium hydroxide, calcium hydroxide, benzathine, choline, diethanolamine, piperazine and tromethamine. The salt is isolated by concentration to dryness or by addition of a non-solvent In many cases, salts are preferably prepared by mixing a solution of the acid with a solution of a different salt of the cation (sodium or potassium ethylhexanoate, magnesium oleate), and employing a -16solvent ethyl acetate) from which the desired cationic salt precipitates, or can be otherwise isolated by concentration and/or addition of a non-solvent The acid addition salts of atorvastatin may be readily prepared by reacting the free base form of atorvastatin with the appropriate acid. When the salt is of a monobasic acid the hydrochloride, the hydrobromide, the p-toluenesulfonate, the acetate), the hydrogen form of a dibasic acid the hydrogen sulfate, the succinate) or the dihydrogen form of a tribasic acid the dihydrogen phosphate, the citrate), at least one molar equivalent and usually a molar excess of the acid is employed.
However when such salts as the sulfate, the hemisuccinate, the hydrogen phosphate 10 or the phosphate are desired, the appropriate and exact chemical equivalents of acid will generally be used. The free base and the acid are usually combined in a cosolvent from which the desired salt precipitates, or can be otherwise isolated by concentration and/or addition of a non-solvent.
The pharmaceutically acceptable acid addition and cationic salts of the antihypertensive agents used in the combination of this invention may be prepared in a manner analogous to that described for the preparation of the pharmaceutically S. acceptable acid addition and cationic salts of atorvastatin, but substituting the desired antihypertensive compound for atorvastatin.
The antihypertensive agents which may be used in accordance with this 20 invention are members of different dasses of antihypertensive agents, including calcium channel blockers (excluding amlodipine and pharmaceutically acceptable
F
acid addition salts thereof), ACE inhibitors, A-ll antagonists, diuretics, beta-adrenergic receptor blockers, vasodilators and alpha-adrenergic receptor blockers.
Calcium channel blockers which are within the scope of this invention include, but are not limited to: bepridil, which may be prepared as disclosed in U.S. Patent No.
3,962, 238 or U.S. Reissue No. 30,577; clentiazem, which may be prepared as disclosed in U.S. Patent No. 4,567,175; diltiazem, which may be prepared as disclosed in U.S. Patent No. 3,562, fendiine, which may be prepared as disclosed in U.S. Patent No. 3,262,977; gallopamil, which may be prepared as disclosed in U.S.
Patent No. 3,261,859; mibefradil, which may be prepared as disclosed in U.S. Patent No. 4,808,605; prenylamine, which may be prepared as disclosed in U.S. Patent No.
3,152,173; semotiadi, which may be prepared as disclosed in U.S. Patent No.
4,786,635; terodiline, which may be prepared as disclosed in U.S. Patent No.
-17- 3,371,014; verapamil, which may be prepared as disclosed in U.S. Patent No.
3,261,859; aranipine, which may be prepared as disclosed in U.S. Patent No.
4,572,909; bamidipine, which may be prepared as disclosed in U.S. Patent No.
4,220,649; benidipine, which may be prepared as disclosed in European Patent Application Publication No. 106,275; cilnidipine, which may be prepared as disclosed in U.S. Patent No. 4,672,068; efonidipine, which may be prepared as disclosed in U.S. Patent No.4,885, 2 8 4 elgodipine, which may be prepared as disclosed in U.S.
Patent No. 4,952,59 2 felodipine, which may be prepared as disclosed in U.S. Patent No. 4,264,611; isradipine, which may be prepared as disclosed in U.S. Patent No.
10 4,466,972; lacidipine, which may be prepared as disclosed in U.S. Patent No.
4,801,599; lercanidipine, which may be prepared as disclosed in U.S. Patent No.
4,705,797; manidipine, which may be prepared as disclosed in U.S. Patent No.
i" 4,892875; nicardipine, which may be prepared as disclosed in U.S. Patent No.
3,985,758; nifedipine, which may be prepared as disclosed in U.S. Patent No.
3,485,847; nilvadipine, which may be prepared as disclosed in U.S. Patent No.
4,338,322; nirodipine, which may be prepared as disclosed in U.S. Patent No.
3,799,934; nisoldipine, which may be prepared as disclosed in U.S. Patent No.
4,154,839; nitrendipine, which may be prepared as disclosed in U.S. Patent No.
S. 3,799,934; cinarizine, which may be prepared as disclosed in U.S. Patent No.
20 2,882,271; lunarizine, which may be prepared as disclosed in U.S. Patent No.
3,773,939; lidoflazine, which may be prepared as disclosed in U.S. Patent No.
"3,267,104; lomerizine, which may be prepared as disclosed in U.S. Patent No.
4,663,325; bencydane, which may be prepared as disclosed in Hungarian Patent No.
151,865; etafenone, which may be prepared as disclosed in German Patent No.
1,265,758; and perhexiline, which may be prepared as disclosed in British Patent No.
1,025,578. The disclosures of all such U.S. Patents are incorporated herein by reference.
Angiotensin Converting Enzyme Inhibitors (ACE-Inhibitors) which are within the scope of this invention include, but are not limited to: alacepril, which may be prepared as disclosed in U.S. Patent No. 4,248,883; benazepnl, which may be prepared as disclosed in U.S. Patent No. 4,410,520; captopril, which may be prepared as disclosed in U.S. Patent Nos. 4,046,889 and 4,105,776; ceronapril, which may be prepared as disclosed in U.S. Patent No. 4,452,790; delapril, which Uir -18may be prepared as disclosed in U.S. Patent No. 4,385,051; enalapnl, which may be prepared as disclosed in U.S. Patent No. 4,374.829; fosinopril, which may be prepared as disclosed in U.S. Patent No. 4,337,201; imadapnl, which may be prepared as disclosed in U.S. Patent No. 4,508,727; lisinopril, which may be prepared as disclosed in U.S. Patent No. 4,555,502; moveltopnl, which may be prepared as disclosed in Belgian Patent No. 893,553; perindopril, which may be prepared as disclosed in U.S. Patent No. 4,508,729; quinapril, which may be prepared as disclosed in U.S. Patent No. 4,344,949; ramipril, which may be prepared as disclosed in U.S. Patent No. 4,587,258; spirapril, which may be prepared as disclosed in U.S.
S" 10 Patent No. 4,470,972; temocapril, which may be prepared as disclosed in U.S. Patent No. 4,699,905; and trandolapril, which may be prepared as disclosed in U.S. Patent No. 4,933,361. The disclosures of all such U.S. patents are incorporated herein by reference.
Angiotensin-ll receptor antagonists (A-ll antagonists) which are within the scope of this invention include, but are not limited to: candesartan, which may be prepared as disclosed in U.S. Patent No. 5,196.444; eprosartan, which may be prepared as disclosed in U.S. Patent No. 5,185,351; irbesartan, which may be prepared as disclosed in U.S. Patent No. 5,270,317; losartan, which may be prepared as disclosed in U.S. Patent No. 5,138,069; and valsartan, which may be prepared as disclosed in U.S. Patent No. 5,399,578. The disclosures of all such U.S. patents are incorporated herein by reference.
