AT6752U1 - REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM - Google Patents
REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM Download PDFInfo
- Publication number
- AT6752U1 AT6752U1 AT0039303U AT3932003U AT6752U1 AT 6752 U1 AT6752 U1 AT 6752U1 AT 0039303 U AT0039303 U AT 0039303U AT 3932003 U AT3932003 U AT 3932003U AT 6752 U1 AT6752 U1 AT 6752U1
- Authority
- AT
- Austria
- Prior art keywords
- exhaust gas
- regeneration
- gas aftertreatment
- aftertreatment system
- cylinder
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features
- F01N13/14—Exhaust or silencing apparatus characterised by constructional features having thermal insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
- F01N13/102—Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/04—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
- F01N3/043—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
- F01N3/046—Exhaust manifolds with cooling jacket
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D17/00—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
- F02D17/02—Cutting-out
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D17/00—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
- F02D17/02—Cutting-out
- F02D17/023—Cutting-out the inactive cylinders acting as compressor other than for pumping air into the exhaust system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
- F02D41/123—Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Regeneration eines Abgasnachbehandlungssystems einer Dieselbrennkraftmaschine mit direkter Einspritzung, wobei die Regeneration durch eine motorinterne Maßnahme in Abhängigkeit der Temperaturen des Abgasnachbehandlungssystems eingeleitet wird. Um Kraftstoffverbrauchnachteile und erhöhten Eintrag von Kraftstoff ins Motoröl während der Regeneration zu vermeiden, wird vorgeschlagen, dass zur Einleitung und Durchführung der Regeneration a) die interne Motorlast erhöht wird, wenn die Temperatur des Abgasnachbehandlungssystems geringer ist als eine definierte Regenerationstemperatur, b) bei Erreichen der Regenerationstemperatur des Abgasnachbehandlungssystems der Einspritzzeitpunkt und/oder die Steuerzeit zumindest eines Gaswechselventils zumindest eines Zylinders so verstellt wird, dass eine Entzündung des eingespritzten Kraftstoffes nicht möglich ist, so dass der unverbrannte Kraftstoff dem Abgasnachbehandlungssystem vorgelagert wird, c) nach Erreichen der Regenerationstemperatur des Abgasnachbehandlungssystems in zumindest einem Zylinder die Kraftstoffeinspritzung abgeschaltet und der Zylinder als Luftfördereinrichtung für das Abgasnachbehandlungssystem betrieben wird.The invention relates to a method for the regeneration of an exhaust gas aftertreatment system of a diesel internal combustion engine with direct injection, the regeneration being initiated by an internal engine measure depending on the temperatures of the exhaust gas aftertreatment system. In order to avoid fuel consumption disadvantages and increased entry of fuel into the engine oil during regeneration, it is proposed that a) the internal engine load is increased to initiate and carry out the regeneration if the temperature of the exhaust gas aftertreatment system is lower than a defined regeneration temperature, b) when the regeneration temperature is reached Regeneration temperature of the exhaust gas aftertreatment system, the time of injection and / or the control time of at least one gas exchange valve of at least one cylinder is adjusted such that ignition of the injected fuel is not possible, so that the unburned fuel is stored upstream of the exhaust gas aftertreatment system, c) after the regeneration temperature of the exhaust gas aftertreatment system has been reached in at least one cylinder, the fuel injection is switched off and the cylinder is operated as an air delivery device for the exhaust gas aftertreatment system.
Description
<Desc/Clms Page number 1>
Die Erfindung betrifft ein Verfahren zur Regeneration eines Abgasnachbehand- lungssystems einer Dieselbrennkraftmaschine mit direkter Einspritzung, wobei die Regeneration durch eine motorinterne Massnahme in Abhängigkeit der Tem- peraturen des Abgasnachbehandlungssystems eingeleitet wird.
Die Einleitung der Regeneration von Abgasnachbehandlungssystemen bei schnell laufenden direkt einspritzenden Dieselmotoren erfolgt durch Erhöhung der Ab- gastemperatur mit motorinternen Massnahmen, wie z.B. durch Ansaugluftdros- selung, gegebenenfalls durch Ladedruckabsenkung, und insbesondere durch ein oder mehrere sogenannte Nacheinspritzungen des Kraftstoffes, also durch Kraft- stoffzugaben nach der eigentlichen Haupteinspritzung. Diese Nacheinspritzung des Kraftstoffes findet in der Regel nach Überschreiten des oberen Totpunktes der Zündung statt.
