AT107213B - Shaft bearing. - Google Patents

Shaft bearing.

Info

Publication number
AT107213B
AT107213B AT107213DA AT107213B AT 107213 B AT107213 B AT 107213B AT 107213D A AT107213D A AT 107213DA AT 107213 B AT107213 B AT 107213B
Authority
AT
Austria
Prior art keywords
bearing
shaft
shaft bearing
cylindrical
conical
Prior art date
Application number
Other languages
German (de)
Inventor
Georg Dr Ing Dettmar
Original Assignee
Georg Dr Ing Dettmar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Dr Ing Dettmar filed Critical Georg Dr Ing Dettmar
Application granted granted Critical
Publication of AT107213B publication Critical patent/AT107213B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/041Sliding-contact bearings self-adjusting with edge relief
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



  Wellenlagerung. 
 EMI1.1 
 



   Liegt die Welle a gleichachsig im Lager   b (Fig. 1),   so ist über die ganze Länge der Spalt von gleicher Weite und die Schmiermittelschicht von gleicher Stärke, so dass der Druck der   Welle, sich gleichmässig   auf die ganze Länge verteilt. Liegt die Welle dagegen schief im Lager, wie Fig. 2 zeigt, so nimmt je nach dem Grade der Schiefstellung nur noch ein grösserer oder geringerer Teil der Lagerlänge den Druck auf, z. B. zwischen den Punkten 1 und 2. Dabei ist 2 derjenige   Punkt,   an dem der Spalt etwa dieselbe Weite hat wie in Fig. 1.

   Aus Fig. 2 ist ferner ersichtlich, dass ein besonders starker Druck im Punkt 7 auftritt, an dem sich keine genügende Schmiermittelschicht mehr befindet. Ähnlich   ungünstig   wird die Druckverteilung, wenn die Welle sich unter der Belastung durchbiegt, wie Fig. 3 zeigt. 



   Bekanntlich ist die Lagerreibung, falls die Belastung pro Flächeneinheit sich in zulässigen Grenzen   hält, proportional der Lageriänge.   Es wäre also theoretisch vorteilhaft, die Lager so kurz zu machen, wie es die Rücksicht auf dem spezifischen   Fläehendtuek   gestattet. Dies gilt aber nur bei einwandfreier gleichachsiger Lagerung. Dies zeigt Fig. 4 bei einem Lager   bl,   das bei gleichem Innendurchmesser und gleicher Wellenstärke erheblich kürzer als in Fig. 1-3 gehalten ist.

   Hier ist eine viel   stärkere Neigung   

 <Desc/Clms Page number 2> 

 der   Welle möglich,   und bei dieser   stärkeren   Neigung elgibt sieh eine beträchtlich weitere Verkürzung 
 EMI2.1 
 zeigt, so kann man die maximale Neigung wieder auf das   Mass   der Fig. 2   zurückführen und   die tragende Strecke   6-6   bei geneigter Welle wieder auf das   Mass   1-2 bringen ; jedoch geschieht dies auf Kosten der Stärke der Schmiermittelsehicht, was seinerseits, da die Lagerreibung umgekehrt   pioportional   der   Ölschichte   ist, zu einer derartigen   Erhöhung der Lagerreibung führt,   dass die durch Verkürzung des Lagers angestrebte Herabsetzung der Reibung illusorisch wird. 



   Bei der die Erfindung   verkörpernden   Lagerung gemäss Fig. 6 ist das Lager b3 im mittleren Teil von 7-8 zylindrisch und in den beiden Endteilen von 7-9 und von 8-10 konisch nach aussen sich erweiternd ausgebohrt. Der durch strichpunktierte Linien abgegrenzte mittlere Teil entspricht dem 
 EMI2.2 
 an in   der Umfangsriehtung erheblich vergrösseit.   Das gilt in entsprechender Abstufung auch für die   Zwisehenpunkte. Hieraus   folgen besonders günstige Reibungsverhältnisse. Die Fig. 10 und 11 zeigen,   dass diese. Lagerform auch   bei einfach und doppelt gekrümmten Wellen günstige   Verhältnisse   ergibt. 



