AT521679B1 - Method for operating a hybrid electric vehicle - Google Patents

Method for operating a hybrid electric vehicle Download PDF

Info

Publication number
AT521679B1
AT521679B1 ATA50907/2018A AT509072018A AT521679B1 AT 521679 B1 AT521679 B1 AT 521679B1 AT 509072018 A AT509072018 A AT 509072018A AT 521679 B1 AT521679 B1 AT 521679B1
Authority
AT
Austria
Prior art keywords
temperature
exhaust gas
internal combustion
combustion engine
operating phase
Prior art date
Application number
ATA50907/2018A
Other languages
German (de)
Other versions
AT521679A4 (en
Inventor
Klima Bernd
Raimund Ellinger Dr
Teuschl Gerald
Pronegg Daniel
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to ATA50907/2018A priority Critical patent/AT521679B1/en
Priority to DE102019127720.5A priority patent/DE102019127720A1/en
Application granted granted Critical
Publication of AT521679A4 publication Critical patent/AT521679A4/en
Publication of AT521679B1 publication Critical patent/AT521679B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybridelektrofahrzeuges (1), welches eine Brennkraftmaschine (2) mit zumindest einer Abgasnachbehandlungseinrichtung im Abgasstrang und zumindest eine elektrische Antriebsmaschine (3) aufweist, wobei der Abgasnachbehandlungseinrichtung eine Anspringtemperatur (TA) zugeordnet ist, wobei in zumindest einer ersten Betriebsphase (P1) das Hybridelektrofahrzeug (1) nur durch die elektrische Antriebsmaschine (3) angetrieben wird und dabei die Brennkraftmaschine (2) – vorzugsweise im Leerlauf - gefeuert betrieben wird, um die Abgasnachbehandlungseinrichtung (5) auf die definierte Anspringtemperatur (TA) zu temperieren, und dass in zumindest einer zweiten Betriebsphase (P2), in welcher die Temperatur (T) der Abgasnachbehandlungseinrichtung (5) über der Anspringtemperatur (TA) liegt, das Hybridelektrofahrzeug durch die Brennkraftmaschine (2) angetrieben wird. Um einerseits einen niedrigen Schadstoffausstoß im kalten Betrieb zu gewährleisten und andererseits einen darauffolgenden schadstoffarmen nichtelektrischen Betrieb zu ermöglichen, wird vorgeschlagen, dass der Beginn (t1) der ersten Betriebsphase (P1) in Abhängigkeit einer prädiktiven Lastanforderung (L2) festgelegt wird und/oder dass eine Triggerung des Beginnes der ersten Betriebsphase (P1) in Abhängigkeit des Ladezustandes der Batterie (4) des Hybridelektrofahrzeuges (1) erfolgt.The invention relates to a method for operating a hybrid electric vehicle (1), which has an internal combustion engine (2) with at least one exhaust gas aftertreatment device in the exhaust line and at least one electric drive machine (3), the starting gas treatment device being assigned a light-off temperature (TA), in at least one In the first operating phase (P1), the hybrid electric vehicle (1) is only driven by the electric drive machine (3) and the internal combustion engine (2) is fired, preferably in idle mode, in order to raise the exhaust gas aftertreatment device (5) to the defined light-off temperature (TA) temper, and that in at least a second operating phase (P2), in which the temperature (T) of the exhaust gas aftertreatment device (5) is above the light-off temperature (TA), the hybrid electric vehicle is driven by the internal combustion engine (2). In order to ensure low pollutant emissions in cold operation on the one hand and to enable subsequent low-pollutant non-electrical operation on the other hand, it is proposed that the start (t1) of the first operating phase (P1) be determined depending on a predictive load requirement (L2) and / or that one The start of the first operating phase (P1) is triggered as a function of the state of charge of the battery (4) of the hybrid electric vehicle (1).

