AT4705U1 - METHOD FOR OPERATING A PRIMED IGNITION ENGINE - Google Patents

METHOD FOR OPERATING A PRIMED IGNITION ENGINE Download PDF

Info

Publication number
AT4705U1
AT4705U1 AT0093800U AT9382000U AT4705U1 AT 4705 U1 AT4705 U1 AT 4705U1 AT 0093800 U AT0093800 U AT 0093800U AT 9382000 U AT9382000 U AT 9382000U AT 4705 U1 AT4705 U1 AT 4705U1
Authority
AT
Austria
Prior art keywords
temperature
catalytic converter
load
internal combustion
storage catalytic
Prior art date
Application number
AT0093800U
Other languages
German (de)
Inventor
Walter Dr Piock
Ralf Dipl Ing Kunzemann
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to AT0093800U priority Critical patent/AT4705U1/en
Publication of AT4705U1 publication Critical patent/AT4705U1/en
Priority to DE10160438A priority patent/DE10160438B4/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer fremdgezündeten Brennkraftmaschine mit direkter Einspritzung, mit zumindest einem NO`X- Speicherkatalysator im Abgasstrang, wobei während des Motorbetriebes die Temperatur des NO`X- Speicherkatalysators und der Lastzustand der Brennkraftmaschine kontinuierlich oder diskontinuierlich ermittelt wird, und wobei ein maximaler Sollwert für die Temperatur des NO`X- Speicherkatalysators vordefiniert wird. Um den Kraftstoffverbrauch und die Abgasqualität auf möglichst einfache Art zu verbessern, ist vorgesehen, dass in lastfreien Betriebszuständen, bei welchen die Temperatur des NO`X- Speicherkatalysators über dem vordefinierten Sollwert liegt, die Brennkraftmaschine ungedrosselt betrieben und die Kraftstoffzufuhr zum Brennraum unterbrochen wird. Das Wiedereinsetzen nach einem lastfreien Betriebszustand erfolgt ebenfalls ungedrosselt.The invention relates to a method for operating a spark-ignited internal combustion engine with direct injection, with at least one NO`X storage catalytic converter in the exhaust line, the temperature of the NO`X storage catalytic converter and the load state of the internal combustion engine being determined continuously or discontinuously during engine operation, and wherein a maximum setpoint for the temperature of the NO`X storage catalytic converter is predefined. In order to improve fuel consumption and exhaust gas quality in the simplest possible way, it is provided that in unloaded operating states in which the temperature of the NO`X storage catalytic converter is above the predefined setpoint, the internal combustion engine is operated without throttling and the fuel supply to the combustion chamber is interrupted. The reinsertion after a load-free operating state also takes place without throttling.

Description

       

   <Desc/Clms Page number 1> 
 



  Die Erfindung betrifft ein Verfahren zum Betreiben einer fremdgezündeten Brennkraftmaschine mit direkter Einspritzung, mit zumindest einem NOx- Speicherkatalysator im Abgasstrang, wobei während des Motorbetriebes die Temperatur des NOx-Speicherkatalysators und der Lastzustand der Brennkraftmaschine kontinuierlich oder diskontinuierlich ermittelt wird, und wobei ein maximaler Sollwert oder ein Sollwertkennfeld als Funktion von Einspritzmenge und/oder Motordrehzahl und/oder -last für die Temperatur des NOx-Speicherkatalysators vordefiniert wird. 



  Um den NOx-Ausstoss bei direkteinspritzenden Otto-Motoren auf das vom Gesetzgeber vorgeschriebene Mass zu reduzieren, werden NOx- Speicherkatalysatoren eingesetzt. Speicher- oder Adsorberkatalysatoren verfügen über ein bestimmtes Temperaturfenster, in welchem eine NOx- Einspeicherung stattfinden kann. Dieses Temperaturfenster bestimmt im wesentlichen den Betriebsbereich der direkteinspritzenden Otto- Brennkraftmaschine, in dem mit überstöchiometrischem Luft-Kraftstoff- Verhältnis gefahren werden kann. Nach Einspeichern einer bestimmten Masse an NOx muss der Motor mit einem unterstöchiometrischen   ,-Wert   betreiben werden, um das eingespeicherte NOx wieder zu reduzieren, was den Treibstoffverbrauch erhöht.