   Fig. 12 stellt eine umgekehrte Anordnung dar,   indem   hier das Lager durchwegs zylindrisch ausge- 
 EMI2.3 
 konisch verjüngende Teile von 14-16 und von   15-17   besitzt. 



   In Fig. 13 sind die Lagerflächen des Lagers   b4   sowohl als der Welle a2 in der Mitte zylindrisch, dagegen an den Enden divergierend konisch gestaltet. 



   Bei dem Lager b5 der Fig. 14, das wieder eine durchwegs zylindrische Welle a aufnimmt, haben die an den zylindrischen mittleren Teil des Lagers sich anschliessenden   Kegelflächen     kmvenförmige     Eizeugende 18-20 und 19-21, zu   denen die Erzeugende des zylindrischen Teiles 18-19 tangential verläuft, so dass man keine Übergangskanten erhält. Diese Kanten, z. B. bei 7 und 8 der Fig. 6, sind natürlich bei der praktischen Ausführung nicht so ausgeprägt, wie in. den Zeichnungen dargestellt, die, wie eingangs bemerkt, zur besonderen   Veranschaulichung   stark übertreiben, und machen sieh daher praktisch kaum störend bemerkbar. 



   In Fig. 15 ist umgekehrt wie bei Fig. 14 wieder das Lager b zylindrisch ausgebohrt und der damit zusammenwirkende Teil der Welle a3 nach einer konvexen, in der Mitte im wesentlichen parallel zur Achse verlaufenden Kurve abgedreht. 



   In Fig. 16 ist das Lager b6 an einem Ende von 22-23 zylindrisch gehalten und bis zum ändern   Ende von 23-24 konisch erweitert. Diese Form kommt in Betracht, wenn man nur mit einer Deformation   der Welle a auf der einen Seite des Lagers zu rechnen hat, wie dargestellt ist. Natürlich wird auch das beiderseits konisch erweiterte Lager gemäss Fig. 6 diesem Falle gerecht. 



   PATENT-ANSPRÜCHE :
1. Wellenlagerung, dadurch gekennzeichnet, dass die Lagerflächen des Lagers und der Welle derart gestaltet sind, dass sie nur in einem Teil sowohl unter sich als zur Achse im wesentlichen parallel verlaufen und im übrigen mindestens nach einem Lagerende hin divergieren.



   <Desc / Clms Page number 1>
 



  Shaft bearing.
 EMI1.1
 



   If the shaft a lies coaxially in the bearing b (Fig. 1), the gap is of the same width over the entire length and the lubricant layer is of the same thickness, so that the pressure of the shaft is evenly distributed over the entire length. If, on the other hand, the shaft is inclined in the bearing, as shown in FIG. 2, then, depending on the degree of inclination, only a greater or lesser part of the bearing length takes on the pressure, e.g. B. between points 1 and 2. Here, 2 is the point at which the gap has approximately the same width as in FIG. 1.

   It can also be seen from FIG. 2 that a particularly strong pressure occurs at point 7 at which there is no longer a sufficient layer of lubricant. The pressure distribution becomes similarly unfavorable if the shaft deflects under the load, as FIG. 3 shows.



   It is known that the bearing friction is proportional to the bearing length if the load per unit area is within permissible limits. In theory, it would therefore be advantageous to make the camps as short as the specific surface area allows. However, this only applies to perfect coaxial storage. This is shown in FIG. 4 with a bearing B1 which, with the same inner diameter and the same shaft thickness, is kept considerably shorter than in FIGS. 1-3.

   Here is a much stronger bias

 <Desc / Clms Page number 2>

 of the wave possible, and with this greater inclination there is a considerably further shortening
 EMI2.1
 shows, the maximum inclination can be brought back to the dimension of FIG. 2 and the bearing distance 6-6 can be brought back to the dimension 1-2 when the shaft is inclined; However, this happens at the expense of the strength of the lubricant layer, which in turn, since the bearing friction is inversely proportional to the oil layer, leads to such an increase in bearing friction that the reduction in friction aimed at by shortening the bearing becomes illusory.



