AR128223A1 - Sistemas y métodos para segmentar instancias de partículas rocosas - Google Patents

Sistemas y métodos para segmentar instancias de partículas rocosas

Info

Publication number
AR128223A1
AR128223A1 ARP230100042A ARP230100042A AR128223A1 AR 128223 A1 AR128223 A1 AR 128223A1 AR P230100042 A ARP230100042 A AR P230100042A AR P230100042 A ARP230100042 A AR P230100042A AR 128223 A1 AR128223 A1 AR 128223A1
Authority
AR
Argentina
Prior art keywords
photographs
objects
systems
segmenting
instances
Prior art date
Application number
ARP230100042A
Other languages
English (en)
Inventor
Tetsushi Yamada
Santo Simone Di
Original Assignee
Schlumberger Technology Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Bv filed Critical Schlumberger Technology Bv
Publication of AR128223A1 publication Critical patent/AR128223A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/005Testing the nature of borehole walls or the formation by using drilling mud or cutting data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Los sistemas y métodos presentados en este documento están configurados para entrenar un modelo de red neuronal usando un primer conjunto de fotografías, en donde cada fotografía del primer conjunto de fotografías representa un primer conjunto de objetos e incluye una o más anotaciones relacionadas con cada objeto del primer conjunto de objetos; para crear automáticamente imágenes de enmascaramiento correspondientes a un segundo conjunto de objetos representados por un segundo conjunto de fotografías; para permitir el ajuste manual de las imágenes de enmascaramiento correspondientes al segundo conjunto de objetos representados por el segundo conjunto de fotografías; para reentrenar el modelo de red neuronal usando el segundo conjunto de fotografías, en donde el reentrenamiento se basa, al menos en parte, en el ajuste manual de las imágenes de enmascaramiento correspondientes al segundo conjunto de objetos representados por el segundo conjunto de fotografías; e identificar uno o más objetos individuales en un tercer conjunto de fotografías usando el modelo de red neuronal reentrenado.
ARP230100042A 2022-01-07 2023-01-06 Sistemas y métodos para segmentar instancias de partículas rocosas AR128223A1 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/647,407 US20230220761A1 (en) 2022-01-07 2022-01-07 Systems and methods for segmenting rock particle instances

Publications (1)

Publication Number Publication Date
AR128223A1 true AR128223A1 (es) 2024-04-10

Family

ID=87070360

Family Applications (1)

Application Number Title Priority Date Filing Date
ARP230100042A AR128223A1 (es) 2022-01-07 2023-01-06 Sistemas y métodos para segmentar instancias de partículas rocosas

Country Status (5)

Country Link
US (1) US20230220761A1 (es)
CN (1) CN118648021A (es)
AR (1) AR128223A1 (es)
MX (1) MX2024008517A (es)
WO (1) WO2023132935A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116977827A (zh) * 2023-09-25 2023-10-31 中国检验认证集团山东有限公司 一种基于人工智能的铁矿石检测方法和系统
CN117432414B (zh) * 2023-12-20 2024-03-19 中煤科工开采研究院有限公司 顶板磨砂射流成缝的调控方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016928A1 (en) * 2009-08-07 2011-02-10 Exxonmobil Upstream Research Company Drilling advisory systems and method based on at least two controllable drilling parameters
NO347544B1 (en) * 2012-11-08 2023-12-27 Total Sa Method for processing an image
WO2019028725A1 (en) * 2017-08-10 2019-02-14 Intel Corporation CONVOLUTIVE NEURAL NETWORK STRUCTURE USING INVERTED CONNECTIONS AND OBJECTIVITY ANTERIORITIES TO DETECT AN OBJECT
WO2019167030A1 (en) * 2018-03-02 2019-09-06 Kore Geosystems Inc. Identifying and logging properties of core samples
US11704804B2 (en) * 2020-04-02 2023-07-18 GE Precision Healthcare LLC Domain adaptation using post-processing model correction

Also Published As

Publication number Publication date
CN118648021A (zh) 2024-09-13
US20230220761A1 (en) 2023-07-13
MX2024008517A (es) 2024-07-19
WO2023132935A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
AR128223A1 (es) Sistemas y métodos para segmentar instancias de partículas rocosas
Cho et al. Can neural machine translation do simultaneous translation?
Sibi et al. Analysis of different activation functions using back propagation neural networks
CN106897545B (zh) 一种基于深度置信网络的肿瘤预后预测系统
WO2020086818A3 (en) Detection of plant diseases with multi-stage, multi-scale deep learning
IL311528A (en) GAN-CNN for MHC peptide binding prediction
CN109902615A (zh) 一种基于对抗网络的多个年龄段图像生成方法
CN104463243A (zh) 基于平均脸特征的性别检测方法
JP2017083990A5 (es)
ZA202105148B (en) Data processing device, data processing system, and data processing method
BR112022008729A2 (pt) Método, aparelho, dispositivo, mídia não transitória legível por computador, sinal, e, mídia de armazenamento legível por computador
Quine Response to Gary Ebbs (1995)
Chavel The releasing of a prisoner on the eve of Passover in ancient Jerusalem
CN110503031B (zh) 一种提高人脸识别准确率及通行速度的方法
Lee A Lip-reading Algorithm Using Optical Flow and Properties of Articulatory Phonation
Enri et al. Sign Language Detection Using Mediapipe and Long-Short Term Memory Network
DE102019002869A1 (de) Tauchermaske GMT
Ducuing et al. Fairness and accountability of ML in railway market: are applicable railway laws up to regulate them?
Kamath et al. A novel method for automatic device control using emotion recognition
Bullett et al. Mating quadratic maps with the modular group II
Gluzman et al. Identifying Disturbance Sources in Shear Flows Using The Degenerate Unmixing Estimation Technique (DUET)
Monteiro et al. Control and Security System for Classroom Access Based on Facial Recognition
PT118356A (pt) Método para classificação de dados de exames de manometria ano-rectal
Vignaraja Introducing Emergency Simulation Training in Paediatrics: BAPIOAC19-P11
de Oliveira Colares et al. Um curriculum para ensino de melhoria do processo de software em cursos de computação