AT511190B1 - discrepancy measure - Google Patents
discrepancy measure Download PDFInfo
- Publication number
- AT511190B1 AT511190B1 ATA496/2011A AT4962011A AT511190B1 AT 511190 B1 AT511190 B1 AT 511190B1 AT 4962011 A AT4962011 A AT 4962011A AT 511190 B1 AT511190 B1 AT 511190B1
- Authority
- AT
- Austria
- Prior art keywords
- pattern
- property
- values
- partial area
- difference
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
- G06V10/421—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation by analysing segments intersecting the pattern
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Verfahren zum Vergleich eines ersten Musters (3) einer aus skalaren und/oder vektoriellen Werten gebildete ersten Wertemenge (1) mit einem zweiten Muster (4) einer aus skalaren und/oder vektoriellen Werten gebildete zweiten Wertemenge (2), wobei das Verfahren folgende Teilschritte umfasst:- Bildung zumindest eines ersten Teilbereiches (5) des ersten Musters (3) und Bildung zumindest eines zweiten Teilbereiches (6) des zweiten Musters (4),-Berechnung von Differenzwerten zwischen Eigenschaften eines der ersten Teilbereiche (5) und Eigenschaften eines der zweiten Teilbereiche (6) und Bildung eines Differenzmusters (10) aus den Differenzwerten,- Teilung des Differenzmusters (10) in dritte Teilbereiche (11, 11'),- Bildung von ersten Mengen (12) der dritten Teilbereiche (11, 11') und Berechnung von Eigenschaften des Differenzmusters (10) für die ersten Mengen (12),-Bildung von zweiten Mengen (13) der dritten Teilbereiche (11, 11') und Berechnung von Diskrepanzparametern für die zweiten Mengen (13) und gegebenenfalls in Bezugnahme auf die berechneten Eigenschaften des Differenzmusters (10) für die ersten Mengen (12),-Bildung von dritten Mengen (14) der dritten Teilbereiche (11, 11') und Berechung eines Ähnlichkeitsmaßes für eine Eigenschaft der dritten Mengen (14) und gegebenenfalls auf Basis der berechneten Diskrepanzparameter für zweite Mengen (13) und/oder des berechneten Differenzmusters (10) für die ersten Mengen (12).Method for comparing a first pattern (3) of a first set of values (1) formed of scalar and / or vectorial values with a second pattern (4) of a second set of values (2) formed from scalar and / or vectorial values, the method comprising the following substeps comprising: forming at least a first subregion (5) of the first pattern (3) and forming at least a second subregion (6) of the second pattern (4), calculating difference values between properties of one of the first subregions (5) and properties of one of the first subregions second partial regions (6) and formation of a differential pattern (10) from the difference values, - division of the differential pattern (10) into third partial regions (11, 11 '), - formation of first quantities (12) of the third partial regions (11, 11') and calculating properties of the difference pattern (10) for the first quantities (12), - forming second quantities (13) of the third partial areas (11, 11 ') and calculating discrepancy parameters for the second menus (13) and, if appropriate, with reference to the calculated properties of the difference pattern (10) for the first sets (12), - formation of third sets (14) of the third sections (11, 11 ') and calculation of a similarity measure for a property of third quantities (14) and optionally on the basis of the calculated discrepancy parameters for second quantities (13) and / or the calculated difference pattern (10) for the first quantities (12).
Description
österreichisches Patentamt AT 511 190 B1 2012-10-15Austrian Patent Office AT 511 190 B1 2012-10-15
Beschreibungdescription
VERFAHREN ZUM VERGLEICH EINES ERSTEN MUSTERS MIT EINEM ZWEITEN MUSTERMETHOD FOR COMPARING A FIRST PATTERN WITH A SECOND PATTERN
[0001] Diese Erfindung betrifft ein Verfahren zum Vergleich eines ersten Musters einer aus skalaren und/oder vektoriellen Werten gebildeten ersten Wertemenge mit einem zweiten Muster einer aus skalaren und/oder vektoriellen Werten gebildeten zweiten Wertemenge, wobei ein Muster eine Zuordnung ist, die den Grundelementen einer Grundmenge Werte einer Wertemenge zuordnet.[0001] This invention relates to a method of comparing a first pattern of a first set of values formed of scalar and / or vectorial values with a second pattern of a second set of values formed of scalar and / or vectorial values, wherein a pattern is an association of the primitives Assigns values to a set of values.
[0002] Verfahren nach dem Stand der Technik sind in folgenden Publikationen beschrieben: [0003] - J. F. Bercher. On some entropy functionals derived from Renyi Information diver- gence. Inf. Sei., 178(12):2489-2506, 2008.Methods according to the prior art are described in the following publications: [0003] J. Bercher. On some entropy functionals derived from Renyi Information diver- gence. Inf. Sci., 178 (12): 2489-2506, 2008.
[0004] - R. Jain, S.N.J. Murthy, P.L.J. Chen, and S. Chatterjee. Similarity measures for image databases. volume 3, pages 1247-1254, 1995.R. Jain, S.N.J. Murthy, P.L.J. Chen, and S. Chatterjee. Similarity measures for image databases. volume 3, pages 1247-1254, 1995.
[0005] - W. Jiang, G. Er, Q. Dai, and J. Gu. Similarity-based online feature selection in con- tent-based image retrieval. IEEE Transactions on Image Processing, 15(3):702-712, 2006.W. Jiang, G. Er, Q. Dai, and J. Gu. Similarity-based online feature selection in content-based image retrieval. IEEE Transactions on Image Processing, 15 (3): 702-712, 2006.
[0006] - J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. f-lnformation measures in medical image registration. IEEE Transactions on Medical Imaging, 23(12):1506-1518, 2004.[0006] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. f-Information measures in medical image registration. IEEE Transactions on Medical Imaging, 23 (12): 1506-1518, 2004.
[0007] - Campbell, Lo, and MacKinlay: The Econometrics of Financial Markets, NJ: PrincetonCampbell, Lo, and MacKinlay: The Econometrics of Financial Markets, NJ: Princeton
University Press, 1996.University Press, 1996.
[0008] - Christopher F. Baum. An Introduction to Modern Econometrics Using Stata. StataChristopher F. Baum. An Introduction to Modern Econometrics Using Stata. Stata
Press, 2006.Press, 2006.
[0009] - Patrick F. Dünn, Measurement and Data Analysis for Engineering and Science, NewPatrick F. Dunn, Measurement and Data Analysis for Engineering and Science, New
York: McGraw-Hill, 2005.York: McGraw-Hill, 2005.
[0010] - H. Hirschmüller and D. Scharstein, "Evaluation of Stereo matching costs on images with radiometric differences," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 31, pp. 1582-1599, September 2009.H. Hirschmüller and D. Scharstein, " Evaluation of Stereo matching costs on images with radiometric differences, " IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 31, pp. 1582-1599, September 2009.
[0011] Die hier angeführten bekannten Verfahren zur Berechnung von Vergleichswerten von Mustern - wie etwa das Korrelationsmaß („normalized cross correlation") - basieren auf dem Grundprinzip, dass in einem ersten Schritt Vergleichswerte für die jeweiligen nicht weiter zerlegbaren Grundelemente der Grundmengen berechnet werden und in weiteren Schritten aus diesen elementweise berechneten Vergleichswerten Vergleichswerte für die Muster etwa durch Summation abgeleitet werden. Vergleicht man zeitlich oder räumlich versetzte Muster, so kann sich aufgrund des in den oben angeführten Dokumenten beschriebenen Grundprinzips ergeben, dass für einen größeren Versatz ein hohes Ähnlichkeitsmaß und für einen geringeren Versatz ein geringes Ähnlichkeitsmaß fälschlicher Weise berechnet wird.The known methods for calculating comparative values of patterns given here - such as the "normalized cross correlation" - are based on the basic principle that in a first step comparative values are calculated for the respective base elements of the basic quantities which can not be further decomposed, and In further steps, comparison values for the patterns are derived from these element-wise calculated comparison values, for example by summation. If one compares temporally or spatially offset patterns, it can be seen from the basic principle described in the documents cited above that a high degree of similarity is erroneously calculated for a larger offset and a small degree of similarity for a smaller offset.
[0012] Seien etwa die Muster Mi, M2, Afcauf der Grundmenge der natürlichen Zahlen so definiert, dass Mi den Grundelementen „0" und „2" den Wert „1" und sonst allen Grundelementen den Wert „0" zuordnet, dass Afcden Grundelementen „1" und „3" den Wert „1" und sonst allen Grundelementen den Wert „0" zuordnet und, dass Afcden Grundelementen „2" und „4" den Wert „1" und sonst allen Grundelementen den Wert „0" zuordnet, dann berechnen die bekannten Verfahren einen höheren Ähnlichkeitswert zwischen Mi und M3 als zwischen Mi und M2. Das neue hier beschriebene Verfahren jedoch liefert einen höheren Ähnlichkeitswert zwischen Mi und M2 als zwischen Mi und M3.For example, let the patterns Mi, M2, Afc be defined on the base set of the natural numbers such that Mi satisfies the primitives "0 " and "2" the value "1" and otherwise all primitives value "0 " assigns that Afcden primitives "1 " and "3" the value "1" and otherwise all primitives value "0 " assigns and that afcden primitives "2 " and "4" the value "1" and otherwise all primitives value "0 " then the known methods calculate a higher similarity value between Mi and M3 than between Mi and M2. However, the new method described here provides a higher similarity value between Mi and M2 than between Mi and M3.
[0013] Das nicht-monotone Verhalten des nach den in den oben angeführten Dokumenten beschriebenen Verfahren berechneten Ähnlichkeitsmaßes eines ersten Musters mit einem zweiten Muster, welche einen zeitlichen oder räumlichen Versatz aufweisen, führt zu falschen Schlussfolgerungen, insbesondere wenn die Ähnlichkeit von vorliegenden Mustern insbesonde- 1 /29 österreichisches Patentamt AT 511 190 B1 2012-10-15 re solcher mit höher frequenten Anteilen oder/und zusätzlichem Rauschanteil bewertet werden soll.[0013] The non-monotonic behavior of the similarity measure of a first pattern with a second pattern calculated according to the methods described in the documents cited above, which have a temporal or spatial offset, leads to false conclusions, in particular if the similarity of existing patterns in particular 1/29 Austrian Patent Office AT 511 190 B1 2012-10-15 such higher frequency components and / or additional noise should be evaluated.
[0014] In der folgenden Publikation wird die Problematik der Berechnung von falschen Ähnlichkeitsmaßen aufgrund des nicht-monotonen Verhaltens des Ähnlichkeitsmaßes bei Berechnung nach einem der in den oben angeführten Dokumenten beschriebenen Verfahren in Abhängigkeit des räumlichen oder zeitlichen Versatzes für Grauwertbilddaten diskutiert und theoretisch analysiert: [0015] - B. Moser. A Similarity Measure for Image and Volumetrie Data Based on HermannIn the following publication, the problem of calculating incorrect similarity measures due to the non-monotone behavior of the similarity measure when calculated according to one of the methods described in the above-mentioned documents depending on the spatial or temporal offset for gray scale image data is discussed and analyzed theoretically: 0015] - B. Moser. A Similarity Measure for Image and Volumetry Data Based on Hermann
Weyl's Discrepancy, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, first Published: 2009-02-27, ISSN: 0162-8828, DOI: 10.1109/TPAMI.2009.50.Weyl's Discrepancy, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, first Published: 2009-02-27, ISSN: 0162-8828, DOI: 10.1109 / TPAMI.2009.50.