   Speicherkatalysatoren sind ausserdem empfindlich für hohe Temperaturen und weisen bei Abgastemperaturen, welche eine spezifische Alterungstemperatur überschreiten, eine verstärkte Neigung zu einer irreversiblen Katalysatoralterung auf. Um diese Schädigung zu vermeiden, ist es bekannt, zum Schutz des Katalysators vor zu hohen Abgastemperaturen das Abgas mit einem Bypass- System am Adsorber vorbeizuleiten oder bei Überschreiten einer bestimmten Abgastemperatur auf stark unterstöchiometrischen Motorbetrieb umzuschalten. 



  Dies wirkt sich allerdings nachteilig auf die Abgasqualität und/oder den Treibstoffverbrauch aus. 



  In der AT 3.601 Ul wurde bereits vorgeschlagen, stromaufwärts des NOx- Speicherkatalysator einen Abgaskühler anzuordnen, um auf möglichst einfache Weise Treibstoffverbrauch und Abgasemissionen zu reduzieren und um einen wirksamen Schutz für den NOx-Speicherkatalysator bereitzustellen. 



  Es ist weiters bekannt, bei einer fremdgezündeten Brennkraftmaschine zwischen einem Vorkatalysator und einem NOx-Speicherkatalysator eine umgehbare Kühlstrecke vorzusehen, wobei der Durchfluss durch die Kühlstrecke über eine Abgasklappe gesteuert werden kann. Dadurch ist ein Temperaturmanagement des NOx-Speicherkatalysators möglich. 

 <Desc/Clms Page number 2> 

 



  Zur weiteren Verminderung des Treibstoffverbrauches und der Abgasemissionen ist eine Ausweitung des Schichtbetriebes wünschenswert. Zur Vermeidung einer unakzeptablen Erhöhung der Stickoxidemissionen bietet sich die bekannte Technologie der Abgasrückführung an. Eine interne Abgasrückführung kann durch Verstellung der Steuerzeiten bewerkstelligt werden. Nachteilig dabei ist allerdings der Kostenaufwand für die Ventilsteuerzeiten-Verstelleinrichtungen, die für Ein- und Auslassventile benötigt werden. Als kostengünstige Alternative kann die bekannte externe Abgasrückführung mit Durchflusssteuerung eingesetzt werden, bei der eine Abgasrückführleitung vom Abgasstrang in die Einlassleitung einmündet. 



  Bei aufgeladenem Magerbetrieb steigt allerdings im Ansaugsammlerbereich der Ladedruck an und würde eine Abgasrückführung behindern. Um trotzdem genügend externes Abgas rückführen zu können, ist das Aufbringen eines Gegendruckes im Abgasstrang stromaufwärts der Abzweigung der Abgasrückführleitung notwendig. Problematisch ist allerdings, dass bei Homogenbetrieb mit   #=1   hohe Abgastemperturen auftreten, welche über dem Einspeicherfenster des NOx-Speicherkatalysators liegen, wodurch die entstehenden Stickoxide nicht mehr eingespeichert werden können. Um möglichst viel im kraftstoffsparenden Magerbetrieb fahren zu können, ist es notwendig, durch gezielte Massnahmen die Abgastemperatur vor dem   NOx-   Speicherkatalysator entsprechend nieder zu halten. 



  Ein besonderes Problem dabei ist das Wiedereinsetzen des Magerbetriebes aus einem Betriebsbereich mit hoher Abgastemperatur. Wenn das gesamte Auspuffsystem nämlich stark erwärmt ist, dauert es relativ lange, um die Abgastemperaturen vor dem NOx-Speicherkatalysator wieder in den gewünschten Bereich zu bringen, zumal während der Sperrzeit des NOx- Speicherkatalysators die Brennkraftmaschine homogen betrieben wird, und daher deutlich höhere motorseitige Temperaturen erzeugt werden. Durch oberflächliche Kühlung des Abgases über Rohre, beispielsweise durch Doppelmantelkühlung des Abgasstranges, kann dieses Problem nicht zufriedenstellend gelöst werden. 



  Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und bei einer fremdgezündeten Brennkraftmaschine auf möglichst einfach Weise Treibstoffverbrauch und Abgasemissionen zu reduzieren. Insbesondere soll dabei die Wiedereinsetzdauer für den Magerbetrieb aus Betriebsphasen mit hohen Abgastemperaturen verkürzt werden. 



  Erfindungsgemäss wird dies dadurch erreicht, dass in lastfreien Betriebszuständen, bei welchen die Temperatur des NOx-Speicherkatalysators über dem vordefinierten Sollwert liegt, die Brennkraftmaschine ungedrosselt betrieben und die Kraftstoffzufuhr zum Brennraum unterbrochen wird. Als 

 <Desc/Clms Page number 3> 

 lastfreie Betriebszustände werden dabei Schubphasen definiert.

