AT505337A1 - SENSOR FOR THE DETECTION OF GASES - Google Patents

SENSOR FOR THE DETECTION OF GASES Download PDF

Info

Publication number
AT505337A1
AT505337A1 AT9262007A AT9262007A AT505337A1 AT 505337 A1 AT505337 A1 AT 505337A1 AT 9262007 A AT9262007 A AT 9262007A AT 9262007 A AT9262007 A AT 9262007A AT 505337 A1 AT505337 A1 AT 505337A1
Authority
AT
Austria
Prior art keywords
sensor
organic
oxygen
layer
sensor according
Prior art date
Application number
AT9262007A
Other languages
German (de)
Other versions
AT505337B1 (en
Original Assignee
Joanneum Res Forschungsgesells
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joanneum Res Forschungsgesells filed Critical Joanneum Res Forschungsgesells
Priority to AT9262007A priority Critical patent/AT505337B1/en
Priority to PCT/AT2008/000216 priority patent/WO2008151349A1/en
Publication of AT505337A1 publication Critical patent/AT505337A1/en
Application granted granted Critical
Publication of AT505337B1 publication Critical patent/AT505337B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0628Organic LED [OLED]

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Polarising Elements (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

·· ·· ·· ·· · ···· ·· ·· ·· ·· · ···· • ·· · · • · ··· ·· · · • · · ·· ······ • · · · · · • · · · ··· · • · · · · · J 10041 • · · · · · ·· ·· ·· 1···· ·· ·· 10041 ······························································································································································

Sensor zur Detektion von GasenSensor for the detection of gases

Die Erfindung geht aus von einem Sensor zur Detektion von Gasen, insbesondere von Sauerstoff.The invention is based on a sensor for detecting gases, in particular oxygen.

Es existieren verschiedene Typen von Sauerstoff-Sensoren, die den Partialdruck von Sauerstoff in unterschiedlichen Umgebungsbedingungen und in verschiedenen Bereichen (z.B. Heizanlagen, Verbrennungskraftmotoren, Medizintechnik) detektieren.There are several types of oxygen sensors that detect the partial pressure of oxygen in different environmental conditions and in different areas (e.g., heating systems, internal combustion engines, medical technology).

Als Beispiel ist in Fig. 1 das Prinzip eines Sauerstoff-Sensors gezeigt, der mittels einer Zirkonoxyd-Sonde arbeitet. Der keramische Werkstoff Zirkonoxyd ist ein Festkörperelektrolyt und eignet sich als Sauerstoffionenleiter. Er besitzt innerhalb eines bestimmten Temperaturbereiches, der von der Dotierung des Zirkonoxyds abhängt, die Fähigkeit, Sauerstoffionen in Leerstellen des Kristallgitters einzubauen. Die Sauerstoffionen entstehen an einer leitfahigen Kontaktschicht, die in der Regel aus Platin besteht. Die Konzentration des Sauerstoffes in einem Messgas ist somit entscheidend für das Maß an Sauerstoffaktivität bzw. der Anzahl an Sauerstoffionen. Der prinzipielle Aufbau eines Sensors sieht einen Festkörperelektrolyten vor, der auf beiden Seiten kontaktiert ist. Die eine Seite des Elektrolyten wird mit einem Referenzgas, z.B. Luf^jetrieben, die andere Seite mit Messgas. Der mechanische Aufbau des Sensors trennt beide Gasseiten voneinander, sodass ein Vermischen der Gase unterbunden ist. Je nach Einsatzfall werden beheizte oder unbeheizte Sensoren verwendet. Der Sauerstoff-Partialdruck wird über die Spannung (elektromotorische Kraft), die an den Elektroden abgegriffen wird, gemessen.By way of example, Fig. 1 shows the principle of an oxygen sensor operating by means of a zirconia probe. The ceramic material zirconium oxide is a solid electrolyte and is suitable as an oxygen ion conductor. Within a certain temperature range, which depends on the doping of the zirconium oxide, it has the ability to incorporate oxygen ions in vacancies of the crystal lattice. The oxygen ions are formed on a conductive contact layer, which usually consists of platinum. The concentration of oxygen in a sample gas is thus crucial for the level of oxygen activity or the number of oxygen ions. The basic structure of a sensor provides a solid electrolyte, which is contacted on both sides. One side of the electrolyte is filled with a reference gas, e.g. Air driven, the other side with sample gas. The mechanical design of the sensor separates both gas sides from each other, so that a mixing of the gases is prevented. Depending on the application, heated or unheated sensors are used. The oxygen partial pressure is measured by the voltage (electromotive force) tapped at the electrodes.

Weiterhin sind Sauerstoff-Sensoren bekannt, welche zur Messung des Sauerstoffpartialdruckes auf dem Prinzip einer galvanischen Brennstoffzelle basieren. Die Umgebungsatmosphäre oder das Messgas diffundieren durch eine synthetische Membran zu einer dünnen Elektrolytschicht an die Kathode des Sensors. Der Elektrolyt, das Kathodenmaterial und die Zusammensetzung der Anode, welche hauptsächlich aus Blei besteht, sind so ausgelegt, dass Sauerstoff, der zur Kathode diffundiert, elektrochemisch reduziert wird. Gleichzeitig wird das Anodenmaterial oxidiert. Da Kathode und Anode derartiger Sensoren elektrisch kontaktiert sind, fließt ein Ionenstrom durch den Sensor. Der entsprechende elektrische Strom entspricht dem Sauerstoffpartialdruck und kann durch einen Widerstand in Reihe gemessen werden. 2Furthermore, oxygen sensors are known which are based on the principle of a galvanic fuel cell for measuring the oxygen partial pressure. The ambient atmosphere or the measurement gas diffuses through a synthetic membrane to a thin electrolyte layer to the cathode of the sensor. The electrolyte, the cathode material and the composition of the anode, which consists mainly of lead, are designed so that oxygen that diffuses to the cathode is electrochemically reduced. At the same time, the anode material is oxidized. Since the cathode and anode of such sensors are electrically contacted, an ion current flows through the sensor. The corresponding electrical current corresponds to the oxygen partial pressure and can be measured in series by a resistor. 2

