AT15723U1 - Vorrichtung zum Detektieren von Objekten in einem Materialstrom - Google Patents

Vorrichtung zum Detektieren von Objekten in einem Materialstrom Download PDF

Info

Publication number
AT15723U1
AT15723U1 ATGM50175/2016U AT501752016U AT15723U1 AT 15723 U1 AT15723 U1 AT 15723U1 AT 501752016 U AT501752016 U AT 501752016U AT 15723 U1 AT15723 U1 AT 15723U1
Authority
AT
Austria
Prior art keywords
light
wavelength range
light source
detector
transmission wavelength
Prior art date
Application number
ATGM50175/2016U
Other languages
English (en)
Original Assignee
Binder Co Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binder Co Ag filed Critical Binder Co Ag
Priority to ATGM50175/2016U priority Critical patent/AT15723U1/de
Priority to PCT/EP2017/071782 priority patent/WO2018041902A1/de
Priority to CN201790000346.9U priority patent/CN208177898U/zh
Priority to DE212017000206.9U priority patent/DE212017000206U1/de
Publication of AT15723U1 publication Critical patent/AT15723U1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/26Crosslinking, e.g. vulcanising, of macromolecules of latex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • A41D19/0062Three-dimensional gloves made of one layer of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/22Making multilayered or multicoloured articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • C08J2309/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2313/02Latex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1734Sequential different kinds of measurements; Combining two or more methods
    • G01N2021/1736Sequential different kinds of measurements; Combining two or more methods with two or more light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"
    • G01N2021/8816Diffuse illumination, e.g. "sky" by using multiple sources, e.g. LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection

Abstract

Vorrichtung zum Detektieren von Objekten (9) in einem Materialstrom, umfassend zumindest - eine Lichtquelle (4,5) zum Aussenden von Licht in einem ersten Sende-Wellenlängenbereich und in einem zweiten Sende- Wellenlängenbereich, der vom ersten Sende-Wellenlängenbereich unterschiedlich ist, auf den Materialstrom, - einen ersten Detektor (1) zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im ersten Sende- Wellenlängenbereich, in einem ersten Detektions- Wellenlängenbereich, - einen zweiten Detektor (2) zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im zweiten Sende- Wellenlängenbereich, in einem zweiten Detektions- Wellenlängenbereich, dadurch gekennzeichnet, - dass der erste Detektor (1) mit der Lichtquelle (4) zwecks Steuerung der Lichtintensität des ersten Sende- Wellenlängenbereichs verbunden ist, und/oder der zweite Detektor (2) mit der Lichtquelle (5) zwecks Steuerung der Lichtintensität des zweiten Sende-Wellenlängenbereichs verbunden ist. Dadurch kann die Wärmeentwicklung durch die Lichtquelle verringert werden.