   In Schubphasen oberhalb einer Wiedereinsetzdrehzahl für die Kraftstoffzufuhr wird - wenn die gemessene oder mit einem Rechenmodell bestimmte Speicherkatalysatortemperatur höher ist als der Sollwert der Speicherkatalysatortemperatur - die Brennkraftmaschine ungedrosselt, das heisst mit zur Gänze geöffneter Drosselklappe, und ohne Einspritzung betrieben, damit eine grosse Luftmenge relativ kühl durch das Einlass- und Auslasssystem strömt und die Abkühlung vor allem der gesamten Katalysatorstrukturen beschleunigt. 



  Der Antriebsstrang ist dabei geschlossen, der Motor somit durch das Fahrzeug angetrieben. Die Wiedereinsetzdrehzahl ist eine Funktion von Gang und Motordrehzahl. Dadurch kann die Speicherkatalysatortemperatur wesentlich schneller gesenkt werden und ein früherer Umstieg auf den kraftstoffsparenden Magerbetrieb realisiert werden. Das Wiedereinsetzen nach einer solchen Schubphase erfolgt dann ebenfalls im Magerbetrieb (Schichtbetrieb), wobei nur geringfügig angedrosselt werden muss. Dadurch kann ein schnelles Ansteigen der Temperatur bedingt durch den sonst notwendigen Homogenbetrieb mit   #=1   vermieden werden.



   <Desc / Clms Page number 1>
 



  The invention relates to a method for operating a spark-ignition internal combustion engine with direct injection, with at least one NOx storage catalytic converter in the exhaust line, the temperature of the NOx storage catalytic converter and the load state of the internal combustion engine being determined continuously or discontinuously during engine operation, and a maximum setpoint or a setpoint map is predefined as a function of injection quantity and / or engine speed and / or load for the temperature of the NOx storage catalytic converter.



  NOx storage catalytic converters are used to reduce NOx emissions in direct-injection gasoline engines to the level prescribed by law. Storage or adsorber catalysts have a specific temperature window in which NOx storage can take place. This temperature window essentially determines the operating range of the direct-injection gasoline engine, in which it is possible to operate with an over-stoichiometric air-fuel ratio. After a certain mass of NOx has been stored, the engine must be operated with a substoichiometric value in order to reduce the stored NOx again, which increases fuel consumption.

   Storage catalytic converters are also sensitive to high temperatures and have an increased tendency to irreversible catalytic converter aging at exhaust gas temperatures that exceed a specific aging temperature. In order to avoid this damage, it is known, in order to protect the catalytic converter from exhaust gas temperatures that are too high, to bypass the exhaust gas with a bypass system at the adsorber or to switch over to a strongly substoichiometric engine operation when a specific exhaust gas temperature is exceeded.



  However, this has an adverse effect on the exhaust gas quality and / or the fuel consumption.



  AT 3,601 U1 has already proposed placing an exhaust gas cooler upstream of the NOx storage catalytic converter in order to reduce fuel consumption and exhaust gas emissions in the simplest possible manner and to provide effective protection for the NOx storage catalytic converter.



  It is also known to provide a bypassable cooling section between a pre-catalytic converter and a NOx storage catalytic converter in a spark-ignition internal combustion engine, the flow through the cooling section being able to be controlled via an exhaust gas flap. This enables temperature management of the NOx storage catalytic converter.

 <Desc / Clms Page number 2>

 



  To further reduce fuel consumption and exhaust emissions, it is desirable to expand shift operation. In order to avoid an unacceptable increase in nitrogen oxide emissions, the known exhaust gas recirculation technology can be used. Internal exhaust gas recirculation can be accomplished by adjusting the timing. The disadvantage here, however, is the cost of the valve timing adjustment devices that are required for intake and exhaust valves. As a cost-effective alternative, the known external exhaust gas recirculation with flow control can be used, in which an exhaust gas recirculation line from the exhaust line opens into the inlet line.



  When lean operation is charged, however, the boost pressure increases in the intake manifold area and would hinder exhaust gas recirculation. In order to be able to recirculate enough external exhaust gas, it is necessary to apply a back pressure in the exhaust line upstream of the branch of the exhaust gas recirculation line. It is problematic, however, that in homogeneous operation with # = 1 high exhaust gas temperatures occur, which lie above the storage window of the NOx storage catalytic converter, as a result of which the nitrogen oxides produced can no longer be stored. In order to be able to drive as much as possible in fuel-efficient lean operation, it is necessary to take appropriate measures to keep the exhaust gas temperature down in front of the NOx storage catalytic converter.