Beta-adrenergic receptor blockers (beta- or p-blockers) which are within the scope of this invention include, but are not limited to: acebutolol, which may .be prepared as disclosed in U.S. Patent No. 3,857,952; alprenolol, which may be prepared as disclosed in Netherlands Patent Application No. 6,605,692; amosulalol, which may be prepared as disclosed in U.S. Patent No. 4,217,305; arotinool, which may be prepared as disclosed in U.S. Patent No. 3,932,400; atenolol, which may be prepared as disclosed in U.S. Patent No. 3,663,607 or 3,836,671; befunolol, which may be prepared as disclosed in U.S. Patent No. 3,853,923; betaxolol, which may be prepared as disclosed in U.S. Patent No. 4,252,984; bevantolol, which may be prepared as disclosed in U.S. Patent No. 3,857,981; bisoprolol, which may be prepared as disclosed in U.S. Patent No. 4,171,370; bopindolol, which may be -19prepared as disclosed in U.S. Patent No. 4,340,541; bucumolol, which may be prepared as discosed in U.S. Patent No. 3,663,570; bufetolol, which may be prepared as disclosed in U.S. Patent No. 3,723,476; bufuralol, which may be prepared as disclosed in U.S. Patent No. 3,929,836; bunitrolol, which may be prepared as disclosed in U.S. Patent Nos. 3,940,489 and 3,961,071; buprandolol, which may be prepared as disclosed in U.S. Patent No. 3,309,406; butiridine hydrochloride, which may be prepared as disdosed in French Patent No. 1,390,056; butofilolol, which may be prepared as disclosed in U.S. Patent No. 4,252,825; carazolol, which may be prepared as disclosed in German Patent No. 2,240,599; 10 carteolol, which may be prepared as disclosed in U.S. Patent No. 3,910,924; carvedilol, which may be prepared as disclosed in U.S. Patent No. 4,503,067; celiprolol, which may be prepared as disclosed in U.S. Patent No. 4,034,009; cetamolol, which may be prepared as disclosed in U.S. Patent No. 4,059,622; doranolol, which may be prepared as disclosed in German Patent No. 2,213,044; dilevalol, which may be prepared as disclosed in Clifton et al., Journal of Medicinal Chemistry, 1982. 25 670; epanolol, which may be prepared as disclosed in European Patent Publication Application No. 41,491;. indenolol, which may be prepared as disclosed in U.S. Patent No. 4,045,482; labetalol, which may be prepared as disclosed in U.S. Patent No. 4,012,444; levobunolol, which may be prepared as disclosed in U.S. Patent No. 4,463,176; mepindolol, which may be prepared as disclosed in Seeman 'et al., Helv. Chim. Acta, 1971. 54 241; metipranolol, which may be prepared as disclosed in Czechoslovakian Patent Application No. 128,471; metoprolol, which may be prepared as disclosed in U.S.
Patent No. 3,873,600; moprolol, which may be prepared as disclosed in U.S. Patent No. 3,501,7691; nadolol, which may be prepared as disclosed in U.S. Patent No.
3,935, 267; nadoxolol, which may be prepared as disclosed in U.S. Patent No.
3,819,702; nebivalol, which may be prepared as discosed in U.S. Patent No.
4,654,362; nipradilol, which may be prepared as disclosed in U.S. Patent No.
4,394,382; oxprenolol, which may be prepared as disclosed in British Patent No.
1,077,603; ,perbutolol, which may be prepared as disclosed in U.S. Patent No.
3,551,493; pindolol, which may be prepared as disclosed in Swiss Patent Nos.
469,002 and 472,404; practolol, which may be prepared as disclosed in U.S. Patent No. 3,408,387; pronethalol, which may be prepared as disclosed in British Patent No.
909,357; propranolol, which may be prepared as disclosed in U.S. Patent Nos.
3,337,628 and 3,520,919; sotalol, which may be prepared as disclosed in Uloth et al., Journal of Medicinal Chemistry, 1966 9 88; sufinalol, which may be prepared as disclosed in German Patent No. 2,728,641; talindol, which may be prepared as disclosed in U.S. Patent Nos. 3,935,259 and 4,038,313; tertatolol, which may be prepared as disclosed in U.S. Patent No. 3,960,891; tilisolol, which may be prepared as disclosed in U.S. Patent No. 4,129,565; timolol, which may be prepared as disclosed in U.S. Patent No. 3,655,663; toliprolol, which may be prepared as 10 disclosed in U.S. Patent No. 3,432,545; and xibenolol, which may be prepared as disclosed in U.S. Patent No. 4,018,824. The disclosures of all such U.S. patents are incorporated herein by reference.
Alpha-adrenergic receptor blockers (alpha- or a-blockers) which are within the scope of this invention include, but are not limited to: amosulalol, which may be 15 prepared as disclosed in U.S. Patent No. 4,217,307; arotinolol, which may be prepared as disclosed in U.S. Patent No. 3,932,400; dapiprazole, which may be prepared as disclosed in U.S. Patent No. 4,252,721; doxazosin, which may be prepared as disclosed in U.S. Patent No. 4,188,390; fenspiride, which may be prepared as disclosed in U.S. Patent No. 3,399,192; indoramin, which may be prepared as disclosed in U.S. Patent No. 3,527,761; labetolol, which may be S• prepared as disclosed above; naftopidi, which may be prepared as disclosed in U.S.
Patent No. 3,997,666; nicergoline, which may be prepared as disclosed in U.S.
Patent No. 3,228,943; prazosin, which may be prepared as disclosed in U.S. Patent No. 3,511,836; tamsulosin, which may be prepared as disclosed in U.S. Patent No.
4,703,063; tolazoline, which may be prepared as disclosed in U.S. Patent No.
2,161,938; trimazosin, which may be prepared as disclosed in U.S. Patent No.
3,669,968; and yohimbine, which may be isolated from natural sources according to methods well known to those skilled in the art. The disclosures of all such U.S.
patents are incorporated herein by reference.
The term "vasodilator," where used herein, is meant to include cerebral vasodilators, coronary vasodilators and peripheral vasodilators. Cerebral vasodilators within the scope of this invention include, but are not limited to: -21bencydane, which may be prepared as disclosed above; cinnarizine, which may be prepared as disclosed above; citicoline, which may be isolated from natural sources as disclosed in Kennedy et al., Journal of the American Chemical Society, 19M. Z.
250 or synthesized as disclosed in Kennedy, Journal of Biological Chemistry, 195 222, 185; cydandelate, which may be prepared as disclosed in U.S. Patent No.
3,663,597; cidonicate, which may be prepared as disclosed in German Patent No.
1,910,481; diisopropylamine dichloroacetate, which may be prepared as disclosed in British Patent No. 862,248; ebumamonine, which may be prepared as disclosed in Hermann et al., Journal of the American Chemical Society, 1979.11, 1540; fasudil, S 10 which may be prepared as disclosed in U.S. Patent No. 4,678,783; fenoxedil, which may be prepared as disclosed in U.S. Patent No. 3,818,021; flunarizine, which may be prepared as disclosed in U.S. Patent No. 3,773,939; ibudilast, which may be prepared as disclosed in U.S. Patent No. 3,850,941; ifenprodil, which may be prepared as disclosed in U.S. Patent No. 3,509,164; lomerizine, which may be prepared as disclosed in U.S. Patent No. 4,663,325; nafronyl, which may be prepared as disclosed in U.S. Patent No. 3,334,096; nicametate, which may be prepared as disclosed in Blicke et al., Journal of the American Chemical Society, 1942. 64, 1722; nicergoline, which may be prepared as disclosed above; nimodipine, which may be prepared as disclosed in U.S. Patent No. 3,799,934; papaverine, which may be prepared as reviewed in Goldberg, Chem. Prod. Chem. News, 1954. 17, 371; pentifylline, which may be prepared 'as disclosed in German Patent No. 860,217; S tinofedrine, which may be prepared as disclosed in U.S. Patent No. 3,563,997; vincamine, which may be prepared as disclosed in U.S. Patent No. 3,770,724; vinpocetine, which may be prepared as disclosed in U.S. Patent No. 4,035,750; and viquidil, which may be prepared as disclosed in U.S. Patent No. 2,500,444. The disclosures of all such U.S. patents are incorporated herein by reference.