[0016] Erfindungsgemäß wird das hier diskutierte Problem der Berechnung eines Vergleichswertes für ein erstes Muster einer ersten Wertemenge und eines zweiten Musters einer zweiten Wertemenge auf die Weise gelöst, dass das Verfahren folgende Teilschritte umfasst: [0017] - Bildung zumindest eines ersten Teilbereiches des ersten Musters und Bildung zumin dest eines zweiten Teilbereiches des zweiten Musters, [0018] - Berechnung von Differenzwerten zwischen Eigenschaften eines der ersten Teilberei che und Eigenschaften eines der zweiten Teilbereiche und Bildung eines Differenzmusters aus den Differenzwerten, [0019] - Teilung des Differenzmusters in dritte Teilbereiche, [0020] - Bildung von ersten Mengen der dritten Teilbereiche und Berechnung von Eigenschaf ten des Differenzmusters für die ersten Mengen, [0021] - Bildung von zweiten Mengen der dritten Teilbereiche und Berechnung von Diskre panzparametern für die zweiten Mengen und gegebenenfalls in Bezugnahme auf die berechneten Eigenschaften des Differenzmusters für die ersten Mengen, [0022] - Bildung von dritten Mengen der dritten Teilbereiche und Berechung eines Ähnlich keitsmaßes für eine Eigenschaft der dritten Mengen und gegebenenfalls auf Basis der berechneten Diskrepanzparameter für zweite Mengen und/oder des berechneten Differenzmusters für die ersten Mengen.According to the invention, the problem discussed here of calculating a comparison value for a first pattern of a first value set and a second pattern of a second value set is solved in such a way that the method comprises the following substeps: - formation of at least a first subregion of the first Patterning and formation of at least a second subarea of the second pattern, - Calculation of difference values between properties of the first Teilberei surface and properties of one of the second partial areas and formation of a difference pattern from the difference values, - Division of the difference pattern in third sub-areas [0020] formation of first quantities of the third subareas and calculation of properties of the difference pattern for the first quantities, formation of second quantities of the third subareas and calculation of discrepancy parameters for the second quantities and optionally with reference to FIG calculated property [0022] formation of third quantities of the third partial areas and calculation of a similarity measure for a property of the third quantities and optionally on the basis of the calculated discrepancy parameters for second quantities and / or the calculated difference pattern for the first quantities ,
[0023] Gegeben sind ein erstes Muster Ml :Xl ~^Wl und ein zweites Muster M2:X2^>W2, wobei Xi eine Grundmenge darstellt und Weine Menge an möglichen numerischen oder vektoriellen Werten darstellt, wobei /= 1,2. Die einzelnen Teilschritte werden unter Zuhilfenahme von Mitteln der elektronischen Datenverarbeitung durchgeführt: [0024] In einem ersten Teilschritt werden die erste Grundmenge des ersten Musters und die zweite Grundmenge des zweiten Musters in erste beziehungsweise zweite Teilbereiche unterteilt. Die Unterteilung des ersten Musters kann in Abhängigkeit der Eigenschaften des ersten Muster beziehungsweise der ersten Grundmenge und/oder des zweiten Musters beziehungsweise der zweiten Grundmenge erfolgen. Das erfindungsgemäße Verfahren kann dadurch geprägt sein, dass einer der ersten Teilbereiche des ersten Musters und/oder einer der zweiten Teilbereiche des zweiten Musters mehrere Werte umfasst. Es ist keinesfalls zwingend, dass der erste Teilbereich des ersten Musters und der zweite Teilbereich des zweiten Musters gleich groß beziehungsweise gleich viele Werte umfasst. Im Sinne einer Reduktion des notwendigen Rechenaufwandes kann es sinnvoll sein, dass der erste Teilbereich des ersten Musters und der zweite Teilbereich des zweiten Musters gleich groß sind beziehungsweise gleich viele Werte umfasst.Given a first pattern Ml: Xl ~ ^ Wl and a second pattern M2: X2 ^> W2, where Xi represents a base amount and Wines amount of possible numerical or vectorial values, where / = 1.2. The individual sub-steps are carried out with the aid of electronic data processing means: In a first sub-step, the first basic quantity of the first pattern and the second basic quantity of the second pattern are subdivided into first or second sub-regions. The subdivision of the first pattern can be effected as a function of the properties of the first pattern or the first basic quantity and / or the second pattern or the second basic quantity. The method according to the invention can be characterized in that one of the first subregions of the first pattern and / or one of the second subregions of the second pattern comprises a plurality of values. It is in no way mandatory that the first subregion of the first pattern and the second subregion of the second pattern comprise the same or the same number of values. In terms of a reduction of the necessary computational effort, it may be meaningful that the first subregion of the first pattern and the second subregion of the second pattern are the same size or comprise the same number of values.
[0025] Einer der dritten Teilbereiche des Differenzmusters kann zumindest Teilbereiche eines der ersten Teilbereiche des ersten Musters und/oder eines der zweiten Teilbereiche des zweiten Musters beinhalten. Das erfindungsgemäße Verfahren schließt nicht aus, dass sich einer der dritten Teilbereiche über Teilbereiche erstreckt, welche nicht Teilbereiche eines der ersten 2/29 österreichisches Patentamt AT 511 190 B1 2012-10-15One of the third partial regions of the differential pattern may include at least partial regions of one of the first partial regions of the first template and / or one of the second partial regions of the second template. The method according to the invention does not rule out that one of the third subregions extends over subregions which are not subregions of one of the first subregions
Teilbereiche des ersten Musters und/oder eines der zweiten Teilbereiche des zweiten Musters sind.Partial regions of the first pattern and / or one of the second partial regions of the second pattern are.
[0026] Durch die erfindungsgemäße Unterteilung des ersten Musters und/oder des zweiten Musters in erste beziehungsweise zweite Teilbereiche, des Diskrepanzmusters in dritte Teilbereiche sowie die Bildung von Mengen, wird monotones Verhalten des Ähnlichkeitsmaßes bei räumlichen oder zeitlichen Versatz unterbunden.Due to the subdivision of the first pattern and / or the second pattern into first and second subregions, the discrepancy pattern into third subregions and the formation of sets according to the invention, monotonous behavior of the similarity measure in the case of spatial or temporal offset is prevented.
[0027] Aus den Ähnlichkeitsmaßen kann im Rahmen dieser Erfindung ein Ähnlichkeitsmuster erstellt werden. Das Ähnlichkeitsmuster enthält einen Ähnlichkeitsmaßwert für vorzugsweise jeden Wert des ersten Musters, welcher mit dem zweiten Muster nach dem erfindungsgemäßen Verfahren kombiniert wird.From the similarity measures, a similarity pattern can be created in the context of this invention. The similarity pattern contains a similarity measure for preferably each value of the first pattern which is combined with the second pattern according to the method of the invention.
[0028] Die Durchführung des erfindungsgemäßen Verfahrens schließt nicht aus, dass das hier diskutierte Verfahren durch Verfahren zum Vergleich eines ersten Musters mit einem zweiten Muster nach dem Stand der Technik ergänzt wird. Das erfindungsgemäße Verfahren ist keinesfalls auf die Behandlung von skalaren oder vektoriellen Werten beschränkt. In analoger Weise können eine erste Matrix mit einer zweiten Matrix, ein erster Tensor mit einem zweiten Tensor behandelt werden.Carrying out the method according to the invention does not exclude that the method discussed here is supplemented by methods for comparing a first pattern with a second pattern according to the prior art. The method of the invention is by no means limited to the treatment of scalar or vectorial values. In an analogous manner, a first matrix can be treated with a second matrix, a first tensor with a second tensor.
[0029] Die Berechnung des Differenzmusters kann zumindest einen oder durch Kombination mehrerer der folgenden Schritte umfassen: [0030] - Anwendung eines Vorverarbeitungs- beziehungsweise Filterungsschrittes, [0031] - Anwendung einer Transformation, [0032] - Subtraktion eines eine Eigenschaft des ersten Teilbereiches des ersten Musters beschreibenden Wertes von einem eine Eigenschaft des zweiten Teilbereiches des zweiten Musters beschreibenden Wertes.The calculation of the difference pattern may comprise at least one or by a combination of several of the following steps: application of a pre-processing or filtering step, application of a transformation, subtraction of a property of the first subregion of first descriptive value of a value describing a property of the second portion of the second pattern.
[0033] Ein Vorverarbeitungs- beziehungsweise ein Filterungsschritt kann beispielsweise eine Glättung, ein Ausfiltern von Fehl- oder Störsignalen sein.A pre-processing or a filtering step may be, for example, a smoothing, a filtering out of false or interference signals.
[0034] Eine Anwendung einer Transformation kann beispielsweise durch eine Subtraktion eines ersten Mittelwertes eines ersten Teilbereiches des ersten Musters von einem Mittelwert eines ersten Teilbereiches des zweiten Musters erfolgen.An application of a transformation can be carried out, for example, by subtracting a first mean value of a first subregion of the first pattern from an average value of a first subregion of the second pattern.
[0035] Die Bildung des ersten Teilbereiches und/oder die Bildung des zweiten Teilbereiches kann folgende Schritte umfassen: [0036] - Bildung eines ersten Teil des ersten Teilbereiches als Teilbereich des ersten Musters und gegebenenfalls Bildung eines zweiten Teils des ersten Teilbereiches als Teilbereich des ersten Musters, [0037] - Berechnung von Differenzwerten zwischen Eigenschaften des ersten Teilbereiches und des ersten Musters und gegebenenfalls zwischen Eigenschaften des ersten ersten Teilbereiches und des zweiten ersten Teilbereiches, [0038] - Bilden des ersten Teilbereiches, sodass der erste Teilbereich Teilbereiche des erstenThe formation of the first partial region and / or the formation of the second partial region may comprise the following steps: formation of a first part of the first partial region as a partial region of the first template and, if appropriate, formation of a second part of the first partial region as a partial region of the first partial region Pattern, calculation of difference values between properties of the first partial area and the first template and optionally between properties of the first first partial area and the second first partial area, forming the first partial area, so that the first partial area comprises partial areas of the first partial area
Musters mit einer definierten Differenz umfasst.Pattern with a defined difference.
[0039] Die definierte Differenz an Eigenschaften kann einerseits einschließen, dass die Eigenschaften gleich sind (keine Differenz), oder andererseits um ein definiertes Maß unterscheiden.The defined difference in properties may on the one hand include that the properties are the same (no difference), or on the other hand differ by a defined amount.
[0040] Eine Anwendung der hier diskutierten Erfindung ist die Erstellung einer so genannten Versatzkarte aus lokalen Eigenschaften von Bildern. Diese Anwendung kann Teil eines Verfahrens sein, welches die Generierung von Mehrfachansichten für eine pseudoholographische Darstellung oder für eine räumliche Rekonstruktion von Objektpunkten („Stereo Vision") umfasst.One application of the invention discussed herein is the creation of a so-called offset map from local properties of images. This application may be part of a method that involves the generation of multiple views for a pseudoholographic representation or for a spatial reconstruction of object points ("stereo vision").
[0041] Die Teilung des Differenzmusters in dritte Teilebereiche und die Festlegung von ersten Mengen von dritten Teilbereichen des Differenzmusters kann durch zumindest einen der fol- 3/29 österreichisches Patentamt AT511 190 B1 2012-10-15 genden Verfahrensschritte geprägt sein: [0042] - Bildung von überlappenden Teilbereichen, [0043] - Bildung von zusammenhängenden Bereichen.The division of the difference pattern into third parts regions and the determination of first sets of third sub-regions of the difference pattern can be characterized by at least one of the following process steps: [0042] FIG. Formation of overlapping subregions, [0043] - formation of contiguous regions.
[0044] Die überlappenden Teilbereiche können beispielsweise durch Integralbilder ausgebildet werden. Da erfindungsgemäß die Teilbereiche mehrere Werte umfassen, kann durch die Anordnung von Teilbereichen ein Wert zumindest zwei Teilbereichen zugeordnet werden. Durch diesen Schritt kann die Genauigkeit des erfindungsgemäßen Verfahrens im Vergleich zu den Verfahren nach dem Stand der Technik verbessert werden.The overlapping partial areas can be formed for example by integral images. Since, according to the invention, the subareas comprise a plurality of values, a value can be assigned to at least two subareas by the arrangement of subareas. By this step, the accuracy of the method according to the invention can be improved in comparison with the methods according to the prior art.
[0045] Die Berechnung von Eigenschaften des Differenzmusters für zweite Mengen kann nach zumindest einer oder durch Kombination der folgenden Methoden erfolgen: [0046] - Anwendung von Vorverarbeitungsschritten oder Transformationsschritten, um aus dem berechneten Differenzmuster dritte, aus dem ersten Muster und/oder zweiten Muster abgeleitete Muster zu berechnen, [0047] - Berechnung der p-ten Potenz des g-lntegrals des Differenzmusters über die drittenThe calculation of characteristics of the difference pattern for second quantities may be done after at least one or by a combination of the following methods: - application of preprocessing steps or transformation steps to obtain from the calculated difference pattern third, from the first pattern and / or second pattern to derive derived patterns, - Calculate the pth power of the g-integral of the difference pattern over the third
Teilbereiche des Differenzmusters, beispielsweise ET(M) = {^τΜάμ)ρ, wobei Afdas Differenzmuster und rdie Menge der dritten Teilbereiche darstellt, [0048] - Kombination der Eigenschaften erster Mengen etwa durch Summenbildung, bei spielsweise ET = ^iET(Mi).Subregions of the difference pattern, for example ET (M) = {ττι) ρ, where Afda represents the difference pattern and r represents the set of third subregions, combining the properties of first sets, for example by summation, for example ET = iET (Mi).