Die Diffusion durch die Membran und die dünne Elektrolytschicht sind komplexe temperaturabhängige elektrochemische Prozesse, welche den Ionenstrom des Sensors beeinflussen. Aus diesem Grund muss ein derartiger Sensor temperaturkompensiert werden, so dass das Sensorsignal annähernd unabhängig von Temperaturänderungen innerhalb des spezifizierten Temperatmbereiches ist, was einen hohen Aufwand in Herstellung und Betrieb eines solchen Sensors impliziert.The diffusion through the membrane and the thin electrolyte layer are complex temperature dependent electrochemical processes that affect the ion current of the sensor. For this reason, such a sensor must be temperature compensated, so that the sensor signal is approximately independent of temperature changes within the specified Temperatmbereiches, which implies a high cost in the manufacture and operation of such a sensor.

Auch Sauerstoff-Sensoren, die auf optischen Prinzipien basierend arbeiten, sind bekannt. In einer optischen Messzelle wird dabei Laserlicht mit Hilfe von Spiegeln so oft hin- und herreflektiert, bis es insgesamt einen Weg von etwa 1 Meter zurückgelegt hat. Als Laserquelle wird ein Vertical Cavity Surface Emitting Laser (VSEL) benutzt. Die verwendeten VCSEL emittieren Licht bei einer Wellenlänge von 760 um. Bei dieser Wellenlänge absorbiert Sauerstoff und somit kann das Molekül sehr empfindlich nachgewiesen werden.Oxygen sensors based on optical principles are also known. In an optical measuring cell, laser light is reflected back and forth with the help of mirrors until it has traveled a total distance of about 1 meter. The laser source used is a vertical cavity surface emitting laser (VSEL). The VCSELs used emit light at a wavelength of 760 μm. At this wavelength oxygen absorbs and thus the molecule can be detected very sensitively.

Weiterhin sind faseroptisch^Sauerstoffsenso^ekannt. Das Grundprinzip des faseroptischen Sauerstoff-Sensors ist eine Fluoreszenzsonde mit einem dünnen Film an der Spitze und einer blauen LED als Anregungsquelle. Der Sensor misst die absolute Sauerstoff-Konzentration über Fluoreszenzmesstechnik. Über eine Lichtleitfaser wird das Licht der blauen LED an den dünnen Film an der Sondenspitze gebracht. Die angeregte Fluoreszenz wird zurückreflektiert und wieder über Lichtleitfasern dem Spektrometer zugeführt. Dort ist, um das reflektierte Anregungslicht zu unterdrücken, ein 550nm Kantenfilter eingebaut.Furthermore, fiber optic oxygen sensors are known. The basic principle of the fiber optic oxygen sensor is a fluorescent probe with a thin film at the tip and a blue LED as the excitation source. The sensor measures the absolute oxygen concentration via fluorescence measurement technology. Through an optical fiber, the light of the blue LED is brought to the thin film on the probe tip. The excited fluorescence is reflected back and returned to the spectrometer via optical fibers. There, to suppress the reflected excitation light, a 550nm edge filter is incorporated.

Wenn nun Sauerstoff in das zu messende Gas oder in die Flüssigkeit eindiffimdiert, dann erlischt die Fluoreszenz. Der Grad der Verlöschung korreliert direkt mit der Sauerstoff-Konzentration.If oxygen is then introduced into the gas to be measured or into the liquid, the fluorescence is extinguished. The degree of erosion correlates directly with the oxygen concentration.

Nachteilig an konventionellen optisch arbeitenden Sauerstoff-Sensoren ist dabei hauptsächlich, dass die Lichtquelle, der/die Detektoren) und die optischen Elemente diskrete, vergleichsweise große Komponenten sind, die zusammengebaut und durch mechanische bzw. Klebeverbindungen gehalten werden. Dies bedeutet, dass solche Sensoren eine beträchtliche Baugröße erreichen und ihre Produktion nur bedingt kostengünstig durchgeführt werden kann.A disadvantage of conventional optical oxygen sensors is mainly that the light source, the detector (s) and the optical elements are discrete, comparatively large components which are assembled and held by mechanical or adhesive bonds. This means that such sensors can reach a considerable size and their production can be carried out only to a limited cost.

Daher ist ihr Einsatz in sehr großen Stückzahlen, wenn es z.B. um single-item-tagging, also das Monitoring von Einzelstücken, sowohl produktionstechnisch als auch vor allem kostenseitig nicht machbar. • ·· • • ·· • • · • ·· • · • ···· ·· · • • • • ··· • · • ··· • • • • • · • · • · • • • • • · • • · ·· ·· ·· ·· ··· ··· 3Therefore, their use is in very large quantities, when e.g. Single-item tagging, ie the monitoring of individual pieces, is not feasible in terms of production technology and cost. •··············································································································································································································· • · • • ······················· 3

Aufgabe der Erfindung ist somit, einen integrierten Sensor anzugeben, welcher klein, leicht und kostengünstig ist.The object of the invention is thus to provide an integrated sensor which is small, lightweight and inexpensive.

Die Aufgabe wird gelöst durch einen Sensor, welcher eine organische Leuchtdiode, einen ersten Polarisationsfilter, eine organischen Fluoreszenz- bzw. Phosphoreszenzschicht, einen zweiten Polarisationsfilter, und zumindest eine organische Photodiode umfasst.The object is achieved by a sensor which comprises an organic light emitting diode, a first polarizing filter, an organic fluorescent or phosphorescent layer, a second polarizing filter, and at least one organic photodiode.

