AT212575B - Sintered body - Google Patents
Sintered bodyInfo
- Publication number
- AT212575B AT212575B AT291757A AT291757A AT212575B AT 212575 B AT212575 B AT 212575B AT 291757 A AT291757 A AT 291757A AT 291757 A AT291757 A AT 291757A AT 212575 B AT212575 B AT 212575B
- Authority
- AT
- Austria
- Prior art keywords
- fibers
- sintered body
- silicon dioxide
- sintered
- temperature
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 39
- 239000000835 fiber Substances 0.000 claims description 19
- 235000012239 silicon dioxide Nutrition 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 10
- 229910021343 molybdenum disilicide Inorganic materials 0.000 claims description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 238000007792 addition Methods 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 2
- 239000011230 binding agent Substances 0.000 claims 1
- 229910021332 silicide Inorganic materials 0.000 claims 1
- 238000005245 sintering Methods 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229910020968 MoSi2 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- -1 molybdenum ions Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
Description
<Desc/Clms Page number 1>
Sinterkörper
EMI1.1
tionsbeständigkeit, bei Temperaturen bis zu 17000C ! Die praktische Verwendung des Materials, beson- ders für elektrische Widerstandselemente, ist jedoch mit grossen Schwierigkeiten verbunden, insbesondere auf Grund der grossen Sprödheit des Molybdändisilizids bei Zimmertemperatur. Auf pulvermetallurgischem
Wege hat man versucht, die Festigkeit dadurch zu verbessern, dass das Molybdändisilizid mit Zusätzen verschiedener Art, besonders von Oxyden, kombiniert wird. Auch wenn solche Versuche von einem ge- wissenErfolg gekrönt worden sind, sind bisher solche bekannte Sinterkörper, die zum überwiegenden Teil
Molybdändisilizid enthalten, mit einer bedeutenden Sprödheit, besonders bei Zimmertemperatur, behaftet.
Gemäss der vorliegenden Erfindung ist es jedoch möglich, dem Sinterkörper, der aus Molybdändisilizid mit etwaigen Zusätzen von Oxyden, hitzebeständigen Disiliziden bzw. Siliziumkarbid besteht, eine ge- wisse Zähigkeit bei Zimmertemperatur dadurch zu verleihen, dass er ausserdem als armierender Bestandteil Siliziumdioxyd in Form von Fasern mit einer Mindestlänge von 0, 1 mm in einer 5 - 40 Vol. -%des porenfreien Sinterkörpers entsprechenden Menge enthält. Man erzielt hiebei eine Wirkung, die derjenigen ähnlich ist, die man bei der Durchmischung von beispielsweise Kunststoff mit Glasfasern erhält, wobei eine Armierwirkung entsteht.
Es hat sich als zweckmässig erwiesen, dass die Fasern aus Siliziumdioxyd eine durchschnittliche Fasernstärke von zwischen 0, 001 und 0, 020 mm und eine Länge von einigen Millimetern und darunter haben. Um eine gute Wirkung zu erzielen, müssen die Siliziumdioxydfasern in einer Menge von etwa 20 bis 30 Vol. -0/0 enthalten sein. Die Erfindung beschränkt sich jedoch nicht nur auf Molybdändisilizid und Fasern aus Siliziumdioxyd, sondern sie umfasst auch solche Kombinationen, bei denen MoSi2. aus verschiedenen Gründen durch Zusätze von Oxyden, Siliziumkarbid oder andern Stoffen modifiziert worden ist. Siliziumdioxydfasern sind ein Handelsprodukt, das sehr an Baumwolle erinnert und es muss vor Gebrauch in Längen von einem bzw. einigen Millimetern zugeschnitten werden.
Bei der Herstellung von Produkten gemäss der Erfindung muss besonders darauf geachtet werden, dass nichts geschieht, was die Siliziumdioxyd-Fasern zerstören könnte. Somit darf man keine Sinterung in Wasserstoffgas bei höherer Temperatur als zirka 12000C vornehmen. Ausserdem ist es sehr wichtig, die Fertigsinterung in Luft bei hoher Temperatur so auszuführen, dass der Quarz sich nicht in kristallinische Kieselsäureprodukte (SiO) verwandelt.