[0049] Die Kombination der Eigenschaften erster Mengen kann beispielsweise durch Summenbildung erfolgen und/oder durch Mittelung der Eigenschaften erster Mengen erfolgen. Die Berechnung der p-ten Potenz des g-lntegrals kann durch eine Gewichtung ergänzt werden. Das hier diskutierte Verfahren kann sich dadurch auszeichnen, dass eine solche Gewichtung in Abhängigkeit mit einer Eigenschaft des zweiten Musters direkt und/oder indirekt in einer mathematisch definierten Zuordnung stehenden Eigenschaft des ersten Teilbereiches des ersten Musters und/oder Eigenschaft des zweiten Teilbereiches des zweiten Muster, dritten Teilbereich und/oder erster Menge erfolgt.The combination of the properties of the first amounts can be done for example by summation and / or carried out by averaging the properties of the first amounts. The calculation of the pth power of the g-integral can be supplemented by a weighting. The method discussed here may be distinguished by the fact that such a weighting, in dependence on a property of the second pattern, directly and / or indirectly in a mathematically defined property of the first subarea of the first pattern and / or property of the second subarea of the second pattern, third partial area and / or first quantity.
[0050] Die Berechnung der Diskrepanzparameter kann nach zumindest einer oder durch Kombination folgender Methoden berechnet werden: [0051] - Berechnung von gewichteten Summen mit anschließender Potenzbildung der Werte, welche die Eigenschaften des Differenzmusters beschreiben, [0052] - Berechnung von Kenngrößen aus der Menge von Differenzwerten.The calculation of the discrepancy parameters can be calculated after at least one or by a combination of the following methods: - Calculation of weighted sums with subsequent power generation of the values which describe the properties of the difference pattern, - Calculation of parameters from the set of difference values.
[0053] Die Kenngrößen aus den Differenzwerten können geometrische und/oder farbliche Kenngrößen sein. Die zu berechnenden Kenngrößen können ein Ausdehnungsmaß oder einen Konzentrationsparameter oder einen Häufungsparameter der Differenzwerte beschreiben.The characteristics from the difference values can be geometric and / or color characteristics. The parameters to be calculated can describe an expansion measure or a concentration parameter or an accumulation parameter of the difference values.
[0054] Das erfindungsgemäße Verfahren kann auf die Weise durchgeführt werden, dass die Berechnung des Ähnlichkeitsmaßes nach zumindest einer oder durch Kombination mehrerer der folgenden Methoden bestimmt wird: [0055] - Berechnung eines Ähnlichkeitsmaßes durch Kombination der Diskrepanzparameter von abgeleiteten Mustern, [0056] - Berechnung eines Ähnlichkeitsmaßes mithilfe einer monoton fallenden Funktion /, beispielsweise f(x) = Exp(-x), gemäß Sm(MvM2) = f(DM(M)), wobei Mdas Differenzmuster der zu vergleichenden Muster Mu M2 darstellt, [0057] - Berechnung der Ähnlichkeit durch Bildung des Maximums oder einer Summe über alle Ähnlichkeitswerte SM.The method according to the invention can be carried out in such a way that the calculation of the similarity measure is determined after at least one or by a combination of several of the following methods: calculation of a measure of similarity by combining the discrepancy parameters of derived patterns, [0056] Calculating a measure of similarity by means of a monotonically decreasing function /, for example f (x) = Exp (-x), according to Sm (MvM2) = f (DM (M)), where M represents the difference pattern of the patterns to be compared Mu M2, [0057] Calculation of similarity by forming the maximum or a sum over all similarity values SM.
[0058] Die Berechnung eines Ähnlichkeitsmaßes durch Kombination der Diskrepanzparameter 4/29 österreichisches Patentamt AT511 190 B1 2012-10-15The calculation of a similarity measure by combining the discrepancy parameters 4/29 Austrian Patent Office AT511 190 B1 2012-10-15
Dmmon abgeleiteten Mustern kann mit Hilfe einer Formel mit folgendem Charakter beziehungsweise folgender StrukturDmmon derived patterns can be constructed using a formula with the following character or structure
Sm{MvM2)Sm {MvM2)
Dm(M1+M2)2-Dm(M1-M2)2 berechnet werden, wobei Mu M2 die zu vergleichenden Muster bezeichnen.Dm (M1 + M2) 2-Dm (M1-M2) 2, where Mu M2 is the pattern to be compared.
[0059] Das erfindungsgemäße Verfahren kann dadurch geprägt sein, dass eine Eigenschaft des ersten Teilbereiches des ersten Musters und eine Eigenschaft des zweiten Teilbereiches des zweiten Musters in einem Verhältnis, insbesondere einer mathematisch definierbaren Zuordnung zueinander stehen.The inventive method may be characterized in that a property of the first portion of the first pattern and a property of the second portion of the second pattern are in a ratio, in particular a mathematically definable assignment to each other.
[0060] Beispielsweise kann das Muster des ersten Wertebereiches das Muster des zweiten Wertebereiches hervorrufen oder bestimmen. Das Muster des zweiten Wertebereiches kann auch durch als eine Funktion des Musters des ersten Wertebereiches definiert sein.For example, the pattern of the first value range may cause or determine the pattern of the second value range. The pattern of the second range of values may also be defined by as a function of the pattern of the first range of values.
[0061] Das erfindungsgemäße Verfahren kann dadurch geprägt sein, dass eine Eigenschaft des ersten Teilbereiches des ersten Musters und eine Eigenschaft des zweiten Teilbereiches des zweiten Musters einer definierten Ähnlichkeitsrelation entsprechen und somit als ähnlich zu betrachten sind.The method according to the invention can be characterized in that a property of the first subarea of the first pattern and a property of the second subarea of the second pattern correspond to a defined similarity relation and are thus to be regarded as similar.
[0062] Eine Ähnlichkeitsrelation beziehungsweise eine Ähnlichkeit kann im Rahmen des erfin-dungsgemäßen Verfahrens durch die Angabe eines anteiligen Maßes von Gleichheit einer Eigenschaft des ersten Teilbereiches des ersten Musters und einer Eigenschaft des zweiten Teilbereiches des zweiten Musters erfolgen.In the context of the method according to the invention, a similarity relation or a similarity can take place by specifying a proportional measure of equality of a property of the first subregion of the first pattern and a property of the second subregion of the second pattern.
[0063] Die Schaffung von ähnlichen Teilbereichen des ersten Musters und des zweiten Musters kann die Komplexität des hier diskutierten Vergleichsverfahrens erheblich reduzieren. In der Regel kann eine solche Ähnlichkeit des ersten Teilbereiches der ersten Wertemenge und des zweiten Teilbereiches der zweiten Wertemenge durch die Menge der Werte, durch die Art der Werte gegeben sein.The creation of similar portions of the first pattern and the second pattern can significantly reduce the complexity of the comparison method discussed herein. In general, such a similarity of the first subarea of the first set of values and of the second subarea of the second set of values can be given by the set of values, by the nature of the values.
[0064] Im Rahmen einer Durchführung des erfindungsgemäßen Verfahrens ist es möglich, dass eine Eigenschaft des ersten Teilbereiches des ersten Musters und/oder eine Eigenschaft des zweiten Teilbereiches des zweiten Musters und eine Eigenschaft des dritten Teilbereiches des Differenzmusters in einem Verhältnis wie in einer mathematisch definierten Zuordnung zueinander stehen. Beispielsweise kann der erste Teilbereich des ersten Musters den zweiten Teilbereich des zweiten Musters hervorrufen oder bestimmen. Das Muster des zweiten Wertebereiches kann auch durch als eine Funktion des Musters des ersten Wertebereiches definiert sein.In the context of an implementation of the method according to the invention, it is possible that a property of the first sub-area of the first pattern and / or a property of the second sub-area of the second pattern and a property of the third sub-area of the difference pattern in a ratio as in a mathematically defined Assign each other. For example, the first subregion of the first pattern may cause or determine the second subregion of the second pattern. The pattern of the second range of values may also be defined by as a function of the pattern of the first range of values.
[0065] Das erfindungsgemäße Verfahren kann dadurch geprägt sein, dass eine Eigenschaft des ersten Teilbereiches des ersten Musters und/oder eine Eigenschaft des zweiten Teilbereiches des zweiten Musters und eine Eigenschaft des zweiten Teilbereiches des Differenzmusters einer definierten Ähnlichkeitsrelation entsprechen. Das erfindungsgemäße Verfahren kann insofern vereinfacht sein, dass eine Eigenschaft der ersten Menge und/oder eine Eigenschaft der zweiten Menge und/oder eine Eigenschaft der dritten Menge in einem Verhältnis wie beispielsweise in einer mathematisch definierbaren Zuordnung zueinander stehen. Beispielsweise kann das erste Muster das zweite Muster und/oder das dritte Muster hervorrufen oder bestimmen. Das zweite Muster und/oder das dritte Muster kann auch durch als eine Funktion des ersten Musters definiert sein.The inventive method may be characterized in that a property of the first portion of the first pattern and / or a property of the second portion of the second pattern and a property of the second portion of the difference pattern correspond to a defined similarity relation. The method according to the invention can be simplified insofar that a property of the first quantity and / or a property of the second quantity and / or a property of the third quantity are in a ratio such as, for example, a mathematically definable assignment to one another. For example, the first pattern may cause or determine the second pattern and / or the third pattern. The second pattern and / or the third pattern may also be defined by as a function of the first pattern.
[0066] Eine im Rahmen dieser Erfindung mögliche Vereinfachung des erfindungsgemäßen Verfahren ist, dass die erste Menge und/oder die zweite Menge und/oder die dritte Menge in einer Zuordnung zueinander stehen.A possible in the context of this invention simplification of the inventive method is that the first amount and / or the second amount and / or the third amount are in an association with each other.
[0067] Die Bildung der ersten, zweiten beziehungsweise dritten Menge kann beispielsweise durch eine Funktion in Abhängigkeit einer Eigenschaft des ersten Teilbereiches beziehungsweise einer Eigenschaft des zweiten Teilbereiches definiert sein. Eine solche Funktion kann Routi- 5/29 österreichisches Patentamt AT 511 190 B1 2012-10-15 nen umfassen, sodass die Bildung der zweiten beziehungsweise dritten Menge aus der ersten beziehungsweise zweiten Menge erfolgt. Eine solche Ähnlichkeit kann dadurch gegeben sein, dass die erste, zweite und dritte Menge ident sind.The formation of the first, second or third quantity can be defined, for example, by a function as a function of a property of the first subarea or a property of the second subarea. Such a function may include routine, so that the formation of the second or third amount of the first or second amount is carried out. Such a similarity may be given by the fact that the first, second and third quantities are identical.
[0068] Die Diskussion des erfindungsgemäßen Verfahrens schließt nicht aus, dass eine Eigenschaft des ersten Teilbereiches und/oder eine Eigenschaft des zweiten Teilbereiches und/oder eine Eigenschaft des dritten Teilbereiches und/oder eine Eigenschaft der ersten Menge und/oder eine Eigenschaft der zweiten Menge und/oder eine Eigenschaft der dritten Menge in einem Verhältnis wie beispielsweise einer mathematisch definierbaren Zuordnung zueinander stehen. In Analogie zu obiger Offenbarung kann eine Eigenschaft der zweiten Menge und/oder eine Eigenschaft der dritten Menge eine Funktion einer Eigenschaft der ersten Menge sein.The discussion of the method according to the invention does not exclude that a property of the first subarea and / or a property of the second subarea and / or a property of the third subarea and / or a property of the first amount and / or a property of the second amount and / or a property of the third set in a relationship such as a mathematically definable relationship to each other. By analogy with the above disclosure, a property of the second set and / or a property of the third set may be a function of a property of the first set.
[0069] Das hier diskutierte Verfahren kann auch auf die Weise erweitert werden, dass der Diskrepanzparameter aus einem vierten Teilbereich des ersten Musters und/oder aus einem fünften Teilbereich des zweiten Musters berechnet wird.The method discussed here can also be extended in such a way that the discrepancy parameter is calculated from a fourth partial area of the first template and / or from a fifth partial area of the second template.