Description

Beschreibung [0001] Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybridelektrofahrzeuges, welches eine Brennkraftmaschine mit zumindest einer Abgasnachbehandlungseinrichtung im Abgasstrang und zumindest eine elektrische Antriebsmaschine aufweist, wobei der Abgasnachbehandlungseinrichtung eine Anspringtemperatur zugeordnet ist, wobei in zumindest einer ersten Betriebsphase das Hybridelektrofahrzeug nur durch die elektrische Antriebsmaschine angetrieben wird und dabei die Brennkraftmaschine - vorzugsweise im Leerlauf - gefeuert betrieben wird, um die Abgasnachbehandlungseinrichtung auf die definierte Anspringtemperatur zu temperieren, und dass in zumindest einer zweiten Betriebsphase, in welcher die Temperatur der Abgasnachbehandlungseinrichtung über der Anspringtemperatur liegt, das Hybridelektrofahrzeug durch die Brennkraftmaschine angetrieben wird.Description: The invention relates to a method for operating a hybrid electric vehicle which has an internal combustion engine with at least one exhaust gas aftertreatment device in the exhaust line and at least one electric drive machine, the exhaust gas aftertreatment device being assigned a light-off temperature, the hybrid electric vehicle being used only by the electric one in at least a first operating phase Drive engine is driven and the internal combustion engine is operated - preferably in idle - fired in order to temper the exhaust gas aftertreatment device to the defined light-off temperature, and that in at least a second operating phase, in which the temperature of the exhaust gas aftertreatment device is above the light-off temperature, the hybrid electric vehicle by the internal combustion engine is driven.

[0002] Ein Hybridelektrokraftfahrzeug (hybrid electric vehicle, HEV) ist ein Kraftfahrzeug, das von mindestens einem Elektromotor und einem weiteren Energiewandler angetrieben wird. Es bezieht die Energie aus einer Speichereinrichtung (im Fahrzeug) für elektrische Energie und aus einem Betriebskraftstofftank.A hybrid electric vehicle (HEV) is a motor vehicle that is driven by at least one electric motor and another energy converter. It draws the energy from a storage device (in the vehicle) for electrical energy and from an operating fuel tank.

[0003] Ein Hybridantrieb kann in vielen unterschiedlichen Variationen gestaltet werden. Im Serienautomobilbau wird er eingesetzt, um die Effizienz zu verbessern, den Verbrauch fossiler Kraftstoffe zu verringern oder die Leistung im niedrigen Drehzahlbereich zu steigern. Ein Plugin-Hybrid, auch Steckdosenhybrid genannt, ist ein Kraftfahrzeug mit Hybridantrieb, dessen Akkumulator sowohl über den Verbrennungsmotor als auch am Stromnetz geladen werden kann.[0003] A hybrid drive can be designed in many different variations. It is used in series production of automobiles to improve efficiency, reduce the consumption of fossil fuels or to increase performance in the low speed range. A plug-in hybrid, also called socket hybrid, is a motor vehicle with a hybrid drive, the accumulator of which can be charged both via the internal combustion engine and on the power grid.

[0004] Das Anspringverhalten eines Katalysators gibt den Konvertierungsgrad in Abhängigkeit von der Abgastemperatur wieder. Die Anspringtemperatur stellt eine charakteristische Größe einer Abgasnachbehandlungseinrichtung dar und bezeichnet jene Temperatur, bei der ein bezeichnender Anteil des Abgases konvertiert. Als Anspringtemperatur wird insbesondere die Temperatur bezeichnet, bei der der Katalysator eine Konvertierungsgrate von 50% erreicht. Eines der Ziele der Katalysatorauslegung ist es, möglichst niedrige Anspringtemperaturen und damit kurze Anspringzeiten zu erreichen. Übliche Ansprechzeiten liegen beispielsweise bei etwa 10 bis 20 Sekunden. Dennoch zählt die Phase unterhalb der Anspringtemperatur mitunter zu den emissionsreichsten.The light-off behavior of a catalytic converter reflects the degree of conversion as a function of the exhaust gas temperature. The light-off temperature is a characteristic variable of an exhaust gas aftertreatment device and denotes the temperature at which a significant proportion of the exhaust gas converts. The light-off temperature is in particular the temperature at which the catalyst reaches a conversion rate of 50%. One of the goals of catalyst design is to achieve the lowest possible light-off temperatures and thus short light-off times. Typical response times are around 10 to 20 seconds, for example. Nevertheless, the phase below the light-off temperature is one of the most emission-rich.

