AT302908B - Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy - Google Patents

Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy

Info

Publication number
AT302908B
AT302908B AT16571A AT16571A AT302908B AT 302908 B AT302908 B AT 302908B AT 16571 A AT16571 A AT 16571A AT 16571 A AT16571 A AT 16571A AT 302908 B AT302908 B AT 302908B
Authority
AT
Austria
Prior art keywords
tube
sep
tubes
plastic
production
Prior art date
Application number
AT16571A
Other languages
German (de)
Inventor
O Engler
M Mueller
Original Assignee
Karlsruhe Augsburg Iweka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruhe Augsburg Iweka filed Critical Karlsruhe Augsburg Iweka
Priority to AT16571A priority Critical patent/AT302908B/en
Application granted granted Critical
Publication of AT302908B publication Critical patent/AT302908B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3656Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a layer of a multilayer part to be joined, e.g. for joining plastic-metal laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3668Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special induction coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • B29C65/368Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/348Avoiding melting or weakening of the zone directly next to the joint area, e.g. by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • B29C66/43123Closing the ends of squeeze tubes, e.g. for toothpaste or cosmetics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81419General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled and flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/22Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding
    • B65B51/227Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding by induction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/14Closing collapsible or resilient tubes, e.g. for tooth paste, for lighter fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/20Flexible squeeze tubes, e.g. for cosmetics

Description

       

   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft eine Vorrichtung zur Herstellung von Quer-Verschlüssen an tubenförmigen,   zusammendrückbaren   Behältern, welche mindestens aus je einer äusseren Metallschicht sowie einer inneren Kunststoff-Schicht bestehen und eine Längsnaht haben, mittels in einem Generator erzeugter und den zu verschliessenden Behälter über eine wassergekühlte Elektrode induktiv zugeführter Hochfrequenz-Energie, wobei der Elektrode ein   Massekem-beispielsweise   aus Ferrit od. dgl.-zugeordnet sein kann, welcher deren geradlinigen, hochfrequenzenergie-führenden Teil umschliesst, so dass lediglich die die Schweissverbindung der tubenförmigen Behälter bewirkende Seite der etwa quadratisch bzw.

   rhombisch ausgebildeten Elektrode vom Massekern freibleibt, und wobei die Elektrode mit dem sie umschliessenden Massekern in einem Giessharz-Körper eingebettet sein kann-insbesondere in einer   Tuben-Füll-und-verschIiess-Maschine,   in welcher zumindestens das   Zuführen,   Zentrieren, Ausrichten, Füllen, Verschliessen und Beschneiden in wenigstens zwei zueinander parallelen Arbeitssträngen erfolgt. 



   Insbesondere pastöse   Güter-wie   Zahncremes, Kosmetika, Pharmazeutika   od. dgl.-werden   üblicherweise in Metall- oder Kunststoff-Tuben abgefüllt ; das Verschliessen der   Metalltuben   erfolgte dabei durch ein- oder 
 EMI1.1 
 Anwendung unterschiedlicher Verfahren, verschweissen. Der Verwendung von Metall- und Kunststoff-Tuben sind aus naheliegenden Gründen vor allem dann Grenzen gesetzt, wenn in denselben verderbliche   Güter-beispielsweise Lebensmittel-abgepackt   werden sollen, welche dann durch den Einfluss ungeeigneter Metalle oder Kunststoffe hinsichtlich in ihrem Geschmack verändert werden   können-ganz   abgesehen davon, 
 EMI1.2 
 gesundheitliche Schäden eintreten können. 



   Seit einiger Zeit ist es auch bekannt, Tuben, insbesondere solche, die der Aufnahme von Nahrungsmitteln dienen, aus mehreren Schichten herzustellen : Eine dieser bekanntgewordenen Tuben bestand aus drei Schichten,   u. zw.   aus einer Kunststoff-Innenschicht mit niedrigem dielektrischen Verlustfaktor, einer aussen auf der Kunststoffschicht aufgebrachte Metallschicht, etwa Aluminium, sowie einer wieder auf der Metallschicht angeordnete Schicht aus Papier und/oder Kunststoff. 



   Moderne Tuben weisen bereits bis zu acht verschiedene Schichten auf,   u. zw.   (von aussen nach innen) :
1. 0 transparentes Hochdruck-Polyäthylen,
2. 0 bedrucktes, weisses Hochdruck-Polyäthylen,
3. 0 Papier,   4. 0 Hochdruck-Polyäthylen,   
5. 0 Copolymer mit besonderen Klebeeigenschaften,
6. 0 Aluminium. 



   7. 0 Copolymer, und schliesslich
8. 0 Hochdruck-Polyäthylen. 



