AT39747B - Glass for use in x-ray tubes, optical and chemical instruments. - Google Patents
Glass for use in x-ray tubes, optical and chemical instruments.Info
- Publication number
- AT39747B AT39747B AT39747DA AT39747B AT 39747 B AT39747 B AT 39747B AT 39747D A AT39747D A AT 39747DA AT 39747 B AT39747 B AT 39747B
- Authority
- AT
- Austria
- Prior art keywords
- glass
- optical
- ray tubes
- rays
- chemical instruments
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims description 18
- 239000000126 substance Substances 0.000 title description 8
- 230000003287 optical effect Effects 0.000 title description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 3
- 229910052614 beryl Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OACKSWYFIADTNM-UHFFFAOYSA-M lithium hydrogen carbonate hydrate Chemical compound [Li+].[OH-].OC(O)=O OACKSWYFIADTNM-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Description
<Desc/Clms Page number 1>
Glas zur Benutzung in Röntgenröhren, optischen und chemischen Instrumenten.
Gegenstand der Erfindung ist ein Glas, welches nicht nur für die Lichtstrahlen und ähnliche Strahlen, sondern auch für die X-Strahlen und andere Formen von strahlender Energie von kleiner
EMI1.1
Die bisher üblichen Glassorten, welche Oxyde von Elementen mit einem höheren Atomgewicht als dem des Siliziums enthalten, sind für die Lichtstrahlen und ähnliche Strahlen durch- lässig, dagegen für Strahlen von sehr kurzer Wellenlänge und für Röntgenstrahlen mehr oder weniger undurchlässig.
Das Glas gemäss der Erfindung wird aus Oxyden von Elementen erzeugt, die ein niedrigeres Atomgewicht als das Silizium besitzen. Durch Benützung der Oxyde gewisser Elemente, wie Lithium, Bor, Beryllium, Magnesium und Aluminium, kann ein Glas erzeugt werden, welches kerne oder nur eine geringe Absorption für X-Strahlen, ultraviolette Strahlen und andere Strahlen kurzer Wellenlänge aufweist. Zweckmässig werden Oxyde von Elementen mit einem Atomgewicht unter 12 gewählt und zwar besteht das neue Glas aus mindestens 95% eines Gemisches von Lithiumborat und Borsäure.
Die üblichen Substanzen, wie kieselsaures Natron und andere Silikate kommen also für die Erfindung nicht in Betracht, obwohl kleine Mengen von Silikat in das Glas eintreten können. falls die zur Erzeugung des Glases dienenden Gefässe Silikate enthalten.
Zur Herstellung des Glases werden zwei oder mehrere der erwähnten Oxyde, bezw. Materialien, weiche diese Oxyde beim Erhitzen freigeben, zusammengeschmolzen, z. B. Lithiumoxyd Karbonat oder Fluorid und Borsäure und Berylloxyd oder statt dessen auch Magnesia und Tonerde, gegebenenfalls mit den vorerwähnten Substanzen vermischt. Kleine Mengen von gewissen Substanzen kennen für besondere Zwecke, wie z. B. Färbung des Glases, zugesetzt werden.
EMI1.2
Das entstandene Glas kann vor oder während des Abkühlens durch Umrühren oder Aus- issen in den kristallinischen Zustand überführt werden. Wenn es jedoch ungestört abkühlen fassen wird, bleibt es klar und geht durch den plastischen in einen festen Zustand über, wie ge- w ohnliches Glas. Je nach den gewünschten Eigenschaften des Glases werden verschiedene Substanzen zugesetzt. Durch Zusatz von Beryllerde oder Magnesia oder dgl. wird der Neigung des Glases, kristallinisch zu erstarren, entgegengewirkt. Ebenso kann durch Zusatz geeigneter Substanzen die Härte und die Widerstandsfähigkeit des Glases gegen Einwirkungen des Wassers oder von Reagentien geregelt werden.
Wenn das gebildete Gas hygroskopisch ist oder wenn es schädlichen atmosphärischen Einfliissen ausgesetzt ist, so wird es zweckmässig mit einem Schutz- überzug aus Firnis, wie z. B. für photographische Platten, versehen.
EMI1.3
<Desc/Clms Page number 2>
Das Lithiumborat kann, gegebenenfalls unter Zusatz von Verbindungen des Beryllium oder eines anderen der genannten Elemente, geschmolzen und in die Form einer Röntgenröhre
EMI2.1
Energie absorbiert. 3. Fluoresziert die Röhre nicht mit dem eigentümlichen Schein der üblichen Röhren und 4. treten die üblichen sekundären Strahlen, welche undeutliche Schattenrisse ergeben, nicht auf.
PATENT. ANSPRÜCHE :
1. Glas zur Benutzung in Röntgenröhren, optischen und chemischen Instrumenten, dadurch gekennzeichnet, dass dasselbe aus mindestens 95% eines Gemisches von Lithiumborat und Borsäure besteht.
<Desc / Clms Page number 1>
Glass for use in x-ray tubes, optical and chemical instruments.
The subject of the invention is a glass which is not only suitable for the light rays and similar rays, but also for the X-rays and other forms of radiant energy of less than
EMI1.1
The previously common types of glass, which contain oxides of elements with a higher atomic weight than that of silicon, are permeable to light rays and similar rays, but more or less opaque to rays of very short wavelengths and to X-rays.