[0005] Die Druckschrift DE 10 2009 027 642 A1 beschreibt ein Verfahren zum Betreiben eines Hybridfahrzeuges, das eine Antriebseinrichtung mit mindestens einer elektrischen Maschine und mindestens einer Brennkraftmaschine aufweist. Bei einem bei kalter Brennkraftmaschine erfolgenden Erststart erfolgt ein elektrisches Anfahren des Hybridfahrzeugs. Mit oder nach dem Anfahren wird die Brennkraftmaschine gestartet und in einem Verbrennungsbetrieb im Leerlauf oder unter definierter Last zum Aufheizen des Katalysators betrieben. Nach der Warmlauf- bzw. Katalysatorheizstrategie wird das Hybridfahrzeug durch die Brennkraftmaschine angetrieben.[0005] The publication DE 10 2009 027 642 A1 describes a method for operating a hybrid vehicle which has a drive device with at least one electrical machine and at least one internal combustion engine. When the engine is started for the first time when the engine is cold, the hybrid vehicle is electrically started. With or after starting, the internal combustion engine is started and operated in a combustion mode at idle or under a defined load to heat up the catalytic converter. According to the warm-up or catalyst heating strategy, the hybrid vehicle is driven by the internal combustion engine.

[0006] Aus der DE 103 33 210 A1 ist es bekannt, bei einem Hybridfahrzeug mit einem Verbrennungsmotor und einem Elektromotor durch Vorverlegung des Zündwinkels bei der Brennkraftmaschine eine Erhöhung der Katalysatortemperatur durchzuführen.From DE 103 33 210 A1 it is known to carry out an increase in the catalyst temperature in a hybrid vehicle with an internal combustion engine and an electric motor by advancing the ignition angle in the internal combustion engine.

[0007] Aus der WO 2008/039272 A1 oder der DE 10 2017 108 739 A1 ist es bekannt, die Temperatur eines Katalysators elektrisch zu erhöhen.[0007] From WO 2008/039272 A1 or DE 10 2017 108 739 A1 it is known to increase the temperature of a catalyst electrically.

[0008] Aufgabe der Erfindung ist es, eine Betriebsstrategie für Hybridelektrofahrzeuge zu finden, mit welcher einerseits ein niedriger Schadstoffausstoß im kalten Betrieb möglich ist und welche andererseits einen darauffolgenden schadstoffarmen nichtelektrischen Betrieb ermöglicht.The object of the invention is to find an operating strategy for hybrid electric vehicles with which on the one hand a low pollutant emission is possible in cold operation and which on the other hand enables a subsequent low-pollutant non-electrical operation.

[0009] Erfindungsgemäß ist zur Erfüllung dieser Aufgabe vorgesehen, dass der Beginn der ersten Betriebsphase in Abhängigkeit einer prädiktiven Lastanforderung festgelegt wird und/oder dass eine Triggerung des Beginnes der ersten Betriebsphase in Abhängigkeit des Ladezustandes der Batterie des Hybridelektrofahrzeuges erfolgt.According to the invention it is provided to fulfill this task that the start of the first operating phase is determined as a function of a predictive load requirement and / or that the beginning of the first operating phase is triggered as a function of the state of charge of the battery of the hybrid electric vehicle.

/55th

AT 521 679 B1 2020-04-15 österreichisches patentamt [0010] Vorzugsweise beginnt die zweite Betriebsphase sobald die Anspringtemperatur derAT 521 679 B1 2020-04-15 Austrian Patent Office [0010] The second operating phase preferably begins as soon as the light-off temperature of the

Abgasnachbehandlungseinrichtung erreicht wird.Exhaust aftertreatment device is reached.

[0011] Die Betriebsstrategie des Hybridelektrofahrzeuges wird somit so gestaltet, dass bei kalter Abgasnachbehandlungseinrichtung die Antriebsenergie für das Fahrzeug weitgehend von der elektrischen Antriebsmaschine aufgebracht wird. Die Brennkraftmaschine wird zwar betrieben, allerdings im Leerlauf oder mit einer limitierten definierten Last, welche beispielsweise maximal 10% der Volllast beträgt. Das in der ersten Betriebsphase maximal abgebbare Drehmoment orientiert sich also an einem untersuchten Worst Case-Szenario hinsichtlich der zu begrenzenden Schadstoff-Emissionen. Im ungünstigsten Fall ist in der ersten Betriebsphase überhaupt keine Drehmomentabgabe erlaubt.The operating strategy of the hybrid electric vehicle is thus designed so that when the exhaust gas aftertreatment device is cold, the drive energy for the vehicle is largely applied by the electric drive machine. The internal combustion engine is operated, but at idle or with a limited defined load, which is, for example, a maximum of 10% of the full load. The maximum torque that can be output in the first operating phase is based on an investigated worst case scenario with regard to the pollutant emissions to be limited. In the worst case, no torque output is permitted in the first operating phase.