[0070] Das erfindungsgemäße Verfahren kann sich dadurch auszeichnen, dass eine Eigenschaft des zweiten Teilbereiches und eine Eigenschaft des vierten Teilbereiches des ersten Musters und/oder eine Eigenschaft des fünften Teilbereiches des zweiten Musters in einem Verhältnis wie beispielsweise in einer mathematisch definierbaren Zuordnung zueinander stehen. In Analogie zu obiger Beschreibung kann beispielsweise eine Eigenschaft des zweiten Teilbereiches des ersten Musters eine Funktion einer Eigenschaft des vierten Teilbereiches des ersten Musters und/oder einer Eigenschaft des fünften Teilbereiches des zweiten Musters sein.The inventive method may be characterized in that a property of the second partial area and a property of the fourth partial area of the first pattern and / or a property of the fifth partial area of the second pattern are in a relationship such as in a mathematically definable relationship to each other. By analogy with the above description, for example, a property of the second subarea of the first pattern may be a function of a property of the fourth subarea of the first pattern and / or a property of the fifth subarea of the second pattern.
[0071] Durch das Aufzeigen von Abhängigkeiten kann das hier diskutierte Verfahren zum Vergleich von Mustern erheblich vereinfacht werden.By showing dependencies, the method of comparing patterns discussed herein can be greatly simplified.
[0072] Es ist im Rahmen des erfindungsgemäßen Verfahrens auch denkbar, dass eine Eigenschaft des zweiten Teilbereiches und eine Eigenschaft des vierten Teilbereiches des ersten Musters und/oder eine Eigenschaft des zweiten Teilbereiches und eine Eigenschaft des fünften Teilbereiches des zweiten Musters einer definierten Ähnlichkeitsrelation entsprechen. Analog zu obiger Offenbarung kann eine Ähnlichkeitsrelation durch die anteilige Gleichheit von Eigenschaften aus einer Vielzahl von Eigenschaften der Teilbereiche definiert sein.Within the scope of the method according to the invention, it is also conceivable that a property of the second subarea and a property of the fourth subarea of the first pattern and / or a property of the second subarea and a property of the fifth subarea of the second pattern correspond to a defined similarity relation. Analogous to the above disclosure, a similarity relation can be defined by the proportional equality of properties from a plurality of properties of the subregions.
[0073] Daraus folgt, dass die Eigenschaften der Muster des ersten Wertebereiches beziehungsweise des zweiten Wertebereiches auch in Abhängigkeit weiterer Teilbereiche des ersten Wertebereiches und/oder des zweiten Wertebereiches definiert werden können. In manchen Anwendungsfällen des erfindungsgemäßen Verfahrens kann dadurch eine Vereinfachung erreicht werden, dass der vierte beziehungsweise der fünfte Teilbereich auf jene Teilbereiche beschränkt sind, welche zu dem ersten beziehungsweise zweiten Teilbereiche benachbart sind.It follows that the properties of the patterns of the first range of values or of the second range of values can also be defined as a function of further portions of the first range of values and / or of the second range of values. In some applications of the method according to the invention, a simplification can be achieved in that the fourth or the fifth partial area is restricted to those partial areas which are adjacent to the first or second partial areas.
[0074] Ein möglicher Einsatzbereich des erfindungsgemäßen Verfahrens besteht darin, dass zu einer Eigenschaft eines Teilbereiches des ersten Musters eine Eigenschaft eines Teilbereiches des zweiten Musters mit Eigenschaften entsprechend einer definierten Ähnlichkeitsrelation in Analogie zu obiger Offenbarung gesucht wird.A possible field of application of the method according to the invention is that a property of a subarea of the first pattern is searched for a property of a subarea of the second pattern with properties corresponding to a defined similarity relation in analogy to the above disclosure.
[0075] Bei Anwendung des erfindungsgemäßen Verfahrens werden aus dem ersten Muster Ml:Xl —>Wl die numerischen Werte Wi der Grundmenge X gesucht, welche den numerischen Werten W2 der Grundmenge X2 aus dem Muster M2 :X2 —>W2 ähnlich sind.Using the method according to the invention, the numerical values Wi of the basic quantity X, which are similar to the numerical values W2 of the basic quantity X2 from the pattern M2: X2 -> W2, are searched from the first pattern M1: X1 -> W1.
[0076] Eine mögliche Anwendung des erfindungsgemäßen Verfahrens ist, dass zu einem Teilbereich des ersten Musters ein Teilbereich des zweiten Musters eines Teilbereiches der zweiten Wertemenge mit um ein vorgegebenes Maß unterschiedlichen Eigenschaften gesucht wird.A possible application of the method according to the invention is that a partial area of the second pattern of a partial area of the second set of values is searched for with a subset of the first pattern with different properties by a predetermined amount.
[0077] Das erfindungsgemäße Verfahren ist keinesfalls darauf beschränkt, nur ähnliche Werte zu suchen. Es ist ebenso möglich, zu den Werten W2 ähnliche Werte zu suchen, welche sich um ein vordefiniertes und/oder während der Durchführung des erfindungsgemäßen Verfahrens festgelegtes Maß von W2 unterscheiden.The method according to the invention is in no way limited to seeking only similar values. It is also possible to search for values W2 similar values, which differ by a predefined and / or determined during the implementation of the inventive method measure of W2.
[0078] Ist ein Wertepaar bestehend aus einem Wert W, und einem Maß unterschiedlicher 6/29 österreichisches Patentamt AT 511 190 B1 2012-10-15Is a value pair consisting of a value W, and a measure of different Austrian Patent Office AT 511 190 B1 2012-10-15
Werte (auch Korrelationsmaß genannt) W2 bekannt, können einfach weitere Wertepaare auf Basis dieser Information gesucht werden.Values (also known as correlation measure) W2, it is easy to search for further value pairs based on this information.
[0079] Die Suche nach ähnlichen und/oder um ein bestimmtes Maß unterschiedlichen Werten aus der ersten Wertemenge und aus der zweiten Wertemenge kann im Rahmen des erfindungsgemäßen Verfahrens auch dazu verwendet werden, Wertebereiche aus dem ersten Muster und/oder zweiten Muster auszuklammern. Solche auszuklammernde Wertebereiche können beispielsweise durch Störwertbereiche, auf Diskontinuitäten begründete Wertebereiche sein.The search for similar and / or to a certain extent different values from the first set of values and from the second set of values can also be used in the context of the method according to the invention to exclude value ranges from the first pattern and / or second pattern. Such ranges of values to be excluded can be, for example, by fault value ranges, value ranges based on discontinuities.
[0080] Das erfindungsgemäße Verfahren schließt auch ein, dass eine Eigenschaft des zweiten Musters durch Steuerungsmittel in einem Teilbereich so verändert wird, dass die Eigenschaft des zweiten Musters und eine Eigenschaft des ersten Musters in einem Teilbereich einer definierten Ähnlichkeitsrelation entsprechen.The method according to the invention also includes that a property of the second pattern is changed by control means in a partial area such that the property of the second pattern and a property of the first pattern in a partial area correspond to a defined similarity relation.
[0081] Eine Veränderung des zweiten Musters kann auf die Weise erfolgen, dass Werte des zweiten Musters geändert werden. Ebenso ist es im Rahmen dieser Erfindung nicht ausgeschlossen, dass eine Veränderung des zweiten Musters durch das Ausklammern bestimmter Wertebereiche der Wertemenge und/oder durch das Hinzufügen bestimmter Wertebereiche der Wertemenge erfolgt.A change of the second pattern can be made in such a way that values of the second pattern are changed. Likewise, it is not excluded in the context of this invention that a change of the second pattern by excluding certain value ranges of the set of values and / or by adding certain value ranges of the set of values.
[0082] Eine mögliche Anwendung der hier diskutierten Erfindung ist die Erstellung eines pseu-doholographischen Bildes, wobei die erste Wertemenge ein erstes Bild, die zweite Wertemenge ein zweites Bild ist, wobei ein erstes Muster eines Teilbereiches eines ersten Bildes mit einem zweiten Muster eines Teilbereiches eines zweiten Bildes verglichen wird.A possible application of the invention discussed herein is to create a pseudo-holographic image, wherein the first set of values is a first image, the second set of values is a second image, a first pattern of a portion of a first image having a second pattern of a portion a second image is compared.
[0083] Ein Teilbereich des ersten Bildes oder des zweiten Bildes kann beispielsweise ein Teilbereich an Bildpunkten sein. Die Bildpunkte können benachbart zueinander angeordnet sein und/oder in einer mathematisch definierbaren Zuordnung zueinander stehen. Die Zuordnung der Bildpunkte kann dadurch bestimmt sein, dass die Bildpunkte des ersten Bildes eine Funktion der Bildpunkte des zweiten Bildes sind.A partial area of the first image or of the second image may, for example, be a partial area of pixels. The pixels can be arranged adjacent to one another and / or stand in a mathematically definable relationship to one another. The assignment of the pixels may be determined by the fact that the pixels of the first image are a function of the pixels of the second image.
[0084] Hierbei werden korrespondierende Intensitätsverläufe verglichen, um so Disparitäten in Form von räumlichen Versatzmustern zu ermitteln. Aufgrund der Monotonie-Eigenschaften des Korrelationsmaßes des hier diskutierten erfindungsgemäßen Verfahrens kann der Vorgang des Suchens eines ersten Bildpunktes des zweiten Bildes, welcher in einem Verhältnis zu einem zweiten Bildpunkt des ersten Bildes steht, im Vergleich zu den Verfahren nach dem Stand der Technik beschleunigen.In this case, corresponding intensity profiles are compared, so as to determine disparities in the form of spatial offset patterns. Because of the monotonic nature of the correlation measure of the method of the invention discussed herein, the process of searching a first pixel of the second image which is in proportion to a second pixel of the first image can be faster than that of the prior art.
[0085] Ein zweiter Bildpunkt des zweiten Bildes, der in einem Verhältnis zu einem ersten Bildpunkt steht, kann ein Bildpunkt eines zweiten Bildes sein, welches aus einer anderen Perspektive als das erste Bild aufgenommen wurde.A second pixel of the second image, which is in relation to a first pixel, may be a pixel of a second image, which was taken from a different perspective than the first image.
[0086] Eine mögliche Anwendung der hier diskutierten Erfindung ist die Detektion, die Erkennung („recognition") und/oder das Tracking eines Objektes in einem ersten Bild und in einem zweiten Bild, wobei die erste Wertemenge ein erstes Bild, die zweite Wertemenge ein zweites Bild ist, wobei ein Versatz eines ersten Musters eines Teilbereiches eines ersten Bildes mit einem zweiten Muster eines Teilbereiches eines zweiten Bildes erkannt wird.One possible application of the invention discussed herein is the detection, recognition, and / or tracking of an object in a first image and in a second image, wherein the first set of values includes a first image, the second set of values second image, wherein an offset of a first pattern of a partial area of a first image with a second pattern of a partial area of a second image is detected.
[0087] Eine Detektion, ein Erkennen und ein Tracking des Objektes in einem ersten Bild beziehungsweise in einem zweiten Bild (Referenzbild) basiert zumeist auf dem Ausnützen von Monotonieeigenschaften des ersten Bildes beziehungsweise des zweiten Bildes und/oder auf dem Vorhandensein eines ausgeprägten Minimums des Ähnlichkeitsmaßes bei Vergleich des ersten Bildes als erstes Muster mit dem zweiten Bild als zweites Muster. Ein solcher günstigerer Verlauf kann sich dadurch auszeichnen, dass der Verlauf des Diskrepanzmaßes nur wenige, vorzugsweise nur ein deutlich ausgeprägtes Minimum aufweist, was die Anwendung von Grandien-tenverfahren oder ähnlichen Verfahren für die Minimumssuche ermöglicht und dadurch den Suchvorgang im Rahmen der Detektion, des Wiedererkennens oder des Trackings beschleunigt. 7/29 österreichisches Patentamt AT511 190 B1 2012-10-15 [0088] Eine andere Anwendung des erfindungsgemäßen Verfahrens ist, dass das erste Muster ein erster Graph einer Zeitreihe und das zweite Muster ein zweiter Graph einer zweiten Zeitreihe ist.Detection, recognition and tracking of the object in a first image or in a second image (reference image) is usually based on exploiting monotonic properties of the first image or the second image and / or on the existence of a pronounced minimum of the similarity measure comparing the first image as a first pattern with the second image as a second pattern. Such a more favorable course can be distinguished by the fact that the course of the discrepancy measure has only a few, preferably only a clearly pronounced minimum, which allows the use of grandfather or similar methods for the minimum search and thereby the search process in the context of detection, recognition or tracking accelerates. Another application of the method according to the invention is that the first pattern is a first graph of a time series and the second pattern is a second graph of a second time series.