Description

Beschreibung
VORRICHTUNG ZUM DETEKTIEREN VON OBJEKTEN IN EINEM MATERIALSTROM GEBIET DER ERFINDUNG
[0001] Die Erfindung betrifft eine Vorrichtung zum Detektieren von Objekten in einem Materialstrom, umfassend zumindest [0002] - eine Lichtquelle zum Aussenden von Licht in einem ersten Sende-Wellenlängenbereich und in einem zweiten Sende-Wellenlängenbereich, der vom ersten Sende-Wellenlängenbereich unterschiedlich ist, auf den Materialstrom, [0003] - einen ersten Detektor zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im ersten Sende-Wellenlängenbereich, in einem ersten Detektions-Wellenlängenbereich, [0004] - einen zweiten Detektor zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im zweiten Sende-Wellenlängenbereich, in einem zweiten Detektions-Wellenlängenbereich.
[0005] Erster und zweiter Sende-Wellenlängenbereich sind unterschiedlich in dem Sinn, dass diese nicht identisch sind, aber sich grundsätzlich überlappen können. Auch erster und zweiter Detektions-Wellenlängenbereich sind unterschiedlich in dem Sinn, dass diese nicht identisch sind, sie werden sich in der Regel aber nicht überlappen.
[0006] Die Vorrichtung ist z.B. geeignet zum Detektieren von Altglas in Form von Bruchglas, wenn dieses etwa anschließend nach Farbe getrennt werden soll und/oder zum Detektieren von anderen Störstoffen, wie Steinen, Metallen oder Kunststoffen, wenn diese aus dem Altglas entfernt werden sollen. Die Vorrichtung ist auch geeignet, um verschiedene Kunststoffe bzw. Artikel oder Stücke aus Kunststoff zu detektieren und anschließend voneinander zu trennen.
STAND DER TECHNIK
[0007] Zum Detektieren von Objekten werden oft zwei unterschiedliche Lichtsorten verwendet, um unterschiedliche Eigenschaften, z.B. Farbe und Materialtype, der Objekte zu detektieren und somit mit größerer Sicherheit ein Objekt einer bestimmten Fraktion zuordnen zu können. Im Fall von Infrarot-Licht als erste Lichtsorte bzw. als erstem Sende-Wellenlängenbereich und von sichtbarem Licht als zweiter Lichtsorte bzw. als zweitem Sende-Wellenlängenbereich werden oft Lichtquellen verwendet, die beide Lichtsorten, also Licht beider Wellenlängen, sichtbares und Infrarot-Licht, gleichzeitig aussenden, wie z.B. Halogenleuchtstäbe. Es wird also nur eine Art von Lichtquellen benötigt, was z.B. die Bevorratung von Lichtquellen zum Austauschen erleichtert.
[0008] Diese Lichtquellen haben aber den Nachteil, dass die Intensität nur immer für beide Sende-Wellenlängenbereiche gemeinsam geändert werden kann. Oft wird aber nur eine hohe Intensität für einen Detektions-Wellenlängenbereich bzw. den zugehörigen Detektor benötigt, während für den anderen Detektions-Wellenlängenbereich bzw. den anderen Detektor mit einer geringeren Intensität das Auslangen gefunden werden könnte. Nun muss aber die Lichtquelle immer mit der höheren Intensität betrieben werden, was zu einer unerwünscht hohen Wärmeentwicklung innerhalb der Vorrichtung führen kann. So werden etwa für eine ausreichende Intensität und Farbverteilung im sichtbaren Bereich Halogenleuchtstäbe an ihren jeweiligen Leistungsgrenzen betrieben. Dadurch entsteht ein hoher Anteil von Wärmestrahlung innerhalb des Sortiergeräts, in welchem die Lichtquellen und Detektoren angeordnet sind. Dies wiederum erhöht die Brandgefahr im Sortiergerät.
[0009] Oft müssen diese Lichtquellen mit Gleichspannung betrieben werden, um Intensitätsschwankungen durch Wechselstrom zu verhindern.
DARSTELLUNG DER ERFINDUNG
[0010] Eine Aufgabe der Erfindung besteht somit darin, eine Detektionsvorrichtung bereitzustellen, die sich durch eine geringere Wärmeentwicklung auszeichnet, falls für einen Detektions-Wellenlängenbereich eine geringere Intensität als für den anderen Detektions-Wellenlängenbereich ausreichend ist.
[0011] Diese Aufgabe wird mit einer Vorrichtung gemäß Anspruch 1 gelöst. Die Vorrichtung zum Detektieren von Objekten in einem Materialstrom, umfasst zumindest [0012] - eine Lichtquelle zum Aussenden von Licht in einem ersten Sende-Wellenlängenbereich und in einem zweiten Sende-Wellenlängenbereich, der vom ersten Sende-Wellenlängenbereich unterschiedlich ist, auf den Materialstrom, [0013] - einen ersten Detektor zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im ersten Sende-Wellenlängenbereich, in einem ersten Detektions-Wellenlängenbereich, [0014] - einen zweiten Detektor zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im zweiten Sende-Wellenlängenbereich, in einem zweiten Detektions-Wellenlängenbereich.
[0015] Die Vorrichtung ist dadurch gekennzeichnet, dass der erste Detektor mit der Lichtquelle zwecks Steuerung der Lichtintensität des ersten Sende-Wellenlängenbereichs verbunden ist, und/oder der zweite Detektor mit der Lichtquelle zwecks Steuerung der Lichtintensität des zweiten Sende-Wellenlängenbereichs verbunden ist.
[0016] Die Lichtquelle sendet also Licht eines bestimmten ersten Sende-Wellenlängenbereichs aus, z.B. Infrarot-Licht, und eines bestimmten zweiten Sende-Wellenlängenbereichs, z.B. sichtbares Licht. Der erste Detektor ist dem Licht des ersten Sende-Wellenlängenbereichs zugeordnet und kann nur Licht detektieren, das von den Objekten aufgrund des Lichts des ersten Sende-Wellenlängenbereichs hervorgerufen wird. Wird mit dem ersten Detektor das Reflexionslicht oder das Transmissionslicht der Objekte detektiert, so ist der erste Detektions-Wellenlängenbereich des ersten Detektors zumindest ein Teilbereich des ersten Sende-Wellenlängenbereichs.
[0017] Das Licht des zweiten Sende-Wellenlängenbereichs ist von jenem des ersten Sende-Wellenlängenbereichs unterschiedlich. Das heißt, die beiden Wellenlängenbereiche sind nicht identisch, es ist aber eine Überlappung der Wellenlängenbereiche möglich. Wenn der zweite Sende-Wellenlängenbereich z.B. nur sichtbares Licht umfassen soll, wird von einigen Lichtquellen auch etwas Infrarotlicht ausgesendet, auch wenn dieses vom zugeordneten zweiten Detektor gar nicht detektiert wird.