  A particular problem here is the resumption of lean operation from an operating area with a high exhaust gas temperature. If the entire exhaust system is warmed up, it takes a relatively long time to bring the exhaust gas temperatures in front of the NOx storage catalytic converter back into the desired range, especially since the internal combustion engine is operated homogeneously during the blocking period of the NOx storage catalytic converter, and therefore significantly higher engine-side temperatures be generated. This problem cannot be solved satisfactorily by superficial cooling of the exhaust gas via pipes, for example by double-jacket cooling of the exhaust line.



  The object of the invention is to avoid these disadvantages and to reduce fuel consumption and exhaust gas emissions in the simplest possible manner in the case of a spark-ignition internal combustion engine. In particular, the period of reinsertion for lean operation from operating phases with high exhaust gas temperatures is to be shortened.



  According to the invention, this is achieved in that the internal combustion engine is operated without throttling and the fuel supply to the combustion chamber is interrupted in load-free operating states in which the temperature of the NOx storage catalytic converter is above the predefined setpoint. As

 <Desc / Clms Page number 3>

 Load-free operating states are defined in overrun phases.

   In overrun phases above a reinstallation speed for the fuel supply - if the storage catalytic converter temperature measured or determined using a computing model is higher than the target value of the storage catalytic converter temperature - the internal combustion engine is throttled, i.e. with the throttle valve fully open, and operated without injection, so that a large amount of air is relatively cool flows through the inlet and outlet system and accelerates the cooling, especially of the entire catalyst structures.



  The drive train is closed, the engine is thus driven by the vehicle. The reinsertion speed is a function of gear and engine speed. As a result, the storage catalytic converter temperature can be reduced much faster and an earlier switch to fuel-efficient lean operation can be implemented. The reinstallation after such an overrun phase then also takes place in lean operation (shift operation), with only slight throttling being necessary. A rapid rise in temperature due to the otherwise necessary homogeneous operation with # = 1 can thereby be avoided.


    

Claims (3)

ANSPRÜCHE 1. Verfahren zum Betreiben einer fremdgezündeten Brennkraftmaschine mit direkter Einspritzung, mit zumindest einem NOx-Speicherkatalysator im Abgasstrang, wobei während des Motorbetriebes die Temperatur des NOx- Speicherkatalysators und der Lastzustand der Brennkraftmaschine kontinuierlich oder diskontinuierlich ermittelt wird, und wobei ein maximaler Sollwert oder ein Sollwertkennfeld als Funktion von Einspritzmenge und/oder Motordrehzahl und/oder -last für die Temperatur des NOx- Speicherkatalysators vordefiniert wird, dadurch gekennzeichnet, dass in lastfreien Betriebszuständen, bei welchen die Temperatur des NOx- Speicherkatalysators über dem vordefinierten Sollwert liegt, die Brennkraftmaschine ungedrosselt betrieben und die Kraftstoffzufuhr zum Brennraum unterbrochen wird.  CLAIMS 1. Method for operating a spark-ignition internal combustion engine with direct injection, with at least one NOx storage catalyst in the Exhaust line, whereby the temperature of the NOx Storage catalyst and the load state of the internal combustion engine is determined continuously or discontinuously, and being a maximum Setpoint or a setpoint map as a function of injection quantity and / or engine speed and / or load for the temperature of the NOx Storage catalyst is predefined, characterized in that in load-free operating states in which the temperature of the NOx Storage catalytic converter is above the predefined setpoint, which Internal combustion engine operated without throttling and the fuel supply to Combustion chamber is interrupted. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als lastfreier Betriebszustand Schubphasen oberhalb einer vordefinierten Wiedereinsetzdrehzahl definiert werden. 2. The method according to claim 1, characterized in that as a load-free Operating status overrun phases above a predefined Reinsertion speed can be defined. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach Beendigung des lastfreien Betriebszustandes und/oder nach Absinken der Temperatur des NOx-Speicherkatalysators auf eine vordefinierte Wiedereinsetztemperatur, welche maximal dem Sollwert entspricht, das Wiedereinsetzen des Lastbetriebes im Magerbetrieb mit einem überstöchiometrischem Luft-Kraftstoffverhältnis erfolgt. 3. The method according to claim 1 or 2, characterized in that after Termination of the no-load operating state and / or after the Temperature of the NOx storage catalytic converter to a predefined Resetting temperature, which corresponds at most to the setpoint, the The load operation in lean operation is restarted with an over-stoichiometric air-fuel ratio.
AT0093800U 2000-12-21 2000-12-21 METHOD FOR OPERATING A PRIMED IGNITION ENGINE AT4705U1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT0093800U AT4705U1 (en) 2000-12-21 2000-12-21 METHOD FOR OPERATING A PRIMED IGNITION ENGINE
DE10160438A DE10160438B4 (en) 2000-12-21 2001-12-08 Method for operating a spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0093800U AT4705U1 (en) 2000-12-21 2000-12-21 METHOD FOR OPERATING A PRIMED IGNITION ENGINE