Der wesentliche Vorteil der Benützung der Polarisationsfilter liegt in der völligen Unabhängigkeit von der Wellenlängendifferenz zwischen Anregungslicht undThe main advantage of using the polarization filter is the complete independence of the wavelength difference between excitation light and

Fluoreszenzlicht. Die Differenz darf dabei auch Null Nanometer sein. So können auch Fluoreszenzfarbstoffe, die nur einen sehr kleinen Stokes-Shift, aber gute Detektionseigenschaften aufweisen, und deren Emission über konventionelle Dünnschichtfilter nicht hinreichend von der Anregung getrennt werden kann, zum Einsatz kommen.Fluorescent light. The difference may also be zero nanometers. Thus, even fluorescent dyes that have only a very small Stokes shift, but good detection properties, and their emission via conventional thin-film filter can not be separated sufficiently from the excitation, are used.

Weitere vorteilhafte Ausgestaltungsformen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Further advantageous embodiments and modifications of the invention will become apparent from the dependent claims.

In den Figuren sind bevorzugte Ausführungsbeispie^der Erfindung schematisch dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:In the figures, preferred Ausführungsbeispie ^ the invention are shown schematically and explained in more detail in the following description. Show it:

Fig. 1 eine schematische Ansicht eines Sauerstoff-Sensors gemäß dem Stand der Technik,1 is a schematic view of an oxygen sensor according to the prior art,

Fig. 2 eine schematische Gesamtansicht einer Sensoranordnung zur Verwendung mit einem erfindungsgemäß ausgestalteten organischen Sauerstoff-Sensor,2 shows a schematic overall view of a sensor arrangement for use with an organic oxygen sensor designed according to the invention,

Fig. 3 eine schematische Ansicht der Anordnung der Polarisationsfilter eines erfindungsgemäßen Sauerstoff-Sensors,3 shows a schematic view of the arrangement of the polarization filters of an oxygen sensor according to the invention,

Fig. 4A-D stark schematisierte Darstellungen des Schichtaufbaus von bevorzugten Ausfuhrungsbeispielen erfindungsgemäßer Sauerstoff-Sensoren,4A-D highly schematic representations of the layer structure of preferred exemplary embodiments of inventive oxygen sensors,

Fig. 5 eine schematische Darstellung einer organischen Leuchtdiode zur Verwendung mit einem erfindungsgemäß ausgestalteten organischen Sauerstoff-Sensor, • ··· · • ·· · Φ · ··· • · · • · · Μ ·· ·» • · · · · · • · · · ··· · • · · · · · • · · · · · 45 shows a schematic illustration of an organic light-emitting diode for use with an organic oxygen sensor designed according to the invention, FIG. 5 shows a view of the invention. FIG. · · · · · · · · · · · · · · · · · · · · · · · · 4

Fig. 6 eine schematische Darstellung einer organischen Photodi^fode zur Verwendung mit einem erfmdungsgemäß ausgestalteten organischen Sauerstoff-Sensor,6 shows a schematic representation of an organic photodiode for use with an organic oxygen sensor designed according to the invention,

Fig. 7 eine grafische Darstellung eines Funktionsnachweises eines erfindungsgemäß ausgestalteten Sauerstoff-Sensors, und7 shows a graphic illustration of a functional verification of an oxygen sensor designed according to the invention, and FIG

Fig. 8 eine grafische Darstellung der Unterdrückung des Anregungslichtes bei einem erfindungsgemäß ausgestalteten Sauerstoff-Sensor.8 shows a graphic illustration of the suppression of the excitation light in an oxygen sensor designed according to the invention.

Eine allgemeine Anordnung eines erfindungsgemäß ausgestalteten organischen Sauerstoff-Sensors 1 ist in Fig. 2 schematisch dargestellt. Ein Sensor, insbesondere ein Sauerstoff-Sensor 1 gemäß der gegenständlichen Erfindung umfasst grundsätzlich folgende Elemente: eine organischen Leuchtdiode (oLED) 2, die das Licht zur Generation der Lumineszenz des organischen sauerstoffempfindlichen Farbstoffes liefert, - einen Wellenlängenseparator 7, und eine organische Photodiode 6, die das emittierte Lumineszenzlicht des Farbstoffes . detektiert.A general arrangement of an inventively designed organic oxygen sensor 1 is shown schematically in Fig. 2. A sensor, in particular an oxygen sensor 1 according to the subject invention basically comprises the following elements: an organic light-emitting diode (oLED) 2, which supplies the light for generation of luminescence of the organic oxygen-sensitive dye, - a wavelength separator 7, and an organic photodiode 6, the emitted luminescent light of the dye. detected.

Der Wellenlängenseparator 7 umfasst dabei folgende Unterelemente: - ein·» Polarisationsfilter 3, das das von der oLED 2 emittierte Licht linear polarisiert, - eine organisch^ Fluoreszenz- bzw. Phosphoreszenzschicht 4, von der die Lebensdauer der Lumineszenz vom Sauerstoff-Partialdruck, dem die Schicht ausgesetzt ist, abhängt und deren emittiertes Lumineszenzlicht einen bestimmten Grad an Depolarisation aufweist, und - ein·* weiterer Polarisationsfilter 5, dessen Eigenrichtung gekreuzt zu der des ersten steht und der das linear polarisierte Anregungslichtlicht unterdrückt.The wavelength separator 7 comprises the following subelements: a polarization filter 3, which linearly polarizes the light emitted by the oED 2, an organic fluorescent or phosphorescent layer 4, of which the lifetime of the luminescence from the partial pressure of oxygen, the Layer is exposed, and whose emitted luminescent light has a certain degree of depolarization, and - a * * further polarizing filter 5, whose self-direction is crossed to that of the first and which suppresses the linearly polarized excitation light light.