[0018] Der zweite Detektor ist dem Licht des zweiten Sende-Wellenlängenbereichs zugeordnet und kann nur Licht detektieren, das von den Objekten aufgrund des Lichts des zweiten Sende-Wellenlängenbereichs hervorgerufen wird. Wird mit dem zweiten Detektor das Reflexionslicht oder Transmissionslicht der Objekte detektiert, so ist der zweite Detektions-Wellenlängenbereich des zweiten Detektors zumindest ein Teilbereich des zweiten Sende-Wellenlängenbereichs.
[0019] Im Fall von Fluoreszenzlicht der Objekte gibt es oft keine Überschneidung von Sende-Wellenlängenbereich (z.B. UV-Licht) und Detektions-Wellenlängenbereich (z.B. sichtbares Licht).
[0020] Die Lichtquelle kann nun zumindest eine Superkontinuum-Laserlichtquelle umfassen, welche ausgebildet ist, Licht in einem ersten Sende-Wellenlängenbereich und in einem zweiten Sende-Wellenlängenbereich, der nicht mit dem ersten Sende-Wellenlängenbereich überlappt, auszusenden.
[0021] Als Superkontinuum oder auch weißes Laserlicht bezeichnet man Laserlicht, welches ein extrem verbreitertes optisches Spektrum besitzt. Während Laserlicht meist relativ schmal-bandig ist, kann ein Superkontinuum einen Frequenzbereich von mehr als einer Oktave umfas- sen. Superkontinua können durch Ausnutzung von nichtlinearen Effekten bei der Durchleitung von Laserstrahlen durch Glasfasern bei hohen Intensitäten entstehen, aber auch die Fokussierung in Luft reicht dazu schon aus. Meist verwendet man intensive Lichtpulse von Femtosekun-denlasern. Aber auch die Verwendung von Pulsen mit wesentlich größeren Dauern kann die gewünschte Verbreiterung zeigen. In langen Fasern ist sogar ein kontinuierlicher Laserbetrieb möglich. Die involvierten physikalischen Mechanismen und die spektrale Struktur der Superkontinua sind jedoch je nach Pulsdauer, Dispersion und Länge der Faser etc. recht unterschiedlich.
[0022] Superkontinuum-Laserlichtquellen, mit welchen jeweils Licht aus zwei unterschiedlichen Wellenlängenbereichen in einen gemeinsamen Strahlengang eingebracht wird, sind aus dem Stand der Technik grundsätzlich bekannt. Bei Superkontinuum-Laserlichtquellen kann die Lichtintensität in den unterschiedlichen Wellenlängenbereichen unabhängig voneinander eingestellt werden. So kann z.B. die Lichtintensität für Infrarot-Licht (erster Sende-Wellenlängenbe-reich) unabhängig von jener für sichtbares Licht (zweiter Sende-Wellenlängenbereich) eingestellt werden. Dabei wird in der Regel gleichzeitig Licht des ersten Sende-Wellenlängenbereichs und des zweiten Sende-Wellenlängenbereichs ausgesendet.
[0023] Erfindungsgemäß gibt es grundsätzlich drei Möglichkeiten: [0024] - nur der erste Detektor ist mit der Lichtquelle (z.B. einer Superkontinuum-Laserlichtquelle) zwecks Steuerung der Lichtintensität des ersten Sende-Wellenlängenbereichs verbunden, oder [0025] - nur der zweite Detektor ist mit der Lichtquelle zwecks Steuerung der Lichtintensität des zweiten Sende-Wellenlängenbereichs verbunden, oder [0026] - sowohl der erste Detektor ist mit der Lichtquelle zwecks Steuerung der Lichtintensität des ersten Sende-Wellenlängenbereichs verbunden als auch der zweite Detektor ist mit der Lichtquelle zwecks Steuerung der Lichtintensität des zweiten Sende-Wellenlängenbereichs verbunden.
[0027] Durch die Verbindung zwischen der Lichtquelle und dem bzw. den Detektoren kann die Lichtintensität im ersten bzw. zweiten Sende-Wellenlängenbereich immer so eingestellt werden, dass diese für den zugeordneten Detektor ausreichend ist. So kann z.B. eine zu große Intensität im ersten Sende-Wellenlängenbereich verringert werden, sodass sich auch die Wärmeentwicklung durch die Lichtquelle in diesem Wellenlängenbereich reduziert. Es ist also denkbar, dass der Detektor selbst feststellen kann, welche Intensität er in den einzelnen Sende-Wellenlängenbereichen benötigt.
[0028] Es muss aber nicht, wie bei einer Superkontinuum-Laserlichtquelle, die Lichtquelle Beleuchtungseinheiten aufweisen, die jeweils Licht in beiden Sende-Wellenlängenbereichen aussenden können. Stattdessen kann auch vorgesehen sein, dass die Lichtquelle sowohl eine erste Lichtquelle zum Aussenden von Licht nur im ersten Sende-Wellenlängenbereich aufweist als auch eine zweite Lichtquelle zum Aussenden von Licht nur im zweiten Sende-Wellenlängenbereich, und [0029] - dass der erste Detektor mit der ersten Lichtquelle zwecks Steuerung der Lichtintensität der ersten Lichtquelle verbunden ist, und/oder der zweite Detektor mit der zweiten Lichtquelle zwecks Steuerung der Lichtintensität der zweiten Lichtquelle verbunden ist.
[0030] Erfindungsgemäß gibt es in diesem Fall also drei Möglichkeiten: [0031] - nur der erste Detektor ist mit der ersten Lichtquelle zwecks Steuerung der Lichtintensität der ersten Lichtquelle verbunden, oder [0032] - nur der zweite Detektor ist mit der zweiten Lichtquelle zwecks Steuerung der Lichtintensität der zweiten Lichtquelle verbunden, oder [0033] - sowohl der erste Detektor ist mit der ersten Lichtquelle zwecks Steuerung der Lichtintensität der ersten Lichtquelle verbunden als auch der zweite Detektor ist mit der zweiten Lichtquelle zwecks Steuerung der Lichtintensität der zweiten Lichtquelle verbunden.
[0034] Durch die Verbindung zwischen erster bzw. zweiter Lichtquelle und zugeordnetem Detektor kann die Lichtintensität der ersten bzw. zweiten Lichtquelle immer so eingestellt werden, dass diese für den zugeordneten Detektor ausreichend ist. So kann z.B. eine zu große Intensität der ersten Lichtquelle verringert werden, sodass sich auch die Wärmeentwicklung durch die erste Lichtquelle reduziert. Erste und zweite Lichtquelle können eigene Einstellvorrichtungen aufweisen, mit denen die Intensität des ausgesendeten Lichts eingestellt wird, am einfachsten durch Änderung des der jeweiligen Lichtquelle zugeführten Stroms.