[0089] Das hier diskutierte Verfahren erlaubt eine Risikominimierung bei der Zusammenstellung von Asset-Portfolios. In Bezugnahme auf eine Theorie von Markowitz sollen die Assets möglichst unkorreliert sein, um so das Risiko eines Wertverlustes aller das Asset-Portfolio ausmachenden Aktien zu einem Zeitpunkt zu verringern. Das hier vorgestellte Verfahren zum Vergleich einer ersten Datenreihe mit einer zweiten Datenreihe erlaubt es, ähnliche insbesondere zeitlich versetzte Verläufe leichter zu erkennen.The method discussed here allows risk minimization in the composition of asset portfolios. Referring to a theory by Markowitz, the assets should be as uncorrelated as possible in order to reduce the risk of a loss in value of all the shares making up the asset portfolio at one time. The method presented here for comparing a first data series with a second data series makes it easier to identify similar, in particular temporally offset, profiles.
[0090] Die Anwendung der Erfindung auf die Risikominimierung von Asset-Portfolios ist jedoch keinesfalls auf die Bewertung von beziehungsweise Suche nach ähnlichen Aktienverläufen beschränkt. In gleicher Weise können so sämtliche Unternehmenskennzahlen beziehungsweise deren Entwicklungen bewertet werden.However, the application of the invention to the risk minimization of asset portfolios is by no means limited to the valuation of or search for similar stock histories. In the same way, all company key figures or their developments can be evaluated.
[0091] Eine mögliche Anwendung der hier diskutierten Erfindung ist der Vergleich eines ersten Bewegungsablaufes mit einem zweiten Bewegungsablauf (Referenz), wobei die erste Wertemenge ein erster Bewegungsablauf, die zweite Wertemenge ein zweiter Bewegungsablauf ist, wobei ein erstes Muster eines ersten Bewegungsablaufes mit einem zweiten Muster eines zweiten Bewegungsverlaufes verglichen wird.A possible application of the invention discussed herein is the comparison of a first movement with a second movement (reference), wherein the first set of values a first movement, the second set of values is a second movement, wherein a first pattern of a first movement with a second movement Pattern of a second movement history is compared.
[0092] Diese Anwendung erlaubt beispielsweise eine Beurteilung eines Ablaufes einer Roboterbahn. Dabei soll anhand von Statusvariablen wie zum Beispiel einem Winkel festgestellt werden, ob die durchgeführte Roboterbahnkurve als erster Bewegungsablauf einer Referenzbahnkurve als zweite Bahnkurve entspricht. Aufgrund von mechanischem Spiel und/oder bestimmten Totzeiten beispielsweise durch Digitalisierungseffekte hervorgerufen und/oder mechanischen Ungenauigkeiten und/oder unterschiedlicher Beladung des Roboterarms kann ein zeitlicher und/oder räumlicher Versatz der Graphen der gemessenen Statusvariablen, die die Roboterbahn beschreiben, auftreten. Während bei Standardverfahren selbst geringe zeitliche Abweichungen zu falschen Schlussfolgerungen führen können, indem eine korrekte Roboterbahnkurve als fehlerhaft klassifiziert wird, erlaubt das erfindungsgemäße Verfahren eine zuverlässige Beurteilung. Im Vergleich zu Verfahren nach dem Stand der Technik werden hierbei nicht einzelne zeitliche und/oder geometrische Bewegungspunkte, sondern mehrere Bewegungspunkte, im weiteren Sinn Bewegungsabläufe miteinander verglichen.This application allows, for example, an evaluation of a sequence of a robot path. It should be determined on the basis of status variables such as an angle, whether the performed robot track curve as the first movement of a reference trajectory as the second trajectory corresponds. Due to mechanical play and / or specific dead times caused, for example, by digitization effects and / or mechanical inaccuracies and / or different loading of the robot arm, a temporal and / or spatial offset of the graphs of the measured status variables describing the robot path may occur. While in standard methods even small deviations in time can lead to false conclusions by classifying a correct robot path curve as faulty, the method according to the invention allows a reliable assessment. Compared to methods according to the prior art, in this case not individual temporal and / or geometric movement points but rather several movement points, in a broader sense motion sequences are compared with one another.
[0093] Die hier diskutierte Erfindung schließt keinesfalls aus, dass eine Roboterkurve als erste Bewegungskurve an eine Referenzroboterkurve als zweite Bewegungskurve angepasst wird.The invention discussed here in no way excludes that a robot curve is adapted as a first movement curve to a reference robot curve as a second movement curve.
[0094] Eine mögliche Anwendung der hier diskutierten Erfindung ist der Vergleich eines ersten Messwertes mit einem zweiten Messwert, wobei die erste Wertemenge eine Vielzahl an ersten Messwerten, die zweite Wertemenge ein Vielzahl an zweiten Messwerten ist, wobei ein erstes Muster einer Vielzahl an ersten Messwerten mit einem zweiten Muster einer Vielzahl an zweiten Messwerten verglichen wird.A possible application of the invention discussed here is the comparison of a first measured value with a second measured value, wherein the first set of values is a plurality of first measured values, the second set of values is a multiplicity of second measured values, wherein a first pattern of a multiplicity of first measured values is compared with a second pattern of a plurality of second measured values.
[0095] Diese Anwendung des erfindungsgemäßen Verfahren erlaubt beispielsweise die Kalibrierung eines ersten Messgerätes mit einem zweiten Messgerät und/oder einer Kenngröße. Es können hierbei mehrere Messpunkte, im weiteren Sinn ein Messverlauf anstelle einzelner Messwerte miteinander verglichen werden.This application of the method according to the invention allows, for example, the calibration of a first measuring device with a second measuring device and / or a parameter. In this case, a plurality of measuring points, in a broader sense, a measuring curve instead of individual measured values can be compared with one another.
[0096] In dazu analoger Form kann das erfindungsgemäße Verfahren darauf angewandt werden, dass das erste Muster eine ein erstes Objekt beschreibende erste Datenreihe und die erste Wertemenge ein erstes Objekt, das zweite Muster eine ein zweites Objekt beschreibende zweite Datenreihe und die zweite Wertemenge ein zweites Objekt ist, wobei ein Teilbereich der ersten Datenreihe mit einem Teilbereich der zweiten Datenreihe verglichen wird.In an analogous form, the method according to the invention can be applied to the first pattern comprising a first data series describing a first object and the first set of values a first object, the second pattern a second data series describing a second object and the second value set a second Object is, wherein a portion of the first data series is compared with a portion of the second data series.
[0097] Weiters ist eine Anwendung des hier beschriebenen Verfahrens in der Form denkbar, dass das erste Muster ein erstes Objekt und die erste Wertmenge eine erste Objektmenge, das zweite Muster ein zweites Objekt und die zweite Wertemenge eine zweite Objektmenge ist, wobei ein erstes Objekt einer ersten Objektmenge mit einem zweiten Objekt einer zweiten 8/29 österreichisches Patentamt AT 511 190 B1 2012-10-15Furthermore, an application of the method described here in the form is conceivable that the first pattern is a first object and the first value set is a first object set, the second pattern is a second object and the second set of values is a second object set, wherein a first object A first set of objects with a second object of a second 8/29 Austrian Patent Office AT 511 190 B1 2012-10-15
Objektmenge verglichen wird.Object quantity is compared.
[0098] In ähnlicher Weise schließt die Erfindung keinesfalls aus, dass das erste Muster ein Teilbereich eines ersten Objektes und die erste Wertmenge ein erstes Objekt, das zweite Muster ein Teilbereich eines zweite Objektes und die zweite Wertemenge eine zweites Objekt ist, wobei ein Teilbereich des ersten Objektes mit einem Teilbereich des zweiten Objektes verglichen wird.Similarly, the invention in no way excludes that the first pattern is a partial area of a first object and the first value set is a first object, the second pattern is a partial area of a second object and the second value set is a second object, wherein a partial area of the first object is compared with a portion of the second object.
[0099] Eine mögliche Anwendung eines Vergleiches eines ersten Objektes mit einem zweiten Objekt liegt in einem automatisch verwalteten Lager. Das hier vorgestellte Verfahren bietet eine Möglichkeit des Auffindens ähnlicher Objekte.One possible application of a comparison of a first object with a second object is in an automatically managed warehouse. The method presented here offers a possibility of finding similar objects.
[00100] Ebenso betrifft dieser Anwendungsfall die Kontrolle beziehungsweise die Suche nach Diskontinuitäten eines ersten Objektes durch einen Vergleich mit einem zweiten Objekt, welches als Referenzobjekt dient.Likewise, this application relates to the control or the search for discontinuities of a first object by comparison with a second object, which serves as a reference object.
[00101] Es ist hierbei keinesfalls ausgeschlossen, dass ein Objekt in Form einer virtuellen Beschreibung, eines virtuellen Planes et cetera vorliegt.It is by no means excluded that an object in the form of a virtual description, a virtual plan et cetera exists.
[00102] Ein weiterer Einsatzbereich des erfindungsgemäßen Verfahrens liegt in der Analyse von Belastungen eines Objektes, wobei die ein erstes Objekt beschreibende Datenmenge ein Verlauf eines Belastungszustandes in Teilbereichen, die ein zweites Objekt beschreibende Datenmenge ein Verlauf äußerer und/innerer Belastungen in Teilbereichen ist.Another field of application of the method according to the invention is the analysis of loads of an object, wherein the data set describing a first object is a course of a load state in partial areas, the data set describing a second object is a course of external and / or internal loads in partial areas.
[00103] Spannungsverläufe in einem Objekt können mit Hilfe der Finiten Elemente Methode berechnet werden, welche im Rahmen der Diskussion des erfindungsgemäßen Verfahrens als beispielhaft erwähnt sei. Dem Fachmann sind weitere ähnliche Methoden bekannt.Stress curves in an object can be calculated with the aid of the finite element method, which is mentioned as an example in the context of the discussion of the method according to the invention. The skilled person is familiar with other similar methods.
[00104] Einer der hinsichtlich des Ergebnisses entscheidenden Teilschritte ist die Generierung eines Berechnungsnetzes. Durch einen Vergleich des berechneten Belastungszustandes des Objektes mit den Belastungen in Teilbereichen können die Teilschritte der Finiten Elemente Berechnung wie beispielsweise die Generierung des Berechnungsnetzes vereinfacht werden.One of the decisive steps with regard to the result is the generation of a calculation network. By comparing the calculated load state of the object with the loads in partial areas, the sub-steps of the finite element calculation such as the generation of the calculation network can be simplified.
[00105] Die Analyse von Belastungen eines Objektes nach dem erfindungsgemäßen Verfahren kann auch beinhalten, dass die ein erstes Objekt beschreibende Datenmenge ein Verlauf eines Belastungszustandes eines ersten Objektes, die ein zweites Objekt beschreibende Datenmenge ein Verlauf eines Spannungszustandes eines zweiten Objektes ist.The analysis of loads of an object according to the method of the invention may also include that the data set describing a first object is a course of a load state of a first object, the data set describing a second object is a course of a stress state of a second object.
[00106] Der Vergleich eines gemessenen, gleichsam zu einem berechneten Belastungszustand beinhaltet auch die Bewertung des Spannungszustandes, in weiterer Folge die Bewertung eine Bruchzustandes.The comparison of a measured, as it were to a calculated load condition also includes the assessment of the stress state, subsequently the evaluation of a fracture state.
[00107] Die zuvor öfters erwähnte Vereinfachung des hier diskutierten Verfahrens zielt darauf hin ab, dass die Anzahl der notwendigen Rechenschritte reduziert wird und dadurch das Verfahren zum Vergleich eines ersten Musters mit einem zweiten Muster unter anderem schneller durchgeführt werden kann.The above-mentioned simplification of the method discussed here aims at reducing the number of necessary computation steps and thereby making the method for comparing a first pattern with a second pattern inter alia faster.
[00108] Figur 1 [00109] Figur 2 [00110] Figur 3 [00111] Figur 4 veranschaulicht den Vergleich eines ersten Bildes als eine erste Wertemenge mit einem zweiten Bild als eine zweite Wertemenge. zeigt eine mögliche Anwendung des Verfahrens zum Vergleich eines ersten Messsignals als erstes Muster mit einem zweiten Messsignal als zweites Muster. zeigt ein Bild einer ersten Bildszene zu einem Zeitpunkt t und ein Bild einer darauffolgenden Bildszene zu einem Zeitpunkt t+1, sowie das nach dem hier beschriebenen Verfahren erstellte Diskrepanzmuster und Ähnlichkeitsmuster. den nach dem Stand der Technik berechneten Verlauf der Ähnlichkeitswerte bei einem Versatz in x-Richtung und y-Richtung, 9/29FIG. 4 illustrates the comparison of a first image as a first set of values with a second image as a second set of values. [00108] FIG. shows a possible application of the method for comparing a first measurement signal as a first pattern with a second measurement signal as a second pattern. FIG. 12 shows an image of a first image scene at a time t and an image of a subsequent image scene at a time t + 1, as well as the discrepancy pattern and similarity pattern created by the method described herein. the course of the similarity values calculated according to the prior art with an offset in the x-direction and y-direction, 9/29
österreichisches Patentamt AT511 190 B1 2012-10-15 [00112] Figur 5 den nach dem erfindungsgemäßen Verfahren berechneten Verlauf der Ähnlichkeitswerte bei einem Versatz in x-Richtung und y-Richtung zeigt.Austrian Patent Office AT511 190 B1 2012-10-15 [00112] Figure 5 shows the course of the similarity values calculated by the method according to the invention with an offset in the x-direction and y-direction.