Coronary vasodilators within the scope of this invention include, but are not limited to: amotriphene, which may be prepared as disclosed in U.S. Patent No.
3,010,965; bendazol, which may be prepared as disclosed in J. Chem. Soc. 1958, 2426; benfurodil hemisuccinate, which may be prepared as disclosed in U.S. Patent No. 3,355,463; benziodarone, which may be prepared as disclosed in U.S. Patent No. 3,012,042; chloracizine, which may be prepared as disclosed in British Patent No. 740,932; chromonar, which may be prepared as disclosed in U.S. Patent No.
-22- 3,282,938; dobenfural, which may be prepared as disclosed in British Patent No.
1,160,925; donitrate, which may be prepared from propanediol according to methods wel known to those sklled in the art, see Annalen, 1870, 155, 165; cloricromen, which may be prepared as disclosed in U.S. Patent No. 4,452,811; dilazep, which may be prepared as disclosed in U.S. Patent No. 3,532,685; dipyridamole, which may be prepared as disclosed in British Patent No. 807,826; droprenilamine, which may be prepared as disclosed in German Patent No. 2,521,113; efloxate, which may be prepared as disclosed in British Patent Nos. 803,372 and 824,547; erythrityl tetranitrate, which may be prepared by nitration of erythritol according to methods 10 well-known to those skilled in the art; etafenone, which may be prepared as disdosed in German Patent No. 1,265,758; fendiline, which may be prepared as disclosed in U.S. Patent No. 3,262,977; floredil, which may be prepared as disclosed in German Patent No. 2,020,464; ganglefene, which may be prepared as disclosed in U.S.S.R.
Patent No. 115,905; hexestrol, which may be prepared as disclosed in U.S. Patent No. 2,357,985; hexobendine, which may be prepared as disdosed in U.S. Patent No.
3,267,103; itramin tosylate, which may be prepared as disclosed in Swedish Patent No. 168,308; khellin, which may be prepared as disclosed in Baxter et at, Journal of the Chemical Society, 1949 S 30; lidoflazine, which may be prepared as disdosed in SU.S. Patent No. 3,267,104; mannitol hexanitrate, which may be prepared by the nitration of mannitol according to methods well-known to those skilled in the art; medibazine, which may be prepared as discosed in U.S. Patent No. 3,119,826; nitroglycerin; pentaerythritol tetranitrate, which may be prepared by the nitration of pentaerythritol according to methods well-known to those skilled in the art; pentrinitrol, which may be prepared as disclosed in German Patent No. 638,422-3; perhexiline, which may be prepared as dislosed above; pimefylline, which may be prepared as disclosed in U.S. Patent No. 3,350,400; prenylamine, which may be prepared as disdosed in U.S. Patent No. 3,152,173; propatyl nitrate, which may be prepared as disclosed in French Patent No. 1,103,113; trapidil, which may be prepared as disclosed in East German Patent No. 55,956; tricromyl, which may be prepared as disclosed in U.S. Patent No. 2,769,015; trimetazidine, which may be prepared as disclosed in U.S. Patent No. 3,262,852; trolnitrate phosphate, which may be prepared by nitration of triethanolamine followed by precipitation with phosphoric acid according to methods well-known to those skilled in the art; visnadine, which may be prepared as disclosed in U.S. Patent Nos. 2,816,118 and 2,980,699. The disclosures of all such U.S. patents are incorporated herein by reference.
Peripheral vasodilators within the scope of this invention include, but are not limited to: aluminum nicotinate, which may be prepared as disdosed in U.S. Patent No. 2,970,082; bamethan, which may be prepared as disclosed in Corrigan et al., Journal of the American Chemical Society, 1456 SL 1894; bencycane, which may be prepared as disclosed above; betahistine, which may be prepared as disclosed in Walter et al.; Journal of the American Chemical Socety.14i 63, 2771; bradyidnin, 10 which may be prepared as disclosed in Hamburg et aL, Arch. Biochem. Biophys., 1986. 2 252; brovincamine, which may be prepared as disclosed in U.S. Patent No.
4,146,643; bufeniode, which may be prepared as disclosed in U.S. Patent No.
3,542,870; buflomedil, which may be prepared as disclosed in U.S. Patent No.
3,895,030; butalamine, which may be prepared as disclosed in U.S. Patent No.
3,338,899; cetiedil, which may be prepared as disclosed in French Patent Nos.
1,460,571; cidonicate, which may be prepared as disclosed in German Patent No.
1,910,481; cinepazide, which may be prepared as disclosed in Belgian Patent No.
730,345; cinnarizine, which may be prepared as disclosed above; cyclandelate, which may be prepared as disclosed above; diisopropylamine dichloroacetate, which may be prepared as disclosed above; eledoisin, which may be prepared as disclosed in British Patent No. 984,810; fenoxedil,,which may be prepared as disclosed above; flunarizine, which may be prepared as disclosed above; hepronicate, which may be prepared as disclosed in U.S. Patent No. 3,384,642; ifenprodil, which may be prepared as disclosed above; iloprost, which may be prepared as disclosed in U.S.
Patent No. 4,692,464; inositol niacinate, which may be prepared as disclosed in Badgett et al., Journal of the American Chemical Society, 1947, f 2907; isoxsuprine, which may be prepared as disclosed in U.S. Patent No. 3,056,836; kallidin, which may be prepared as disclosed in Biochem. Biophys. Res. Commun., 1961, 6, 210; kallikrein, which may be prepared as disclosed in German Patent No.
1,102,973; moxisylyte, which may be prepared as disclosed in German Patent No.
905,738; nafronyl, which may be prepared as disclosed above; nicametate, which may be prepared as disclosed above; nicergoline, which may be prepared as disclosed above; nicofuranose, which may be prepared as disclosed in Swiss Patent -24- No. 366,523; nylidrin, which may be prepared as disclosed in U.S. Patent Nos.
2,661,372 and 2,661,373; pentifylline, which may be prepared as disclosed above; pentoxifylline, which may be prepared as disclosed in U.S. Patent No. 3,422,107; piribedil, which may be prepared as disclosed in U.S. Patent No. 3,299,067; prostaglandin El, which may be prepared by any of the methods referenced in the Merck Index, Twelfth Edition, Budaveri, Ed., New Jersey, 1996, p. 1353; suloctidil, which may be prepared as disclosed in German Patent No. 2,334,404; tolazoline, which may be prepared as disclosed in U.S. Patent No. 2,161,938; and xanthinol niacinate, which may be prepared as disclosed in German Patent No. 1,102,750 or 10 Korbonits et aL, Acta. Pharm. Hung., 1968. 38 98. The disclosures of all such U.S.
patents are incorporated herein by reference.
The term "diuretic," within the scope of this invention, is meant to include diuretic benzothiadiazine derivatives, diuretic organomercurials, diuretic purines, diuretic steroids, diuretic sutfonamide derivatives, diuretic uracils and other diuretics such as amanozine, which may be prepared as disclosed in Austrian Patent No.
168,063; amiloride, which may be prepared as disclosed in Belgian Patent No.
639,386; arbutin, which may be prepared as disclosed in Tschitschibabin, Annalen, 1930. 479. 303; chlorazanil, which may be prepared as disclosed in Austrian Patent No. 168,063; ethacrynic acid, which may be prepared as disclosed in U.S. Patent No.
3,255,241; etozolin, which may be prepared as disclosed in U.S. Patent No.
3,072,653; hydracarbazine, which may be prepared as disclosed in British Patent No.
856,409; isosorbide, which may be prepared as disclosed in U.S. Patent No.