   Je nach den chemiko-physikalischen Eigenschaften und Eigenheiten des zu verpackenden Gutes kann die Anzahl der Tubenschichten variieren. 



   Die Herstellung derartiger Mehrschichttuben erfolgt in der Regel so, dass das in Gestalt einer Folienbahn vorliegende Material zunächst in einzelne Abschnitte quer unterteilt, die einzelnen Abschnitte sodann gerollt und schliesslich der auf diese Weise entstandene Tubenzylinder mit einer überlappenden Längsnaht verschweisst wird. 



  Der Tubenzylinder erhält auf einer Seite ein Schulterstück aus dichtem Kunststoff, welches unter Anwendung eines besonderen, an dieser Stelle jedoch keiner weiteren Erörterung bedürfenden Verfahrens eingesetzt wird. Das Schulterstück ist dabei in üblicher Weise mit einer Austrittsöffnung für das Füllgut versehen ; die Austrittsöffnung ist mittels einer Schraubkappe verschliessbar. 



   Den vorstehend schon erwähnten mehrschichtigen Tubenmaterialien ist gemeinsam, dass wenigstens eine der Innenschichten aus einem unter Wärme und Druck verschweissbaren Kunststoff besteht. 



   Nicht zuletzt, um vorhandene   Tubenfü1l- und verschliessmaschinen   weiterverwenden oder durch Zusatzeinrichtungen ergänzen zu können, ist es wünschenswert, wenn die mehrschichtigen Tubenmaterialien sich wie die eingangs erwähnten (Nur-) Metall-oder Kunststofftuben verarbeiten lassen. Da, wie schon geschildert, die fertigen, mit Schulterstück und Schraubkappe versehenen Tuben zum Abfüllen gelangen, stellt sich für den Anwender derartiger Tuben primär das Problem, auf welche Weise die offenen Tubenenden verschlossen werden können. 



   Um einen Querverschluss der offenen Tubenenden zu erhalten,   d. h.   um die in den Tubenkörpern enthaltenen Kunststoffschichten miteinander zu verschweissen, ist es bekannt, sich manuell oder maschinell betätigbarer Verschlussbacken zu bedienen. Wie die nachfolgende Übersicht zeigt, sind bereits recht unterschiedliche   Verschlussbacken-Ausführungen   in Gebrauch : Bei üblichen Kunststofftuben, die   z. B.   aus PVC oder aber aus Polyäthylen bestehen, ist Verschweissen durch Kontaktwärme mit Heizbackensystemen aus Stahl, Kupfer, Aluminium oder Al-Legierungen die Regel ; derartige Heizbacken sind mit Heizpatronen versehen, um einen Temperaturbereich beliebig einstellen und im Betrieb durch Regeln aufrechtzuerhalten.

   Die Kanten der Heizbacken, die elektrodenartig wirken, sind bei dieser bekannten Ausführungsform etwa durch glasfaserverstärkte Folien abgedeckt, die aus Kunststoffen bestehen, wie sie etwa unter dem Handelsnamen 

 <Desc/Clms Page number 2> 

 "Teflon" bekannt sind. Durch die Anwendung derartiger Materialien werden Klebwirkungen der erweichenden Kunststoffschichten an den Elektrodenoberflächen vermieden. 



   Bei Wärmeimpulselektroden werden die aus einem Metall hergestellten Elektroden mit einem wärmebeständigen Isoliermaterial abgedeckt ; auf dieser nichtleitenden Schicht wird das Impulsband, etwa ein flaches Metallband, montiert. Mittels kurzem Hochstromstoss wird das Metallband über den Schmelzpunkt des Kunststoffes hinaus erhitzt und dadurch der Kunststoff im Nahtgebiet durch Kontaktwärme zum Schmelzen gebracht. 



   Zum Verschweissen der Tuben-Kunststoffschichten ist-wie bei der oben schon erwähnten Methode-der Schluss der Heizbackensysteme unter Druck erforderlich. 



   Bei beiden Systemen ist die Schweissleistung pro Zeiteinheit relativ niedrig, weil der Wärmeübergang vom Schweisswerkzeug durch die Kunststoffschicht hindurch bis in die Schweisszone einen relativ grossen Zeitaufwand erfordert. 



   Eine andere Möglichkeit, Querschweissnähte an Tuben herzustellen, besteht in der Anwendung von mit 
 EMI2.1 
 bestehendes Klemmbacken-Paar frei hinausstehende Nahtgebiet beidseitig durch Ultrarot-Strahlung auf Schmelztemperatur gebracht. Dieser Vorgang benötigt mehrere Sekunden und erfolgt auf zwei und mehr Folgestationen. Ist der Schmelzvorgang erreicht, wird sodann das angeschmolzene Nahtgebilde auf einer weiteren Klemmstation gepresst und zugleich abgekühlt. Dieses Verfahren erweist sich nur für Polyäthylen-Tuben als geeignet, weil sich bei diesen der Erweichungszustand über ein relativ breites Temperaturgebiet erstreckt. Für PVC-Tuben wird es in der Praxis jedoch nicht angewendet. 