Bei der Herstellung von Produkten gemäss der Erfindung verfährt man am zweckmässigsten so, dass das Molybdändisilizidpulver, welches durch geeignetes Mahlen die gewünschte Korngrösse erhalten hat, gegebenenfalls mit den übrigen Zusätzen mechanisch mit Fasern aus Siliziumdioxyd vermischt wird. Dies geschieht zweckmässigerweise durch Mischung in der Kugelmühle ohne Kugeln mit einer geeigneten Mahlflüssigkeit. Das Siliziumdioxyd in Form von Fasern ist sehr spröde, weshalb man achtgeben muss, dass kein allzu weitgehender Mahlprozess stattfindet. Die erhaltene Mischung wird getrocknet und nach den üblichen pulvermetallurgischen Methoden weiter bearbeitet, beispielsweise durch Kaltpressen oder Spritzpressen nachzusatz geeigneterplastifizierungsrnittel und Schmiermittel.
Die Sinterung muss in zwei
<Desc/Clms Page number 2>
Abschnitten ausgeführt werden, wovon der erste in der Schutzatmosphäre von Wasserstoffgas vor sich geht, der zweite dagegen in Luft. Im ersten Sinterungsabschnitt geht man langsam bis zu einer Temperatur von 12000C hinauf, im zweiten Sinterungsabschnitt muss die Temperatursteigerung von ungefähr 12000C an zweckmässigerweise durch direkten Stromdurchgang durch das Widerstandsmaterial sehr vorsichtig und i langsam geschehen. Der theoretische Hintergrund hiezu ist folgender : Die Kieselsäureschicht, die sich normalerweise bei Körpern von Molybdändisilizid bei höherer Temperatur bildet (1500-1700 C) und kristallinisch ist, ist dadurch, dass die Kieselsäure Molybdänoxyde enthält, stabilisiert, so dass sie auch bei einer Temperatur bis zu 1700 C in Glasform verbleibt.
Um nun die Kieselsäure in Form von Fasern auf die gleiche Weise stabilisiert zu erhalten, muss man darauf achten, dass man genügend Zeit für eine Diffusion von Molybdänionen zur Verfügung hat und dass die Sinterung über 12000C langsàm genug vor sich geht, damit die Molybdänionen wenigstens in einem gewissen Umfang Zeit haben, zwischen die Fasern aus Siliziumdioxyd einzudringen, damit diese stabilisiert werden. Es ist besonders innerhalb des Temperaturabschnittes 1400 -15000C wichtig, dass die Temperatursteigerung sehr langsam vor sich geht.
Be is p iel l : 10 kg MoSj . 2 kg TaSi und 1 kg Siliziumkarbid werden in Kugelmühlen mit Hartmetallkugeln zu einer durchschnittlichen Korngrösse von 0, 005 mm in reinem Benzin als Mahlflüssigkeit gemahlen. Nach dem Mahlen wird in kleinen Portionen I, 5 kg der Fasern aus Siliziumdioxyd hinzugefügt. Darauf wird die Masse getrocknet und dadurch vom Benzin befreit, mit 1/2 kg Bentonit sowie Wasser vermischt und in einer Knetmaschine verknetet, bis sie die erforderliche Plastizität erhält. Nach Behandlung im Vakuummischer. worin die Masse eine verbesserte Plastizität erhält, werden die Stangen oder Rohre in einer hydraulischen Kolbenpresse gepresst. Das gepresste Material wird bei 500C getrocknet und dann in reinem Wasserstoffgas bis zu einer Temperatur von 12000C gesintert. Zuletzt werden die Stäbe oder Rohre bis zu 13500C in der Luft erhitzt.
Dies hat zur Folge, dass in dem fertigen Produkte das Siliziumdioxyd in Form von Fasern 20 Vol.-% und die nicht in Form von Fasern vorhandene Kieselsäure ungefähr 12 Vol.- ausmachen.
Beispiel 2 : Eine feingemahlene Masse, enthaltend 850 g MoSi2, 100 g TiSi2 und 50 g ZrO, wird mit 70 g Siliziumdioxydfasern von einer Länge unter 2 mm vermischt. Die Masse wird in Stahlform zu vierkantigenElementstäben von 500 mm Länge gepresst und zuerst in Wasserstoffgas bei 12500C gesintert, dann in Luft bei 16000C. Im Schlussprodukt machen die Quarzfasern 15 Vol.-% aus.