[0012] Besonders vorteilhaft ist es, wenn die Brennkraftmaschine während der ersten Betriebsphase wärmeabgebend optimiert betrieben wird. Dies ermöglicht eine rasche Temperierung der Abgasnachbehandlungseinrichtung durch die Abgaswärme, ohne dass wesentliche Emissionen entstehen.It when the internal combustion engine is operated in a heat-emitting optimized manner during the first operating phase is particularly advantageous. This enables the exhaust gas aftertreatment device to be rapidly tempered by the exhaust gas heat without significant emissions.

[0013] Falls die Abgaswärme nicht für die Temperierung der Abgasnachbehandlungseinrichtung ausreichend ist, kann zusätzliche auch eine elektrische Erwärmung während der ersten Betriebsphase erfolgen. Zum Aufheizen der Abgasnachbehandlungseinrichtung kann eine definierte Energiemenge reserviert werden.If the exhaust gas heat is not sufficient for the temperature control of the exhaust gas aftertreatment device, electrical heating can also take place during the first operating phase. A defined amount of energy can be reserved for heating the exhaust gas aftertreatment device.

[0014] Sobald die Abgasnachbehandlungseinrichtung ihre Anspringtemperatur erreicht, kann die Brennkraftmaschine mit der prädiktiv ermittelten Last betrieben werden. Nach Erreichen der Anspringtemperatur der Abgasnachbehandlungseinrichtung wird die Brennkraftmaschine so betrieben, dass die minimale Anspringtemperatur gehalten werden kann.[0014] As soon as the exhaust gas aftertreatment device reaches its light-off temperature, the internal combustion engine can be operated with the predictively determined load. After the light-off temperature of the exhaust gas aftertreatment device has been reached, the internal combustion engine is operated in such a way that the minimum light-off temperature can be maintained.

[0015] Dies ermöglicht es, das Hybridelektrofahrzeug mit minimalem Schadstoffausstoß zu betreiben.[0015] This enables the hybrid electric vehicle to be operated with minimal pollutant emissions.

[0016] Die Erfindung wir im Folgenden an Hand der nicht einschränkenden Figuren näher erläutert. Darin zeigen:The invention is explained below with reference to the non-limiting figures. In it show:

[0017] Fig. 1 [0018] Fig. 2 [0019] Fig. 3 [0020] Fig. 4 ein Hybridelektrofahrzeug zur Durchführung des erfindungsgemäßen Verfahrens, schematisch die Logik des erfindungsgemäßen Verfahren, schematisch den zeitlichen Ablauf des Verfahrens und ein Beschleunigungskennfeld eines erfindungsgemäß betriebenen Hybridelektrofahrzeuges, zeigt schematisch ein Hybridelektrofahrzeug 1, welches zur Durchführung des [0021] Fig. 1 erfindungsgemäßen Verfahrens geeignet ist. Das Hybridelektrofahrzeug 1 weist eine Brennkraftmaschine 2 und zumindest eine elektrische Maschine 3 auf, wobei Brennkraftmaschine 2 und elektrische Maschine 3 parallel zum Antrieb der Antriebsräder 6 des Hybridelektrofahrzeuges 1 betreibbar sind. Die elektrische Maschine 3 und die Batterie 4 des Hybridelektrofahrzeuges 1 sind so konzipiert, dass ein rein elektrischer Antrieb des Hybridelektrofahrzeuges 1 abhängig vom Ladezustand der Batterie 4 - über eine gewisse Zeit möglich ist. Die Brennkraftmaschine 2 ist mit einer Abgasnachbehandlungseinrichtung 5 - beispielsweise einem Abgaskatalysator - ausgerüstet, welche allerdings erst ab einer definierten Anspringtemperatur TA eine bestimmte - beispielsweise 50% - Konvertierungsrate der Abgase gewährleistet.1, 2, 3, 4, a hybrid electric vehicle for carrying out the method according to the invention, schematically the logic of the method according to the invention, schematically the chronological sequence of the method and an acceleration characteristic diagram of an according to the invention operated hybrid electric vehicle, shows schematically a hybrid electric vehicle 1 which is suitable for carrying out the method according to the invention. The hybrid electric vehicle 1 has an internal combustion engine 2 and at least one electric machine 3, the internal combustion engine 2 and the electric machine 3 being operable in parallel with the drive of the drive wheels 6 of the hybrid electric vehicle 1. The electric machine 3 and the battery 4 of the hybrid electric vehicle 1 are designed in such a way that a purely electric drive of the hybrid electric vehicle 1 is possible over a certain time, depending on the state of charge of the battery 4. The internal combustion engine 2 is equipped with an exhaust gas aftertreatment device 5 - for example an exhaust gas catalytic converter - which, however, only guarantees a specific - for example 50% - conversion rate of the exhaust gases from a defined light-off temperature T A.