   Demhingegen lässt sich für das Verschweissen von PVC-Tuben relativ gut das kapazitive Hochfrequenz-Verfahren anwenden. Als Elektrodenpaar dienen in diesem Falle dann zwei planparallele Metallplatten aus Kupfer, deren Oberflächenmasse durch Länge und Breite der gewünschten Schweissnaht gegeben sind. Beide Elektroden können bis auf einen engen Spalt genähert werden. Durch den entstehenden Spalt wird die Tube zunächst flachgedrückt und sodann zusammengepresst. Da beide Elektroden HF-Spannungen von mehreren 1000 V führen, müssen sie hochwertig isoliert aufgehängt sein. Durch den elektrischen Dipolcharakter der PVC-Moleküle erfolgt die Erwärmung der Kunststoffschichten nach folgender Beziehung :   W=A. M. e. tgS.

   E . 10' [Watt/cm ]   
 EMI2.2 
 
<tb> 
<tb> wobei
<tb> W <SEP> = <SEP> umgesetzte <SEP> Wärmemenge <SEP> pro <SEP> Volumeneinheit,
<tb> A <SEP> = <SEP> 0, <SEP> 0885, <SEP> 
<tb> w <SEP> = <SEP> Kreisfrequenz,
<tb> e <SEP> = <SEP> Dielektrizitätskonstante,
<tb> tg <SEP> 5 <SEP> = <SEP> Verlustwinkel, <SEP> und
<tb> E <SEP> = <SEP> Feldstärke <SEP> [in <SEP> Volt/cm]
<tb> ist.
<tb> 
 



   Während bei diesem Verfahren für PVC   tgb   ausreichend gross ist, kommt diese Art der Erwärmung jedoch für Polyäthylen nicht in Betracht, da dessen tgb etwa nur 1/100 von PVC beträgt. Auf Grund des Vorstehenden lässt sich unschwer ableiten, dass das eben beschriebene Verfahren nur für Kunststoffe mit grossem   tgo   anwendbar ist, und dass der Anwendungsbereich praktisch nur auf PVC begrenzt ist. Infolgedessen, dass bei diesem Verfahren auch die Anzahl der offen-und Schliessbewegungen der Verschlussbacken pro Minute relativ niedrig (etwa 20.... 30) liegt, vermochte es sich in der Praxis nicht in grösserem Umfang durchzusetzen. 



   Als letztes der bekanntgewordenen Verfahren sei hier nun noch das Ultraschall-Schweissverfahren genannt. 



  Dieses Verfahren ist für das Herstellen von Querverschlüssen an Kunststofftuben universell geeignet, weil die meisten Thermoplaste sich mit Ultraschall-Schweissbacken, die bekanntlich aus einer mit Ultraschallfrequenz mechanisch schwingenden metallischen Pressbacke, der Sonotrode, und einer metallischen Gegenbacke, dem Amboss, bestehen, verschliessen lassen. Da das öffnen und Schliessen der Schweissbacken, das Schweissen sowie das Abkühlen der Naht in einer einzigen Station erfolgen, bereitet bei diesem Verfahren das Kühlen gewisse Schwierigkeiten. Die Arbeitstaktzeit derartiger Maschinen ist daher naheliegender Weise verhältnismässig gross, so dass auch bei diesem Verfahren ebenfalls nur relativ niedrige Stückzahlen (35 bis 45 Stck/min) erreicht werden können. 



   Den im Vorstehenden beschriebenen Arbeitsverfahren haften vor allem dann beträchtliche Mängel und Nachteile an, wenn mit ihnen Mehrschichttuben der ebenfalls schon erörterten Art verschweisst werden sollen. Da derartige Tuben nun aus Mehrschichtfolie entstanden sind, sind sie naheliegender Weise auch mit einer Längsnaht versehen, die in der Regel aus einer überlappungsnaht besteht. Es ist zwar grundsätzlich möglich, diese Mehrschichttuben durch Kontaktwärme mit normalen Heizbackensystemen oder mit Ultraschall-Pressbacken zu verschliessen. Es hat sich jedoch gezeigt, dass bei dem Wärmekontaktverfahren   der Wärmeübergang   durch den 

 <Desc/Clms Page number 3> 

 
 EMI3.1 
 

 <Desc/Clms Page number 4> 

 



   In weiterer Ausgestaltung dieses Erfindungsmerkmales hat es sich als vorteilhaft erwiesen, dass die Mittel zur Dämpfung der Wirbelstrom-Streufelder im wesentlichen aus einem relativ dünnen wassergekühlten
Metallschirm nichtferromagnetischen Werkstoffs bestehen, der in achsparalleler Richtung und mit Abstand zu dem die HF-Energie auf die tubenförmigen Behältnisse übertragenden Teil der Elektrode angeordnet sind. 