3,160,641; mannitol; metochalcone, which may be prepared as disclosed in Freudenberg et al., Ber., 1957. 9, 957; muzolimine, which may be prepared as disclosed in U.S. Patent No. 4,018,890; perhexiline, which may be prepared as disclosed above; ticrynafen, which may be prepared as disclosed in U.S. Patent No.
3,758,506; triamterene which may be prepared as disclosed in U.S. Patent No.
3,081,230; and urea. The disclosures of all such U.S. patents are incorporated herein by reference.
Diuretic benzothiadiazine derivatives within the scope of this invention include, but are not limited to: althiazide, which may be prepared as disclosed in British Patent No. 902,658; bendroflumethiazide, which may be prepared as disclosed in U.S.
Patent No. 3,265,573; benzthiazide, McManus et al., 136th Am. Soc. Meeting (Atlantic City, September 1959), Abstract of papers, pp 13-0; benzylhydrochlorothiazide, which may be prepared as disclosed in U.S. Patent No.
3,108,097; buthiazide, which may be prepared as disclosed in British Patent Nos.
861,367 and 885,078; chlorothiazide, which may be prepared as disclosed in U.S.
Patent Nos. 2,809,194 and 2,937,169; chlorthalidone, which may be prepared as disclosed in U.S. Patent No. 3,055,904; cyclopenthiazide, which may be prepared as disclosed in Belgian Patent No. 587,225; cydothiazide, which may be prepared as disclosed in Whitehead et al., Journal of Organic Chemistry, 1961. 26. 2814; epithiazide, which may be prepared as disclosed in U.S. Patent No. 3,009,911; ethiazide, which may be prepared as disclosed in British Patent No. 861,367; fenquizone, which may be prepared as disclosed in U.S. Patent No. 3,870,720; indapamide, which may be prepared as disclosed in U.S. Patent No. 3,565,911; hydrochlorothiazide, which may be prepared as disclosed in U.S. Patent No.
3,164,588; hydroflumethiazide, which may be prepared as disclosed in U.S. Patent No. 3,254,076; methydothiazide, which may be prepared as discosed in Close et al., Journal of the American Chemical Society, 1960. 82 1132; meticrane, which may be prepared as disclosed in French Patent Nos. M2790 and 1,365,504; metolazone, which may be prepared as disclosed in U.S. Patent No. 3,360,518; paraflutizide, :which may be prepared as disclosed in Belgian Patent No. 620,829; polythiazide, 20 which may be prepared as disclosed in U.S. Patent No. 3,009,911; quinethazone, which may be prepared as disclosed in U.S. Patent No. 2,976,289; tedothiazide, which may be prepared as disdosed in Close et al., Joumal of the American Chemical Society, 10. 82 1132; and trichlormethiazide, which may be prepared as dislcosed in deStevens et aL, Experientia, 1960. 16 113. The disclosures of all such U.S. patents are incorporated herein by reference.
Diuretic sulfonamide derivatives within the scope of this invention include, but are not limited to: acetazolamide, which may be prepared as disclosed in U.S. Patent No. 2,980,679; ambuside, which may be prepared as disclosed in U.S. Patent No.
3,188,329; azosemide, which may be prepared as disclosed in U.S. Patent No.
3,665,002; bumetanide, which may be prepared as disclosed in U.S. Patent No.
3,634,583; butazolamide, which may be prepared as disclosed in British Patent No.
769,757; chloraminophenamide, which may be prepared as disclosed in U.S. Patent Nos. 2,809,194, 2,965,655 and 2,965,656; cofenamide, which may be prepared as -26disclosed in Olivier, Rec. Trav. Chim., 1918. Z3 307; clopamide, which may be prepared as disclosed in U.S. Patent No. 3,459,756; dorexolone, which may be prepared as disclosed in U.S. Patent No. 3,183,243; disulfamide, which may be prepared as disclosed in British Patent No. 851,287; ethoxolamide, which may be prepared as disclosed in British Patent No. 795,174; furosemide, which may be prepared as disclosed in U.S. Patent No. 3,058,882; mefruside, which may be prepared as disclosed in U.S. Patent No. 3,356,692; methazolamide, which may be prepared as disclosed in U.S. Patent No. 2,783,241; piretanide, which may be prepared as discosed in U.S. Patent No. 4,010,273; torasemide, which may be S 10 prepared as disclosed in U.S. Patent No. 4,018,929; tripamide, which may be prepared as disclosed in Japanese Patent No. 73 05,585; and xipamide, which may be prepared as disclosed in U.S. Patent No. 3,567,777. The disclosures of all such U.S. patents are incorporated herein by reference.
In addition, atorvastatin and pharmaceutically acceptable salts thereof may occur as hydrates or solvates. Further, the antihypertensive agents which may be used in accordance with this invention and the pharmaceutically acceptable salts thereof may occur as hydrates or solvates. Said hydrates and solvates are also within the scope of the invention.
The pharmaceutical combinations and methods of this invention are all adapted to therapeutic use as agents in the treatment of atherosclerosis, angina pectoris, and a condition characterized by the presence of both hypertension and hypertipidemia in mammals, particularly humans. Further, since these diseases and conditions are closely related to the development of cardiac disease and adverse cardiac conditions, these combinations and methods, by virtue of their action as antiatherosclerotics, antianginals, antihypertensives and antihyperlipidemics, are useful in the management of cardiac risk.
The utility of the compounds of the present invention as medical agents in the treatment of atherosderosis in mammals humans) is demonstrated by the activity of the compounds of this invention in conventional assays and the clinical protocol described below: Effect of Atorvastatin and an Antihypertensive Agent. Alone and in Combination, on the Treatment -27of Atherosclerosis This study is a prospective randomized evaluation of the effect of a combination of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent on the progression/regression of coronary and carotid artery disease. The study is used to show that a combination of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent is effective in slowing or arresting the progression or causing regression of existing coronary artery disease (CAD) as evidenced by changes in coronary angiography or carotid ultrasound, in subjects with established disease.
10 This study is an angiographic documentation of coronary artery disease carried out as a double-blind, placebo-controlled trial of a minimum of about 500 subjects and preferably of about 780 to about 1200 subjects. It is especially preferred to study about 1200 subjects in this study. Subjects are admitted into the study after satisfying certain entry criteria set forth below.
Entry criteria: Subjects accepted for entry into this trial must satisfy certain criteria. Thus the subject must be an adult, either male or female, aged 18-80 years of age in whom coronary angiography is clinically indicated. Subjects will have angiographic presence of a significant focal lesion such as 30% to 50% on subsequent evaluation by quantitative coronary angiography (QCA) in a minimum of one segment (non-PTCA, non-bypassed or non-MI vessel) that is judged not likely to :require intervention over the next 3 ydars. It is required that the segments undergoing analysis have not been interfered with. Since percutaneous transluminal cardiac angioplasty (PTCA) interferes with segments by the insertion of a balloon catheter, non-PTCA segments are required for analysis. It is also required that the segments to be analyzed have not suffered a thrombotic event, such as a myocardial infarct Thus the requirement for non-MI vessels. Segments that will be analyzed include: left main, proximal, mid and distal left anterior descending, first and second diagonal branch, proximal and distal left circumflex, first or largest space obtuse marginal, proximal, mid and distal right coronary artery. Subjects will have an ejection fraction of greater than 40% determined by catheterization or radionuclide ventriculography or ECHO cardiogram at the time of the qualifying angiogram or within the previous three months of the acceptance of the qualifying angiogram -28provided no intervening event such as a thrombotic event or procedure such as PTCA has occurred.