[0035] Es ist also denkbar, dass der Detektor selbst feststellen kann, welche Intensität der ersten bzw. zweiten Lichtquelle er benötigt.
[0036] Andererseits kann es auch sein, dass die Qualität der Daten bzw. Bilder, welche die Detektoren detektieren, erst bei der Auswertung der Daten bzw. Bilder im Rahmen der Bildbearbeitung festgestellt werden können. In diesem Fall kann vorgesehen sein, dass der erste Detektor und/oder der zweite Detektor mit der Lichtquelle über eine Auswerteeinrichtung verbunden ist, welche zur Auswertung der Signale des ersten und zweiten Detektors und zur Bestimmung zumindest einer Eigenschaft der detektierten Objekte vorgesehen ist. Das heißt, die Auswerteeinrichtung stellt fest, ob die Lichtquelle(n) gegebenenfalls anders eingestellt werden müssen, also etwa mit größerer Intensität in einem Sende-Wellenlängenbereich leuchten müssen, damit eine fehlerfreie Auswertung der Daten der Detektoren möglich ist. Oder die Auswerteeinrichtung stellt fest, dass die Intensität in einem Sende-Wellenlängenbereich reduziert werden kann und dennoch die Daten des zugeordneten Detektors fehlerfrei ausgewertet werden können.
[0037] Mögliche Wellenlängenbereiche im Sinne der Erfindung, sowohl für die Lichtquelle(n) (Sende-Wellenlängenbereiche) als auch für die Detektoren (Detektions-Wellenlängenbereiche), sind z.B. sichtbares Licht, Infrarot-Licht, UV-Licht, oder ein Teilbereich der genannten Wellenlängenbereiche, wie z.B. nahes Infrarot-Licht (NIR-Licht), oder blaues Licht.
[0038] Zum Beispiel kann vorgesehen sein, dass der erste Sende-Wellenlängenbereich IR-Licht, insbesondere NIR-Licht, und der zweite Sende-Wellenlängenbereich sichtbares Licht beinhaltet. Insbesondere kann der erste Sende-Wellenlängenbereich nur IR- Licht, insbesondere nur NIR-Licht, und der zweite Sende-Wellenlängenbereich nur sichtbares Licht umfassen.
[0039] Für den Fall, dass die Lichtquelle sowohl eine erste Lichtquelle zum Aussenden von Licht nur im ersten Sende-Wellenlängenbereich aufweist als auch eine zweite Lichtquelle zum Aussenden von Licht nur im zweiten Sende-Wellenlängenbereich, ist die erste Lichtquelle bevorzugt zum Aussenden von IR-Licht, insbesondere von NIR-Licht, ausgebildet. Sie umfasst bevorzugt zumindest eine Halogenlichtquelle zum Aussenden von Infrarot-Licht, z.B. eine Halogenstablampe.
[0040] Die zweite Lichtquelle umfasst bevorzugt zumindest eine LED-Lichtquelle zum Aussen-den von sichtbarem Licht.
[0041] Die einzige Lichtquelle (z.B. die Superkontinuum-Laserlichtquelle), die erste Lichtquelle und die zweite Lichtquelle können natürlich jeweils aus mehreren gleichartigen physischen Einheiten gebildet werden, z.B. aus einer Reihe von mehreren Einheiten (mehrere Superkontinuum-Laser, LED-Lampen, Halogenlampen, ...), die quer zum Materialstrom angeordnet sind, oder aus mehreren solcher Reihen.
[0042] Wenn der erste Sende-Wellenlängenbereich Infrarot-Licht umfasst, also etwa die erste Lichtquelle Infrarot-Licht aussendet, ist vorgesehen, dass der erste Detektor ein Detektor für Infrarot-Licht, insbesondere NIR-Licht, ist. Beispielsweise kann der erste Detektor einen Spekt-rographen für Infrarot-Licht umfassen. Der erste Detektor kann im Falle von NIR-Licht im Bereich von 900 - 2300 nm empfindlich sein.
[0043] Wenn der zweite Sende-Wellenlängenbereich sichtbares Licht umfasst, also etwa die zweite Lichtquelle sichtbares Licht aussendet, ist bevorzugt vorgesehen, dass der zweite Detektor eine Kamera für sichtbares Licht umfasst. Diese kann im Bereich von 380-750 nm Wellen- länge empfindlich sein.
[0044] Erfindungsgemäß wird also vom selben Objekt, insbesondere auch zum selben Zeitpunkt, ausgehendes Licht in zwei verschiedenen Detektoren gemessen.
[0045] Um ein Sortiergerät zum Sortieren von Objekten in einem Materialstrom in Abhängigkeit zumindest einer ihrer Eigenschaften zu erhalten, besteht eine Ausführungsform der Erfindung darin, dass eine Auswerteeinrichtung vorgesehen ist zur Auswertung der Signale des ersten und zweiten Detektors und zur Bestimmung zumindest einer Eigenschaft der detektierten Objekte. Ein Beispiel für ein solches Sortiergerät ist eine Einrichtung zum Sortieren von Kunststoffartikeln oder Kunststoffteilen, z.B. nach ihrer Farbe.
[0046] Dabei wird die Auswerteeinrichtung in der Regel mit einer Austrageinrichtung zum Aussortieren von Objekten aus dem Materialstrom in Abhängigkeit von deren Eigenschaften verbunden. Die Austrageinrichtung kann etwa Saug- oder Blasdüsen aufweisen, um eine Fraktion von Objekten mit einer bestimmten Eigenschaft von anderen Objekten des Materialstromes zu trennen. Die Austrageinrichtung ist somit ebenfalls Teil des Sortiergeräts.
[0047] Ein Ziel der Erfindung besteht in der Integration von zwei unterschiedlichen Sende-Wellenlängenbereichen (z.B. zwei unterschiedlichen Beleuchtungseinheiten) für ein Sortiergerät. Ein Sende-Wellenlängenbereich (z.B. die zweite Lichtquelle) ist etwa speziell abgestimmt auf die Bedürfnisse des Sensors bzw. Detektors für sichtbares Licht, der andere Sende-Wellenlängenbereich (z.B. die erste Lichtquelle) auf die Bedürfnisse des Sensors bzw. Detektors für Infrarot-Licht, insbesondere für NIR-Licht.