Zur Sicherstellung der zur Regeneration notwendigen Abgastemperatur bei nied- riger Last und Drehzahl sind hohe Nacheinspritzmengen bei sehr späten Zeit- punkten erforderlich. Dies führt zu drastisch verschlechterten Abgasrohemissio- nen, starken Kraftstoffverbrauchsnachteilen, sowie zu erheblichen Eintrag von Kraftstoff in das Motoröl. Des weiteren führt starkes Androsseln bzw. Absenkung des Ladedruckes bei Turbomotoren zu schlechtem Ansprechverhalten und ver- minderter Fahrdynamik.
Die US 6,412,276 Bl offenbart ein System zur Regeneration eines Partikelfilters einer Dieselbrennkraftmaschine, welches vorsieht, dass in zumindest einen Zy- linder während eines Expansionshubes Kraftstoff eingespritzt wird, um ein An- steigen der Abgastemperatur zu erreichen.
Auch die US 2003/0056498 A1 beschreibt ein Verfahren zur Regeneration eines Partikelfilters einer Dieselbrennkraftmaschine, bei dem die Temperaturerhöhung des Abgasstranges durch eine Kraftstoffnacheinspritzung erreicht wird. -Eine zu- sätzliche Nacheinspritzung zur Erhöhung der Temperatur des Abgases für die Einleitung der Regeneration eines Partikelfilters einer Dieselbrennkraftmaschine ist auch aus der WO 96/03571 A1 bekannt.
Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden und ein Verfahren zur Regeneration von Abgasnachbehandlungssystemen vorzuschlagen, mit welchen Kraftstoffverbrauchsnachteile und ein -Eintrag von Kraftstoff in das Motoröl weitestgehend vermieden werden kann.
<Desc/Clms Page number 2>
Erfindungsgemäss wird dies dadurch erreicht, dass zur Einleitung und Durchfüh- rung der Regeneration a) die interne Motorlast erhöht wird, wenn die Temperatur des Abgas- nachbehandlungssystems geringer ist, als eine definierte Regenera- tionstemperatur, b) bei Erreichen der Regenerationstemperatur des Abgasnachbehand- lungssystems der Einspritzzeitpunkt und/oder die Steuerzeit zumin- dest eines Gaswechselventils zumindest eines Zylinders so verstellt wird, dass eine Entzündung des eingespritzten Kraftstoffes nicht möglich ist, so dass der unverbrannte Kraftstoff dem Abgasnachbe- handlungssystem vorgelagert wird, c) nach Erreichen der Regenerationstemperatur des Abgasnachbe- handlungssystems in zumindest einem Zylinder die Kraftstoffein- spritzung abgeschaltet und der Zylinder als Luftfördereinrichtung für das Abgasnachbehandlungssystem betrieben wird.
Zur Erhöhung der internen Motorlast in Schritt a) kann die Steuerung der Gas- wechselventile derart durchgeführt werden, dass maximale ,Verdichtungsarbeit erzeugt wird. Dies kann beispielsweise durch zeitweises Nichtöffnen des oder der Auslassventile erreicht werden. Vorzugsweise ist dabei vorgesehen, dass in dem maximale Verdichtungsarbeit leistenden Zylinder die Kraftstoffeinspritzung aus- gesetzt wird. Dadurch wird erhöhter Kraftstoffverbrauch vermieden. Um erhöh- ten Eintrag von Kraftstoff in das Motoröl zu verhindern, ist es besonders vorteil- haft, wenn ein oder mehrere Zylinder alternierend mit normaler und erhöhter interner Motorlast betrieben werden.
Zur Einleitung der Regeneration wird insbesondere bei niedrigen Lasten und im niedrigen Drehzahlbereich, die interne Motorlast erhöht. Hierzu wird, insbeson- dere in wenig dynamischen bzw. in stationären Fahrzuständen, einem Algorith- mus folgend, die Anzahl der Einspritzungen pro Zylinder derart appliziert, dass z. B. Bei einen 4-Zylinder-Viertaktmotor nicht alle 720 Kurbelwinkel eingespritzt wird, sondern kennfeldabhängig in geraden bzw. ungeraden Vielfachen von 720 .
Zur Aufrechterhaltung eines bestimmten Motorlast-Drehzahlzustandes wird die durch das Aussetzen einer Einspritzung benötigte Einspritzmasse kompensiert.