Generally, due to the number of patients and the physical limitations of any one facility, the study is carried out at multiple sites. At entry into the study, subjects undergo quantitative coronary angiography as well as B-mode carotid artery ultrasonography and assessment of carotid arterial compliance at designated testing centers. This establishes baselines for each subject. Once admitted into the test, subjects are randomized to receive an antihypertensive agent or a pharmaceutically acceptable salt thereof the dose is dependent upon the particular antihypertensive 10 agent or salt thereof chosen) and placebo or atorvastatin calcium (80 mgs) and placebo or an antihypertensive agent or a pharmaceutically acceptable salt thereof (the dose is dependent upon the particular antihypertensive agent or salt thereof chosen) and atorvastatin calcium (80 mgs). It will be recognized by a skilled person that the free base form or other salt forms of amlodipine besylate or the free base form or other salt forms of the statin may be used in this invention. Calculation of the dosage amount for these other forms of the statinand amlodipine besylate is easily accomplished by performing a simple ratio relative to the molecular weights of the species involved. The amount of the antihypertensive agent may be varied as required. The amount of the statin will be titrated down from 80 mg if it is determined by the physician to be in the best interests of the subject. The subjects are monitored for a one to three year period, generally three years being preferred. B-mode carotid ultrasound assessment of carotid artery atherosderosis and compliance are performed at regular intervals throughout the study.
Generally, six month intervals are suitable. Typically this assessment is performed using B-mode ultrasound equipment However, a person skilled in the art may use other methods of performing this assessment Coronary angiography is performed at the condusion of the one to three year treatment period. The baseline and post-treatment angiograms and the intervening carotid artery B-mode ultrasonograms are evaluated for new lesions or progression of existing atherosclerotic lesions. Arterial compliance measurements are assessed for changes from baseline and over the 6-month evaluation periods.
The primary objective of this study is to show that the combination of an antihypertensive agent and atorvastatin reduces the progression of atherosclerotic -29lesions as measured by quantitative coronary angiography (QCA) in subjects with clinical coronary artery disease. QCA measures the opening in the lumen of the arteries measured.
The primary endpoint of the study is the change in the average mean segment diameter of the coronary artery tree. Thus, the diameter of an arterial segment is measured at various portions along the length of that segment. The average diameter of that segment is then determined. After the average segment diameter of many segments has been determined, the average of all segment averages is determined to arrive at the average mean segment diameter. The mean 10 segment diameter of subjects taking atorvastatin or a pharmaceutically acceptable salt thereof and amlodipine or a pharmaceutically acceptable acid addition salt S..:thereof will decline more slowly, will be halted completely, or there will be an increase in the mean segment diameter. These results represent slowed progression of atherosclerosis, halted progression of atherosclerosis and regression of 15 atherosclerosis, repsectively.
The secondary objective of this study is that the combination of an antihypertensive agent and atorvastatin or a pharmaceutically acceptable salt thereof reduces the rate of progression of atherosclerosis in the carotid arteries as measured .by the slope of the maximum intimal-medial thickness measurements averaged over 12 separate wall segments (Mean Max) as a function of time, more than does amlodipine or a pharmaceutically acceptable add addition salt thereof or atorvastatin or a pharmaceutically acceptable salt thereof alone. The intimal-medial thickness of subjects taking atorvastatin or a pharmaceutically acceptable salt thereof and amlodipine or a pharmaceutically acceptable acid addition salt thereof will increase more slowly, will cease to increase or will decrease. These results represent slowed prorgression of atherosclerosis, halted progression of atherosclerosis and regression of atherosclerosis, respectively. Further, these results may be used to facilitate dosage determinations- The utility of the compounds of the present invention as medical agents in the treatment of angina pectoris in mammals humans) is demonstrated by the activity of the compounds of this invention in conventional assays and the clinical protocol described below: Effect of Atorvastatin and an Antihyoertensive Agent. Alone and in Combination. on the Treatment of Angina This study is a double blind, parallel arm, randomized study to show the effectiveness of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent given in combination in the treatment of symptomatic angina.
Entry criteria: Subjects are males or females between 18 and 80 years of age with a history of typical chest pain associated with one of the following objective evidences of cardiac ischemia: stress test segment elevation of about one 10 millimeter or more from the ECG; positive treadmill stress test; new wall motion abnormality on ultrasound; or coronary angiogramn with a significant qualifying stenosis. Generally a stenosis of about 30-50% is considered to be significant Each subject is evaluated for about ten to thirty-two weeks. At least ten weeks are generally required to complete the study. Sufficient subjects are used in this screen to ensure that about 200 to 800 subjects and preferably about 400 subject are evaluated to complete the study. Subjects are screened for compliance with the entry criteria, set forth below, during a four week run in phase. After the screening *criteria are met, subjects are washed out from their current anti-anginal medication 20 and stabilized on a long acting nitrate such as nitroglycerine, mononitrate or isosorbide dinitrate. The term "washed out", when used in connection with this screen, means the withdrawal of current anti-anginal medication so that substantially all of said medication is eliminated from the body of the subject A period of eight weeks is preferably allowed for both the wash out period and for the establishment of the subject on stable doses of said nitrate. Subjects having one or two attacks of angina per week while on stable doses of long acting nitrate are generally permitted to skip the wash out phase. After subjects are stabilized on nitrates, the subjects enter the randomization phase provided the subjects continue to have either one or two angina attacks per week. In the randomization phase, the subjects are randomly placed into one of the four arms of the study set forth below.
After completing the wash out phase, subjects in compliance with the entry criteria undergo twenty four hour ambulatory electrocardigram (ECG) such as Holter monitoring, exercise stress testing such as a treadmill and evaluation of myocardial -31perfusion using PET (photon emission tomography) scanning to establish a baseline for each subject. When conducting a stress test, the speed of the treadmill and the gradient of the treadmill can be controlled by a technician. The speed of the treadmill and the angle of the gradient are generally increased during the test. The time intervals between each speed and gradient increase is generally determined using a modified Bruce Protocol.
After the baseline investigations have been completed, subjects are initiated on one of the following four arms of the study: placebo; atorvastatin (about mg to about 80 mg); an antihypertensive agent (dose is dependent upon the 10 particular antihypertensive agent chosen); or a combination of the above doses of atorvastatin and antihypertensive agent together. It will be recognized by a skilled person that the free base form or other salt forms of amlodipine besylate or the free base form or other salt forms of the statin may be used in this invention. Calculation of the dosage amount for these other forms of the statinand amlodipine besylate is easily accomplished by performing a simple ratio relative to the molecular weights of the species involved. The subjects are then monitored for two to twenty four weeks.
After the monitoring period has ended, subjects will undergo the following investigations: twenty four hour ambulatory ECG, such as Holter monitoring; (2) exercise stress testing treadmill using said modified Bruce Protocol); and (3) evaluation of myocardial perfusion using PET scanning. Patients keep a diary of painful ischemic events and nitroglycerine consumption. It is generally desirable to have an accurate record of the number of anginal attacks suffered by the patient during the duration of the test Since a patient generally takes nitroglycerin to ease the pain of an anginal attack, the number of times that the patient administers nitroglycerine provides a reasonably accurate record of the number of anginal attacks.
To demonstrate the effectiveness and dosage of the drug combination of this invention, the person conducting the test will evaluate the subject using the tests described. Successful treatment will yield fewer instances of ischemic events as detected by ECG, wil allow the subject to exercise longer or at a higher intensity level on the treadmill, or to exercise without pain on the treadmill, or will yield better perfusion or fewer perfusion defects on ultrasound.
-32- The utility of the compounds of the present invention as medical agents in the treatment of hypertension and hyperlipidemia in mammals humans) suffering from a combination of hypertension and hyperlipidemia is demonstrated by the activity of the compounds of this invention in conventional assays and the clinical protocol described below: Effect of Atorvastatin and an Antihypertensive Agent. Alone and in Combination. on the Treatment of Subiects Having Both Hypertension and Hyvpediidemia This study is a double blind, parallel arm, randomized study to show the 10 effectiveness of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent given in combination in controlling both hypertension and hyperlipidemia in subjects who have mild, moderate, or severe hypertension and hyperipidemia.