[0048] Durch eine eigene Lichtquelle nur für Infrarot-Licht, insbesondere NIR-Licht, und eine eigene Lichtquelle nur für sichtbares Licht kann die Intensität der Infrarot -Lichtquelle gegenüber einer gemeinsamen Lichtquelle für Infrarot- und sichtbares Licht verringert werden. Dadurch verringert sich dann auch die Rot-Intensität aus der Infrarot-Lichtquelle und die Farbtreue im sichtbaren Bereich erhöht sich. Gleiches gilt für eine Lichtquelle, die beide Detektions-Wellenlängenbereiche bedienen kann und Licht in zwei entsprechenden Sende-Wellenlängenbereich aussenden kann, wobei die Intensität der beiden Sende-Wellenlängenbereiche unabhängig voneinander einstellbar ist.
[0049] Im Folgenden wird eine mögliche Ausführungsform der Erfindung anhand der konkreten Anwendung näher beschrieben. Zum Zwecke der Farbsortierung und Fremdstofferkennung können zumeist berührungslose Messmethoden mittels Infrarot- und/oder RGB-Sensoren eingesetzt werden, welche anhand des registrierten Transmissions- oder Absorptionsgrades von auf den Materialstrom gerichtetem Licht ein Ausscheiden bestimmter Materialien/Objekte, etwa durch ein Ablenken in dafür vorgesehene Fraktionen durch nachgeschaltete Ausblas- oder Saugdüsen, einleiten. Das auszusortierende Stückgut des gemischten Materialstromes wird etwa auf einem Sortierband oder während einer Freifallstrecke durch Strahlungsquellen bestrahlt und die durch den Materialstrom hindurchgehende oder reflektierte Strahlung in ihrer Intensität von einer erfindungsgemäßen Detektionsvorrichtung aufgenommen und mit Referenzwerten verglichen. Eine mit der Detektionsvorrichtung in Datenverbindung stehende Auswerteeinrichtung nimmt in der Folge eine Zuordnung des Stückgutes zu einer jeweiligen Fraktion vor und veranlasst - im Sinne einer Steuereinheit - ein Erfassen der so identifizierten Objekte durch Aufnehmer oder ein Ablenken in vorbestimmte Container mittels Druckluft- oder Saugdüsen.
[0050] Die Verwendung von sichtbarem Licht oder IR-Licht ermöglicht es auch, das mittels Detektoren, darin enthalten meist eine CCD-Kamera, aufgenommene Bild eines Objekts mittels Bildverarbeitung zu bearbeiten und so etwa auch die Form eines Objekts zu erkennen. Die Detektoren weisen unterschiedliche Empfindlichkeiten für unterschiedliche Wellenlängen(-bereiche) auf. Bei einer RGB-Kamera wird z.B. ein RGB-Signal verarbeitet, also die Farben Rot, Grün und Blau jeweils in einem eigenen Kanal übertragen beziehungsweise gespeichert.
[0051] Die erste Lichtquelle, die zur Bestrahlung der Objekte verwendet wird, kann Licht im Infrarotbereich (780 nm -1 mm Wellenlänge), insbesondere im NIR-Bereich (900 - 2300 nm) aussenden. Die zweite Lichtquelle kann Licht im sichtbaren Bereich (380-750 nm Wellenlänge) aussenden. Grundsätzlich wäre als erste oder zweite Lichtquelle auch eine UV-Lichtquelle zur Aktivierung von Fluoreszenzlicht denkbar, wobei das Fluoreszenzlicht dann wieder im sichtbaren Bereich liegen kann.
[0052] Im Fall einer Lichtquelle mit nur einer Sorte von Beleuchtungseinheiten, z.B. einer oder mehreren Superkontinuum-Laserlichtquellen, würde die einzelne Beleuchtungseinheit sowohl in einem ersten Sende-Wellenlängenbereich Licht im Infrarotbereich (780 nm -1 mm Wellenlänge), insbesondere im NIR-Bereich (900 - 2300 nm), als auch in einem zweiten Sende-Wellenlängenbereich Licht im sichtbaren Bereich (380-750 nm Wellenlänge) aussenden.
KURZE BESCHREIBUNG DER FIGUREN
[0053] Im Folgenden wird die Erfindung anhand der schematischen Zeichnungen näher beschrieben. Dabei zeigt [0054] Fig. 1 ein Sortiergerät mit Detektionsvorrichtung nach dem Stand der Technik, [0055] Fig. 2 ein Sortiergerät mit einer erfindungsgemäßen Detektionsvorrichtung mit erster und zweiter Lichtquelle.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
[0056] Fig. 1 zeigt ein Sortiergerät zum Sortieren von Objekten 9, z.B. Kunststoffabfall in Form von färbigen Kunststoffstücken, gemäß dem Stand der Technik. Die Objekte 9 werden detek-tiert, nachdem sie über eine schiefe Ebene 10 in eine Freifallstrecke gelangen, von welcher ein Abschnitt von der Lichtquelle 6 beleuchtet und von den Detektoren 1,2 erfasst wird. Möglich wäre auch eine Detektion der Objekte 9 auf einem Förderband. Bevorzugt handelt sich um einen einschichtigen Materialstrom.
[0057] Die Objekte werden (in Fig. 1 von links) mit Licht der Lichtquelle 6 bestrahlt, wobei die Lichtquelle 6 gleichzeitig sichtbares Licht 8 und Infrarot-Licht 7 aussendet. Die Lichtquelle 6 kann aus mehreren gleichartigen Einheiten bestehen, die über die Breite des Materialstroms bzw. der schiefen Ebene 10, also normal zur Zeichnungsebene, verteilt sind. Das von den Objekten 9 ausgehende Reflexionslicht wird mit zwei unterschiedlichen Detektoren 1,2 detek-tiert, die sich auf der gleichen Seite der Objekte 9 befinden wie die Lichtquelle 6.
[0058] Die Vorrichtung umfasst einen ersten Detektor 1 zum Detektieren von Licht eines ersten Detektions-Wellenlängenbereichs, und einen zweiten Detektor 2 zum Detektieren von Licht eines zweiten Detektions-Wellenlängenbereichs, der vom ersten Detektions-Wellenlängenbereich unterschiedlich ist. Das heißt, erster und zweiter Detektions-Wellenlängenbereich sind nicht identisch, werden sich in der Regel nicht überlappen, eine Überlappung ist aber nicht ausgeschlossen.
[0059] Der erste Detektor 1, hier ein IR-Detektor (insbesondere ein NIR-Detektor), umfasst z.B. ein Objektiv, einen Spektrographen und einen optischen Sensor. Der zweite Detektor 2 ist ein VIS-Detektor (insbesondere eine RGB-Kamera) und umfasst ein Objektiv und einen optischen Sensor. Zumindest einer der Detektoren kann als Zeilenkamera ausgebildet sein.