Die Berechnung der Korrektureinspritzmassen erfolgt hierzu mittels frei appli- zierbarer Kennfelder. Gleichzeitig wird bei demjenigen Zylinder, bei dem nicht eingespritzt wird, die Steuerzeit der Gaswechselventile derart modifiziert, dass maximale Verdichtungsarbeit erzeugt wird. Dies geschieht beispielsweise durch zeitweises Nichtöffnen zumindest eines Auslassventils. Durch die Kompensation
<Desc/Clms Page number 3>
der Einspritzmasse nach vorangegangener Aussetzung der Einspritzung des Vor- läufer-Zylinders und durch die Anhebung der Verdichtungsarbeit wird bei glei- chem effektiven Mitteldruck der indizierte Mitteldruck erhöht, wodurch die Ab- gastemperatur auch ohne Nacheinspritzung angehoben werden kann.
Weist das Abgasnachbehandlungssystem die gewünschte Regenerationstempe- ratur auf, so wird in einzelnen Zylindern und/oder einzelnen Zyklen der Zylinder
Kraftstoff unter solchen Bedingungen eingespritzt, dass eine Selbstzündung aus- geschlossen werden kann. Dies kann durch entsprechende Wahl der Steuerzeiten oder des Einspritzzeitpunktes erreicht werden, etwa indem eine geringe Kraft- stoffmasse unterhalb der Selbstzündungsbedingungen eingespritzt wird und gleichzeitig zumindest ein Auslassventil kurz nach dem oberen Totpunkt der
Zündung geöffnet wird. Dadurch wird erreicht, dass die eingespritzte Kraftstoff- masse sich nicht entzündet und als unverbrannter Kohlenwasserstoff dem Ab- gasnachbehandlungssystem zur Einleitung einer exothermen Reaktion zur Verfü- gung steht.
Durch das Druckgefälle wird die zur Kohlenwasserstoff-Erzeugung eingespritzte Kraftstoffmasse direkt auslassseitig abgeführt. Der Eintrag von
Kraftstoff ins Motoröl ist bei gleichem Kohlenwasserstoff-Bereitstellungsgrad ge- genüber der konventionellen Methode mittels Nacheinspritzung deutlich verrin- gert.
Nach Initiierung der exothermen Reaktion - nach "Zünden" beispielsweise einer
Partikelfilterbeladung - ist die Zufuhr von zusätzlichen Kohlenwasserstoffen zur
Regenerationsunterstützung nicht mehr notwendig. Um den Abbrennvorgang aufrecht zu erhalten, muss aber ausreichend Sauerstoff für die Regeneration zur Verfügung stehen. Um dies zu erreichen, wird gemäss dem Verfahrensschritt c) zumindest ein Zylinder zeitweise als Luftfördereinrichtung betrieben. Dabei wird in diesem Zylinder die Kraftstoffeinspritzung abgeschaltet und die Steuerzeiten gleichzeitig so angepasst, dass nach der erfolgten Kohlenwasserstoffanlagerung nach Verfahrensschritt b) der zur exothermen Reaktion benötigte Sauerstoff ex- akt bereitgestellt wird. Dies gelingt insbesondere durch Optimieren der Auslass- öffnungszeiten für die Luftförderung.
In diesem Zylinder findet also keine Verbrennung statt, wodurch der Sauerstoffgehalt in der Zylinderfüllung vollstän- dig erhalten bleibt. Auch in Kennfeldbereichen mit konventionell geringem Sauer- stoffrestgehalt kann die zur Bereitstellung einer optimalen exothermen Reaktion benötigte Sauerstoffmenge zugemessen werden. Die Abgastemperatur nach dem Abgasnachbehandlungssystem wird deutlich angehoben, Emissionsdurchbrüche nach dem Abgasnachbehandlungssystem werden deutlich minimiert.
Das erfindungsgemässe Verfahren ist für Abgasnachbehandlungssysteme mit Ka- talysatoren und Partikelfiltern geeignet.
<Desc / Clms Page number 1>
The invention relates to a method for regeneration of an exhaust gas aftertreatment system of a diesel internal combustion engine with direct injection, the regeneration being initiated by an internal engine measure depending on the temperatures of the exhaust gas aftertreatment system.
The regeneration of exhaust gas aftertreatment systems in high-speed, direct-injection diesel engines is initiated by increasing the exhaust gas temperature using internal engine measures, such as by intake air throttling, if necessary by lowering the boost pressure, and in particular by one or more so-called post-injections of the fuel, that is to say by adding fuel after the actual main injection. This post-injection of the fuel usually takes place after the top dead center of the ignition has been exceeded.
To ensure the exhaust gas temperature required for regeneration at low load and speed, high post-injection quantities are required at very late times. This leads to drastically worsened exhaust gas emissions, severe fuel consumption disadvantages, as well as considerable entry of fuel into the engine oil. Furthermore, strong throttling or lowering of the boost pressure in turbo engines leads to poor responsiveness and reduced driving dynamics.