Each subject is evaluated for 10 to 20 weeks and preferably for 14 weeks.
Sufficient subjects are used in this screen to ensure that about 400 to 800 subjects ee'* are evaluated to complete the study.
ntry criteria: Subjects are male or female adults between 18 and 80 years of age having both hyperiipidemia and hypertension. The presence of hyperlipidemia is evidenced by evaluation of the low density lipoprotein (LDL) level of the subject relative to certain positive risk factors. If the subject has no coronary heart disease (CHD) and has less than two positive,risk factors, then the subject is considered to have hyperipidemia which requires drug therapy if the LDL of the subject is greater than or equal to 190. If the subject has no CHD and has two or more positive risk factors, then the subject is considered to have hyperlipidemia which requires drug therapy if the LDL of the subject is greater than or equal to 160. If the subject has CHD, then the subject is considered to have hyperlipidemia if the LDL of the subject is greater than or equal to 130.
Positive risk factors include male over 45, female over 55 wherein said female is not undergoing hormone replacement therapy (HRT), family history of premature cardiovascular disease, the subject is a current smoker, the subject has diabetes, an HDL of less than 45, and the subject has hypertension. An HDL of greater than 60 is considered a negative risk factor and will offset one of the above mentioned positive risk factors.
-33- The presence of hypertension is evidenced by a sitting diastolic blood pressure (BP) of greater than 90 or sitting systolic BP of greater than 140. All blood pressures are generally determined as the average of three measurements taken five minutes apart Subjects are screened for compliance with the entry criteria set forth above.
After all screening criteria are met, subjects are washed out from their current antihypertensive and lipid lowering medication and are placed on the NCEP ATP II Step 1 diet The NCEP ATP II (adult treatment panel, 2nd revision) Step 1 diet sets forth the amount of saturated and unsaturated fat which can be consumed as a proportion of the total caloric intake. The term "washed out" where used in connection with this screen, means the withdrawal of current antihypertensive and lipid lowering Smedication so that substantially all of said medication is eliminated from the body of the subject Newly diagnosed subjects generally remain untreated until the test begins. These subjects are also placed on the NCEP Step 1 diet After the four week wash out and diet stabilization period, subjects undergo the following baseline S*.i investigations: blood pressure and fasting lipid screen. The fasting lipid screen determines baseline lipid levels in the fasting state of a subject. Generally, the subject abstains from food for twelve hours, at which time lipid levels are measured.
After the baseline investigations are performed subjects are started on one of the following: a fixed dose of an antihypertensive agent, dose dependent upon the particular antihypertensive agent chosen; a fixed dose of atorvastatin, generally about 10 to 80mg; or a combination of the above doses of atorvastatin and an antihypertensive agent together. It will be recognized by a skilled person that the free base form or other salt forms of amlodipine besylate or the free base form or other salt forms of the statin may be used in this invention. Calculation of the dosage amount for these other forms of the statinand amlodipine besylate is easily accomplished by performing a simple ratio relative to the molecular weights of the species involved. Subjects remain on these doses for a minimum of six weeks, and generally for no more than eight weeks. The subjects return to the testing center at the conclusion of the six to eight weeks so that the baseline evaluations can be repeated. The blood pressure of the subject at the conclusion of the study is compared with the blood pressure of the subject upon entry. The lipid screen -34measures the total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, apoB, VLDL (very low density lipoprotein) and other components of the lipid profile of the subject. Improvements in the values obtained after treatment relative to pretreatment values indicate the utility of the drug combination.
The utility of the compounds of the present invention as medical agents in the management of cardiac risk in mammals humans) at risk for an adverse cardiac event is demonstrated by the activity of the compounds of this invention in conventional assays and the clinical protocol described below: Effects of Atorvastatin and an Antihvoertensive Agent. Alone 10 and in Combination. on Subjects at Risk of Future Cardiovascular Events This study is a double blind, parallel arm, randomized study to show the effectiveness of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent given in combination in reducing the overall calculated risk of future events in subjects who are at risk for having future cardiovascular events. This S"risk is calculated by using the Framingham Risk Equation. A subject is considered to be at risk of having a future cardiovascular event if that subject is more than one standard deviation above the mean as calculated by the Framingham Risk Equation.
The study is used to evaluate the efficacy of a fixed combination of atorvastatin or a pharmaceutically acceptable salt thereof and an antihypertensive agent in controlling i cardiovascular risk by controlling both hypertension and hypedipidemia in patients who have both mild to moderate hypertension and hyperlipidemia.
Each subjectis evaluated for 10 to 20 weeks and preferably for 14 weeks.
Sufficient subjects are recruited to ensure that about 400 to 800 subjects are evaluated to complete the study.
Entry criteria: Subjects included in the study are male or female adult subjects between 18 and 80 years of age with a baseline five year risk which risk is above the median for said subject's age and sex, as defined by the Framingham Heart Study, which is an ongoing prospective study of adult men and women showing that certain risk factors can be used to predict the development of coronary heart disease. The age, sex, systolic and diastolic blood pressure, smoking habit, presence or absence of carbohydrate intolerance, presence or absence of left ventricular hypertrophy, serum cholesterol and high density lipoprotein (HDL) of more than one standard deviation above the norm for the Framingham Population are all evaluated in determining whether a patient is at risk for adverse cardiac event The values for the risk factors are inserted into the Framingham Risk equation and calculated to determine whether a subject is at risk for a future cardiovascular event Subjects are screened for compliance with the entry criteria set forth above.
After all screening criteria are met, patients are washed out from their current antihypertensive and lipid lowering medication and any other medication which will impact the results of the screen. The patients are then placed on the NCEP ATP II Step 1 diet, as described above. Newly diagnosed subjects generally remain 10 untreated until the test begins. These subjects are also placed on the NCEP ATP II Step 1 diet After the four week wash out and diet stabilization period, subjects undergo the following baseline investigations: blood pressure; fasting; lipid screen; glucose tolerance test; ECG; and cardiac ultrasound. These tests are carried out using standard procedures well known to persons skilled in the art 15 The ECG and the cardiac ultrasound are generally used to measure the presence or *absence of left ventricular hypertrophy.
After the baseline investigations are performed patients will be started on one .i of the following: a fixed dose of an antihypertensive agent, dose dependent upon the particular antihypertensive agent chosen; a fixed dose of atorvastatin (about 10 to 80mg); or the combination of the above doses of atorvastatin and an antihypertensive agent It will be recognized by a skilled person that the free base form or other salt forms of amlodipine besylate or the free base form or other salt forms of the statin may be used in this invention. Calculation of the dosage amount for these other forms of the statinand amlodipine besylate is easily accomplished by performing a simple ratio relative to the molecular weights of the species involved.
Patients are kept on these doses and are asked to return in six to eight weeks so that the baseline evaluations can be repeated. At this time the new values are entered into the Framingham Risk equation to determine whether the subject has a lower, greater or no change in the risk of future cardiovascular event The above assays demonstrating the effectiveness of amodipine or pharmaceutically acceptable acid addition salts thereof and atorvastatin or pharmaceutically acceptable salts thereof in the treatment of angina pectoris, atherosclerosis, hypertension and hyperlipidemia together, and the management of -36cardiac risk, also provide a means whereby the activities of the compounds of this invention can be compared between themselves and with the activities of other known compounds. The results of these comparisons are useful for determining dosage levels in mammals, including humans, for the treatment of such diseases.