[0022] Gemäß dem in den Fig. 2 und 3 dargestellten Verfahren wird in einer ersten Betriebsphase Pt die Leistung L für den Antrieb des Hybridelektrofahrzeuges fast ausschließlich durch die elektrische Antriebsmaschine 3 erbracht. Die Brennkraftmaschine 2 wird gefeuert betrieben, allerdings ohne oder nur mit einem geringen Beitrag zum Antrieb des HybridelektrofahrzeugesAccording to the method shown in FIGS. 2 and 3, the power L for driving the hybrid electric vehicle is almost exclusively provided by the electric drive machine 3 in a first operating phase Pt. The internal combustion engine 2 is operated fired, but without or with only a small contribution to driving the hybrid electric vehicle

1. In der ersten Betriebsphase Pt ist also die Leistungsabgabe Lt der Brennkraftmaschine 2 strikt limitiert. Dabei dient das Abgas der Brennkraftmaschine 2 im Wesentlichen nur zum Temperieren der Abgasnachbehandlungseinrichtung 5. Falls erforderlich, kann die Abgasnachbehandlungseinrichtung 5 zusätzlich auch über eine elektrische Heizeinrichtung 7 beheizt werden.1. In the first operating phase Pt, the power output Lt of the internal combustion engine 2 is strictly limited. The exhaust gas of the internal combustion engine 2 is essentially used only for tempering the exhaust gas aftertreatment device 5. If necessary, the exhaust gas aftertreatment device 5 can also be heated via an electric heating device 7.

2/52/5

AT 521 679 B1 2020-04-15 österreichisches patentamtAT 521 679 B1 2020-04-15 Austrian patent office

Das Energiemanagement ist so programmiert, dass ausreichend elektrische Energie in der Batterie 4 zurückbehalten wird, um zu gewährleisten, dass die Abgasnachbehandlungseinrichtung gegebenenfalls elektrisch unterstützt auf die Anspringtemperatur TA erwärmt wird. Die Abgasnachbehandlungseinrichtung 5 kann beispielsweise ein NOx-Speicherkatalysator, ein SCR-Reaktor, ein Oxidationskatalysator, ein Dreiwegkatalysator oder ein - insbesondere katalytisch beschichteter- Partikelfilter sein.The energy management is programmed in such a way that sufficient electrical energy is retained in the battery 4 in order to ensure that the exhaust gas aftertreatment device is optionally heated to the light-off temperature T A with electrical assistance. The exhaust gas aftertreatment device 5 can be, for example, a NOx storage catalytic converter, an SCR reactor, an oxidation catalytic converter, a three-way catalytic converter or a - in particular catalytically coated - particle filter.

