AT212575B - Sintered body - Google Patents

Sintered body

Info

Publication number
AT212575B
AT212575B AT291757A AT291757A AT212575B AT 212575 B AT212575 B AT 212575B AT 291757 A AT291757 A AT 291757A AT 291757 A AT291757 A AT 291757A AT 212575 B AT212575 B AT 212575B
Authority
AT
Austria
Prior art keywords
fibers
sintered body
silicon dioxide
sintered
temperature
Prior art date
Application number
AT291757A
Other languages
German (de)
Inventor
Nils Gustav Dr Schrewelius
Original Assignee
Kanthal Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanthal Ab filed Critical Kanthal Ab
Application granted granted Critical
Publication of AT212575B publication Critical patent/AT212575B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Sinterkörper 
 EMI1.1 
 tionsbeständigkeit, bei Temperaturen bis zu   17000C !   Die praktische Verwendung des Materials, beson- ders für elektrische Widerstandselemente, ist jedoch mit grossen Schwierigkeiten verbunden, insbesondere auf Grund der grossen Sprödheit des Molybdändisilizids bei   Zimmertemperatur. Auf pulvermetallurgischem  
Wege hat man versucht, die Festigkeit dadurch zu verbessern, dass das Molybdändisilizid mit Zusätzen verschiedener Art, besonders von Oxyden, kombiniert wird. Auch wenn solche Versuche von einem ge- wissenErfolg gekrönt worden sind, sind bisher solche bekannte Sinterkörper, die zum überwiegenden Teil
Molybdändisilizid enthalten, mit einer bedeutenden Sprödheit, besonders bei Zimmertemperatur, behaftet. 



   Gemäss der vorliegenden Erfindung ist es jedoch möglich, dem Sinterkörper, der aus Molybdändisilizid mit etwaigen Zusätzen von Oxyden, hitzebeständigen Disiliziden bzw. Siliziumkarbid besteht, eine ge- wisse Zähigkeit bei Zimmertemperatur dadurch zu verleihen, dass er ausserdem als armierender Bestandteil Siliziumdioxyd in Form von Fasern mit einer Mindestlänge von 0, 1 mm in einer   5 - 40 Vol. -%des     porenfreien Sinterkörpers   entsprechenden Menge enthält. Man erzielt hiebei eine Wirkung, die derjenigen ähnlich ist, die man bei der Durchmischung von beispielsweise Kunststoff mit Glasfasern erhält, wobei eine Armierwirkung entsteht.

   Es hat sich als zweckmässig erwiesen, dass die Fasern aus Siliziumdioxyd eine durchschnittliche Fasernstärke von zwischen 0, 001 und 0, 020 mm und eine Länge von einigen Millimetern und darunter haben. Um eine gute Wirkung zu erzielen, müssen die Siliziumdioxydfasern in einer Menge von etwa 20 bis 30   Vol. -0/0   enthalten sein. Die Erfindung beschränkt sich jedoch nicht nur auf Molybdändisilizid und Fasern aus Siliziumdioxyd, sondern sie umfasst auch solche Kombinationen, bei denen    MoSi2. aus   verschiedenen Gründen durch Zusätze von Oxyden, Siliziumkarbid oder andern Stoffen modifiziert worden ist. Siliziumdioxydfasern sind ein Handelsprodukt, das sehr an Baumwolle erinnert und es muss vor Gebrauch in Längen von einem bzw. einigen Millimetern zugeschnitten werden. 



   Bei der Herstellung von Produkten gemäss der Erfindung muss besonders darauf geachtet werden, dass nichts geschieht, was die Siliziumdioxyd-Fasern zerstören könnte. Somit darf man keine Sinterung in Wasserstoffgas bei höherer Temperatur als zirka 12000C vornehmen. Ausserdem ist es sehr wichtig, die Fertigsinterung in Luft bei hoher Temperatur so auszuführen, dass der Quarz sich nicht in kristallinische Kieselsäureprodukte (SiO) verwandelt. 



   Bei der Herstellung von Produkten gemäss der Erfindung verfährt man am zweckmässigsten so, dass das Molybdändisilizidpulver, welches durch geeignetes Mahlen die gewünschte Korngrösse erhalten hat, gegebenenfalls mit den übrigen Zusätzen mechanisch mit Fasern aus Siliziumdioxyd vermischt wird. Dies geschieht zweckmässigerweise durch Mischung in der Kugelmühle ohne Kugeln mit einer geeigneten Mahlflüssigkeit. Das Siliziumdioxyd in Form von Fasern ist sehr spröde, weshalb man achtgeben muss, dass kein allzu weitgehender Mahlprozess stattfindet. Die erhaltene Mischung wird getrocknet und nach den üblichen pulvermetallurgischen Methoden weiter bearbeitet, beispielsweise durch Kaltpressen oder Spritzpressen   nachzusatz geeigneterplastifizierungsrnittel   und Schmiermittel.