[00113] Figur 6 zeigt ein Bild eines Gewebes einer Airbaghülle sowie eine nach dem hier beschriebenen Verfahren erstelltes Diskrepanzmuster und Ähnlichkeitsmuster.FIG. 6 shows an image of a tissue of an airbag skin as well as a discrepancy pattern and similarity pattern created according to the method described here.
[00114] Figur 7 [00115] Figur 8 [00116] Figur 9 [00117] Figur 10 [00118] Figur 11 zeigt ein Diagramm mit einem ersten Graphen und einen zweiten Graphen, wobei der zweite Graph in Bezug zum zweiten Graph durch Rauschen um ein Maß entlang der Abszisse versetzt ist. zeigt Diagramme, welche die Berechnung des Ähnlichkeitsmaßes der in Figur 7 dargestellten Graphen in Abhängigkeit der Stärke des Rauschens nach dem Stand der Technik und nach dem hier diskutierten erfindungsgemäßen Verfahren. zeigt ein Diagramm mit einem ersten Graphen und einen zweiten Graphen, wobei der zweite Graph in Bezug zum zweiten Graph durch Rauschen um ein Maß entlang der Ordinate versetzt ist. zeigt Diagramme, welche die Berechnung des Ähnlichkeitsmaßes der in Figur 9 dargestellten Graphen in Abhängigkeit der Stärke des Rauschens nach dem Stand der Technik und nach dem hier diskutierten erfindungsgemäßen Verfahren. zeigt ein Diagramm mit einem Graphen über die zeitliche Veränderung einer Vorrichtung und einem Referenzgraphen.FIG. 11 shows a diagram with a first graph and a second graph, wherein the second graph is noise-inverted with respect to the second graph. [00114] FIG Dimension is offset along the abscissa. FIG. 12 is graphs illustrating the calculation of the similarity measure of the graphs shown in FIG. 7 versus the strength of the noise of the prior art and the method of the present invention discussed herein. shows a diagram with a first graph and a second graph, wherein the second graph is displaced by a measure along the ordinate with respect to the second graph by noise. FIG. 9 shows diagrams illustrating the calculation of the similarity measure of the graphs shown in FIG. 9 as a function of the strength of the noise according to the prior art and according to the method according to the invention discussed here. shows a graph with a graph over the temporal change of a device and a reference graph.
[00119] Figur 12 bis 14 veranschaulicht die erfindungsgemäße Systematik der Bildung vonFIGS. 12 to 14 illustrate the system according to the invention of the formation of
Teilbereichen.Some areas.
[00120] Figur 15 veranschaulicht eine Anwendung des erfindungsgemäßen Verfahrens zur Auffindung korresponierender Punkte.FIG. 15 illustrates an application of the inventive method for finding corresponding points.
[00121] Figur 1 veranschaulicht den Vergleich eines ersten Musters 3 einer ersten Wertemenge 1 mit einem zweiten Muster 4 einer Wertemenge 2.FIG. 1 illustrates the comparison of a first pattern 3 of a first set of values 1 with a second pattern 4 of a set of values 2.
[00122] In einem ersten Teilschritt erfolgt eine Teilung des ersten Musters 2 in einen mehrere Werte umfassenden ersten Teilbereich 5 und/oder des zweiten Musters 4 in einen mehrere Werte umfassenden zweiten Teilbereich 6.In a first sub-step, the first pattern 2 is divided into a first partial area 5 and / or the second pattern 4 comprising a plurality of values into a second partial area 6 comprising a plurality of values.
[00123] In einem zweiten Teilschritt wird eine Berechnung eines Differenzmusters 10 gemäß der Bildung von Differenzwerten zwischen einer Eigenschaften eines der ersten Teilbereiche 5 des ersten Musters 2 und einer Eigenschaft eines der zweiten Teilbereiche 6 des zweiten Musters 3 durchgeführt. In einem dritten Teilschritt eine Teilung des Differenzmusters 10 in dritte Teilbereiche 11, 11' und Festlegung von ersten Mengen 12, welche dritte Teilbereiche 11, 11' des Differenzmusters 10 umfassen. In einem vierten Teilschritt erfolgt eine Berechnung von Eigenschaften des Differenzmusters 10 für erste Menge 12. In einem fünften Teilschritt erfolgt eine Berechnung von Diskrepanzparametern für zweite Mengen 13 auf Basis der berechneten Eigenschaften des Differenzmusters für eine erste Menge 12. In einem sechsten Teilschritt wird eine Berechung eines Ähnlichkeitsmaßes über dritte Mengen 14 auf Basis der Berechnung der Diskrepanzparameter durchgeführt.In a second sub-step, a calculation of a difference pattern 10 according to the formation of difference values between a property of one of the first subregions 5 of the first pattern 2 and a property of one of the second subregions 6 of the second pattern 3 is performed. In a third sub-step, a division of the difference pattern 10 into third sub-regions 11, 11 'and definition of first sets 12, which comprise third sub-regions 11, 11' of the difference pattern 10. In a fifth sub-step, properties of the difference pattern 10 for first set 12 are calculated. In a fifth sub-step, discrepancy parameters are calculated for second sets 13 on the basis of the calculated properties of the difference pattern for a first set 12. In a sixth sub-step, a calculation is made a measure of similarity over third sets 14 based on the calculation of the discrepancy parameters.
[00124] Die Berechnung des Differenzmusters 10 kann durch Anwendung eines Vorverarbei-tungs- beziehungsweise Filterungsschrittes und/oder Anwendung einer Transformation und/oder Subtraktion eines eine Eigenschaft des ersten Teilbereiches 5 des ersten Musters 3 beschreibenden Wertes von einem eine Eigenschaft des zweiten Teilbereiches 6 des zweiten Musters 4 beschreibenden Wert durchgeführt werden. Die Teilung des Differenzmusters 10 in dritte Teilebereiche 11, 11' und die Festlegung von ersten Mengen 12 von dritten Teilbereichen 11, 11' des Differenzmusters 10 erfolgt durch Bildung von Integralteilbereichen und/oder Bil- 10/29 österreichisches Patentamt AT 511 190 B1 2012-10-15 düng von zusammenhängenden Bereichen und/oder Unterteilung der dritten Teilbereiche 11. 11' zu ersten Mengen 12. Die Berechnung von Eigenschaften des Differenzmusters 10 für zweite Mengen 13 erfolgt durch Anwendung von Vorverarbeitungsschritten oder Transformationsschritten, um aus dem berechneten Differenzmuster 10 dritte, aus dem ersten Muster 3 und/oder zweiten Muster 4 abgeleitete Muster zu berechnen und/oder Berechnung der p-ten Potenz des μ-lntegrals des Differenzmusters 10 über die dritte Teilbereiche (11, 1Γ) des Differenzmusters 10 und/oder Kombination der Eigenschaften zweiter Mengen. Die Berechnung der Diskrepanzparameter wird nach den Methoden berechnet, wobei Berechnung von gewichteten Summen mit anschließender Potenzbildung der Werte, welche die Eigenschaften des Differenzmusters 10 beschreiben und/oder Berechnung von Kenngrößen aus den Differenzwerten umfasst. Das Diskrepanzmaß wird auch aus einem vierten Teilbereich 7 des ersten Musters 3 und/oder aus einem vierten Teilbereich 8 des zweiten Musters 4 berechnet.The calculation of the difference pattern 10 may be performed by applying a pre-processing or filtering step and / or applying a transformation and / or subtraction of a value describing a property of the first sub-region 5 of the first pattern 3 to a property of the second sub-region 6 of FIG second pattern 4 descriptive value. The division of the difference pattern 10 into third parts regions 11, 11 'and the definition of first sets 12 of third sub-regions 11, 11' of the difference pattern 10 takes place by forming partial integral regions and / or images. 10-15 fertil of contiguous regions and / or subdivision of the third subregions 11, 11 'into first sets 12. The calculation of properties of the difference pattern 10 for second quantities 13 is carried out by applying preprocessing steps or transformation steps in order to obtain from the calculated difference pattern 10 third, to calculate patterns derived from the first pattern 3 and / or second pattern 4 and / or calculation of the pth power of the μ-integral of the difference pattern 10 over the third subregions (11, 1Γ) of the difference pattern 10 and / or combination of the properties second Amounts. The calculation of the discrepancy parameters is calculated according to the methods, whereby calculation of weighted sums with subsequent power generation of the values which describe the properties of the difference pattern 10 and / or calculation of characteristics from the difference values. The discrepancy measure is also calculated from a fourth subregion 7 of the first pattern 3 and / or from a fourth subregion 8 of the second pattern 4.
[00125] Das Ähnlichkeitsmaß wird nach zumindest einer oder durch Kombination mehrerer der folgenden Methoden bestimmt wird, welche Methoden die Berechnung eines Ähnlichkeitsmaßes mit Hilfe des Diskrepanzparameters und/oder die Berechnung eines Ähnlichkeitsmaßes mit Hilfe einer monoton fallenden mathematischen Funktion umfassen.The similarity measure is determined after at least one or by a combination of several of the following methods, which methods include the calculation of a similarity measure using the discrepancy parameter and / or the calculation of a similarity measure using a monotonically decreasing mathematical function.
[00126] Das Verfahren kann in so fern vereinfacht werden, dass der erste Teilbereich 5 des ersten Musters 3 und der zweite Teilbereich 6 des zweiten Musters 4 in einem Verhältnis zueinander stehen. Dies schließt nicht aus, dass der erste Teilbereich 5 des ersten Musters 3 und der erste Teilbereich 6 des zweiten Musters 4 ähnlich sind.The method can be simplified in such a way that the first subregion 5 of the first pattern 3 and the second subregion 6 of the second pattern 4 are in a relationship to each other. This does not exclude that the first portion 5 of the first pattern 3 and the first portion 6 of the second pattern 4 are similar.
[00127] In analoger Weise kann eine Vereinfachung erzielt werden, indem der erste Teilbereich 5 des ersten Musters 3 und/oder der zweite Teilbereich 6 des zweiten Musters 4 und der dritte Teilbereich 11, 11' des Differenzmusters 10 in einem Verhältnis zueinander stehen. Der erste Teilbereich 5 des ersten Musters 3 und/oder der zweite Teilbereich 6 des zweiten Musters 4 und der dritte Teilbereich 11, 11' des Differenzmusters 10 sind ähnlich. Die erste Menge 12 und/oder die zweite Menge 13 und/oder die dritte Menge 14 stehen in einem Verhältnis zueinander und/oder sind ähnlich.In a similar way, a simplification can be achieved by the first portion 5 of the first pattern 3 and / or the second portion 6 of the second pattern 4 and the third portion 11, 11 'of the difference pattern 10 are in a relationship. The first subregion 5 of the first pattern 3 and / or the second subregion 6 of the second pattern 4 and the third subregion 11, 11 'of the differential pattern 10 are similar. The first amount 12 and / or the second amount 13 and / or the third amount 14 are in a relationship to each other and / or are similar.
[00128] Zusammenfassend gilt, dass der erste Teilbereich 5,6 und/oder der zweite Teilbereich 11 und/oder die erste Menge 11 und/oder die zweite Menge 12 und/oder die dritte Menge 13 in einem Verhältnis zu einander stehen. Der erste Teilbereich 5 und der vierte Teilbereich 7 des ersten Musters 3 und/oder der zweite Teilbereich 8 und der fünfte Teilbereich 8 des zweiten Musters 4 stehen in einem Verhältnis zueinander und/oder sind ähnlich.In summary, the first partial area 5, 6 and / or the second partial area 11 and / or the first quantity 11 and / or the second quantity 12 and / or the third quantity 13 are in a relationship to one another. The first subregion 5 and the fourth subregion 7 of the first pattern 3 and / or the second subregion 8 and the fifth subregion 8 of the second pattern 4 are in a relationship to one another and / or are similar.