   Weiteren Merkmalen der vorgeschlagenen Erfindung zufolge ist der Metallschirm zum Durchfluss des
Kühlwassers doppelwandig ausgebildet. Selbstverständlich lässt sich alternativ auch ein einwandig ausgebildeter
Metallschirm an seiner achsparallel zum HF-Energie übertragenden Teil der Elektrode verlaufenden unteren Seite mit einem Rohr vorzugsweise quadratischen bzw. rhombischen Querschnittes zum Durchfluss des Kühlwassers versehen. 



   In überaus vorteilhafter Weise ist nach einem andern Merkmal der Erfindung vorgesehen, dass die
Kühlwasserführung im bzw. am Metallschirm mit derjenigen der Elektrode in Verbindung steht und zwischen
Schirm und Elektrode sowohl am Kühlwasser-Zulauf als auch am Kühlwasser-Ablauf je ein Isolierglied angeordnet ist. 



   Sinnvoll ergänzt und vervollkommnet wird die vorgeschlagene Erfindung schliesslich auch noch dadurch, dass das Isolierglied zwischen Schirm und Elektrode aus einem Kunststoff-Schlauch, wie etwa PVC   od. dgl.,   besteht. 



   Auf Grund der schon an anderer Stelle aufgeführten und durch die vorgenommenen Versuche erhärteten
Erkenntnisse sollen deshalb hier nur einige gravierende Vorteile erwähnt sein, die die vorgeschlagene Erfindung mit sich bringt : Wie-auch aus den Zeichnungen-unschwer zu erkennen ist, ist die vorgeschlagene Erfindung überaus einfach und billig in Aufbau und Herstellung. Sie bietet zudem die Möglichkeit, auch bereits vorhandene   Schweisselektroden-Anordnungen   mit der Abschirmung nachzurüsten. 



   Selbstverständlich erschöpft sich die vorgeschlagene Erfindung keineswegs aber nur in den vorstehend dargetanen Merkmalen. 



   Von weitaus grösserer Bedeutung ist die Tatsache, dass es unter Benutzung der vorgeschlagenen Erfindung nicht nur gelungen ist, erstmalig Tuben zu verschweissen, deren Längsnähte in beliebiger Lage zur Schweisselektrode orientiert sein können, sondern dass die Erfindung auch erstmalig hiefür bereits in der Praxis erprobte Wege weist, Schirmmittel zum Abfangen von unerwünschter elektrischer Wirbelstrom-Streufelder so anzuordnen, dass eine Überbeanspruchung der Längsnaht im Stossbereich mit der Quernaht etwa im Sinne von Lockerungen bzw. Undichtigkeiten mit Sicherheit vermieden bleibt. 



   In den Zeichnungen ist die Erfindung an zwei Ausführungsbeispielen dargestellt, ohne sich indes in diesen allein zu erschöpfen. Es zeigt Fig. 1 einen mit einer Hochfrequenz-Induktorschleife und mit einer wassergekühlten Abschirmung versehenen Verschlussbacken in raumbildlicher Darstellung, Fig. 2 eine der Fig. 1 ähnliche Darstellung eines Verschlussbackens mit doppelwandig ausgebildeter Abschirmung, Fig. 3 eine am Verschlussbacken mit Hochfrequenz-Induktorschleife anliegende Tube kurz vor dem Verschweissen, ebenfalls in raumbildlicher Darstellung, und schliesslich Fig. 4 einen Vertikalschnitt durch die zueinander korrespondierend ausgebildeten Verschlussbacken mit zwischen diesen befindlicher Tube im Augenblick der   HF-Energie-Zuführung.   



   In Fig. 1 ist in den in seiner Gesamtheit mit--l--bezeichneten und im wesentlichen us einem Giessharz-Körper od. dgl. bestehenden Verschlussbacken eine durch Wasser gekühlte   Induktorleiterschleife-2--   eingegossen, die etwa aus einem quadratisch, oder rhombisch ausgebildeten Rohr bestehen kann. Die Enden dieser Leiterschleife münden in dem   Anschlussstück-3--,   das durch die   Isolation --4-- in   zwei Hälften unterteilt ist. Um die   Leiterschleife--2--herum   erstreckt sich ein Massekern beispielsweise aus Ferrit od. dgl., welcher derart ausgenommen bzw. freigearbeitet ist, dass die Leiterschleife--2--nur mit ihrer der   Tube-6-- (vgl. Fig. 3   und 4) zugekehrten Fläche nicht vom Massekern umschlossen ist. 