Weitere Elemente wie z.B. zusätzliche Polarisatoren, Kantenfilter und Photodioden können je nach Ausfuhrungsform hinzugefügt werden, um z.B. die Empfindlichkeit des Sauerstoff-Sensors 1 zu steigern, das Signal-Rauschverhältnis zu verbessern, den Sauerstoff-Sensor 1 an einen bestimmten Sauerstoff-Partialdruck anzupassen oder Streu- und Umgebungslicht zu unterdrücken. Ausfuhrungsbeispiele mit zusätzlichen Bauteilen sind weiter unten näher beschrieben. ·· ·· mm mm m mmmm • • • m m m m mm m • • • · ··· m m m mmm ♦ · • m • · mm m • · • · • · m m m ·· mm mm mm mmm mmm 5Other elements such as e.g. additional polarizers, edge filters and photodiodes may be added depending on the embodiment, e.g. to increase the sensitivity of the oxygen sensor 1, to improve the signal-to-noise ratio, to adapt the oxygen sensor 1 to a certain partial pressure of oxygen or to suppress scattered and ambient light. Exemplary embodiments with additional components are described in more detail below. ···· mm mm mmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmm 5m

Grundsätzlich wird die organische Leuchtdiode 2 mit einer sinusförmig modulierten Spannung, deren Modulationsfrequenz der Lebensdauer der Lumineszenz angepasst ist, angeregt, wie in Fig. 2 links angedeutet. Somit wird von der organischen Photodiode 6 ebenso ein sinusförmiger Photostrom bzw. eine sinusförmige Photospannung geliefert, die eine Phasenverschiebung φ zur Anregungsspannung aufweist, wie in Fig. 2 rechts dargestellt. Die Größe dieser Phasenverschiebung φ ist im Wesentlichen abhängig von der Lumineszenzlebensdauer des organischen Farbstoffes in der Schicht 4 und somit von dem zu bestimmenden Sauerstoff-Partialdruck.In principle, the organic light-emitting diode 2 is excited with a sinusoidally modulated voltage whose modulation frequency is adapted to the lifetime of the luminescence, as indicated on the left in FIG. 2. Thus, a sinusoidal photocurrent or a sinusoidal photovoltage is also supplied by the organic photodiode 6, which has a phase shift φ to the excitation voltage, as shown in Fig. 2 right. The size of this phase shift φ is essentially dependent on the luminescence lifetime of the organic dye in the layer 4 and thus on the oxygen partial pressure to be determined.

Der Sauerstoff-Sensor 1 kann mit einem nicht weiter dargestellten Lesegerät, das auch die Spannungsversorgung für die Leuchtdiode 2 übernimmt, gekoppelt werden. Die Ankoppelung des Sauerstoff-Sensors 1 an das Lesegerät kann dabei über elektrische Kontakte oder über einen in den Sauerstoff-Sensor 1 integrierten Hochffequenz-Sendeteil induktiv erfolgen.The oxygen sensor 1 can be coupled with a reading device, not shown further, which also takes over the power supply for the light-emitting diode 2. The coupling of the oxygen sensor 1 to the reading device can be carried out inductively via electrical contacts or via a high-frequency transmitting part integrated into the oxygen sensor 1.

In Fig. 3 ist das Funktionsprinzip der Unterdrückung des Anregungslichtes durch eine geeignete Anordnung von Polarisatoren 3, 5 in dem Wellenlängenseparator 7 schematisch dargestellt.In Fig. 3, the operating principle of the suppression of the excitation light by a suitable arrangement of polarizers 3, 5 in the wavelength separator 7 is shown schematically.

In den Fig. 4A bis 4D sind stark schematisiert bevorzugte Ausführungsbeispiele erfindungsgemäß ausgestalteter organischer Sauerstoff-Sensoren dargestellt. Es ist jeweils ein Schnitt durch den Schichtaufbau des Sauerstoff-Sensors dargestellt.FIGS. 4A to 4D show highly schematically preferred embodiments of organic oxygen sensors designed according to the invention. In each case, a section through the layer structure of the oxygen sensor is shown.

Eine erste Ausführungsform der gegenständlichen Erfindung gemäß Fig. 4A besteht aus einer organischen Leuchtdiode 2, einem Substrat 8, einem ersten Polarisator 3, einem ersten Spacer 9, einer aktiven Sensorschicht 4, eventuell einem zweiten Spacer 10, einem zweiten Polarisator 5, dessen Eigenrichtung 90° mit der des ersten einschließt, sowie einer organischen Photodiode 6, die das von der aktiven Sensorschicht 4 emittierte Lumineszenzlicht detektiert.A first embodiment of the subject invention according to FIG. 4A consists of an organic light-emitting diode 2, a substrate 8, a first polarizer 3, a first spacer 9, an active sensor layer 4, possibly a second spacer 10, a second polarizer 5, whose self-direction 90 ° with that of the first includes, and an organic photodiode 6, which detects the luminescence emitted by the active sensor layer 4 luminescent light.