PATENTANSPRÜCHE : 1. Sinterkörper, der aus Molybdändisilizid mit etwaigen Zusätzen von Oxyden, hitzebeständigen Disiliziden bzw. Siliziumkarbid besteht, dadurch gekennzeichnet, dass er ausserdem als armierender Bestandteil Siliziumdioxyd in Form von Fasern mit einer Mindestlänge von 0,1 mm in einer 5-40 Vol.-% des porenfreien Sinterkörpers entsprechenden Menge enthält.
<Desc / Clms Page number 1>
Sintered body
EMI1.1
tion resistance, at temperatures up to 17000C! However, the practical use of the material, especially for electrical resistance elements, is associated with great difficulties, in particular because of the great brittleness of the molybdenum disilicide at room temperature. On powder metallurgy
Attempts have been made to improve the strength by combining the molybdenum disilicide with additives of various types, especially oxides. Even if such attempts have been crowned with a certain success, so far such known sintered bodies are for the most part
Molybdenum disilicide contain, with a significant brittleness, especially at room temperature, afflicted.
According to the present invention, however, it is possible to give the sintered body, which consists of molybdenum disilicide with any additions of oxides, heat-resistant disilicides or silicon carbide, a certain toughness at room temperature by using silicon dioxide in the form of fibers as a reinforcing component with a minimum length of 0.1 mm in an amount corresponding to 5 - 40% by volume of the pore-free sintered body. An effect is achieved here which is similar to that obtained when, for example, plastic is mixed with glass fibers, a reinforcing effect being created.
It has been found to be expedient for the fibers made of silicon dioxide to have an average fiber thickness of between 0.001 and 0.020 mm and a length of a few millimeters and less. In order to achieve a good effect, the silicon dioxide fibers must be contained in an amount of about 20 to 30 vol. -0/0. However, the invention is not limited to molybdenum disilicide and fibers made from silicon dioxide, but also includes combinations in which MoSi2. has been modified for various reasons by adding oxides, silicon carbide or other substances. Silicon dioxide fibers are a commercial product that is very reminiscent of cotton and must be cut into lengths of one or a few millimeters before use.
In the manufacture of products according to the invention, particular care must be taken that nothing happens that could destroy the silicon dioxide fibers. This means that sintering in hydrogen gas at a temperature higher than about 12000C is not allowed. In addition, it is very important to carry out the final sintering in air at high temperatures so that the quartz does not turn into crystalline silica products (SiO).
In the manufacture of products according to the invention, it is most expedient to proceed in such a way that the molybdenum disilicide powder, which has obtained the desired particle size by suitable grinding, is optionally mixed mechanically with fibers made of silicon dioxide with the other additives. This is conveniently done by mixing in the ball mill without balls with a suitable grinding liquid. The silicon dioxide in the form of fibers is very brittle, which is why you have to be careful that the grinding process is not too extensive. The mixture obtained is dried and processed further by the usual powder-metallurgical methods, for example by cold pressing or transfer molding, after adding suitable plasticizers and lubricants.
The sintering must be in two
<Desc / Clms Page number 2>
Sections are carried out, of which the first takes place in the protective atmosphere of hydrogen gas, the second, however, in air. In the first sintering section you slowly go up to a temperature of 12000C, in the second sintering section the temperature increase from around 12000C must be done very carefully and slowly, expediently by direct current passage through the resistor material. The theoretical background to this is as follows: The silica layer, which normally forms in bodies of molybdenum disilicide at higher temperatures (1500-1700 C) and is crystalline, is stabilized by the fact that the silica contains molybdenum oxides, so that it can also be used at a temperature of up to Remains in glass form at 1700 C.
In order to get the silica in the form of fibers stabilized in the same way, one has to make sure that one has enough time for a diffusion of molybdenum ions and that the sintering process above 12000C is slow enough that the molybdenum ions at least in have a certain amount of time to penetrate between the fibers of silicon dioxide so that they are stabilized. It is particularly important within the temperature range 1400-15000C that the temperature increase is very slow.