   Die Sinterung muss in zwei 

 <Desc/Clms Page number 2> 

   Abschnitten ausgeführt werden, wovon der erste in der Schutzatmosphäre von Wasserstoffgas vor sich geht, der zweite dagegen in Luft. Im ersten Sinterungsabschnitt geht man langsam bis zu einer Temperatur von 12000C hinauf, im zweiten Sinterungsabschnitt muss die Temperatursteigerung von ungefähr 12000C an zweckmässigerweise durch direkten Stromdurchgang durch das Widerstandsmaterial sehr vorsichtig und i langsam geschehen. Der theoretische Hintergrund hiezu ist folgender : Die Kieselsäureschicht, die sich normalerweise bei Körpern von Molybdändisilizid bei höherer Temperatur bildet (1500-1700 C) und kristallinisch ist, ist dadurch, dass die Kieselsäure Molybdänoxyde enthält, stabilisiert, so dass sie auch bei einer Temperatur bis zu 1700 C in Glasform verbleibt.

   Um nun die Kieselsäure in Form von Fasern auf die gleiche Weise stabilisiert zu erhalten, muss man darauf achten, dass man genügend Zeit für eine Diffusion von Molybdänionen zur Verfügung hat und dass die Sinterung über 12000C langsàm genug vor sich geht, damit die Molybdänionen wenigstens in einem gewissen Umfang Zeit haben, zwischen die Fasern aus Siliziumdioxyd einzudringen, damit diese stabilisiert werden. Es ist besonders innerhalb des Temperaturabschnittes 1400 -15000C wichtig, dass die Temperatursteigerung sehr langsam vor sich geht. 



  Be is p iel l : 10 kg MoSj . 2 kg TaSi und 1 kg Siliziumkarbid werden in Kugelmühlen mit Hartmetallkugeln zu einer durchschnittlichen Korngrösse von 0, 005 mm in reinem Benzin als Mahlflüssigkeit gemahlen. Nach dem Mahlen wird in kleinen Portionen I, 5 kg der Fasern aus Siliziumdioxyd hinzugefügt. Darauf wird die Masse getrocknet und dadurch vom Benzin befreit, mit 1/2 kg Bentonit sowie Wasser vermischt und in einer Knetmaschine verknetet, bis sie die erforderliche Plastizität erhält. Nach Behandlung im Vakuummischer. worin die Masse eine verbesserte Plastizität erhält, werden die Stangen oder Rohre in einer hydraulischen Kolbenpresse gepresst. Das gepresste Material wird bei 500C getrocknet und dann in reinem Wasserstoffgas bis zu einer Temperatur von 12000C gesintert. Zuletzt werden die Stäbe oder Rohre bis zu 13500C in der Luft erhitzt.

   Dies hat zur Folge, dass in dem fertigen Produkte das Siliziumdioxyd in Form von Fasern 20 Vol.-% und die nicht in Form von Fasern vorhandene Kieselsäure ungefähr 12 Vol.- ausmachen. 



  Beispiel 2 : Eine feingemahlene Masse, enthaltend 850 g MoSi2, 100 g TiSi2 und 50 g ZrO, wird mit 70 g Siliziumdioxydfasern von einer Länge unter 2 mm vermischt. Die Masse wird in Stahlform zu vierkantigenElementstäben von 500 mm Länge gepresst und zuerst in Wasserstoffgas bei 12500C gesintert, dann in Luft bei 16000C. Im Schlussprodukt machen die Quarzfasern 15 Vol.-% aus. 



  PATENTANSPRÜCHE : 1. Sinterkörper, der aus Molybdändisilizid mit etwaigen Zusätzen von Oxyden, hitzebeständigen Disiliziden bzw. Siliziumkarbid besteht, dadurch gekennzeichnet, dass er ausserdem als armierender Bestandteil Siliziumdioxyd in Form von Fasern mit einer Mindestlänge von 0,1 mm in einer 5-40 Vol.-% des porenfreien Sinterkörpers entsprechenden Menge enthält.



   <Desc / Clms Page number 1>
 



  Sintered body
 EMI1.1
 tion resistance, at temperatures up to 17000C! However, the practical use of the material, especially for electrical resistance elements, is associated with great difficulties, in particular because of the great brittleness of the molybdenum disilicide at room temperature. On powder metallurgy
Attempts have been made to improve the strength by combining the molybdenum disilicide with additives of various types, especially oxides. Even if such attempts have been crowned with a certain success, so far such known sintered bodies are for the most part
Molybdenum disilicide contain, with a significant brittleness, especially at room temperature, afflicted.