[0060] In Fig. 1 werden die Objekte 9 von der Lichtquelle 6 mit Licht unterschiedlicher Wellenlänge bestrahlt, nämlich mit Infrarot-Licht 7 (erster Sende-Wellenlängenbereich) und mit sichtbarem, insbesondere weißem, Licht 8 (zweiter Sende-Wellenlängenbereich). Das von den Objekten 9 ausgehende Reflexionslicht unterschiedlicher Wellenlänge, nämlich wieder Infrarot-Licht 7 und sichtbares Licht 8, wird von den beiden verschiedenen Detektoren 1,2 detektiert. Das Lichtumlenkelement 3, das im Strahlengang zu den Detektoren 1,2 angeordnet ist, ist teildurchlässig bzw. wellenlängenselektiv: es reflektiert Infrarot-Licht 7 Licht, z.B. den NIR-Anteil über 700 nm, und lenkt es (z.B. um ca. 90°) in Richtung erster Detektor 1 ab. Sichtbares Licht 8, z.B. mit Wellenlängen unter 700 nm, wird durchgelassen und gelangt zum zweiten Detektor 2.
[0061] Die Auswerteeinrichtung 11, die in der Regel als Computer ausgebildet ist, verarbeitet die Daten aus den Detektoren 1,2 und bestimmt zumindest eine Eigenschaft (z.B. die Farbe) jedes Objekts 9 und teilt die Objekte 9 dann vorgegebenen Fraktionen (z.B. weiß - nicht weiß) zu, sodass anhand von dieser Einteilung eine Trennung der Objekte 9 erfolgen kann. Die Auswerteeinrichtung 11 sendet ein entsprechendes Steuersignal an die Austrageinrichtung 12, z.B. eine Ausblasdüse, sodass Objekte einer Fraktion (z.B. die weißen Objekte) durch die Austrageinrichtung 12 über eine Trennwand 13 hinaus abgelenkt werden, während Objekte der anderen Fraktion (nicht weiß) eben nicht abgelenkt werden und auf der anderen Seite der Trennwand 13 bleiben.
[0062] Da meist eine hohe Intensität von sichtbarem Licht 8 benötigt wird, muss die Lichtquelle 6 nahe ihrer Leistungsgrenze betrieben werden, und strahlt damit auch Infrarot-Licht 7 mit hoher Intensität aus, was den Raum um die Lichtquelle 6 entsprechend erwärmt, obwohl auch eine geringere Intensität des Infrarot-Lichts 7 für den ersten Detektor 1 ausreichend wäre. Die in Fig. 1 dargestellte Vorrichtung aus Detektoren 1,2, Lichtquelle 6 und schiefer Ebene 10 ist meist von einem hier nicht dargestellten Gehäuse umgeben, sodass sich das Innere des Gehäuses entsprechend erhitzt.
[0063] Dem soll nun durch eine Änderung der Vorrichtung wie in Fig. 2 dargestellt abgeholfen werden. Fig. 2 unterscheidet sich von Fig. 1 dadurch, dass statt der Lichtquelle 6 zwei unterschiedliche Lichtquellen 4,5 vorgesehen werden. Die erste Lichtquelle 4 sendet nur (soweit physikalisch möglich, jedenfalls hauptsächlich) Infrarot-Licht 7 aus, während die zweite Lichtquelle 5 nur (soweit physikalisch möglich, jedenfalls hauptsächlich) sichtbares Licht 8 aussendet. Zudem sind die beiden Lichtquellen 4,5 mit der Auswerteeinrichtung 11 verbunden, welche mit den Detektoren 1,2 verbunden ist. Die Auswerteeinrichtung 11 kann nun Steuersignale zur Steuerung der Intensität der einzelnen Lichtquellen 4,5 an diese senden, sodass die Intensität der beiden Lichtquellen 4,5 unabhängig voneinander eingestellt werden kann. Dabei kann die Auswerteeinrichtung 11 die Intensität der Lichtquellen 4,5 so einstellen, dass diese gerade ausreicht, um eine Auswertung der Daten der Detektoren 1,2 zu ermöglichen. Insbesondere kann die Intensität der ersten Lichtquelle 4 für Infrarot-Licht 7 abgesenkt werden, ohne die Intensität für die zweite Lichtquelle 5 für sichtbares Licht 8 zu verändern. Dadurch kann die Wärmeentwicklung der ersten Lichtquelle 4 gesenkt werden.
[0064] Die erste Lichtquelle 4 setzt sich aus Halogenleuchtstäben zusammen. Für bestimmte Anwendungen sendet die Lichtquelle 4 NIR-Licht aus, der zugeordnete Detektor 1 ist dann entsprechend als NIR-Detektor ausgebildet. Die zweite Lichtquelle 5 setzt sich in Fig. 2 aus mehreren Weißlicht-LEDs zusammen. Jede Lichtquelle 4,5 kann vom zugeordneten Sensor bzw. Detektor 1,2 unabhängig von der anderen Lichtquelle beeinflusst werden. Da die Lichtintensität im sichtbaren Bereich über die LED-Beleuchtung erzeugt wird, und der NIR-Sensor des Detektors 1 mit einer geringeren Intensität im NIR- Bereich auskommt, können die Halogenleuchtstäbe mit einer geringeren Leistung als der spezifizierten Nennleistung betrieben werden. Daraus ergibt sich eine geringere elektrische Betriebsleistung und Wärmestrahlung, die sich in einer niedrigeren Erwärmung des Sortiergeräts auswirkt.
[0065] Positiver Nebeneffekt ist die höhere Lebensdauer der Lichtquelle 4. Zudem ergibt sich eine bessere Farbtreue im Bereich des sichtbaren Lichts durch Reduktion der aus der Halogenbeleuchtung stammenden Rotintensität.
[0066] Sonst funktioniert die Vorrichtung nach Fig. 2 gleich wie jene nach Fig. 1.
[0067] Erste und zweite Lichtquelle 4,5 in Fig. 2 können gemäß der anderen Ausführungsvariante der Erfindung durch eine Lichtquelle ersetzt werden, deren einzelne Beleuchtungseinheiten jeweils sowohl IR-Licht, insbesondere nur NIR-Licht, als auch sichtbares Licht aussenden können, wobei die Intensität von IR-Licht und sichtbarem Licht getrennt einstellbar sind. Dies würde durch eine Superkontinuum-Laserlichtquelle erfüllt sein. Diese wäre dann (analog zu erster und zweiter Lichtquelle 4,5 in Fig. 2) am besten sowohl mit dem ersten als auch mit dem zweiten Detektor 1,2 verbunden, z.B. über die Auswerteeinrichtung 11. Selbstverständlich kann die Superkontinuum-Laserlichtquelle auch nur mit einem der Detektoren 1,2 verbunden sein, wenn nur für einen der beiden Sende-Wellenlängenbereiche die Intensität einstellbar sein soll.
[0068] Die Ausführungsvariante mit einer Superkontinuum-Laserlichtquelle ist ähnlich zur Darstellung in Fig. 1 mit der Lichtquelle 6. Man müsste für die gegenständliche Erfindung die Lichtquelle 6, etwa einen Halogenleuchtstab, durch die Superkontinuum-Laserlichtquelle ersetzen und diese, z.B. über die Auswerteeinrichtung 11, mit einem oder mit beiden Detektoren 1,2 verbinden. BEZUGSZEICHENLISTE: 1 erster Detektor 2 zweiter Detektor 3 Lichtumlenkelement 4 erste Lichtquelle 5 zweite Lichtquelle 6 Lichtquelle 7 Infrarot-Licht 8 sichtbares Licht 9 Objekt 10 schiefe Ebene 11 Auswerteeinrichtung 12 Austrageinrichtung 13 Trennwand