   An der nach unten weisenden   Schrägen--la--des Verschlussbackens--l--ist,   entsprechend   Fig. l,   ein relativ dünnes metallisches   Abschirmblech --7-- aus   nichtferromagnetischem Werkstoff angebracht. Das Anbringen geschieht so, dass zwischen der Oberkante dieses Bleches und dem dazu parallelen   Stück-2a-der     Leiterschleife --2-- ein   gewisser   Spalt --2b-- verbleibt,   so dass zwischen   Abschirmblech --7-- und     Leiterschleife --2-- eine   elektrisch leitende Verbindung ausgeschlossen ist. 



   Das   Abschirmblech --7-- hat   die Aufgabe, die im Bereich der Tubenlängsnaht und unterhalb der Querschweissnaht auftretenden unerwünschten Wirbelstrom-Streufelder weitgehend zu dämpfen. 



   Es hat sich als vorteilhaft erwiesen, die in dem   Abschirmblech --7-- durch   die Wirbelströme entstehende Wärme über ein besonders ausgebildetes Wasserkühlsystem abzuführen : Wie in   Fig. 1   ersichtlich, befindet sich ein vom Kühlwasser durchflossenes Vierkantrohr od.   dgl.--7b--in   der Nähe der   Unterkante--7a--des   Abschirmbleches--7--, um die Wirkung des   Massekerns--5--für   den eigentlichen Schweissbereich voll ausnützen zu können. Im Prinzip ist es selbstverständlich möglich, ein derartiges Kühlrohr auch in anderer Weise auf dem Abschirmblech--7--anzuordnen.

   Zweckmässigerweise wird das Kühlwasser für das   Rohr-7b-   zur Kühlung des   Schirmes--7--gleich   der   Kühlwasserführung--2a--der Induktorleiterschleife--2--   entnommen. Aus diesem Grunde erfolgt die Überbrückung der Wasserzuleitung zwischen Induktorleitung   --2a-- und   der   Abschirmblechkühlleitung--7b--über Anschlussstück--8-aus Kunststoff.   



   In Fig. 2 ist eine zweite Ausführungsform für das Abschirmblech--7--dargestellt. Diese 

 <Desc/Clms Page number 5> 

 
 EMI5.1 




   <Desc / Clms Page number 1>
 



   The invention relates to a device for the production of transverse closures on tubular, compressible containers, which consist of at least one outer metal layer and one inner plastic layer and have a longitudinal seam, by means of a water-cooled electrode produced in a generator and the container to be closed inductively supplied high-frequency energy, whereby the electrode can be assigned a ground core - for example made of ferrite or the like - which encloses its straight, high-frequency energy-carrying part, so that only the side of the approximately square or square container causing the welded connection of the tubular container.

   rhombic electrode remains free from the earth core, and wherein the electrode with the earth core surrounding it can be embedded in a cast resin body - in particular in a tube filling and sealing machine in which at least the feeding, centering, aligning, filling, Closing and trimming takes place in at least two parallel working strands.



   In particular pasty goods - such as toothpastes, cosmetics, pharmaceuticals or the like - are usually filled into metal or plastic tubes; the metal tubes were closed by one or
 EMI1.1
 Use of different processes, welding. For obvious reasons, there are limits to the use of metal and plastic tubes, especially when perishable goods - for example food - are to be packaged in them, the taste of which can then be completely changed by the influence of unsuitable metals or plastics apart from this,
 EMI1.2
 damage to health can occur.



   For some time it has also been known to produce tubes, especially those used to hold food, from several layers. One of these tubes, which has become known, consisted of three layers, u. between a plastic inner layer with a low dielectric loss factor, a metal layer applied on the outside of the plastic layer, for example aluminum, and a layer made of paper and / or plastic again arranged on the metal layer.



   Modern tubes already have up to eight different layers, u. between (from outside to inside):
1. 0 transparent high pressure polyethylene,
2. 0 printed, white high-pressure polyethylene,
3. 0 paper, 4. 0 high-pressure polyethylene,
5. 0 copolymer with special adhesive properties,
6. 0 aluminum.



   7. 0 copolymer, and finally
8. 0 high pressure polyethylene.



   The number of tube layers can vary depending on the chemico-physical properties and peculiarities of the goods to be packaged.



   Such multi-layer tubes are usually produced in such a way that the material in the form of a film web is first divided into individual sections transversely, the individual sections are then rolled and finally the tube cylinder produced in this way is welded with an overlapping longitudinal seam.