US Pat. No. 6,412,276 B1 discloses a system for the regeneration of a particle filter of a diesel internal combustion engine, which provides that fuel is injected into at least one cylinder during an expansion stroke in order to achieve an increase in the exhaust gas temperature.
US 2003/0056498 A1 also describes a method for the regeneration of a particle filter of a diesel internal combustion engine, in which the temperature increase of the exhaust line is achieved by means of post-injection of fuel. An additional post-injection to increase the temperature of the exhaust gas for initiating the regeneration of a particle filter of a diesel internal combustion engine is also known from WO 96/03571 A1.
The object of the invention is to avoid the disadvantages mentioned and to propose a method for the regeneration of exhaust gas aftertreatment systems by means of which fuel consumption disadvantages and an introduction of fuel into the engine oil can be largely avoided.
<Desc / Clms Page number 2>
According to the invention, this is achieved in that for initiating and carrying out the regeneration a) the internal engine load is increased if the temperature of the exhaust gas aftertreatment system is lower than a defined regeneration temperature, b) when the regeneration temperature of the exhaust gas aftertreatment system is reached the injection timing and / or the control time of at least one gas exchange valve of at least one cylinder is adjusted such that ignition of the injected fuel is not possible, so that the unburned fuel is stored upstream of the exhaust gas aftertreatment system, c) after the regeneration temperature of the exhaust gas aftertreatment has been reached handling system in at least one cylinder, the fuel injection is switched off and the cylinder is operated as an air delivery device for the exhaust gas aftertreatment system.
To increase the internal engine load in step a), the gas exchange valves can be controlled in such a way that maximum compression work is generated. This can be achieved, for example, by temporarily not opening the exhaust valve or valves. It is preferably provided that the fuel injection is suspended in the cylinder performing the maximum compression work. This avoids increased fuel consumption. In order to prevent increased entry of fuel into the engine oil, it is particularly advantageous if one or more cylinders are operated alternately with normal and increased internal engine load.
To initiate regeneration, the internal engine load is increased, especially at low loads and in the low speed range. For this purpose, especially in less dynamic or stationary driving conditions, following an algorithm, the number of injections per cylinder is applied in such a way that, for example, B. In the case of a 4-cylinder four-stroke engine, not all 720 crank angles are injected, but, depending on the map, in even or odd multiples of 720.
In order to maintain a certain engine load speed state, the injection mass required by the suspension of an injection is compensated.
For this purpose, the correction injection masses are calculated using freely applicable maps. At the same time, the control time of the gas exchange valves is modified in such a cylinder in which no injection takes place in such a way that maximum compression work is generated. This is done, for example, by temporarily not opening at least one outlet valve. By compensation
<Desc / Clms Page number 3>
of the injection mass after the preceding suspension of the injection of the precursor cylinder and by increasing the compression work, the indicated mean pressure is increased at the same effective mean pressure, as a result of which the exhaust gas temperature can be raised even without post-injection.
If the exhaust gas aftertreatment system has the desired regeneration temperature, the cylinder becomes in individual cylinders and / or individual cycles
Fuel is injected under conditions such that auto-ignition can be ruled out. This can be achieved by appropriate selection of the control times or the injection timing, for example by injecting a small fuel mass below the auto-ignition conditions and at the same time at least one exhaust valve shortly after top dead center
Ignition is opened. This ensures that the injected fuel mass does not ignite and is available as an unburned hydrocarbon for the exhaust gas aftertreatment system to initiate an exothermic reaction.
Due to the pressure drop, the fuel mass injected for hydrocarbon generation is discharged directly on the outlet side. The entry of
Fuel in the engine oil is significantly reduced compared to the conventional method by means of post-injection with the same level of hydrocarbon availability.
After initiation of the exothermic reaction - after "ignition", for example, one
Particulate filter loading - is the supply of additional hydrocarbons
Regeneration support is no longer necessary. To maintain the burning process, sufficient oxygen must be available for regeneration. To achieve this, according to method step c) at least one cylinder is operated temporarily as an air delivery device. In this cylinder, the fuel injection is switched off and the control times are adjusted at the same time so that after the hydrocarbon has been deposited after process step b), the oxygen required for the exothermic reaction is provided exactly. This is achieved in particular by optimizing the outlet opening times for air transport.
There is therefore no combustion in this cylinder, which means that the oxygen content in the cylinder filling is completely retained. Even in map areas with conventionally low residual oxygen content, the amount of oxygen required to provide an optimal exothermic reaction can be measured. The exhaust gas temperature after the exhaust gas aftertreatment system is raised significantly, emission breakthroughs after the exhaust gas aftertreatment system are significantly minimized.