Claims (15)

  1. Ansprüche
    1. Vorrichtung zum Detektieren von Objekten (9) in einem Materialstrom, umfassend zumindest - eine Lichtquelle (4,5) zum Aussenden von Licht in einem ersten Sende-Wellenlängen-bereich und in einem zweiten Sende-Wellenlängenbereich, der vom ersten Sende-Wel-lenlängenbereich unterschiedlich ist, auf den Materialstrom, - einen ersten Detektor (1) zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im ersten Sende- Wellenlängenbereich, in einem ersten Detektions- Wellenlängenbereich, - einen zweiten Detektor (2), der vom ersten Detektor (1) verschieden ist, zum Detektieren von Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte, hervorgerufen durch Licht im zweiten Sende- Wellenlängenbereich, in einem zweiten Detektions- Wellenlängenbereich, dadurch gekennzeichnet, - dass der erste Detektor (1) mit der Lichtquelle (4) zwecks Steuerung der Lichtintensität des ersten Sende- Wellenlängenbereichs verbunden ist, und/oder der zweite Detektor (2) mit der Lichtquelle (5) zwecks Steuerung der Lichtintensität des zweiten Sende-Wellenlängenbereichs verbunden ist.
  2. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquelle (4,5) zumindest eine Superkontinuum-Laserlichtquelle umfasst, welche ausgebildet ist, Licht in einem ersten Sende-Wellenlängenbereich und in einem zweiten Sende-Wellenlängenbereich, der nicht mit dem ersten Sende-Wellenlängenbereich überlappt, auszusenden.
  3. 3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquelle (4,5) sowohl eine erste Lichtquelle (4) zum Aussenden von Licht nur im ersten Sende- Wellenlängenbereich aufweist als auch eine zweite Lichtquelle (5) zum Aussenden von Licht nur im zweiten Sende-Wellenlängenbereich, und - dass der erste Detektor (1) mit der ersten Lichtquelle (4) zwecks Steuerung der Lichtintensität der ersten Lichtquelle verbunden ist, und/oder der zweite Detektor (2) mit der zweiten Lichtquelle (5) zwecks Steuerung der Lichtintensität der zweiten Lichtquelle verbunden ist.
  4. 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass sich erste Lichtquelle (4) und zweite Lichtquelle (5) im Betrieb der Vorrichtung auf der gleichen Seite des Materialstroms der Objekte (9) befinden.
  5. 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Detektor (1) und/oder der zweite Detektor (2) mit der Lichtquelle (4,5) über eine Auswerteeinrichtung (11) verbunden ist, welche zur Auswertung der Signale des ersten und zweiten Detektors (1,2) und zur Bestimmung zumindest einer Eigenschaft der detek-tierten Objekte (9) vorgesehen ist.
  6. 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sende- Wellenlängenbereich IR-Licht (7), insbesondere NIR-Licht, und der zweite Sende-Wellenlängenbereich sichtbares Licht (8) beinhaltet.
  7. 7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die erste Lichtquelle (4) zum Aussenden von IR-Licht (7) ausgebildet ist.
  8. 8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die erste Lichtquelle (4) zum Aussenden von NIR-Licht ausgebildet ist.
  9. 9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die erste Lichtquelle (4) zumindest eine Halogenlichtquelle umfasst.
  10. 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die erste Lichtquelle (4) eine Halogenstablampe umfasst.
  11. 11. Vorrichtung nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass die zweite Lichtquelle (5) zumindest eine LED-Lichtquelle zum Aussenden von sichtbarem Licht (8) umfasst.
  12. 12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Detektor (1) ein Detektor für Infrarot-Licht (7), insbesondere NIR-Licht, ist und einen Spektrographen für Infrarot-Licht (7) umfasst.
  13. 13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Detektor (2) eine Kamera für sichtbares Licht (8) umfasst.
  14. 14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Auswerteeinrichtung (11) vorgesehen ist zur Auswertung der Signale des ersten und zweiten Detektors (1,2) und zur Bestimmung zumindest einer Eigenschaft der detektierten Objekte (9), wobei die Auswerteeinrichtung (11) mit einer Austrageinrichtung (12) zum Aussortieren von Objekten (9) aus dem Materialstrom in Abhängigkeit von deren Eigenschaften verbunden ist.
  15. 15. Verfahren zum Detektieren von Objekten (9) in einem Materialstrom mittels einer Vorrichtung nach einem der Ansprüche 1 bis 14, wobei - eine Lichtquelle (4,5) auf den Materialstrom Licht in einem ersten Sende-Wellenlängen-bereich und in einem zweiten Sende-Wellenlängenbereich aussendet, der vom ersten Sende-Wellenlängenbereich unterschiedlich ist, - ein erster Detektor (1) in einem ersten Detektions- Wellenlängenbereich Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte detektiert, das durch Licht im ersten Sende-Wellenlängenbereich hervorgerufen wird, - ein zweiter Detektor (2), der vom ersten Detektor (1) verschieden ist, in einem zweiten Detektions- Wellenlängenbereich Reflexionslicht, Fluoreszenzlicht oder Transmissionslicht der Objekte detektiert, das durch Licht im zweiten Sende-Wellenlängenbereich hervorgerufen wird, und - die Lichtintensität des ersten Sende-Wellenlängenbereichs aufgrund einer Verbindung des ersten Detektors (1) mit der Lichtquelle (4) so gesteuert, insbesondere verringert, wird, dass die Lichtintensität für den ersten Detektor (1) ausreichend ist, und/oder die Lichtintensität des zweiten Sende-Wellenlängenbereichs aufgrund einer Verbindung des zweiten Detektors (2) mit der Lichtquelle (5) so gesteuert, insbesondere verringert, wird, dass die Lichtintensität für den zweiten Detektor (2) ausreichend ist.
ATGM50175/2016U 2016-08-30 2016-08-30 Vorrichtung zum Detektieren von Objekten in einem Materialstrom AT15723U1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ATGM50175/2016U AT15723U1 (de) 2016-08-30 2016-08-30 Vorrichtung zum Detektieren von Objekten in einem Materialstrom
PCT/EP2017/071782 WO2018041902A1 (de) 2016-08-30 2017-08-30 Vorrichtung zum detektieren von objekten in einem materialstrom
CN201790000346.9U CN208177898U (zh) 2016-08-30 2017-08-30 用于探测在材料流中的对象的装置
DE212017000206.9U DE212017000206U1 (de) 2016-08-30 2017-08-30 Vorrichtung zum Detektieren von Objekten in einem Materialstrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATGM50175/2016U AT15723U1 (de) 2016-08-30 2016-08-30 Vorrichtung zum Detektieren von Objekten in einem Materialstrom