   In the case of the bearing according to FIG. 6 embodying the invention, the bearing b3 is bored outwardly in a cylindrical manner in the middle part from 7-8 and in the two end parts from 7-9 and from 8-10. The middle part delimited by dash-dotted lines corresponds to this
 EMI2.2
 considerably enlarged in the circumferential direction. This also applies in a corresponding gradation to the intermediate points. This results in particularly favorable friction conditions. Figs. 10 and 11 show that this. Bearing shape results in favorable conditions even with single and double curved shafts.



   Fig. 12 shows the reverse arrangement, in that here the bearing is cylindrical throughout.
 EMI2.3
 Has conical tapering parts 14-16 and 15-17.



   In FIG. 13, the bearing surfaces of the bearing b4 as well as the shaft a2 are cylindrical in the middle, but have a diverging conical shape at the ends.



   In the case of the bearing b5 of FIG. 14, which again receives a completely cylindrical shaft a, the conical surfaces adjoining the cylindrical central part of the bearing have kmvoid-shaped ovoid ends 18-20 and 19-21, to which the generatrix of the cylindrical part 18-19 runs tangentially so that there are no transition edges. These edges, e.g. B. at 7 and 8 of FIG. 6, are of course not as pronounced in the practical implementation as shown in the drawings, which, as noted at the beginning, exaggerate greatly for the purpose of special illustration, and therefore make it practically hardly noticeable.



   In Fig. 15, contrary to Fig. 14, the bearing b is again bored out cylindrically and the part of the shaft a3 cooperating with it is turned off according to a convex curve running essentially parallel to the axis in the center.



   In Fig. 16, the bearing b6 is held cylindrically at one end of 22-23 and flared to the other end of 23-24. This form comes into consideration if one only has to reckon with a deformation of the shaft a on one side of the bearing, as shown. Of course, the bearing which is flared on both sides according to FIG.



   PATENT CLAIMS:
1. Shaft bearing, characterized in that the bearing surfaces of the bearing and the shaft are designed in such a way that they run essentially parallel to each other and to the axis only in part and otherwise diverge at least towards one end of the bearing.


    

Claims (1)

2. Wellenlagerung nach Anspruch 1, dadurch gekennzeichnet, dass die Lagerflächen des Lagers und der Welle von einem mittleren im wesentlichen parallelen Teil nach beiden Lagerenden hin divergieren. 2. Shaft bearing according to claim 1, characterized in that the bearing surfaces of the bearing and the shaft diverge from a central, substantially parallel part towards both bearing ends. 3. Wellenlageiung nach Anspruch l, dadurch gekennzeichnet, dass eines der beiden Elemente eine durchwegs zylindrische, das andere dagegen teilweise eine (z. B. in der Mitte) im wesentlichen zylindrische und teilweise (z. B. an beiden Enden) eine konische Lagerfläche aufweist. 3. Wellenlageiung according to claim l, characterized in that one of the two elements is a consistently cylindrical, the other, however, partially a (z. B. in the middle) substantially cylindrical and partially (z. B. at both ends) a conical bearing surface having. 4. Wellenlagerung nach Anspruch 3, dadurch gekennzeichnet, dass die konische Fläche eine kurvenförmige Erzeugende hat. 4. Shaft bearing according to claim 3, characterized in that the conical surface has a curved generatrix.
AT107213D 1926-07-16 1926-07-16 Shaft bearing. AT107213B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT107213T 1926-07-16

Publications (1)

Publication Number Publication Date
AT107213B true AT107213B (en) 1927-09-10

Family

ID=3624228

Family Applications (1)

Application Number Title Priority Date Filing Date
AT107213D AT107213B (en) 1926-07-16 1926-07-16 Shaft bearing.