Eine zweite Ausfuhrungsform der gegenständlichen Erfindung gemäß Fig. 4B besteht aus einer organischen Leuchtdiode 2, einem Substrat 8, einem ersten Polarisator 3, einem ersten Spacer 9, einer aktiven Sensorschicht 4, einem zweiten Spacer 10, einem Kantenfilter 11 zur Unterdrückung des Anregungslichtes, einem zweiten Polarisator 5, dessen Eigenrichtung 90° mit der des ersten einschließt, sowie einer organischen Photodiode 6, die das von der aktiven Schicht 4 emittierte Lumineszenzlicht detektiert. 6 ····A second embodiment of the subject invention according to FIG. 4B consists of an organic light-emitting diode 2, a substrate 8, a first polarizer 3, a first spacer 9, an active sensor layer 4, a second spacer 10, an edge filter 11 for suppressing the excitation light second polarizer 5, whose self-direction includes 90 ° with that of the first, and an organic photodiode 6, which detects the luminescence emitted from the active layer 4 luminescent light. 6 ····

Eine dritte Ausführungsform der gegenständlichen Erfindung gemäß Fig. 4C besteht aus einer organischen Leuchtdiode 2, einem Substrat 8, einem ersten Polarisator 3, einem ersten Spacer 9, einer aktiven Sensorschicht 4, eventuell einem zweiten Spacer 10, einer ersten organischen Photodiode 12 zur Detektion des Anregungslichtes mit einer bestimmten Transparenz für das emittierte Lumineszenzlicht, einem zweiten Polarisator 5, dessen Eigenrichtung 90° mit der des ersten einschließt, sowie einer zweiten organischen Photodiode 6, die das von der aktiven Schicht 4 emittierte Lumineszenzlicht detektiert.A third embodiment of the subject invention according to FIG. 4C consists of an organic light emitting diode 2, a substrate 8, a first polarizer 3, a first spacer 9, an active sensor layer 4, possibly a second spacer 10, a first organic photodiode 12 for detecting the Excitation light with a certain transparency for the emitted luminescent light, a second polarizer 5, whose self-direction includes 90 ° with that of the first, and a second organic photodiode 6, which detects the luminescence emitted from the active layer 4 luminescence.

Eine vierte Ausführungsform der gegenständlichen Erfindung gemäß Fig. 4D besteht aus einer organischen Leuchtdiode 2, einem Substrat 8, einem ersten Polarisator 3, einem ersten Spacer 9, einer aktiven Sensorschicht 4, eventuell einem zweiten Spacer 10, einer ersten organischen Photodiode 12 zur Detektion des Anregungslichtes mit einer bestimmten Transparenz für das emittierte Lumineszenzlicht, einem Kantenfilter 11 zur Unterdrückung des Anregungslichtes, einem zweiten Polarisator 5, dessen Eigenrichtung 90° mit der des ersten einschließt, sowie einer zweiten organischen Photodiode 6, die das von der aktiven Schicht emittierte Lumineszenzlicht detektiert.A fourth embodiment of the subject invention according to FIG. 4D consists of an organic light-emitting diode 2, a substrate 8, a first polarizer 3, a first spacer 9, an active sensor layer 4, possibly a second spacer 10, a first organic photodiode 12 for detecting the Excitation light with a certain transparency for the emitted luminescent light, an edge filter 11 for suppressing the excitation light, a second polarizer 5 whose self-direction includes 90 ° with that of the first, and a second organic photodiode 6, which detects the luminescence emitted from the active layer luminescence.

Der/die Spacer 9, 10 gemäß Fig. 4A bis 4D kann/können die Fläche des Substrats 8 ganz oder teilweise bedecken. Ist die laterale Möglichkeit zur lateralen Diffusion ausreichend, können die Spacer 9,10 auch entfallen.The spacer (s) 9, 10 according to FIGS. 4A to 4D can cover all or part of the surface of the substrate 8. If the lateral possibility for lateral diffusion is sufficient, the spacers 9, 10 can also be dispensed with.

In jeder Ausführungsform der Erfindung kann jede der beschriebenen Schichten den Querschnitt komplett oder teilweise bedecken.In any embodiment of the invention, each of the layers described may completely or partially cover the cross-section.

In jeder Ausführungsform enthält die Erfindung als Lichtquelle eine organische Leuchtdiode 2, welche beispielhaft in Fig. 5 dargestellt ist. Die organische Leuchtdiode 2 wird in Sandwichstruktur gefertigt. Eine oder mehrere organische Dünnfilme werden dabei von zwei elektrisch leitfähigen Elektroden 13,14 kontaktiert. Die organische Leuchtdiode 2 besteht typischerweise aus einer Loch- und einem Elektronentransportschicht (HTL und ETL). An der Kathode 13 werden Elektronen, an der Anode 14 Löcher injiziert.In each embodiment, the invention contains as light source an organic light-emitting diode 2, which is shown by way of example in FIG. The organic light-emitting diode 2 is manufactured in sandwich structure. One or more organic thin films are contacted by two electrically conductive electrodes 13,14. The organic light emitting diode 2 typically consists of a hole and an electron transport layer (HTL and ETL). At the cathode 13, electrons are injected at the anode 14 holes.

Als Materialien für eine oLED 1, die bei 530 nm emittiert (grünes Licht), können für den ETL Aluminium tris(8-hydroxyquinoline) und den HTL N,N'-bis(l naphthyl)- N,N'-diphenyl-l,r-biphenyl-4,4'diamine, für die Kathode 13 Aluminium und für die Anode 14 Indiumzinnoxid eingesetzt werden. 7 7 ···· *t ·· ·· ·· • · · ·· · ···· • · · · ♦·· · · · · • · · · » · ··· · ······ · t Für eine oLED 2, die zwischen 400 und 425 nm emittiert (blaues Licht) kann als Emittermaterial Para-Hexaphenyl und als Löchertransportschicht N,N-diphenyl-N,N'-(3-methylphenyl) -1,1 '-biphenyl- 4,4'-diamine eingesetzt werden.As materials for an oLED 1 emitting at 530 nm (green light), for the ETL aluminum tris (8-hydroxyquinoline) and the HTL N, N'-bis (1-naphthyl) -N, N'-diphenyl-l , r-biphenyl-4,4'diamine, used for the cathode 13 aluminum and for the anode 14 indium tin oxide. 7 7 ···· * t ··············· ·············· For an oLED 2 emitting between 400 and 425 nm (blue light), para-hexaphenyl can be used as emitter material and N, N-diphenyl-N, N '- (3-methylphenyl) -1,1' as hole transport layer. biphenyl-4,4'-diamines are used.