[0023] Da der Ladezustand der Batterie 4 und auch der momentane Verbrauch an elektrischer Energie bekannt ist, kann prädiktiv der Zeitpunkt t2 ermittelt werden, zu welchem eine zusätzliche mechanische Antriebsleistung L2 der Brennkraftmaschine 2 angefordert werden muss, um die Lastanforderung des Fahrers zu erfüllen. Dies ermöglicht es den Beginn der ersten Betriebsphase Pi zu planen und festzulegen, sodass ab Erreichen der Anspringtemperatur Tj sofort von der Brennkraftmaschine 2 mechanische Leistung angefordert werden kann, ohne dass es zu Emissionsspitzen kommt. Die Temperatur T der Abgasnachbehandlungseinrichtung 5 wird dazu laufend über einen Sensor 8 überwacht. Sobald die Temperatur T der Abgasnachbehandlungseinrichtung 5 über der Anspringtemperatur TA liegt, kann die Leistungslimitierung auf Lj der Brennkraftmaschine 2 aufgehoben oder angehoben werden und das Hybridelektrofahrzeug 1 in einer zweiten Betriebsphase P2 sowohl elektrisch, als auch verbrennungsmotorisch angetrieben werden. Die Leistungsanteile der Brennkraftmaschine 2 und der elektrischen Antriebsmaschine sind in der zweiten Betriebsphase P2 variabel. Die in der Betriebsphase Pt dem Energiespeicher entnommene Energie kann in der Betriebsphase P2 über Betrieb der elektrische Antriebsmaschine 3 als Generator wieder ausgeglichen werden - der Betrag des Leistungsanteils der elektrischen Arbeitsmaschine 3 kann somit auch negativ sein. Sonst kann der Antrieb des Hybridelektrofahrzeuges 1 in der zweiten Betriebsphase P2 nach den üblichen Hybridregelstrategien erfolgen.Since the state of charge of the battery 4 and also the current consumption of electrical energy is known, the time t 2 can be determined predictively at which an additional mechanical drive power L 2 of the internal combustion engine 2 must be requested in order to meet the driver's load request fulfill. This makes it possible to plan and determine the start of the first operating phase Pi, so that mechanical power can be requested from the internal combustion engine 2 as soon as the light-off temperature Tj is reached, without emission peaks occurring. For this purpose, the temperature T of the exhaust gas aftertreatment device 5 is continuously monitored by a sensor 8. As soon as the temperature T of the exhaust gas aftertreatment device 5 is above the light-off temperature T A , the power limitation on the internal combustion engine 2 can be lifted or raised and the hybrid electric vehicle 1 can be driven both electrically and by internal combustion engine in a second operating phase P 2 . The power components of the internal combustion engine 2 and the electric drive machine are variable in the second operating phase P 2 . The energy taken from the energy store in the operating phase Pt can be compensated again in the operating phase P 2 by operating the electric drive machine 3 as a generator - the amount of the power component of the electrical machine 3 can thus also be negative. Otherwise, the hybrid electric vehicle 1 can be driven in the second operating phase P 2 according to the usual hybrid control strategies.

[0024] In dem in Fig. 4 dargestellten Diagramm ist für das Hybridelektrofahrzeug 1, welches zumindest eine elektrische Antriebsmaschine 3 und zumindest eine Brennkraftmaschine 2 aufweist, die mögliche Beschleunigung a über der Fahrzeuggeschwindigkeit v für die erste Betriebsphase Pt aufgetragen.In the diagram shown in FIG. 4, for the hybrid electric vehicle 1, which has at least one electric drive machine 3 and at least one internal combustion engine 2, the possible acceleration a is plotted against the vehicle speed v for the first operating phase Pt.

[0025] Mit a3 ist eine Beschleunigungskennlinie bezeichnet, welche rein elektrisch bei niedrigem Ladezustand der Batterie 4 und bei niedriger Temperatur T bedient werden kann. a2 bezeichnet eine Lastanforderung, bei der das angeforderte Drehmoment nur durch eine zusätzlich zur elektrischen Antriebsleistung LE von der Brennkraftmaschine 2 zur Verfügung gestellten mechanischen Antriebsleistung Lj erbracht wird. Der zwischen a2 und a3 aufgespannte Bereich definiert die in der ersten Betriebsphase ΡΊ zur Verfügung stehende Leistung Lj der Brennkraftmaschine 2.With a 3 , an acceleration characteristic is designated, which can be operated purely electrically with a low state of charge of the battery 4 and at a low temperature T. a 2 denotes a load request, in which the requested torque is produced only by a mechanical drive power Lj provided by the internal combustion engine 2 in addition to the electrical drive power L E. The area spanned between a 2 and a 3 defines the power Lj of the internal combustion engine 2 available in the first operating phase Ρ Ί .

Claims (7)