  The tube cylinder has a shoulder piece made of dense plastic on one side, which is used using a special method which, however, does not require further discussion at this point. The shoulder piece is provided in the usual way with an outlet opening for the filling material; the outlet opening can be closed by means of a screw cap.



   The multi-layer tube materials already mentioned above have in common that at least one of the inner layers consists of a plastic that can be welded under heat and pressure.



   Not least in order to be able to continue using existing tube filling and closing machines or to be able to supplement them with additional devices, it is desirable if the multilayer tube materials can be processed like the (all) metal or plastic tubes mentioned at the beginning. Since, as already described, the finished tubes provided with shoulder piece and screw cap are used for filling, the user of such tubes primarily faces the problem of how the open tube ends can be closed.



   To obtain a cross closure of the open tube ends, i.e. H. In order to weld the plastic layers contained in the tube bodies to one another, it is known to use locking jaws that can be operated manually or by machine. As the following overview shows, quite different types of locking jaws are already in use: In the case of conventional plastic tubes, which are e.g. B. made of PVC or polyethylene, welding by contact heat with heating jaw systems made of steel, copper, aluminum or Al alloys is the rule; Such heating jaws are provided with heating cartridges in order to set a temperature range as desired and to maintain it during operation by regulating it.

   The edges of the heating jaws, which act like electrodes, are covered in this known embodiment, for example, by glass-fiber reinforced films made of plastics, such as those under the trade name

 <Desc / Clms Page number 2>

 "Teflon" are known. The use of such materials avoids the adhesive effects of the softening plastic layers on the electrode surfaces.



   In the case of heat pulse electrodes, the electrodes made of a metal are covered with a heat-resistant insulating material; The pulse band, such as a flat metal band, is mounted on this non-conductive layer. By means of a short high-current surge, the metal strip is heated above the melting point of the plastic, causing the plastic in the seam area to melt through contact heat.



   To weld the tube plastic layers, as in the method already mentioned above, the heating jaw systems must be closed under pressure.



   In both systems, the welding performance per unit of time is relatively low because the heat transfer from the welding tool through the plastic layer to the welding zone requires a relatively large amount of time.



   Another possibility to produce cross weld seams on tubes is to use with
 EMI2.1
 Existing pair of clamping jaws, exposed seam area on both sides brought to the melting temperature by ultrared radiation. This process takes several seconds and takes place on two or more subsequent stations. Once the melting process has been achieved, the fused seam structure is then pressed on a further clamping station and cooled at the same time. This process is only suitable for polyethylene tubes, because the softening state extends over a relatively wide temperature range. However, it is not used in practice for PVC tubes.



   On the other hand, the capacitive high-frequency process can be used relatively well for welding PVC tubes. In this case, two plane-parallel metal plates made of copper, the surface area of which is given by the length and width of the desired weld seam, serve as the electrode pair. Both electrodes can be brought closer to one another except for a narrow gap. The resulting gap first flattens the tube and then presses it together. Since both electrodes carry HF voltages of several 1000 V, they must be hung with high quality insulation. Due to the electrical dipole character of the PVC molecules, the plastic layers are heated according to the following relationship: W = A. M. e. tgS.

   E. 10 '[watt / cm]
 EMI2.2
 
<tb>
<tb> where
<tb> W <SEP> = <SEP> converted <SEP> amount of heat <SEP> per <SEP> volume unit,
<tb> A <SEP> = <SEP> 0, <SEP> 0885, <SEP>
<tb> w <SEP> = <SEP> angular frequency,
<tb> e <SEP> = <SEP> dielectric constant,
<tb> tg <SEP> 5 <SEP> = <SEP> loss angle, <SEP> and
<tb> E <SEP> = <SEP> field strength <SEP> [in <SEP> volt / cm]
<tb> is.
<tb>
 



   While tgb is sufficiently large for PVC in this process, this type of heating is out of the question for polyethylene, since its tgb is only about 1/100 of that of PVC. On the basis of the above, it can easily be deduced that the method just described can only be used for plastics with a large tgo, and that the area of application is practically only limited to PVC. As a result of the fact that with this method the number of opening and closing movements of the locking jaws per minute is also relatively low (approximately 20 ... 30), it has not been able to establish itself to a greater extent in practice.



   The last of the processes that have become known is the ultrasonic welding process.



  This process is universally suitable for the production of cross closures on plastic tubes, because most thermoplastics can be sealed with ultrasonic welding jaws, which are known to consist of a metallic pressing jaw, the sonotrode, and a metallic counter-jaw, the anvil, that vibrate mechanically at an ultrasonic frequency. Since the opening and closing of the welding jaws, the welding and the cooling of the seam take place in a single station, the cooling causes certain difficulties in this process. The work cycle time of such machines is therefore obviously relatively long, so that only relatively low numbers of items (35 to 45 items / min) can also be achieved with this method.