The following dosage amounts and other dosage amounts set forth elsewhere in this specification and in the appendant claims are for an average human subject having a weight of about 65 kg to about 70 kg. The skilled practitioner will readily be able to determine the dosage amount required for a subject whose weight falls *outside the 65 kg to 70 kg range, based upon the medical history of the subject and 10 the presence of diseases, diabetes, in the subject All doses set forth herein, and in the appendant daims, are daily doses.
"In general, in accordance with this invention, the below-listed antihypertensive agent is administered in the following dosage amounts: diltiazem, generally about 120 mg to about 480 mg; verapamil, generally about 20 mg to about 48 mg; felodipine, generally about 2.5mg to about 40 mg; israfelodipine, generally about 2.5 mg to about 40 mg; .sradipine, generally about 2.5 mg to about 40 mg; lacidipine, generally about I mg to about 6 mg; nicardipine, generally about 32 mg to about 120 mg; nifedipine, generally about 10 mg to about 120 mg; :i nimodipine, generally about 10 mg to about 80 mg; nitrendipine, generally about 5 mg to about 20 mg; benazepril, generally about 10 mg to about 80 mg; captopril, generally about 50 mg to about 150 mg; enalapril, generally about 5 mg to about 40 mg; fosinopril, generally about 10 mg to about 80 mg; lisinopril, generally about 10 mg to about 80 mg; -37quinapril, generally about 10 mg to about 80 mg; losartan, generally about 25 mg to about 100 mg; valsartan, generally about 40 mg to about 640 mg; doxazosin, generally about 0.5 mg to about 16 mg; prazosin, generally about 1 mg to about 40 mg; trimazosin, generally about 1 mg to about 20 mg; and amiloride, generally about 5 mg to about 20 mg.
It will be recognized by those skilled in the art that dosages for the above antihypertensive compounds must be individualized to each specific subject This 10 iindividuarization will depend upon the medical history of the subject and whether the subject is concurrently taking other medications which may or may not interfere or have an adverse effect in combination with the above antihypertensives.
Individualization is then achieved by beginning with a low dose of the compound and titrating the amount up until the desired therapeutic effect is achieved.
In general, in accordance with this invention, atorvastatin calcium is generally administered in a dosage of about 2.5 mg to about 160 mg. Preferably, atorvastatin calcium is administered in a dosage of about 10 mg to about 80 mg.
The compounds of the present invention are generally administered in the form of a pharmaceutical composition comprising at least one of the compounds of this invention together with a pharmaceutically acceptable carrier or diluent. Thus, i the compounds of this invention can be administered either individually or together in any conventional oral, parenteral or transdermal dosage form.
For oral administration a pharmaceutical composition can take the form of solutions, suspensions, tablets, pills, capsules, powders, and the like. Tablets containing various excipients such as sodium citrate, calcium carbonate and calcium phosphate are employed along with various disintegrants such as starch and preferably potato or tapioca starch and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia.
Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the compounds of this invention can be combined with various sweetening agents, flavoring agents, coloring agents, emulsifying agents and/or suspending agents, as well as such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
The combination of this invention may also be adminstered in a controlledrelease dosage formulation such as a slow release or a fast release formulation.
Such controlled release dosage formulations of the combination of this invention may be prepared according to methods well known to those skilled in the art. The method of administration will be determined by the attendant physician after an evaluation of 10 the subject's condition and requirements.
For purposes of parenteral administration, solutions in sesame or peanut oil or in aqueous propylene glycol can be employed, as well as sterile aqueous solutions of the corresponding water-soluble salts. Such aqueous solutions may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection purposes. In this connection, the sterile aqueous media employed are all readily obtainable by standard techniques well-known to those skilled in the art.
Methods of preparing various pharmaceutical compositions with a certain amount of-active ingredient are known, or will be apparent in light of this disclosure, to those skilled in this art. For examples, see Remington's Pharmaceutical Sciences.
S.Mack Publishing Company, Easter, Pa., 15th Edition (1975).
Pharmaceutical compositions according to the invention may contain 0.1%of the compound(s) of this invention, preferably In any event, the composition or formulation to be administered will contain a quantity of a compound(s) according to the invention in an amount effective to treat the condition or disease of the subject being treated.
Since the present invention relates to the treatment of diseases and conditions with a combination of active ingredients which may be administered separately,, the invention also relates to combining separate pharmaceutical compositions in kit form. The kit includes two separate pharmaceutical compositions: an antihypertensive agent or a pharmaceutically acceptable salt thereof, wherein said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof and atorvastatin or a pharmaceutically acceptable salt thereof.
The kit includes container means for containing the separate compositions such as a divided bottle or a divided foil packet however, the separate compositions may also be contained within a single, undivided container. Typically the kit includes directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
10 It should be understood that the invention is not limited to the particular embodiments described herein, but that various changes and modifications may be made without departing from the spirit and scope of this novel concept as defined by the following claims.
e

Claims (40)

1. A pharmaceutical composition comprising: a. an amount of atorvastatin or a pharmaceutically acceptable salt thereof; b. an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof, and c. a pharmaceutically acceptable carrier or diluent; 10 provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
2. A pharmaceutical composition of claim 1 wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-II .antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker. .i 3. A pharmaceutical composition of claim 2 comprising the hemicalcium salt of atorvastatin.
4. A pharmaceutical composition of claim 3 wherein said Santihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, diltiazem, mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine, hitrendipine or felodipine or a pharmaceutically acceptable salt of said calcium channel blocker. A pharmaceutical composition of claim 4 wherein said calcium channel blocker is felodipine, nifedipine or a pharmaceutically acceptable salt thereof.
6. A pharmaceutical composition of claim 3 wherein said antihypertensive agent is an A-ll antagonist, said A-ll antagonist being losartan, irbesartan or valsartan or a pharmaceutically acceptable salt of said A-li antagonist
7. A pharmaceutical composition of claim 3 wherein said antihypertensive agent is a diuretic, said diuretic being amiloride, bendroflumethiazide or a pharmaceutically acceptable salt thereof.
8. A pharmaceutical composition of claim 3 wherein said antihypertensive agent is a beta-adrenergic receptor blocker, said beta-adrenergic receptor blocker being carvedilol or a pharmaceutically acceptable salt thereof. a .r.l .rri -41-
9. A pharmaceutical composition of claim 3 wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, capopril, enalapril, fosinopril, lisinopril, perindopril, quinapril, trandolapnl or a pharmaceutically acceptalbe salt thereof.
10. A pharmaceutical composition of claim 3 wherein said antihypertensive agent is an alpha-adrenergic receptor blocker, said alpha-adrenergic receptor blocker being doxazosin, prazosin, trimazosin or a pharmaceutically acceptable salt thereof.
11. A first pharmaceutical composition for use with a second 10 pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the sum of the therapeutic effect achieved by administering said first and second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of an antiphypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent; provided that said antihypertensive S agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
12. A pharmaceutical composition of claim 11 wherein said 20 antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
13. A pharmaceutical composition of claim 12 wherein said second pharmaceutical composition comprises the hemicalcium salt of atorvastatin.
14. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, dittiazem, mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimoldipine, nisoldipine, nitrendipine or felodipine. A pharmaceutical composition of claim 14 wherein said calcium channel blocker is felodipine or nifedipine.
16. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is an A-II antagonist, said A-II antagonist being losartan, irbesartan or valsartan.
17. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is a diuretic, said diuretic being amiloride or bendroflumethiazide.
18. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is a beta-adrenergic receptor blocker, said beta-adrenergic receptor blocker being carvedilol. 10 19. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, captopril, enalapril, fosinopril, lisinopril, perindopril, quinapril or trandolapril. A pharmaceutical composition of claim 13 wherein said antihypertensive agent is an alpha-adrenergic receptor blocker, said alpha blocker 15 being doxazosin, prazosin or trimazosin.