[00129] Figur 2 zeigt einen Vergleich eines ersten Messsignals 50, welches das erste Muster 3 darstellt, mit einem zweiten Messsignal 51, welches das zweite Muster 4 darstellt, wobei das erste Messsignal 50 und das zweite Messsignal 51 aus einer berührungslosen Deformationsmessung oder einer Analyse von Oberfläche von Objekten gewonnen wird. Die Werte des ersten Messsignals 50 werden in erste überlappende Teilbereiche 5 und die Werte des zweiten Messsignals 51 in weitere erste Teilbereiche 6, 6' unterteilt. Anhand der ersten Teilbereiche 5 des ersten Messsignals 50 und der ersten Teilbereiche 6 des zweiten Messsignals 51 wird das Differenzmuster 10 berechnet. Das Differenzmuster 10 wird in zweite Teilbereiche 11 unterteilt, welche zu erste Mengen 12 zusammengefasst werden. Es werden die Eigenschaften wie ein Grauwert des Differenzmusters 10 für zweite Menge 13, Parameter des Differenzmusters 10 für zweite Mengen 14 berechnet. Abschließend wird ein Ähnlichkeitsmaß, welches hier durch das Ähnlichkeitsmuster 15 wiedergegeben ist, berechnet. Das Differenzmuster 10 und das Ähnlichkeitsmuster 14, welches nach dem hier diskutierten Verfahren berechnet wurde, zeichnet sich dadurch aus, dass Werte mit einem Rauschen des ersten Musters 3 beziehungsweise ersten Messsignals 50 oder des zweiten Musters 4 beziehungsweise zweiten Messsignals 51 einen vernachlässigbaren Einfluss auf das Diskrepanzmuster 10 oder Ähnlichkeitsmuster 15 haben.FIG. 2 shows a comparison of a first measurement signal 50, which represents the first pattern 3, with a second measurement signal 51, which represents the second pattern 4, the first measurement signal 50 and the second measurement signal 51 being from a non-contact deformation measurement or an analysis is obtained from surface of objects. The values of the first measurement signal 50 are subdivided into first overlapping subregions 5 and the values of the second measurement signal 51 are subdivided into further first subregions 6, 6 '. Based on the first subregions 5 of the first measurement signal 50 and the first subregions 6 of the second measurement signal 51, the difference pattern 10 is calculated. The difference pattern 10 is subdivided into second subregions 11, which are combined to form first sets 12. The properties such as a gray value of the difference pattern 10 for second quantity 13, parameters of the difference pattern 10 for second quantities 14 are calculated. Finally, a similarity measure, which is represented here by the similarity pattern 15, is calculated. The difference pattern 10 and the similarity pattern 14, which was calculated according to the method discussed here, is characterized in that values with a noise of the first pattern 3 or first measurement signal 50 or of the second pattern 4 or second measurement signal 51 have a negligible influence on the discrepancy pattern 10 or similarity patterns 15.
[00130] Figur 3 zeigt das Bild 100 einer ersten Bildszene eines Fußballspiels zu einem Zeitpunkt t und das Bild 101 einer zweiten, darauf folgende Bildszene zu einem Zeitpunkt t+1. In beiden Bildern ist ein erster Fußballspieler 102 in einem dunklen Trikot (linker Fußballspieler) und ein zweiter Fußballspieler 103 in einem hellen Trikot (rechter Fußballspieler) zu erkennen, 11 /29 österreichisches Patentamt AT511 190 B1 2012-10-15 welche sich vom Fußballfeldrasen 104 hinsichtlich des Bildkontrastes abheben. Die hier skizzierte Anwendung ist der Fall zu verstehen, dass die erste Wertemenge 1 ein erstes Bild 100, die zweite Wertemenge 2 ein zweites Bild 101 ist, wobei ein erstes Muster 3 eines Teilbereiches 5 eines ersten Bildes 100 mit einem zweiten Muster 4 eines Teilbereiches 6 eines zweiten Bildes 102 verglichen wird.FIG. 3 shows the image 100 of a first image scene of a football match at a time t and the image 101 of a second, subsequent image scene at a time t + 1. In both pictures a first soccer player 102 in a dark jersey (left soccer player) and a second soccer player 103 in a bright soccer jersey (right soccer player) can be recognized, which differ from the soccer field turf 104 stand out in terms of image contrast. The application outlined here is the case in which the first set of values 1 is a first image 100, the second set of values 2 is a second image 101, a first pattern 3 of a subregion 5 of a first image 100 having a second pattern 4 of a subregion 6 of a second image 102 is compared.
[00131] In Bezugnahme auf die im folgenden diskutierte Anwendung des erfindungsgemäßen Verfahrens ist die x-Achse 105 des Bildes 100 und des Bildes 101 in horizontaler Richtung definiert. Die y-Achse 106 des Bildes 100 und des Bildes 101 ist in vertikaler Richtung definiert. Weiters ist festzustellen, dass die Position des Spielers 102 im ersten Bild 100 im Vergleich zu der Position des Spielers 102 im zweiten Bild 101 versetzt ist. Ein Versatz des Spielers 102 ist als eine Veränderung aus einer ersten Position des Spielers 102 im ersten Bild 100, welche durch die x-Achse 105 des Bildes 100 und die y-Achse 106 des Bildes 100 bestimmbar ist, zu einer zweiten Position, welche durch die x-Achse 105 des Bildes 101 und die y-Achse 106 des Bildes 101 bestimmbar ist.With reference to the application of the inventive method discussed below, the x-axis 105 of the image 100 and the image 101 is defined in the horizontal direction. The y-axis 106 of the image 100 and the image 101 is defined in the vertical direction. It should also be noted that the position of the player 102 in the first image 100 is offset from the position of the player 102 in the second image 101. An offset of the player 102 is as a change from a first position of the player 102 in the first image 100, which is determinable by the x-axis 105 of the image 100 and the y-axis 106 of the image 100, to a second position, which the x-axis 105 of the image 101 and the y-axis 106 of the image 101 can be determined.
[00132] Es werden erste Teilbereiche um den ersten Spieler gebildet, wobei dem ersten Teilbereich Eigenschaften in Bezugnahme auf die vierten Teilbereiche 5 beziehungsweise dem ersten Spieler 102 in Bezugnahme auf den zweiten Spieler 103 zugewiesen. Auf Basis der Eigenschaften des ersten Teilbereiches des ersten Bildes 100 und des ersten Teilbereiches des zweiten Bildes 101 wird ein Diskrepanzmuster 10 berechnet, welches in zweite Teilbereiche 11, 11' unterteilt wird. Die zweiten Teilbereiche 11, 11' zumindest teilweise zu einer ersten Menge 12 zusammengefasst. Die Eigenschaften des Diskrepanzmusters 10 werden von zweiten Mengen 13, die das Diskrepanzmuster 10 beschreibenden Parameter werden aus dritten Mengen 14 berechnet, wodurch ein Ähnlichkeitsmuster 15 berechnet werden kann.First partial areas are formed around the first player, wherein the first partial area is assigned properties with respect to the fourth partial areas 5 and / or the first player 102 with reference to the second player 103. On the basis of the properties of the first subarea of the first image 100 and of the first subarea of the second image 101, a discrepancy pattern 10 is calculated, which is subdivided into second subareas 11, 11 '. The second subregions 11, 11 'are at least partially combined to form a first set 12. The properties of the discrepancy pattern 10 are calculated from second sets 13, the parameters describing the discrepancy pattern 10 are calculated from third sets 14, whereby a similarity pattern 15 can be calculated.
[00133] In Figur 4 ist der Verlauf der Diskrepanzwerte bei einem Versatz des Spielers 102 gemäß obiger Definition in Richtung der x-Achse 105 und in Richtung der y-Achse 106 dargestellt. Die Berechnung erfolgte nach einem Verfahren nach Stand der Technik, im speziellen nach dem Verfahren einer normalisierten Cross-Correlation.FIG. 4 shows the course of the discrepancy values for an offset of the player 102 according to the above definition in the direction of the x-axis 105 and in the direction of the y-axis 106. The calculation was carried out according to a method according to the prior art, in particular according to the method of a normalized cross-correlation.
[00134] In dem in Figur 4 dargestellten Diagramm sind die Diskrepanzwerte entlang z-Achse 110 aufgetragen. Die x-Achse 111 und die y-Achse 112 stellen den Versatz in x beziehungsweise in y-Richtung dar.In the diagram shown in FIG. 4, the discrepancy values are plotted along the z-axis 110. The x-axis 111 and the y-axis 112 represent the offset in x and y, respectively.
[00135] Das in Figur 4 dargestellte Diagramm über den Verlauf der Diskrepanzwerte weist ein globales Minimum 113 sowie mehrere lokale Minima 114 auf.The diagram of the course of the discrepancy values shown in FIG. 4 has a global minimum 113 and a plurality of local minima 114.
[00136] In Figur 5 ist der Verlauf der Diskrepanzwerte 124 bei einem Versatz des Spielers gemäß obiger Definition in Richtung der x-Achse 105 und in Richtung der y-Achse 106 dargestellt. Die Berechnung erfolgte nach dem erfindungsgemäßen Verfahren. Es wurde die Berechnung mithilfe von Integralbildern durchgeführt, die eine Berechnung in linearer Zeit bezüglich der Anzahl der Pixel im zugrunde liegenden Muster ermöglicht.FIG. 5 shows the profile of the discrepancy values 124 for a displacement of the player as defined above in the direction of the x-axis 105 and in the direction of the y-axis 106. The calculation was carried out according to the method of the invention. The calculation was performed using integral images, which allows linear time calculation in terms of the number of pixels in the underlying pattern.
[00137] In dem in Figur 5 dargestellten Diagramm sind die Diskrepanzwerte 124 entlang z-Achse 120 aufgetragen. Die x-Achse 121 und die y-Achse 122 stellen analog den Versatz in x-beziehungsweise in y-Richtung dar. Das in Figur 5 dargestellte Diagramm über den Verlauf der Diskrepanzwerte 124 weist ein eindeutig und deutlich ausgeprägtes globales Minimum 123 auf. Es sind keine lokalen Minima zu erkennen. Die Kurve des Diskrepanzmaßes 124 zeigt einen glatten Verlauf. Aufgrund dieses Verlaufes der Diskrepanzwerte 124 ist die Wiedererkennung („recognition"), das Tracking und die Registrierung von Mustern deutlich einfacher.In the diagram shown in FIG. 5, the discrepancy values 124 are plotted along the z-axis 120. The x-axis 121 and the y-axis 122 analogously represent the offset in the x and y directions respectively. The graph of the course of the discrepancy values 124 shown in FIG. 5 has a clear and distinct global minimum 123. There are no local minima. The curve of the discrepancy measure 124 shows a smooth course. Due to this history of discrepancy values 124, recognition, tracking and registration of patterns is much easier.
[00138] In Figur 6 ist ein Gewebe eines Airbags mit einer Diskontinuität 134 dargestellt, wobei das erste Muster 3 ein erster Abschnitt des Gewebes 130 und die erste Wertemenge 1 eine erste Objektstruktur 132 ist. Das zweite Muster 4 ist ein zweiter Abschnitt des Gewebes 131 und die zweite Wertemenge 4 ist eine zweite Objektstruktur 133. Es wird der erste Abschnitt des Gewebes 130 mit dem zweiten Abschnitt des Gewebes 131 verglichen. Der erste Abschnitt des Gewebes 130 weist eine Diskontinuität 134 auf. Der zweite Abschnitt des Gewebes 131 weist keine Diskontinuität auf. 12/29 österreichisches Patentamt AT 511 190 B1 2012-10-15 [00139] Das hier beschriebene Verfahren kann sich besonders beim Vergleich von Geweben, die wie das Gewebe des Airbags eine wiederholende Struktur aufweisen, auszeichnen. Es werden erste Teilbereiche 5 über den ersten Abschnitt des Gewebes 130 beziehungsweise erste Teilbereiche 6 über den zweiten Abschnitt des Gewebes 131 gelegt, daraus das Differenzmuster 10 gebildet. Das Differenzmuster 15 wird in zweite Teilbereiche 11, 11' unterteilt, welche zumindest teilweise zu einer ersten Menge 12 zusammengefasst werden. Es werden eine zweite Menge 13 und eine dritte Menge 14 um die Diskontinuität 134 so gebildet, dass das hier beschriebene Verfahren zum Vergleich eines ersten Musters 3 mit einem zweiten Muster 4 beste Resultate liefert. Gegebenenfalls kann die Bildung der Teilbereiche und Menge durch adaptive Verfahren wie diese beispielsweise aus der Generierung von Berechnungsnetzen für Finite-Elemente-Verfahren bekannt sind.FIG. 6 shows a tissue of an airbag with a discontinuity 134, the first pattern 3 being a first section of the tissue 130 and the first value set 1 being a first object structure 132. The second pattern 4 is a second portion of the fabric 131 and the second set of values 4 is a second object pattern 133. The first portion of the fabric 130 is compared to the second portion of the fabric 131. The first portion of the fabric 130 has a discontinuity 134. The second portion of the fabric 131 has no discontinuity. [00139] The method described here can be particularly distinguished when comparing fabrics which, like the fabric of the airbag, have a repeating structure. First partial regions 5 are laid over the first section of the fabric 130 or first partial regions 6 over the second section of the fabric 131, from which the difference pattern 10 is formed. The difference pattern 15 is subdivided into second subregions 11, 11 ', which are at least partially combined to form a first set 12. A second set 13 and a third set 14 are formed around the discontinuity 134 such that the method described here for comparing a first pattern 3 with a second pattern 4 yields best results. If appropriate, the formation of the subregions and the quantity can be known by adaptive methods such as these, for example, from the generation of calculation networks for finite element methods.