Country Status (1)

Country Link
AT (1) AT107213B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674904A (en) * 1950-04-22 1954-04-13 Gen Motors Corp Camshaft
US2870719A (en) * 1955-10-04 1959-01-27 Thompson Prod Inc Bushing for pressure loaded gear pump having a tapered journal surface
US2870720A (en) * 1956-01-10 1959-01-27 Thompson Prod Inc Movable bushing for a pressure-loaded gear pump
US2883738A (en) * 1955-03-09 1959-04-28 Diamond Chain Company Inc Method of making annular elements for power-transmission chains
US3129984A (en) * 1961-06-16 1964-04-21 Do Company Journal stop and adapter therefor
US3454217A (en) * 1964-08-31 1969-07-08 Measuring & Scient Equipment L Load carriers and centrifuges
US3490819A (en) * 1968-01-18 1970-01-20 Babcock & Wilcox Co Hydrostatic spindle
US3766792A (en) * 1970-11-24 1973-10-23 Halbach & Braun Planer drive system
US4485743A (en) * 1982-09-29 1984-12-04 General Motors Corporation High efficiency semi-articulated railway power truck
US4940002A (en) * 1988-12-07 1990-07-10 General Motors Corporation Railway traction motor with skewed support bearings
US5407334A (en) * 1991-03-04 1995-04-18 Mitsubishi Denki Kabushiki Kaisha Scroll type compressor having a convex surface on the sub frame bushing
EP0753678A2 (en) * 1996-07-17 1997-01-15 Maag Pump Systems AG Sliding-contact bearing for a shaft
US6168403B1 (en) 1999-05-10 2001-01-02 Carrier Corporation Rotating compressor bearing with dual taper
EP1717466A2 (en) * 2005-04-27 2006-11-02 A. Friedr. Flender Ag Slide bearing with an enlarging bearing gap in the end zone
EP2087227A1 (en) * 2006-10-31 2009-08-12 Robert Bosch GmbH Delivery pump, in particular for delivering diesel fuel, having improved mounting of the drive shaft
DE102012217856A1 (en) * 2012-09-28 2014-04-03 Sennheiser Electronic Gmbh & Co. Kg Electronic device has electronic or electrical component arranged in housing is adjustable by rotating and is comprised with rotational axis, and spherical element is provided in region of opening and is coupled with rotational axis
DE102017131096A1 (en) * 2017-12-22 2019-06-27 Lucas Automotive Gmbh Gear assembly for a geared motor of an electrically actuated brake, gear motor, parking brake system and service brake system
EP3705723A1 (en) * 2019-03-08 2020-09-09 LG Electronics Inc. Scroll compressor
US11085240B2 (en) * 2018-07-27 2021-08-10 Halliburton Energy Services, Inc. Radial bearing apparatus for use with side forces
EP3865675A1 (en) * 2020-02-13 2021-08-18 Honeywell International Inc. Variable vane system for turbomachine with linkage having tapered receiving aperture for unison ring pin