The method according to the invention is suitable for exhaust gas aftertreatment systems with catalysts and particle filters.
Claims (4)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0039303U AT6752U1 (en) | 2003-06-05 | 2003-06-05 | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
| DE112004000590T DE112004000590D2 (en) | 2003-04-10 | 2004-04-01 | Internal combustion engine |
| PCT/AT2004/000115 WO2004090297A2 (en) | 2003-04-10 | 2004-04-01 | Internal combustion engine comprising an exhaust gas aftertreatment device in the exhaust tract |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0039303U AT6752U1 (en) | 2003-06-05 | 2003-06-05 | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AT6752U1 true AT6752U1 (en) | 2004-03-25 |
Family
ID=31192731
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT0039303U AT6752U1 (en) | 2003-04-10 | 2003-06-05 | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT6752U1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007036351A1 (en) * | 2005-09-29 | 2007-04-05 | Fev Motorentechnik Gmbh | Method for the operation of an internal combustion engine comprising a particulate filter |
| CN102269063A (en) * | 2010-06-01 | 2011-12-07 | 通用汽车环球科技运作有限责任公司 | System and method for controlling exhaust gas recirculation systems |
-
2003
- 2003-06-05 AT AT0039303U patent/AT6752U1/en not_active IP Right Cessation
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007036351A1 (en) * | 2005-09-29 | 2007-04-05 | Fev Motorentechnik Gmbh | Method for the operation of an internal combustion engine comprising a particulate filter |
| CN102269063A (en) * | 2010-06-01 | 2011-12-07 | 通用汽车环球科技运作有限责任公司 | System and method for controlling exhaust gas recirculation systems |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE102013013620B4 (en) | Spark ignition direct injection engine, control means therefor, method of controlling an engine and computer program product | |
| DE102014013880B4 (en) | Compression ignition engine, control device for an engine, method for controlling a fuel cut and computer program product | |
| DE10359693B4 (en) | exhaust aftertreatment | |
| DE102013013619B4 (en) | Spark ignition direct injection engine, method of controlling a spark ignition direct injection engine, and computer program product | |
| DE112014004936B4 (en) | Control device for compression ignition engine | |
| DE102014013884B4 (en) | Compression ignition engine, control apparatus therefor, method of controlling an engine and computer program product | |
| DE112018003420T5 (en) | DYNAMIC CHARGE COMPRESSION IGNITION ENGINE WITH SEVERAL POST-TREATMENT SYSTEMS | |
| WO2012045452A2 (en) | Operational method with water injection | |
| DE102013014412A1 (en) | Spark ignition direct injection engine, method of operating a spark ignition direct injection engine and computer program product | |
| DE102011109336A1 (en) | Diesel engine and method of controlling the same | |
| DE102014200057A1 (en) | A method of reducing particulate emissions from a spark-ignition internal combustion engine | |
| DE102013014430A1 (en) | Spark ignition direct injection engine, method of controlling the same and computer program product | |
| DE102014017163B4 (en) | Gasoline direct injection engine, method of controlling an engine and computer program product | |
| DE10250121A1 (en) | Method for increasing the temperature in an exhaust gas aftertreatment device | |
| DE102016010309B4 (en) | Direct injection internal combustion engine, control device for such an engine, method for controlling an engine and computer program product | |
| DE102013013527A1 (en) | SPARK IGNITION DIRECT INJECTION ENGINE | |
| DE102016008916B4 (en) | Premixed charge compression ignition engine, controller therefor, method of controlling an engine and computer program product | |
| DE102013209236A1 (en) | MOTOR SYSTEM AND METHOD FOR OPERATING A MOTOR WITH DIRECT INJECTION | |
| DE102009007764A1 (en) | Method for operating an internal combustion engine with an emission control system | |
| DE102017208857A1 (en) | Method for operating an internal combustion engine, internal combustion engine and motor vehicle | |
| EP1682754B1 (en) | Multi-cylinder internal combustion engine and method for the operation thereof | |
| DE102011084545B4 (en) | Method for reducing the particle emission of a spark-ignition internal combustion engine with direct injection and an internal combustion engine for carrying out such a method | |
| EP1612392B1 (en) | Method for operating a combustion engine | |
| DE112005002669B4 (en) | Air management strategy for a self-ignition in a compression ignition engine | |
| AT6752U1 (en) | REGENERATION OF AN EXHAUST GAS TREATMENT SYSTEM |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM01 | Lapse because of not paying annual fees |
Effective date: 20120630 |