   According to the present invention, however, it is possible to give the sintered body, which consists of molybdenum disilicide with any additions of oxides, heat-resistant disilicides or silicon carbide, a certain toughness at room temperature by using silicon dioxide in the form of fibers as a reinforcing component with a minimum length of 0.1 mm in an amount corresponding to 5 - 40% by volume of the pore-free sintered body. An effect is achieved here which is similar to that obtained when, for example, plastic is mixed with glass fibers, a reinforcing effect being created.

   It has been found to be expedient for the fibers made of silicon dioxide to have an average fiber thickness of between 0.001 and 0.020 mm and a length of a few millimeters and less. In order to achieve a good effect, the silicon dioxide fibers must be contained in an amount of about 20 to 30 vol. -0/0. However, the invention is not limited to molybdenum disilicide and fibers made from silicon dioxide, but also includes combinations in which MoSi2. has been modified for various reasons by adding oxides, silicon carbide or other substances. Silicon dioxide fibers are a commercial product that is very reminiscent of cotton and must be cut into lengths of one or a few millimeters before use.



   In the manufacture of products according to the invention, particular care must be taken that nothing happens that could destroy the silicon dioxide fibers. This means that sintering in hydrogen gas at a temperature higher than about 12000C is not allowed. In addition, it is very important to carry out the final sintering in air at high temperatures so that the quartz does not turn into crystalline silica products (SiO).



   In the manufacture of products according to the invention, it is most expedient to proceed in such a way that the molybdenum disilicide powder, which has obtained the desired particle size by suitable grinding, is optionally mixed mechanically with fibers made of silicon dioxide with the other additives. This is conveniently done by mixing in the ball mill without balls with a suitable grinding liquid. The silicon dioxide in the form of fibers is very brittle, which is why you have to be careful that the grinding process is not too extensive. The mixture obtained is dried and processed further by the usual powder-metallurgical methods, for example by cold pressing or transfer molding, after adding suitable plasticizers and lubricants.

   The sintering must be in two

 <Desc / Clms Page number 2>

   Sections are carried out, of which the first takes place in the protective atmosphere of hydrogen gas, the second, however, in air. In the first sintering section you slowly go up to a temperature of 12000C, in the second sintering section the temperature increase from around 12000C must be done very carefully and slowly, expediently by direct current passage through the resistor material. The theoretical background to this is as follows: The silica layer, which normally forms in bodies of molybdenum disilicide at higher temperatures (1500-1700 C) and is crystalline, is stabilized by the fact that the silica contains molybdenum oxides, so that it can also be used at a temperature of up to Remains in glass form at 1700 C.

   In order to get the silica in the form of fibers stabilized in the same way, one has to make sure that one has enough time for a diffusion of molybdenum ions and that the sintering process above 12000C is slow enough that the molybdenum ions at least in have a certain amount of time to penetrate between the fibers of silicon dioxide so that they are stabilized. It is particularly important within the temperature range 1400-15000C that the temperature increase is very slow.



  Example l: 10 kg MoSj. 2 kg TaSi and 1 kg silicon carbide are ground in ball mills with hard metal balls to an average grain size of 0.005 mm in pure gasoline as the grinding liquid. After grinding, 1.5 kg of the silica fibers are added in small portions. The mass is then dried and freed from gasoline, mixed with 1/2 kg of bentonite and water and kneaded in a kneading machine until it has the necessary plasticity. After treatment in the vacuum mixer. In which the mass is given an improved plasticity, the rods or tubes are pressed in a hydraulic piston press. The pressed material is dried at 500C and then sintered in pure hydrogen gas up to a temperature of 12000C. Finally, the rods or tubes are heated up to 13500C in the air.

   As a result, the silicon dioxide in the form of fibers makes up 20% by volume and the silicic acid not in the form of fibers makes up about 12% by volume in the finished product.



  Example 2: A finely ground mass containing 850 g MoSi2, 100 g TiSi2 and 50 g ZrO is mixed with 70 g silicon dioxide fibers with a length of less than 2 mm. The mass is pressed in steel form into square element rods 500 mm long and sintered first in hydrogen gas at 12500C, then in air at 16000C. In the final product, the quartz fibers make up 15% by volume.