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674904A (en) * 1950-04-22 1954-04-13 Gen Motors Corp Camshaft
US2883738A (en) * 1955-03-09 1959-04-28 Diamond Chain Company Inc Method of making annular elements for power-transmission chains
US2870719A (en) * 1955-10-04 1959-01-27 Thompson Prod Inc Bushing for pressure loaded gear pump having a tapered journal surface
US2870720A (en) * 1956-01-10 1959-01-27 Thompson Prod Inc Movable bushing for a pressure-loaded gear pump
US3129984A (en) * 1961-06-16 1964-04-21 Do Company Journal stop and adapter therefor
US3454217A (en) * 1964-08-31 1969-07-08 Measuring & Scient Equipment L Load carriers and centrifuges
US3490819A (en) * 1968-01-18 1970-01-20 Babcock & Wilcox Co Hydrostatic spindle
US3766792A (en) * 1970-11-24 1973-10-23 Halbach & Braun Planer drive system
US4485743A (en) * 1982-09-29 1984-12-04 General Motors Corporation High efficiency semi-articulated railway power truck
US4940002A (en) * 1988-12-07 1990-07-10 General Motors Corporation Railway traction motor with skewed support bearings
US5407334A (en) * 1991-03-04 1995-04-18 Mitsubishi Denki Kabushiki Kaisha Scroll type compressor having a convex surface on the sub frame bushing
EP0753678A3 (en) * 1996-07-17 1997-02-05 Maag Pump Systems Ag
EP0753678A2 (en) * 1996-07-17 1997-01-15 Maag Pump Systems AG Sliding-contact bearing for a shaft
US5913608A (en) * 1996-07-17 1999-06-22 Maag Pump Systems Textron Ag Slide bearing for a shaft
US6168403B1 (en) 1999-05-10 2001-01-02 Carrier Corporation Rotating compressor bearing with dual taper
EP1717466A2 (en) * 2005-04-27 2006-11-02 A. Friedr. Flender Ag Slide bearing with an enlarging bearing gap in the end zone
DE102005019984A1 (en) * 2005-04-27 2006-11-09 A. Friedr. Flender Ag plain bearing
EP1717466A3 (en) * 2005-04-27 2008-04-23 A. Friedr. Flender Ag Slide bearing with an enlarging bearing gap in the end zone
EP2087227A1 (en) * 2006-10-31 2009-08-12 Robert Bosch GmbH Delivery pump, in particular for delivering diesel fuel, having improved mounting of the drive shaft
DE102012217856A1 (en) * 2012-09-28 2014-04-03 Sennheiser Electronic Gmbh & Co. Kg Electronic device has electronic or electrical component arranged in housing is adjustable by rotating and is comprised with rotational axis, and spherical element is provided in region of opening and is coupled with rotational axis
DE102017131096A1 (en) * 2017-12-22 2019-06-27 Lucas Automotive Gmbh Gear assembly for a geared motor of an electrically actuated brake, gear motor, parking brake system and service brake system
US11639165B2 (en) 2017-12-22 2023-05-02 Zf Active Safety Gmbh Gear assembly for a geared motor of an electrically operable brake, geared motor, parking brake system, and service brake system
US11085240B2 (en) * 2018-07-27 2021-08-10 Halliburton Energy Services, Inc. Radial bearing apparatus for use with side forces
US11639634B2 (en) 2018-07-27 2023-05-02 Halliburton Energy Services, Inc. Radial bearing apparatus for use with side forces
EP3705723A1 (en) * 2019-03-08 2020-09-09 LG Electronics Inc. Scroll compressor
EP3865675A1 (en) * 2020-02-13 2021-08-18 Honeywell International Inc. Variable vane system for turbomachine with linkage having tapered receiving aperture for unison ring pin

Similar Documents

Publication Publication Date Title
AT107213B (en) Shaft bearing.
DE426999C (en) bearings
DE514697C (en) Electrically driven pump
EP3256640A1 (en) Refiner plate
DE712137C (en) Part roller for pile divider
DE462861C (en) Split hollow ring body
AT136446B (en) Roller conveyor.
AT155736B (en) Clamping device.
DE656813C (en) Grinding rods for rod mills
DE1283696B (en) Wedge-free fastening of ship propellers
DE512339C (en) Wheelset with a hollow axle and wheels shrunk onto it
AT104645B (en) Impeller blade for centrifugal machines.
DE711704C (en) Cutting roller for roll cutting machines
DE467910C (en) Nut lock
AT107818B (en) Rolling mill.
AT209128B (en) Type series of flow converters and flow gears with at least two flow converters
AT129570B (en) Bucket attachment to Pelton wheels.
AT105385B (en) Ring mill.
AT130316B (en) Rubber tires for vehicle wheels.
DE443412C (en) Flax breaking machine with smaller rollers arranged around a large roller
AT115830B (en) Card file.
AT111866B (en) Drying drum.
DE463889C (en) Wire rod mill
DE733724C (en) Three-part ring spring
AT126403B (en) Scrapers for drums or rollers of paper machines, calenders or the like.