1. Verfahren zum Betreiben eines Hybridelektrofahrzeuges (1), welches eine Brennkraftmaschine (2) mit zumindest einer Abgasnachbehandlungseinrichtung im Abgasstrang und zumindest eine elektrische Antriebsmaschine (3) aufweist, wobei der Abgasnachbehandlungseinrichtung eine Anspringtemperatur (TA) zugeordnet ist, wobei in zumindest einer ersten Betriebsphase (PU das Hybridelektrofahrzeug (1) nur durch die elektrische Antriebsmaschine (3) angetrieben wird und dabei die Brennkraftmaschine (2) - vorzugsweise im Leerlauf - gefeuert betrieben wird, um die Abgasnachbehandlungseinrichtung (5) auf die definierte Anspringtemperatur (TA) zu temperieren, und dass in zumindest einer zweiten Betriebsphase (P2), in welcher die Temperatur (T) der Abgasnachbehandlungseinrichtung (5) über der Anspringtemperatur (TA) liegt, das Hybridelektrofahrzeug durch die Brennkraftmaschine (2) angetrieben wird, dadurch gekennzeichnet, dass der Beginn (ti) der ersten Betriebsphase (PU in Abhängigkeit einer prädiktiven Lastanforderung (L2) festgelegt wird und/oder dass eine Triggerung des Beginnes der ersten Betriebsphase (PU in Abhängigkeit des Ladezustandes der Batterie (4) des Hybridelektrofahrzeuges (1) erfolgt.1. A method for operating a hybrid electric vehicle (1) which has an internal combustion engine (2) with at least one exhaust gas aftertreatment device in the exhaust line and at least one electric drive machine (3), wherein the exhaust gas aftertreatment device is assigned a light-off temperature (T A ), in at least a first one Operating phase (PU the hybrid electric vehicle (1) is only driven by the electric drive machine (3) and the internal combustion engine (2) is operated in a fired manner, preferably in idle mode, in order to temper the exhaust gas aftertreatment device (5) to the defined light-off temperature (T A ) , and that in at least a second operating phase (P 2 ), in which the temperature (T) of the exhaust gas aftertreatment device (5) is above the light-off temperature (T A ), the hybrid electric vehicle is driven by the internal combustion engine (2), characterized in that the Start (ti) of the first operating phase (PU depending on one predictive load requirement (L 2 ) is determined and / or that the beginning of the first operating phase (PU is triggered as a function of the state of charge of the battery (4) of the hybrid electric vehicle (1). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Betriebsphase (P2) beginnt, sobald die Anspringtemperatur (TA) der Abgasnachbehandlungseinrichtung (5) erreicht wird.2. The method according to claim 1, characterized in that the second operating phase (P 2 ) begins as soon as the light-off temperature (T A ) of the exhaust gas aftertreatment device (5) is reached. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Brennkraftmaschine (2) mit der prädiktiv ermittelten Last (L2) betrieben wird, sobald die Abgasnachbehandlungseinrichtung (5) ihre Anspringtemperatur (TA) erreicht.3. The method according to claim 1 or 2, characterized in that the internal combustion engine (2) with the predictively determined load (L 2 ) is operated as soon as the exhaust gas aftertreatment device (5) reaches its light-off temperature (T A ). 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Brennkraftmaschine (2) während der ersten Betriebsphase (PU wärmeabgebend optimiert betrieben wird.4. The method according to any one of claims 1 to 3, characterized in that the internal combustion engine (2) is optimally operated during the first operating phase (PU). 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest in der ersten Betriebsphase (PU die Abgasnachbehandlungseinrichtung (5) elektrisch temperiert wird.5. The method according to any one of claims 1 to 4, characterized in that at least in the first operating phase (PU, the exhaust gas aftertreatment device (5) is heated electrically. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in der ersten Betriebsphase (PU die Brennkraftmaschine (2) mit einer limitierten definierten Last (LU betrieben wird, wobei vorzugsweise die definierte Last 10% der Volllast beträgt.6. The method according to any one of claims 1 to 5, characterized in that in the first operating phase (PU the internal combustion engine (2) is operated with a limited defined load (LU), the defined load preferably being 10% of the full load. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass nach Erreichen der Anspringtemperatur (TA) der Abgasnachbehandlungseinrichtung (5) die Brennkraftmaschine (2) so betrieben wird, dass die Anspringtemperatur (TA) gehalten oder überschritten wird.7. The method according to any one of claims 1 to 6, characterized in that after reaching the light-off temperature (T A ) of the exhaust gas aftertreatment device (5), the internal combustion engine (2) is operated so that the light-off temperature (T A ) is maintained or exceeded.
ATA50907/2018A 2018-10-19 2018-10-19 Method for operating a hybrid electric vehicle AT521679B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA50907/2018A AT521679B1 (en) 2018-10-19 2018-10-19 Method for operating a hybrid electric vehicle
DE102019127720.5A DE102019127720A1 (en) 2018-10-19 2019-10-15 Method for operating a hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50907/2018A AT521679B1 (en) 2018-10-19 2018-10-19 Method for operating a hybrid electric vehicle

Publications (2)

Publication Number Publication Date
AT521679A4 AT521679A4 (en) 2020-04-15
AT521679B1 true AT521679B1 (en) 2020-04-15

Family

ID=70328902

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50907/2018A AT521679B1 (en) 2018-10-19 2018-10-19 Method for operating a hybrid electric vehicle

Country Status (2)