  PATENT CLAIMS: 1. Sintered body consisting of molybdenum disilicide with any additions of oxides, heat-resistant disilicides or silicon carbide, characterized in that it also contains silicon dioxide as a reinforcing component in the form of fibers with a minimum length of 0.1 mm in a 5-40 vol .-% of the pore-free sintered body contains the corresponding amount.

 

Claims (1)

2. Sinterkörper nach Anspruch 1, dadurch gekennzeichnet, dass die Siliziumdioxydfasern eine Stärke von 1 bis 20 Mikron und eine Länge unter 2 mm haben. 2. Sintered body according to claim 1, characterized in that the silicon dioxide fibers have a thickness of 1 to 20 microns and a length of less than 2 mm. 3. Sinterkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Molybdändisilizid und die etwaigen Oxydzusätze, die andern Silizide und das Siliziumkarbid eine durchschnittliche Korngrösse von 5 Mikron haben. 3. Sintered body according to claim 1 or 2, characterized in that the molybdenum disilicide and any oxide additives, the other silicides and the silicon carbide have an average grain size of 5 microns. 4. Verfahren zur Herstellung eines Sinterkörpers nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass eine pulverfòrmige Mischung, die Molybdändisilizid und die etwaigen Zusätze von Oxyden, den hitzebeständigen Disiliziden und Siliziumkarbid sowie Siliziumdioxydfasern und gegebenenfalls auch ein Bindemittel enthält, nach Formung in einer nicht oxydierenden Atmosphäre bei einer Temperatur von ungefähr 12000C vorgesintert und dann in einer oxydierenden Atmosphäre bei einer Temperatur von 1500 bis 16000C fertiggesintert wird. 4. A method for producing a sintered body according to claims 1 to 3, characterized in that a powdery mixture, the molybdenum disilicide and any additions of oxides, the heat-resistant disilicides and silicon carbide and silicon dioxide fibers and optionally also a binder, after forming in a non oxidizing atmosphere is pre-sintered at a temperature of about 12000C and then finish-sintered in an oxidizing atmosphere at a temperature of 1500 to 16000C.
AT291757A 1956-05-11 1957-05-02 Sintered body AT212575B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE212575X 1956-05-11

Publications (1)

Publication Number Publication Date
AT212575B true AT212575B (en) 1960-12-27

Family

ID=20305209

Family Applications (1)

Application Number Title Priority Date Filing Date
AT291757A AT212575B (en) 1956-05-11 1957-05-02 Sintered body

Country Status (1)

Country Link
AT (1) AT212575B (en)

Similar Documents

Publication Publication Date Title
DE2621523C3 (en) Process for the production of ceramic moldings
DE1567844A1 (en) Method of making a sintered mass of aluminum nitride
DE3039827A1 (en) METHOD FOR PRODUCING A CUTTING TOOL
DE1646553A1 (en) Process for the production of transparent ceramic materials
DE3141590A1 (en) Process for producing sintered silicon nitride (Si3N4) of high density
DE2910628C2 (en) Process for the production of a reaction-bonded silicon carbide body
DE2910943A1 (en) METHOD FOR PRODUCING CERAMIC MOLDED PARTS FROM SILICON NITRIDE
DE834362C (en) Refractory material
AT212575B (en) Sintered body
DE3216045C2 (en) High temperature NTC thermistor
CH622484A5 (en) Process for producing a sintered ceramic product
DE2302438A1 (en) DENSE SILICON NITRIDE OBJECTS AND PROCESS FOR THEIR PRODUCTION
DE2910248A1 (en) MATERIAL FOR THE PRODUCTION OF A PYROMETRIC FIREPROOF PRODUCT, PYROMETRIC FIREPROOF PRODUCT AND THE PRODUCTION METHOD THEREOF
DE1018349B (en) Molded body made of refractory material
EP0045518B1 (en) Dense silicon-nitride shaped body containing yttrium oxide, and process for its production
DE3015886A1 (en) SILICON CARBIDE BODY AND METHOD FOR THEIR PRODUCTION
AT233850B (en) Hard material body for use as an electrical resistance element
DE869513C (en) Process for the production of sintered glass crucibles
AT213073B (en) Process for the production of electrical resistance elements by powder metallurgy
CH201050A (en) Process for the production of hard bodies for tools and equipment, drawing dies, bullet tips, nozzles, slide bearings, cutting edges for scales, etc.
DE1161693B (en) Process for the production of a hard material with high resistance to oxidation
DE1051716B (en) Heat-resistant material, in particular electrical resistance material
DE3047255A1 (en) METHOD FOR PRODUCING AN OBJECT FROM SILICON NITRIDE
DE666924C (en) Process for the production of sintered hard metals
AT242255B (en) Electrical resistance element and method for its manufacture