   The working methods described in the foregoing have considerable shortcomings and disadvantages, especially when they are to be used to weld multilayer tubes of the type already discussed. Since such tubes are now made of multilayer film, they are obviously also provided with a longitudinal seam, which usually consists of an overlap seam. In principle, it is possible to close these multilayer tubes using contact heat with normal heating jaw systems or with ultrasonic pressing jaws. However, it has been shown that the heat transfer through the thermal contact method

 <Desc / Clms Page number 3>

 
 EMI3.1
 

 <Desc / Clms Page number 4>

 



   In a further embodiment of this feature of the invention, it has proven to be advantageous that the means for damping the eddy current stray fields essentially consist of a relatively thin water-cooled
There are metal shields made of non-ferromagnetic material, which are arranged in an axially parallel direction and at a distance from the part of the electrode which transfers the HF energy to the tubular containers.



   According to further features of the proposed invention, the metal screen is to flow through the
Double-walled cooling water. Of course, a single-walled one can also be used as an alternative
Metal shield is provided on its lower side, which runs axially parallel to the part of the electrode that transmits HF energy, with a tube, preferably of a square or rhombic cross section, for the flow of the cooling water.



   In an extremely advantageous manner, it is provided according to another feature of the invention that the
Cooling water supply in or on the metal screen is connected to that of the electrode and between
Screen and electrode each have an insulating member arranged on both the cooling water inlet and the cooling water outlet.



   Finally, the proposed invention is expediently supplemented and perfected in that the insulating member between the screen and the electrode consists of a plastic hose, such as PVC or the like.



   On the basis of those already listed elsewhere and confirmed by the tests carried out
Findings should therefore only be mentioned here a few serious advantages that the proposed invention brings with it: As can be seen easily from the drawings, the proposed invention is extremely simple and inexpensive to design and manufacture. It also offers the possibility of retrofitting existing welding electrode arrangements with the shield.



   Of course, the proposed invention is by no means exhausted, but only in the features presented above.



   Of far greater importance is the fact that, using the proposed invention, it has not only been possible for the first time to weld tubes whose longitudinal seams can be oriented in any position to the welding electrode, but that the invention also shows ways that have already been tried and tested in practice for the first time To arrange shielding means to intercept undesired electrical eddy current stray fields in such a way that overstressing of the longitudinal seam in the joint area with the transverse seam, for example in the sense of loosening or leaks, is definitely avoided.



   In the drawings, the invention is shown in two exemplary embodiments, without, however, being exhausted in these alone. 1 shows a locking jaw provided with a high-frequency inductor loop and with a water-cooled shield in a spatial representation, FIG. 2 shows a representation similar to FIG. 1 of a locking jaw with a double-walled shield, FIG. 3 shows a locking jaw with a high-frequency inductor loop resting on the locking jaw Tube shortly before welding, also in a three-dimensional representation, and finally FIG. 4 shows a vertical section through the mutually correspondingly designed closing jaws with the tube located between them at the moment of the RF energy supply.



   In Fig. 1, a water-cooled inductor conductor loop-2-- is poured into the closure jaws, which are designated in their entirety by - l - and essentially consist of a cast resin body or the like, and which consist, for example, of a square or rhombic shape formed tube can exist. The ends of this conductor loop lead into the connector-3--, which is divided into two halves by the insulation --4--. A ground core, for example made of ferrite or the like, extends around the conductor loop - 2 - which is removed or worked free in such a way that the conductor loop - 2 - only with its tube 6 - (see Fig 3 and 4) facing surface is not enclosed by the earth core.



   A relatively thin metallic shielding plate --7-- made of non-ferromagnetic material is attached to the downward-pointing bevel - la - of the locking jaw - l - as shown in FIG. It is attached in such a way that a certain gap --2b-- remains between the upper edge of this sheet and the parallel piece-2a-of the conductor loop --2--, so that between the shielding plate --7-- and the conductor loop --2 - an electrically conductive connection is excluded.



   The shielding plate --7-- has the task of largely attenuating the undesired eddy current stray fields occurring in the area of the longitudinal seam of the tube and below the transverse weld seam.



   It has proven to be advantageous to dissipate the heat generated in the shielding plate --7-- by the eddy currents via a specially designed water cooling system: As can be seen in Fig. 1, there is a square tube or the like through which the cooling water flows - 7b- - near the lower edge - 7a - of the shielding plate - 7 - in order to be able to fully utilize the effect of the earth core - 5 - for the actual welding area. In principle, it is of course possible to arrange such a cooling tube on the shielding plate 7 in another way.