Publications (1)

Publication Number Publication Date
AT4705U1 true AT4705U1 (en) 2001-10-25

Family

ID=3503280

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0093800U AT4705U1 (en) 2000-12-21 2000-12-21 METHOD FOR OPERATING A PRIMED IGNITION ENGINE

Country Status (2)

Country Link
AT (1) AT4705U1 (en)
DE (1) DE10160438B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331937B4 (en) * 2003-07-15 2012-03-29 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with an internal combustion engine, and engine compartment air duct system for this
DE102014017303A1 (en) * 2014-11-21 2016-05-25 Daimler Ag Method for operating a drive device for a motor vehicle and drive device
DE102021200870A1 (en) * 2021-02-01 2022-08-04 Vitesco Technologies GmbH Method and device for operating a serial hybrid drive train

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728205A1 (en) * 1977-06-23 1979-01-18 Bosch Gmbh Robert CONTROL DEVICE OF A FUEL SUPPLY SYSTEM FOR MIXED COMPRESSING EXTERNAL IGNITION ENGINE
DE19843859A1 (en) * 1998-09-25 2000-03-30 Bosch Gmbh Robert Improvement in exhaust gas composition, following degradation due to sulfur content, is brought about by rich regeneration when either oxygen storage capacity or total sulfur input falls outside set threshold.
AT3601U1 (en) * 1999-03-05 2000-05-25 Avl List Gmbh INTERNAL COMBUSTION ENGINE WITH DIRECT FUEL INJECTION INTO THE COMBUSTION CHAMBER

Also Published As

Publication number Publication date
DE10160438B4 (en) 2004-07-22
DE10160438A1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
DE10246405B4 (en) Control system for an internal combustion engine
EP2628922B1 (en) Method for operating a self-igniting combustion engine
EP2092185B1 (en) Internal combustion engine with exhaust-gas recirculation
DE102005061643A1 (en) A method of controlling the air / fuel ratio in an engine
DE102013210611B4 (en) Partial shutdown engine and method of operating such an internal combustion engine
DE102013223089A1 (en) METHOD FOR CONTROLLING AN EXHAUST GAS RECYCLING SYSTEM IN A COMBUSTION ENGINE
DE102009007765A1 (en) Method for operating an internal combustion engine with an exhaust gas purification system comprising an SCR catalytic converter
DE102011076098A1 (en) AVOIDANCE OF COOLANT OVERHEATING IN EXHAUST AIR COOLANT HEAT EXCHANGERS
DE102020006451A1 (en) Control device for controlling a hydrogen content of an exhaust gas from an internal combustion engine
DE102014105181A1 (en) Preserve combustion stability under compressor pumping conditions
EP3470638B1 (en) Combustion engine, motor vehicle and method for operating a combustion engine
EP0943053B1 (en) Method for controlling a direct-injection internal combustion engine
DE102017202435A1 (en) Method and control device for controlling the opening state of an exhaust flap of an internal combustion engine
DE102013221318A1 (en) Exhaust gas recirculation under rich conditions to improve fuel economy
DE10052953B4 (en) Third-ignition internal combustion engine
EP3159516A1 (en) Method for operating a combustion engine, in particular a diesel engine
WO2002025089A1 (en) Method for operating an internal combustion engine
DE102018009400A1 (en) Internal combustion engine for a motor vehicle with a burner arranged in an exhaust tract, and method for operating such an internal combustion engine
DE10029504C2 (en) Method for operating a diesel engine
DE10303705B4 (en) A method of operating a direct fuel injection internal combustion engine
AT4705U1 (en) METHOD FOR OPERATING A PRIMED IGNITION ENGINE
EP3667056A1 (en) Exhaust gas aftertreatment of an internal combustion engine
DE102019107514A1 (en) Method for operating an internal combustion engine and an internal combustion engine
AT3601U1 (en) INTERNAL COMBUSTION ENGINE WITH DIRECT FUEL INJECTION INTO THE COMBUSTION CHAMBER
EP3683427A1 (en) Exhaust gas treatment of an internal combustion engine

Legal Events

Date Code Title Description
MM9K Lapse due to non-payment of renewal fee