[00140] Aus dem Differenzmuster 10 beziehungsweise aus den Eigenschaften und Parametern des Differenzmusters 10 wird das Ähnlichkeitsmuster 15 oder ein Ähnlichkeitsmaß berechnet.From the difference pattern 10 or from the properties and parameters of the difference pattern 10, the similarity pattern 15 or a similarity measure is calculated.
[00141] In Figur 7 sind ein erster Graph 140 und ein zweiter Graph 141 in einem Diagramm dargestellt, wobei der zweite Graph 141 in Bezug zum ersten Graphen 140 einen Versatz um ein Maß entlang der Abszisse 142 aufweist. Ein solcher Versatz kann durch eine Überlagerung des ersten Graphen 140 und/oderdes zweiten Graphen 141 durch ein Rauschsignal (allgemein als Rauschen bezeichnet) begründet sein. Der erste Graph 140 und der zweite Graph 141 weisen einen im Wesentlichen ähnlichen Verlauf auf. Der hier skizzierte Anwendungsfall des erfindungsgemäßen Verfahren ist, dass das erste Muster 3 ein erster Wert und die erste Wertemenge 1 eine erste Datenreihe, das zweite Muster 4 ein zweiter Wert und die erste Wertemenge 2 eine zweite Datenreihe ist, wobei ein erster Wert einer ersten Datenreihe mit einem zweiten Wert einer Datenmenge verglichen wird.In FIG. 7, a first graph 140 and a second graph 141 are shown in a diagram, wherein the second graph 141 has an offset along the abscissa 142 with respect to the first graph 140. Such an offset may be due to a superposition of the first graph 140 and / or the second graph 141 by a noise signal (commonly referred to as noise). The first graph 140 and the second graph 141 have a substantially similar course. The use case of the inventive method outlined here is that the first pattern 3 is a first value and the first value set 1 is a first data series, the second pattern 4 is a second value and the first value set 2 is a second data series, wherein a first value of a first data series is compared with a second value of a dataset.
[00142] In Figur 8 ist die Berechnung des Ähnlichkeitsmaßes der in Figur 8 dargestellten ersten Graphen 140 mit dem zweiten Graphen 141 in Abhängigkeit der Stärke des Rauschsignals dargestellt. Die Stärke des Rauschsignals ist auf der Abszisse, das Ähnlichkeitsmaß auf der Ordinate aufgetragen. Keine Ähnlichkeit des ersten Graphen 140 mit dem zweiten Graphen 141 liegt im Fall eines Ähnlichkeitsmaßes von 0,0 vor; eine absolute Ähnlichkeit liegt bei einem Ähnlichkeitsmaß von 1,0 vor. Im Diagramm 150 ist anhand des Graphen 156 das Ergebnis der Berechnung des Ähnlichkeitsmaßes nach dem Stand der Technik, im genaueren nach der Methode der Berechnung eines Korrelationskoeffizienten dargestellt. Im Diagramm 151 ist anhand des Graphen 157 das Ergebnis der Berechnung des Ähnlichkeitsmaßes nach dem hier diskutierten Verfahren, im genaueren mit p=1 dargestellt. Der Graph zeigt bei einem geringen Rauschsignal schon die zu erwartende hohe Ähnlichkeit zwischen dem ersten Graphen und dem zweiten Graphen.FIG. 8 shows the calculation of the similarity measure of the first graphs 140 shown in FIG. 8 with the second graph 141 as a function of the strength of the noise signal. The strength of the noise signal is plotted on the abscissa, the similarity measure on the ordinate. No similarity of the first graph 140 with the second graph 141 is present in the case of a similarity measure of 0.0; an absolute similarity exists at a similarity measure of 1.0. In the diagram 150, the result of the calculation of the similarity measure according to the prior art is shown on the basis of the graph 156, and more precisely according to the method of calculating a correlation coefficient. In the diagram 151, the result of the calculation of the similarity measure according to the method discussed here is shown in greater detail with p = 1 on the basis of the graph 157. With a low noise signal, the graph already shows the expected high similarity between the first graph and the second graph.
[00143] In Figur 9 sind ein erster Graph 180 und ein zweiter Graph 181 in einem Diagramm dargestellt, wobei der zweite Graph 181 in Bezug zum ersten Graphen 180 im Wesentlichen einen Versatz um ein Maß entlang der Ordinate 182 sowie in Teilbereichen einen unterschiedlichen Gradienten aufweist. Ein solcher Versatz kann durch eine Überlagerung des ersten Graphen 180 und/oder des zweiten Graphen 181 durch ein Rauschsignal (allgemein als Rauschen bezeichnet) begründet sein. Der erste Graph 180 und der zweite Graph 181 weisen einen im Wesentlichen ähnlichen Verlauf auf. Der hier skizzierte Anwendungsfall des erfindungsgemäßen Verfahren kann im Wesentlichen darauf reduziert werden, dass das erste Muster 3 ein erster Wert und die erste Wertemenge 1 eine erste Datenreihe, das zweite Muster 4 ein zweiter Wert und die erste Wertemenge 2 eine zweite Datenreihe ist, wobei ein erster Wert einer ersten Datenreihe mit einem zweiten Wert einer Datenmenge verglichen wird.9 shows a first graph 180 and a second graph 181 in a diagram, wherein the second graph 181 with respect to the first graph 180 essentially has an offset of one dimension along the ordinate 182 and a partial gradient of a different gradient , Such an offset may be due to a superposition of the first graph 180 and / or the second graph 181 by a noise signal (commonly referred to as noise). The first graph 180 and the second graph 181 have a substantially similar course. The application of the method according to the invention outlined here can essentially be reduced to the fact that the first pattern 3 is a first value and the first value set 1 is a first data series, the second pattern 4 is a second value and the first value set 2 is a second data series first value of a first data series is compared with a second value of a data quantity.
[00144] In Figur 10 ist die Berechnung des Ähnlichkeitsmaßes der in Figur 10 dargestellten ersten Graphen 180 mit dem zweiten Graphen 141 in Abhängigkeit der Stärke des Rauschsignals dargestellt. Die Stärke des Rauschsignals ist auf der Abszisse, das Ähnlichkeitsmaß auf der Ordinate aufgetragen. Keine Ähnlichkeit des ersten Graphen 180 mit dem zweiten Graphen 181 liegt im Fall eines Ähnlichkeitsmaßes von 0,0 vor; eine absolute Ähnlichkeit liegt bei einem Ähnlichkeitsmaß von 1,0 vor. 13/29FIG. 10 shows the calculation of the similarity measure of the first graph 180 shown in FIG. 10 with the second graph 141 as a function of the strength of the noise signal. The strength of the noise signal is plotted on the abscissa, the similarity measure on the ordinate. No similarity of the first graph 180 with the second graph 181 is present in the case of a similarity measure of 0.0; an absolute similarity exists at a similarity measure of 1.0. 13/29
Claims (30)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA496/2011A AT511190B1 (en) | 2011-04-07 | 2011-04-07 | discrepancy measure |
PCT/AT2012/050044 WO2012135889A1 (en) | 2011-04-07 | 2012-04-05 | Discrepancy measure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA496/2011A AT511190B1 (en) | 2011-04-07 | 2011-04-07 | discrepancy measure |
Publications (2)
Publication Number | Publication Date |
---|---|
AT511190B1 true AT511190B1 (en) | 2012-10-15 |
AT511190A4 AT511190A4 (en) | 2012-10-15 |
Family
ID=46125104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ATA496/2011A AT511190B1 (en) | 2011-04-07 | 2011-04-07 | discrepancy measure |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT511190B1 (en) |
WO (1) | WO2012135889A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3489843A1 (en) * | 2017-11-23 | 2019-05-29 | PKE Holding AG | Forensic search in database |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810542A2 (en) * | 1996-05-31 | 1997-12-03 | Adobe Systems, Inc. | Bitmap comparison apparatus and method |
US6154567A (en) * | 1998-07-01 | 2000-11-28 | Cognex Corporation | Pattern similarity metric for image search, registration, and comparison |
EP2028620A1 (en) * | 2007-08-24 | 2009-02-25 | Nikon Corporation | Subject tracking method, subject tracking device, and computer program product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101319780B1 (en) * | 2009-01-23 | 2013-10-17 | 닛본 덴끼 가부시끼가이샤 | Image signature extraction device |
-
2011
- 2011-04-07 AT ATA496/2011A patent/AT511190B1/en not_active IP Right Cessation
-
2012
- 2012-04-05 WO PCT/AT2012/050044 patent/WO2012135889A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810542A2 (en) * | 1996-05-31 | 1997-12-03 | Adobe Systems, Inc. | Bitmap comparison apparatus and method |
US6154567A (en) * | 1998-07-01 | 2000-11-28 | Cognex Corporation | Pattern similarity metric for image search, registration, and comparison |
EP2028620A1 (en) * | 2007-08-24 | 2009-02-25 | Nikon Corporation | Subject tracking method, subject tracking device, and computer program product |
Non-Patent Citations (1)
Title |
---|
MOSER, B . A.. A Similarity Measure for Image and Volumetric Data Based on Hermann Weyl's Discrepancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, November 2011, Vol. 33, No 11, Seiten 2321 - 2329 (publiziert online 20. 2. 2009) * |
Also Published As
Publication number | Publication date |
---|---|
WO2012135889A9 (en) | 2012-11-29 |
AT511190A4 (en) | 2012-10-15 |
WO2012135889A1 (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69811049T2 (en) | ELECTRONIC IMAGE PROCESSING DEVICE FOR DETECTING DIMENSIONAL CHANGES | |
DE19521346C2 (en) | Image examination / recognition method, method used therein for generating reference data and devices therefor | |
DE60036082T2 (en) | METHOD AND DEVICE FOR RECONSTRUCTING TEXTURE IMAGES | |
DE10020893B4 (en) | Method for optical shape detection of objects | |
EP2284795A2 (en) | Quantitative analysis, visualization and motion correction in dynamic processes | |
WO2002021427A2 (en) | Evaluation of edge direction information | |
DE102008056600A1 (en) | Method and device for recognizing objects | |
DE102018004592A1 (en) | Measuring apparatus for three-dimensional geometry and measuring method for three-dimensional geometry | |
DE102009051925A1 (en) | Method for determining mesh data and method for correcting model data | |
DE60220118T2 (en) | Apparatus, method and program for comparing patterns | |
DE102019209644A1 (en) | Method for training a neural network | |
DE102018123393A1 (en) | Detection of parking areas | |
AT511190B1 (en) | discrepancy measure | |
DE102008036219A1 (en) | Method for identification of object i.e. traffic sign, in surrounding area of e.g. passenger car, involves determining similarity measure between multiple characteristics of image region and multiple characteristics of characteristic set | |
DE19953063A1 (en) | Method for three-dimensional optical measurement of object surfaces | |
DE102014101265A1 (en) | A method of calibrating target values and processing systems configured to calibrate the target values | |
DE102008008499B4 (en) | Method for computer-aided calculation of the movement of an object from sensor data | |
WO2008154989A1 (en) | Method for the optimization of a stereoscopic image | |
EP3214602B1 (en) | Method for three-dimensional recording of objects | |
WO2000028470A2 (en) | Producing an image of a rolled-off fingerprint from a series of individual images | |
EP3142068B1 (en) | Method for three-dimensional recording of objects | |
EP1435065A1 (en) | Automatic determination of geometric models for optical partial recognitions | |
DE102018207411A1 (en) | Method for determining measurement information in an optical coordinate measuring machine | |
DE102004007049A1 (en) | Method for classifying an object with a stereo camera | |
DE102005039424B4 (en) | Method and device for detecting and sizing areas of the same texture in a digital image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM01 | Lapse because of not paying annual fees |
Effective date: 20200407 |