Country Link
AT (1) AT521679B1 (en)
DE (1) DE102019127720A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115045A1 (en) 2021-06-10 2022-12-15 Volkswagen Aktiengesellschaft Process for heating up an electrically heated catalytic converter when idling
DE102022210439A1 (en) 2022-09-30 2024-04-04 Volkswagen Aktiengesellschaft Method for controlling a drive train in a hybrid vehicle and hybrid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333210A1 (en) * 2003-06-30 2005-01-20 Volkswagen Ag Hybrid vehicle and method for operating a hybrid vehicle
WO2008039272A1 (en) * 2006-09-29 2008-04-03 Caterpillar Inc. Hybrid engine exhaust gas temperature control system
DE102009027642A1 (en) * 2009-07-13 2011-01-20 Robert Bosch Gmbh Method for operating a hybrid vehicle and corresponding drive device
DE102010037924A1 (en) * 2010-10-01 2012-04-05 Ford Global Technologies, Llc. Method for controlling an exhaust aftertreatment device of a hybrid drive and hybrid drive
DE102017108739A1 (en) * 2016-04-26 2017-10-26 Ford Global Technologies, Llc System and method for improving fuel economy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333210A1 (en) * 2003-06-30 2005-01-20 Volkswagen Ag Hybrid vehicle and method for operating a hybrid vehicle
WO2008039272A1 (en) * 2006-09-29 2008-04-03 Caterpillar Inc. Hybrid engine exhaust gas temperature control system
DE102009027642A1 (en) * 2009-07-13 2011-01-20 Robert Bosch Gmbh Method for operating a hybrid vehicle and corresponding drive device
DE102010037924A1 (en) * 2010-10-01 2012-04-05 Ford Global Technologies, Llc. Method for controlling an exhaust aftertreatment device of a hybrid drive and hybrid drive
DE102017108739A1 (en) * 2016-04-26 2017-10-26 Ford Global Technologies, Llc System and method for improving fuel economy

Also Published As

Publication number Publication date
AT521679A4 (en) 2020-04-15
DE102019127720A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
EP1744924B1 (en) Method and device for operating a hybrid vehicle
EP2255082B1 (en) Method and device for controlling a drivetrain of a vehicle
DE102008039350A1 (en) A method of regenerating an exhaust aftertreatment device
DE102016219038A1 (en) Controlling an emission control system
EP1564403A2 (en) Method for operating an internal combustion engine
DE102008023395A1 (en) Hybrid HC absorber / EHC PZEV exhaust Architecture
AT521679B1 (en) Method for operating a hybrid electric vehicle
DE102018127550A1 (en) METHOD FOR OPERATING A HYBRID VEHICLE
DE102019102928A1 (en) Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine
DE102005003628A1 (en) Method for operating a drive train with an electric machine and device for carrying out the method
DE102014220860A1 (en) Method for operating a hybrid vehicle and hybrid vehicle
DE112018000751T5 (en) Fast cold start heating and energy efficiency for the powertrain of commercial vehicles
DE102013214275A1 (en) System for providing power to an electrically heated catalyst
DE102018208980A1 (en) Process for heating a catalyst
DE102018109570A1 (en) CAPACITOR-OPERATED CATALYST HEATER
WO2013178495A1 (en) Method for operating an exhaust gas system
DE102019100754A1 (en) Process for exhaust gas aftertreatment of a motor vehicle with hybrid drive and serial hybrid drive
DE102018203086A1 (en) Method and arrangement for regenerating an LNT catalytic converter, control unit and motor vehicle
DE102015209979A1 (en) A method of determining a hybrid drive torque threshold, operating a hybrid propulsion device, and hybrid vehicle
DE102020103565A1 (en) Process for exhaust aftertreatment of an internal combustion engine and internal combustion engine
DE102012218119A1 (en) Method for operating powertrain of e.g. motor car, involves measuring temperature of post-treatment components according to enthalpy of detected exhaust gas to increase value of exhaust gas and to maintain desired speed of vehicle
WO2023001984A1 (en) Method for operating a motor vehicle, and motor vehicle
DE102015208374A1 (en) Method for operating a hybrid drive in a motor vehicle with regenerative catalyst
DE102009008393A1 (en) Method for regeneration of exhaust gas with exhaust gas aftertreatment device of internal-combustion engine of hybrid vehicle, involves reducing oxygen concentration in exhaust gas independent of driving requirements of vehicle
DE102019119867A1 (en) Method for heating an automobile catalytic converter comprising a plurality of heating stages