In jeder Ausführungsform enthält die Erfindung eine organische Lumineszenzschicht 4, die mit geeigneten Verfahren (z.B. Spin-Coating, Dip-Coating, Rakeln, Curtain-Coating oder Aufdampfen) aufgebracht wird und deren Lumineszenzlebensdauer eine hinreichend starke Funktion des Sauerstoff-Partialdruckes ist, dem die Schicht 4 zur Detektion ausgesetzt wird.In each embodiment, the invention includes an organic luminescent layer 4, which is applied by suitable methods (eg spin coating, dip coating, knife coating, curtain coating or vapor deposition) and whose luminescence lifetime is a sufficiently strong function of the oxygen partial pressure, the Layer 4 is exposed for detection.

In jeder Ausführungsform enthält die Erfindung zumindest eine organische Photodiode 6,12 zur Detektion des emittierten Fluoreszenzlichtes bzw. des Anregungslichtes, welche schematisch in Fig. 6 dargestellt ist. Die organische Photodiode 6,12 wird in Sandwichstruktur gefertigt. Eine oder mehrere organische Dünnfilme werden dabei von zwei elektrisch leitfähigen Elektroden 15,16 kontaktiert. Ausgangspunkt für die Fabrikation der Photodiode 6,12 ist zum Beispiel ein Glassubstrat 17. Zur Strukturierung der einzelnen Komponenten der Photodiode können diverse Strukturierungsverfahren, wie zum Beispiel Photolithographie, Elektronenstrahllithographie, FIB (focused ion beam) oder Lift-Off Technik eingesetzt werden. Die Aufbringung der organischen sowie metallischen Dünnschichten 18 erfolgt z.B. durch Vakuumsublimation in entsprechenden Verdampferanlagen oder durch Spincoaten oder Inkjetprinten von Polymermaterialien.In each embodiment, the invention comprises at least one organic photodiode 6, 12 for detecting the emitted fluorescent light or the excitation light, which is shown schematically in FIG. 6. The organic photodiode 6, 12 is manufactured in a sandwich structure. One or more organic thin films are contacted by two electrically conductive electrodes 15,16. The starting point for the fabrication of the photodiode 6, 12 is, for example, a glass substrate 17. Various structuring methods, such as photolithography, electron beam lithography, FIB (focused ion beam) or lift-off technique can be used to pattern the individual components of the photodiode. The application of the organic and metallic thin films 18 takes place e.g. by vacuum sublimation in corresponding evaporator systems or by spincoats or inkjet printers of polymer materials.

In Fig. 6 ist eine mögliche Ausführungsform gezeigt, die als Elektrodenmaterialien Silber bzw. Gold enthält und als organische Dünnschichten 18 die Halbleiter 3,4,9,10-perylenetetracarboxylic bis-benzimidazole und Kupfer-Phthalozyanin. Das Maximum der spektralen Empfindlichkeit dieser Zelle liegt bei etwa 615 nm. Weitere mögliche aktive Materialien sind als p-Halbleiter: ZnPc, CuPc, Pentazen, PTCDA, TPD und als n-Halbleiter: Perylenderivate (PTCBI, MPP), FCuPc. Die organischen Halbleiter werden so gewählt, dass das Maximum der Photostromempfindlichkeit mit dem Maximum der Intensität des zu detektierenden Lichtes übereinstimmt.FIG. 6 shows a possible embodiment which contains silver or gold as electrode materials and as organic thin films 18 the semiconductors 3,4,9,10-perylenetetracarboxylic bis-benzimidazoles and copper phthalocyanine. The maximum of the spectral sensitivity of this cell is about 615 nm. Other possible active materials are as p-type semiconductors: ZnPc, CuPc, pentacene, PTCDA, TPD and as n-type semiconductors: perylene derivatives (PTCBI, MPP), FCuPc. The organic semiconductors are chosen so that the maximum of the photocurrent sensitivity coincides with the maximum of the intensity of the light to be detected.

In jeder Ausführungsform enthält die Erfindung einen oder mehrere Polarisatoren 3,5, die entweder als Folienpolarisatoren ausgeführt sind, mit dem/denen die benachbarten Elemente auf geeignete Weise verbunden werden (z.B. durch Lamination oder Kleben mit optischem Kleber), oder die auf die Nachbarelemente als Dünnschichtpolarisatoren aufgebracht werden, wobei jede Technik, die sowohl die gewünschten Polarisationseigenschaften gewährleistet als auch die Elemente, auf die die Polarisatoren 3, 5 aufgebracht werden, nicht beschädigt, zum Einsatz kommen kann. δIn each embodiment, the invention includes one or more polarizers 3, 5, embodied either as film polarizers, to which the adjacent elements are suitably connected (eg by lamination or gluing with optical glue) or to the neighboring elements as Dünnschichtpolarisatoren be applied, using any technique that ensures both the desired polarization properties and the elements to which the polarizers 3, 5 are applied, not damaged, can be used. δ

In jeder Ausführungsform kann die Erfindung einen oder mehrere Spacer 9,10 enthalten, sofern nicht die laterale Diffusion in die organische Lumineszenz-Schicht ausreichend ist. Die Spacer 9, 10 sind so gestaltet bzw. strukturiert, dass sie für den Sauerstoff die Möglichkeit schaffen, in die organische Lumineszenz-Schicht ein- und aus dieser wieder auszudiffimdieren, ohne dabei die optische Funktion des Sauerstoff-Sensors 1 zu beeinträchtigen.In any embodiment, the invention may include one or more spacers 9, 10, unless lateral diffusion into the organic luminescent layer is sufficient. The spacers 9, 10 are designed or structured in such a way that they provide oxygen with the possibility of diffusing into and out of the organic luminescent layer without impairing the optical function of the oxygen sensor 1.