   Appropriately, the cooling water for the pipe-7b- for cooling the screen - 7 - is taken from the inductor conductor loop - 2 - like the cooling water supply - 2a -. For this reason, the water supply line is bridged between the inductor line --2a-- and the shielding plate cooling line - 7b - via a connector - 8-made of plastic.



   In Fig. 2, a second embodiment for the shielding plate - 7 - is shown. This

 <Desc / Clms Page number 5>

 
 EMI5.1



    
AT16571A 1971-01-11 1971-01-11 Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy AT302908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT16571A AT302908B (en) 1971-01-11 1971-01-11 Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT16571A AT302908B (en) 1971-01-11 1971-01-11 Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy

Publications (1)

Publication Number Publication Date
AT302908B true AT302908B (en) 1972-11-10

Family

ID=3483289

Family Applications (1)

Application Number Title Priority Date Filing Date
AT16571A AT302908B (en) 1971-01-11 1971-01-11 Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy

Country Status (1)

Country Link
AT (1) AT302908B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2653753A1 (en) * 1976-11-26 1978-06-01 Bosch Gmbh Robert DEVICE FOR MANUFACTURING A PACKAGING TUBE FROM A PACKAGING STRIP BY WELDING THE EDGE AREAS
EP0223517A2 (en) * 1985-11-12 1987-05-27 Continental Holdings Inc. Induction heating unit for heat bonding a lid having a metallic layer to a container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2653753A1 (en) * 1976-11-26 1978-06-01 Bosch Gmbh Robert DEVICE FOR MANUFACTURING A PACKAGING TUBE FROM A PACKAGING STRIP BY WELDING THE EDGE AREAS
EP0223517A2 (en) * 1985-11-12 1987-05-27 Continental Holdings Inc. Induction heating unit for heat bonding a lid having a metallic layer to a container
EP0223517A3 (en) * 1985-11-12 1988-09-14 Continental Can Company, Inc. Induction heating unit for heat bonding a lid having a metallic layer to a container

Similar Documents

Publication Publication Date Title
DE1951161A1 (en) Shielding on electrodes that transmit or supply high-frequency energy inductively
DE2060403C3 (en) Device for the thermal sealing of packaging consisting of a tube of a packaging laminate
DE2314347C3 (en) Method and device for transverse welding of a flexible tube body made of laminated film
DE3040028C2 (en) HF sealing device for sealing packaging material
DE2327423C2 (en) Microwave heating device with a distributor element for coupling microwave energy to the material to be heated
EP0158693A1 (en) Method and apparatus for the continuous manufacturing of filled wire
AT302908B (en) Device for the production of transverse closures on tube-shaped, compressible containers, by means of inductively supplied high-frequency energy
DE2639976A1 (en) RING CORE TRANSFORMER
DE2920277A1 (en) METHOD FOR PRODUCING METAL AREAS ON A METAL PIECE
EP0628399B1 (en) Process for making a hollow tubular article
DE2653753A1 (en) DEVICE FOR MANUFACTURING A PACKAGING TUBE FROM A PACKAGING STRIP BY WELDING THE EDGE AREAS
CH554768A (en) Water cooled electrode for inductive weld- - ing of plastic lined metal tubes
CH609635A5 (en) Packaging tube
DE10005020A1 (en) Thermoplastics welding equipment for production of tubular bags from plastic film has a heat sealing band on a deformable support
AT303630B (en) Device for producing transverse closures on compressible, tubular containers using high-frequency energy supplied by inductive means
DE1704397A1 (en) Bags, especially for medical purposes, and processes for their manufacture
DE1511540A1 (en) Tubular bag machine
CH550094A (en) TUBE FILLING AND SEALING MACHINE WITH A DEVICE FOR CREATING CROSS SEALS ON COMPRESSIBLE TUBE-SHAPED CONTAINERS.
DE2345476C3 (en) Device for making double transverse seams on a tube filled with liquid made of weldable or heat-sealable material by pulse welding
DE2225928A1 (en) DEVICE FOR THE SEALING OF CONTAINERS MADE OF NON-METALLIC MATERIAL WITH A HOT-ADHESIVE COATED METAL FILM
AT215260B (en) Method and device for welding together two metal parts with an overlapped weld seam
AT209678B (en) Equipment for the production of welded pipes by high frequency resistance heating
DE1949927C (en) Apparatus for producing transverse closures on tubular containers that can be pressurized together have to use high-frequency energy supplied by inductive means
DE1479342C (en) Method for producing a connection between two material webs or layer surfaces by heat sealing at predetermined sealing areas
DE2906827A1 (en) Bag producing installation - uses hose form a weldable track of packaging material round a former prong and fitted with welding and separating devices

Legal Events

Date Code Title Description
ELJ Ceased due to non-payment of the annual fee