Example l: 10 kg MoSj. 2 kg TaSi and 1 kg silicon carbide are ground in ball mills with hard metal balls to an average grain size of 0.005 mm in pure gasoline as the grinding liquid. After grinding, 1.5 kg of the silica fibers are added in small portions. The mass is then dried and freed from gasoline, mixed with 1/2 kg of bentonite and water and kneaded in a kneading machine until it has the necessary plasticity. After treatment in the vacuum mixer. In which the mass is given an improved plasticity, the rods or tubes are pressed in a hydraulic piston press. The pressed material is dried at 500C and then sintered in pure hydrogen gas up to a temperature of 12000C. Finally, the rods or tubes are heated up to 13500C in the air.
As a result, the silicon dioxide in the form of fibers makes up 20% by volume and the silicic acid not in the form of fibers makes up about 12% by volume in the finished product.
Example 2: A finely ground mass containing 850 g MoSi2, 100 g TiSi2 and 50 g ZrO is mixed with 70 g silicon dioxide fibers with a length of less than 2 mm. The mass is pressed in steel form into square element rods 500 mm long and sintered first in hydrogen gas at 12500C, then in air at 16000C. In the final product, the quartz fibers make up 15% by volume.
PATENT CLAIMS: 1. Sintered body consisting of molybdenum disilicide with any additions of oxides, heat-resistant disilicides or silicon carbide, characterized in that it also contains silicon dioxide as a reinforcing component in the form of fibers with a minimum length of 0.1 mm in a 5-40 vol .-% of the pore-free sintered body contains the corresponding amount.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE212575X | 1956-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
AT212575B true AT212575B (en) | 1960-12-27 |
Family
ID=20305209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT291757A AT212575B (en) | 1956-05-11 | 1957-05-02 | Sintered body |
Country Status (1)
Country | Link |
---|---|
AT (1) | AT212575B (en) |
-
1957
- 1957-05-02 AT AT291757A patent/AT212575B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2621523C3 (en) | Process for the production of ceramic moldings | |
DE2733354C2 (en) | A method of making a ceramic product comprising at least 80% by volume of a single phase silicon aluminum oxynitride | |
DE1567844A1 (en) | Method of making a sintered mass of aluminum nitride | |
DE3039827A1 (en) | METHOD FOR PRODUCING A CUTTING TOOL | |
DE1646553A1 (en) | Process for the production of transparent ceramic materials | |
DE3141590A1 (en) | Process for producing sintered silicon nitride (Si3N4) of high density | |
DE2910628C2 (en) | Process for the production of a reaction-bonded silicon carbide body | |
DE2910943A1 (en) | METHOD FOR PRODUCING CERAMIC MOLDED PARTS FROM SILICON NITRIDE | |
DE1104930B (en) | Process for the production of hot-pressable stabilized boron nitride | |
DE834362C (en) | Refractory material | |
AT212575B (en) | Sintered body | |
DE3216045C2 (en) | High temperature NTC thermistor | |
CH622484A5 (en) | Process for producing a sintered ceramic product | |
DE2302438A1 (en) | DENSE SILICON NITRIDE OBJECTS AND PROCESS FOR THEIR PRODUCTION | |
DE2910248A1 (en) | MATERIAL FOR THE PRODUCTION OF A PYROMETRIC FIREPROOF PRODUCT, PYROMETRIC FIREPROOF PRODUCT AND THE PRODUCTION METHOD THEREOF | |
DE1018349B (en) | Molded body made of refractory material | |
EP0045518B1 (en) | Dense silicon-nitride shaped body containing yttrium oxide, and process for its production | |
DE3015886A1 (en) | SILICON CARBIDE BODY AND METHOD FOR THEIR PRODUCTION | |
AT233850B (en) | Hard material body for use as an electrical resistance element | |
DE869513C (en) | Process for the production of sintered glass crucibles | |
CH616641A5 (en) | Process for preparing a ceramic material which contains silicon aluminium oxynitride. | |
DE1161693B (en) | Process for the production of a hard material with high resistance to oxidation | |
DE1051716B (en) | Heat-resistant material, in particular electrical resistance material | |
DE3047255A1 (en) | METHOD FOR PRODUCING AN OBJECT FROM SILICON NITRIDE | |
DE666924C (en) | Process for the production of sintered hard metals |