In Fig. 7 ist das Funktionsprinzip des erfindungsgemäß ausgestalteten Sauerstoff-Sensors 1 dargestellt: Zum Zeitpunkt t = 0 sec befindet sich die aktive Sensorschicht 4 in Luft, es ergibt sich eine Phasendifferenz φ zwischen der Anregungsspannung der organischen Leuchtdiode 2 und der Photospannung von ca. 102°. Dann wird die Sensorschicht 4 mit Stickstoff gespült und nimmt einen Wert von etwa 109° an. Anschließend wird mit Sauerstoff gespült, wodurch der Wert geht auf ca. 101° sinkt, anschließend wieder mit Luft (φ = 102°), Stickstoff (φ = 109°), Sauerstoff (φ = 101°), Luft (φ = 102°) usw. v, . , -FIG. 7 shows the functional principle of the oxygen sensor 1 designed according to the invention: At time t = 0 sec, the active sensor layer 4 is in air, resulting in a phase difference φ between the excitation voltage of the organic light emitting diode 2 and the photovoltage of approx. 102 °. Then, the sensor layer 4 is purged with nitrogen and assumes a value of about 109 °. Then it is purged with oxygen, whereby the value goes down to about 101 °, then again with air (φ = 102 °), nitrogen (φ = 109 °), oxygen (φ = 101 °), air (φ = 102 ° ) etc. v,. , -

In Tab.l sind die genauen Werte für die Spannung an der organischen Photodiode 6 (oPD) und die Phasenverschiebung zwischen der Anregungsspannung der organischen Leuchtdiode (SD) 2 und der Photospannung angeführt: oPD-Spannung oPD-SD-Spanng. oPD-φ oPD-SD-φ [V] [V] [°] Π N2 (0%) 1,390 10‘5 1,101 10’8 109,198 0,0497 N2 (21%) 1,346 10‘5 1,120 IO'8 102,151 0,0469 02 (100%) 1,281 IO'5 1,360 10'8 100,451 0,0497In Tab.l the exact values for the voltage at the organic photodiode 6 (oPD) and the phase shift between the excitation voltage of the organic light emitting diode (SD) 2 and the photo voltage are listed: oPD voltage oPD SD Spanng. oPD-φ oPD-SD-φ [V] [V] [°] Π N2 (0%) 1.390 10'5 1.101 10'8 109.198 0.0497 N2 (21%) 1.346 10'1.120 IO'8 102.151 0 , 0469 02 (100%) 1.281 IO'5 1.360 10'8 100.451 0.0497

Fig. 8 zeigt die Funktionsweise der Unterdrückung des Anregungslichtes durch die Verwendung der gekreuzten Polarisatoren 3, 5 und die Messung des emittierten Fluoreszenzlichtes in einer spektral aufgelösten Darstellung. Als Lichtquelle wurde eine organische Leuchtdiode 2 mit einem Maximum der Emissionswellenlänge bei 400 nm verwendet. Die im Maximum unteren beiden Kurven geben die Emission an Luft wieder, die im Maximum oberen Kurven bei Spülung der Sensorschicht 4 mit Kohlendioxid.8 shows the mode of operation of the suppression of the excitation light by the use of the crossed polarizers 3, 5 and the measurement of the emitted fluorescent light in a spectrally resolved representation. The light source used was an organic light-emitting diode 2 with a maximum of the emission wavelength at 400 nm. The maximum lower two curves reflect the emission in air, the maximum upper curves when flushing the sensor layer 4 with carbon dioxide.

Claims (11)