The glass according to the invention is produced from oxides of elements which have a lower atomic weight than silicon. By using the oxides of certain elements, such as lithium, boron, beryllium, magnesium and aluminum, a glass can be produced which has no or only little absorption for X-rays, ultraviolet rays and other rays of short wavelength. It is advisable to choose oxides of elements with an atomic weight of less than 12, namely the new glass consists of at least 95% of a mixture of lithium borate and boric acid.
The usual substances, such as silicic acid soda and other silicates, are therefore not suitable for the invention, although small amounts of silicate can enter the glass. if the vessels used to produce the glass contain silicates.
To produce the glass, two or more of the oxides mentioned, respectively. Materials that release these oxides when heated are fused together, e.g. B. lithium oxide carbonate or fluoride and boric acid and beryl oxide or instead also magnesia and clay, optionally mixed with the substances mentioned above. Small amounts of certain substances know for special purposes, such as. B. Coloring of the glass can be added.
EMI1.2
The resulting glass can be converted into the crystalline state by stirring or pouring out before or during cooling. If, however, it can cool down undisturbed, it remains clear and changes to a solid state through the plastic, like ordinary glass. Different substances are added depending on the desired properties of the glass. The tendency of the glass to solidify crystalline is counteracted by adding beryl alumina or magnesia or the like. The hardness and resistance of the glass to the effects of water or reagents can also be regulated by adding suitable substances.
If the gas formed is hygroscopic or if it is exposed to harmful atmospheric influences, it is advisable to coat it with a protective coating made of varnish, e.g. B. for photographic plates provided.
EMI1.3
<Desc / Clms Page number 2>
The lithium borate can, optionally with the addition of compounds of beryllium or another of the elements mentioned, melted and in the form of an X-ray tube
EMI2.1
Energy absorbed. 3. If the tube does not fluoresce with the peculiar glow of the usual tubes, and 4. The usual secondary rays, which result in indistinct silhouettes, do not appear.
PATENT. EXPECTATIONS :
1. Glass for use in X-ray tubes, optical and chemical instruments, characterized in that the same consists of at least 95% of a mixture of lithium borate and boric acid.
Claims (1)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT39747T | 1908-04-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AT39747B true AT39747B (en) | 1909-11-25 |
Family
ID=3557949
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT39747D AT39747B (en) | 1908-04-14 | 1908-04-14 | Glass for use in x-ray tubes, optical and chemical instruments. |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT39747B (en) |
-
1908
- 1908-04-14 AT AT39747D patent/AT39747B/en active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69428651T2 (en) | A glass ceramic which converts light wavelengths and process for its production | |
| Levin et al. | The System Bi2O,—B2O3 | |
| DE69005077T2 (en) | Platelet-shaped alpha-alumina macrocrystals and process for their production. | |
| DE2726087B1 (en) | Process for the final disposal-ready, environmentally friendly solidification of and moderately radioactive and / or actinide-containing, aqueous waste concentrates or of fine-grained solid waste suspended in water | |
| DE69509736T2 (en) | Colorless ophthalmic glasses | |
| Marzouk et al. | Optical, FT infrared and photoluminescence spectra of CeO2–doped Na2O–ZnO–B2O3 host glass and effects of gamma irradiation | |
| DE102016117951A1 (en) | Ultraviolet transparent visible light absorbing glass and ultraviolet transparent visible light absorbing filter | |
| EA021394B1 (en) | Glass | |
| AT39747B (en) | Glass for use in x-ray tubes, optical and chemical instruments. | |
| EP0148882B1 (en) | Material resisting to high temperatures for plants for forming optical structural glass elements of good surface quality | |
| DE1909433A1 (en) | Process for the production of a glass with high light transmission | |
| Gomaa et al. | Effect of adding two intermediate oxides (Bi2O3 and MnO2) in place of a glass’s original oxide (B2O3) on the structural, optical, and shielding qualities of several sodium borate-based glasses | |
| US3269847A (en) | Phototropic glass and methods | |
| DE3821684C2 (en) | ||
| Banerjee et al. | Role of TiO2 on the physicochemical properties of cesium borosilicate glasses | |
| DE2201108C3 (en) | Process for the production of cathodochromic sodalite for screens of dark-track cathode ray tubes | |
| DE1907395A1 (en) | Process for the production of ceramic bodies, in particular for the preparation of oxide bodies | |
| DE1592491A1 (en) | Process for the production of titanium dioxide pigments | |
| BREWSTER et al. | Radiation‐Absorbing Glasses | |
| DE753155C (en) | Device for sending bacteria | |
| Prider et al. | The alteration products of olivine and leucite in the leucite-lamproites from the West Kimberley Area, Western Australia | |
| Beukes et al. | Hotsonite, a new hydrated aluminum-phosphate-sulphate from Pofadder, South Africa | |
| Holland et al. | The ternary system Na2O-ZnO-SiO2 | |
| Govindaraju | X‐ray spectrometric determination of major elements in silicate rock samples, using a thin film technique based on ion exchange dissolution | |
| Pathania et al. | Environmentally safe high density lanthanum doped glasses for radiation shielding windows |