21. A first pharmaceutical composition for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the sum of the therapeutic effect achieved by administering said first and second pharmaceutical compositions separately and 20 which second pharmaceutical composition comprises an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of atorvastatin agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent; provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
22. A pharmaceutical composition of claim 21 wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
23. A pharmaceutical composition of claim 22 comprising the hemicalcium salt of atorvastatin. L i^ r-l r I- L-l ^I 11' 1- -43-
24. A pharmaceutical composition of claim 23 wherein said antihypertensive agent is a calcium channel blocker, said calcium channel blocker being verapamil, diltiazem, mibefradil, isradipine, lacidipine, nicardipine, nifedipine, nimodipine, nisoldipine, nitrendipine or felodipine.
25. A pharmaceutical composition of claim 24 wherein said calcium channel blocker is felodipine or nifedipine.
26. A pharmaceutical composition of claim 23 wherein said antihypertensive agent is an A-ll antagonist, said A-ll antagonist being losartan irbesartan or valsartan. 10 27. A pharmaceutical composition of claim 23 wherein said antihypertensive agent is a diuretic, said diuretic being amiloride or bendroflumethiazide.
28. A pharmaceutical composition of claim 23 wherein said antihypertensive agent is a beta-adrenergic receptor blocker, said beta-adrenergic 15 receptor blocker being carvedilol.
29. A pharmaceutical composition of claim 23 wherein said antihypertensive agent is an ACE inhibitor, said ACE inhibitor being benazepril, captopril, enalapril, fosinopril, lisinopril, perindopril, quinapril or trandolapril. A pharmaceutical composition of claim 23 wherein said 20 antihypertensive agent is an alpha-adrenergic receptor blocker, said alpha blocker being doxazosin, prazosin or trimazosin.
31. A pharmaceutical composition of claim 11 wherein said therapeutic effect is antianginal; antiatherosclerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management
32. A pharmaceutical composition of claim 13 wherein said therapeutic effect is antianginal; antiatherosclerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management
33. A pharmaceutical composition of claim 21 wherein said therapeutic effect is antianginal; antiatheroscerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management I J -r I 1 I -44-
34. A pharmaceutical composition of claim 23 wherein said therapeutic effect is antianginal; antiatheroscerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management A first pharmaceutical composition for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the therapeutic effect achieved by administering said first or second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of atorvastatin or a S* pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or 10 diluent, said first pharmaceutical composition comprising an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acd addition salt thereof.
36. A pharmaceutical composition of claim 35 wherein said 15 antihypertensive agent is a calcum channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
37. A pharmaceutical composition of claim 36 wherein said second pharmaceutical composition comprises the hemicalcium salt of atorvastatin.
38. A pharmaceutical composition of claim 35 wherein said therapeutic effect is antianginal; antiatheroscerotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management
39. A pharmaceutical composition of claim 37 wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management A first pharmaceutical composition for use with a second pharmaceutical composition for achieving a therapeutic effect in a mammal in need thereof, which effect is greater than the therapeutic effect achieved by administering said first or second pharmaceutical compositions separately and which second pharmaceutical composition comprises an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, said first pharmaceutical composition comprising an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
41. A pharmaceutical composition of claim 40 wherein said antihypertensive agent is a calcium channel blocker, an ACE inhibitor, an A-ll antagonist, a diuretic, a beta-adrenergic receptor blocker or an alpha-adrenergic receptor blocker.
42. A pharmaceutical composition of claim 41 comprising the hemicalcium S: salt of atorvastatin.
43. A pharmaceutical composition of claim 40 wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is effective for cardiac risk management
44. A pharmaceutical composition of claim 42 wherein said therapeutic effect is antianginal; antiatherosderotic; antihypertensive and hypolipidemic; or is 15 effective for cardiac risk management A kit for achieving a therapeutic effect in a mammal comprising: a an amount of atorvastatin or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent in a first unit dosage form; S 20 b. an amount of an antihypertensive agent or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent in a second unit dosage form; and c. container means for containing said first and second dosage forms, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
46. A kit of claim 45 comprising the hemicalcium salt of atorvastatin.
47. A method for treating a mammal in need of therapeutic treatment comprising administering to said mammal an amount of a first compound, said first compound being atorvastatir\ or a pharmaceutically acceptable salt thereof; and an amount of a second compound, said second compound being an antihypertensive agent or a pharmaceutically acceptable salt thereof; I wherein said first compound and said second compound are each optionally and independently administered together with a pharmaceutically acceptable carrier or diluent, provided that said antihypertensive agent is not amlodipine or a pharmaceutically acceptable acid addition salt thereof.
48. A method of claim 47 comprising the hemicalcium salt of atorvastatin.
49. A method of claim 47 wherein said therapeutic treatment comprises antihypertensive and antihyperlipidemic treatment. A method of claim 47 wherein said therapeutic treatment comprises antianginal treatment. 10 51. A method of claim 47 wherein said therapeutic treatment comprises cardiac risk management.
52. A method of claim 47 wherein said therapeutic treatment comprises the treatment of atherosclerosis. Dated 1 February, 2002 Pfizer Inc. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON **ao [R:\LIBA]4634.doc:mef iF -Ii) i I i I 1' r- ;1 i;l i. 11
AU14783/02A 1997-08-29 2002-02-01 Combination therapy comprising atorvastatin and an antihypertensive agent Ceased AU784119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14783/02A AU784119B2 (en) 1997-08-29 2002-02-01 Combination therapy comprising atorvastatin and an antihypertensive agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/057276 1997-08-29
AU84589/98A AU740424B2 (en) 1997-08-29 1998-08-11 Combination therapy comprising atorvastatin and an antihypertensive agent
AU14783/02A AU784119B2 (en) 1997-08-29 2002-02-01 Combination therapy comprising atorvastatin and an antihypertensive agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU84589/98A Division AU740424B2 (en) 1997-08-29 1998-08-11 Combination therapy comprising atorvastatin and an antihypertensive agent

Publications (2)

Publication Number Publication Date
AU1478302A true AU1478302A (en) 2002-03-21
AU784119B2 AU784119B2 (en) 2006-02-09

Family

ID=36032181

Family Applications (1)

Application Number Title Priority Date Filing Date
AU14783/02A Ceased AU784119B2 (en) 1997-08-29 2002-02-01 Combination therapy comprising atorvastatin and an antihypertensive agent

Country Status (1)

Country Link
AU (1) AU784119B2 (en)

Also Published As

Publication number Publication date
AU784119B2 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
AU740424B2 (en) Combination therapy comprising atorvastatin and an antihypertensive agent
EP1003503B1 (en) Therapeutic combinations comprising amlodipin and atorvastatin
AP1207A (en) Combination therapy.
UA56363C2 (en) a mutual salt of amlodipine and atorvastatin, a pharmaceutical composition and a method for treatment (variants)
US20070149578A1 (en) Combination Therapy
US20050261275A1 (en) Therapeutic combination
AU784119B2 (en) Combination therapy comprising atorvastatin and an antihypertensive agent
EP1514543A1 (en) Combination therapy comprising atorvastatin and an antihypertensive agent
CZ2000342A3 (en) Combination therapy comprising atorvastatin and antihypertensive agent
MXPA02009662A (en) Antihypertensive agents and use.
US20030225123A1 (en) Antihypertensive agents and use
MXPA00002085A (en) Combination therapy comprising amlodipine and a statin compound
MXPA00002087A (en) Therapeutic combinations comprising amlodipin and atorvastatin
MXPA00002105A (en) Antihyperlipidemic statin-lp(a) inhibitor combinations
EP1481962A1 (en) New cholesterolemia-lowering carboxyalkylether compound