Publications (1)

Publication Number Publication Date
AT15723U1 true AT15723U1 (de) 2018-04-15

Family

ID=61300174

Family Applications (1)

Application Number Title Priority Date Filing Date
ATGM50175/2016U AT15723U1 (de) 2016-08-30 2016-08-30 Vorrichtung zum Detektieren von Objekten in einem Materialstrom

Country Status (4)

Country Link
CN (1) CN208177898U (de)
AT (1) AT15723U1 (de)
DE (1) DE212017000206U1 (de)
WO (1) WO2018041902A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210015B4 (de) * 2018-06-20 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Sortierung von pulverförmigem, partikelförmigem, granulatförmigem oder stückförmigem Material
JP7062081B2 (ja) * 2018-11-16 2022-05-02 株式会社日立ハイテク 放射線分析装置
DE102018220271A1 (de) * 2018-11-26 2020-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Aufnahmevorrichtung und Verfahren zur optischen Aufnahme
CN111451176A (zh) * 2019-01-21 2020-07-28 合肥泰禾光电科技股份有限公司 一种用于物料分选设备的探测装置、物料分选设备及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339660B1 (en) * 2006-11-29 2008-03-04 Satake Usa, Inc. Illumination device for product examination
EP2589858A1 (de) * 2011-01-28 2013-05-08 Olympus Medical Systems Corporation Beleuchtungsvorrichtung und beobachtungssystem

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155702A (ja) * 1993-12-01 1995-06-20 Satake Eng Co Ltd 穀粒色彩選別装置
WO2004063729A1 (de) * 2003-01-10 2004-07-29 Schott Ag Verfahren und vorrichtung zur selektion von recyclingglas
AT8647U1 (de) * 2005-08-08 2006-10-15 Binder Co Ag Verfahren zur detektion und sortierung von glas
DK2200758T3 (da) * 2007-09-03 2014-03-24 Tomra Sorting Nv Sorteringsanordning med en superkontinuum strålingskilde og tilsvarende fremgangsmåde
AT11769U1 (de) * 2009-08-19 2011-04-15 Binder Co Ag Verfahren und vorrichtung zum detektieren von bleihältigen glasstücken
ES2811601T3 (es) * 2013-11-04 2021-03-12 Tomra Sorting Nv Aparato de inspección
US9266148B2 (en) * 2014-06-27 2016-02-23 Key Technology, Inc. Method and apparatus for sorting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339660B1 (en) * 2006-11-29 2008-03-04 Satake Usa, Inc. Illumination device for product examination
EP2589858A1 (de) * 2011-01-28 2013-05-08 Olympus Medical Systems Corporation Beleuchtungsvorrichtung und beobachtungssystem

Also Published As

Publication number Publication date
DE212017000206U1 (de) 2019-04-10
WO2018041902A1 (de) 2018-03-08
CN208177898U (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
EP2537598B1 (de) Vorrichtung und Verfahren zur optischen Sortierung von Schüttgut
DE102010024784B4 (de) Multisensorielle Anordnung für die optische Inspektion und Sortierung von Schüttgütern
DE212017000206U1 (de) Vorrichtung zum Detektieren von Objekten in einem Materialstrom
DE102006047150B4 (de) Inspektionsvorrichtung für Behältnisse
DE102008063077B4 (de) Inspektionsvorrichtung
EP1752228A1 (de) Verfahren und Vorrichtung zur Detektion und Sortierung von Glas
DE102011113670A1 (de) Beleuchtungsvorrichtung, Inspektionsvorrichtung und Inspektionsverfahren für die optische Prüfung eines Objekts
EP2467702B1 (de) Verfahren und vorrichtung zum detektieren von bleihältigen glasstücken
EP3463696B1 (de) Vorrichtung und verfahren zum untersuchen von schüttgut
AT15295U1 (de) Aussortieren von mineralienhaltigen Objekten oder Kunststoff-Objekten
WO2019048575A1 (de) Inspektionsvorrichtung mit farbbeleuchtung
DE102006034432A1 (de) Inspektionsvorrichtung für Behältnisse
EP1205745B1 (de) Diodenlichtquelle für eine Zeilenkamera
DE4406228C2 (de) Verfahren um aus einem Strom von Gegenständen nicht-akzeptable Güter und Fremdgegenstände auszusortieren
AT508060B1 (de) Verfahren, beleuchtungseinrichtung und system zum optischen detektieren von bewegten objekten
EP2671649B1 (de) Vorrichtung zur Identifizierung einer Flasche
DE102017119137A1 (de) Verfahren zur Detektion und Aussonderung von Sonderglas aus Recyclingglas
EP0557738B1 (de) Verfahren und Vorrichtung zur Unterscheidung von Kunststoffteilen sowie Verwendung des Verfahrens zur Aussonderung wiederverwertbarer Kunststoffteile aus Industrie- und/oder Hausmüll
EP1533045A1 (de) Verfahren und Vorrichtung zur optimierten Sortierung von Abfall von Holz und Holzfaserprodukten
EP0426893A1 (de) Verfahren und Einrichtung zum Sortieren
DE102005032493A1 (de) Vorrichtung und Verfahren zur Trennung von Natur- und Kunststoffkorken
AT521081B1 (de) Verfahren zur Bestimmung der Qualität von Ersatzbrennstoffpartikeln
CH617769A5 (en) Method and device for identifying bodies containing or carrying a luminous material
AT15588U1 (de) Vorrichtung und Verfahren zur Detektion von Objekten, insbesondere von Objekten in einem Materialstrom
EP2252880A1 (de) Vorrichtung und verfahren zum kontaktlosen erkennen von charakteristika von kontinuierlich geförderten, transluzenten produkten