Patentansprüche: 1. Sensor (1), insbesondere Sauerstoff-Sensor zur Detektion von gasförmigem oder gelöstem Sauerstoff, umfassend: - eine organische Leuchtdiode (2), einen ersten Polarisationsfilter (3), - eine organischen Fluoreszenz- bzw. Phosphoreszenzschicht (4), - einen zweiten Polarisationsfilter (5), und - zumindest eine organische Photodiode (6,12).1. sensor (1), in particular oxygen sensor for the detection of gaseous or dissolved oxygen, comprising: - an organic light-emitting diode (2), a first polarizing filter (3), - an organic fluorescent or phosphorescent layer (4), - A second polarizing filter (5), and - at least one organic photodiode (6,12). 2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass die Lumineszenz-Lebensdauer der Fluoreszenz- bzw. Phosphoreszenzschicht (4) vom Sauerstoff-Partialdruck, dem die Schicht (4) ausgesetzt ist, abhängig ist.2. Sensor according to claim 1, characterized in that the luminescence lifetime of the fluorescent or phosphorescent layer (4) is dependent on the oxygen partial pressure to which the layer (4) is exposed. 3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das von der Fluoreszenz- bzw. Phosphoreszenzschicht (4) emittierte Licht depolarisiert ist.3. Sensor according to claim 1 or 2, characterized in that the of the fluorescent or phosphorescent layer (4) emitted light is depolarized. 4. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Eigenrichtung des zweiten Polarisationsfilters (5) senkrecht zu der Eigenrichtung des ersten Polarisationsfilters (3) ausgerichtet ist.4. Sensor according to one of claims 1 to 3, characterized in that the self-direction of the second polarizing filter (5) is aligned perpendicular to the direction of the first polarizing filter (3). 5. Sensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Polarisationsfilter (3, 5) in die organische Leuchtdiode (2) und/oder in die zumindest eine organische Photodiode (6,12) integriert sind.5. Sensor according to one of claims 1 to 4, characterized in that the polarization filter (3, 5) in the organic light emitting diode (2) and / or in the at least one organic photodiode (6,12) are integrated. 6. Sensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zumindest eine organische Photodiode (6,12) polarisierend ausgefuhrt ist.6. Sensor according to one of claims 1 to 4, characterized in that the at least one organic photodiode (6,12) is carried out polarizing. 7. Sensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich ein die Schichten tragendes Substrat (8) an einer beliebigen Stelle des Sensors (1) befindet.7. Sensor according to one of claims 1 to 6, characterized in that a layer carrying the substrate (8) at any point of the sensor (1). 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das die Schichten tragende Substrat (8) flexibel oder starr ausgebildet ist.8. Device according to one of claims 1 to 7, characterized in that the layers carrying substrate (8) is flexible or rigid. 9. Sensor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen der aktiven Schicht (4) und dem zweitem Polarisator (5) ein Kantenfilter (11) angeordnet ist.9. Sensor according to one of claims 1 to 8, characterized in that between the active layer (4) and the second polarizer (5) an edge filter (11) is arranged. 10. Sensor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass nach der Sensorschicht (4) eine erste Photodiode (12) angeordnet ist; nach welcher das zweite Polarisationsfilter (5) ausgebildet ist, auf welches folgend eine zweite organischen Photodiode (6) angeordnet ist.10. Sensor according to one of claims 1 to 9, characterized in that after the sensor layer (4) a first photodiode (12) is arranged; according to which the second polarization filter (5) is formed, on which a second organic photodiode (6) is arranged following. 11. Sensor nach Anspruch 10, dadurch gekennzeichnet, dass zwischen der ersten organischen Photodiode (12) und der zweiten organischen Photodiode (6) ein Kantenfilter (11) angeordnet ist.11. Sensor according to claim 10, characterized in that between the first organic photodiode (12) and the second organic photodiode (6) an edge filter (11) is arranged.
AT9262007A 2007-06-14 2007-06-14 SENSOR FOR THE DETECTION OF GASES AT505337B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT9262007A AT505337B1 (en) 2007-06-14 2007-06-14 SENSOR FOR THE DETECTION OF GASES
PCT/AT2008/000216 WO2008151349A1 (en) 2007-06-14 2008-06-13 Sensor for the detection of gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT9262007A AT505337B1 (en) 2007-06-14 2007-06-14 SENSOR FOR THE DETECTION OF GASES

Publications (2)

Publication Number Publication Date
AT505337A1 true AT505337A1 (en) 2008-12-15
AT505337B1 AT505337B1 (en) 2009-08-15

Family

ID=39943013

Family Applications (1)

Application Number Title Priority Date Filing Date
AT9262007A AT505337B1 (en) 2007-06-14 2007-06-14 SENSOR FOR THE DETECTION OF GASES

Country Status (2)

Country Link
AT (1) AT505337B1 (en)
WO (1) WO2008151349A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244394B1 (en) * 1986-04-23 1992-06-17 AVL Medical Instruments AG Sensor element for determining the concentration of substances
US6107083A (en) * 1998-08-21 2000-08-22 Bayer Corporation Optical oxidative enzyme-based sensors
US6160267A (en) * 1999-01-05 2000-12-12 Regents Of The University Of Minnesota Vapochromic led
US6331438B1 (en) * 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices
US6686201B2 (en) * 2001-04-04 2004-02-03 General Electric Company Chemically-resistant sensor devices, and systems and methods for using same
US20030023181A1 (en) * 2001-07-26 2003-01-30 Mault James R. Gas analyzer of the fluorescent-film type particularly useful for respiratory analysis
NL1023680C2 (en) * 2003-06-17 2004-12-20 Tno Sensor with polymer components.

Also Published As

Publication number Publication date
WO2008151349A1 (en) 2008-12-18
AT505337B1 (en) 2009-08-15

Similar Documents

Publication Publication Date Title
Yuan et al. Perovskite energy funnels for efficient light-emitting diodes
Watkins et al. Portable, low-cost, solid-state luminescence-based O2 sensor
DE102007056275B3 (en) Chip for analyzing a medium with integrated organic light emitter
EP3152785B1 (en) Method for detecting and converting infrared electromagnetic radiation
EP0244394B1 (en) Sensor element for determining the concentration of substances
EP1830177A1 (en) Integrated test element
EP1565729A2 (en) Measuring device for the optical analysis of a test strip
US8106580B2 (en) Electrospun light-emitting fibers
Arden et al. Sensitized photocurrent through a semiconductor electrode by consecutive energy and electron transfer in dye monolayers
WO2011045221A1 (en) Photo-acoustic gas sensor and method for the production and use thereof
Shu et al. Highly sensitive on-chip fluorescence sensor with integrated fully solution processed organic light sources and detectors
EP3516710B1 (en) Diffusion-limiting electroactive barrier layer for an optoelectronic component
CN1529820A (en) Method and apparatus for leak-testing electroluminescent device
JP2018525649A (en) Analysis equipment
US8188485B2 (en) Detection system having a light emitting diode
Sagmeister et al. Enabling luminescence decay time-based sensing using integrated organic photodiodes
AT505337A1 (en) SENSOR FOR THE DETECTION OF GASES
Seeland et al. Imaging techniques for studying OPV stability and degradation
CN113758907A (en) Gas sensor element and gas detection device using same
KR20180061312A (en) Organic-based fluorescence sensor with low background signal
EP2929576B1 (en) Electronic device with oxygen ion pump
AT390330B (en) Sensor element for determining concentrations of substances
CN113237639B (en) Testing device for light-emitting diode
Hein Organic optoelectronics for lab-on-chip fluorescence detection
Shinar et al. Organic and Hybrid Electronics in Optical Analytical Applications

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20160614