AR128223A1 - Sistemas y métodos para segmentar instancias de partículas rocosas - Google Patents
Sistemas y métodos para segmentar instancias de partículas rocosasInfo
- Publication number
- AR128223A1 AR128223A1 ARP230100042A ARP230100042A AR128223A1 AR 128223 A1 AR128223 A1 AR 128223A1 AR P230100042 A ARP230100042 A AR P230100042A AR P230100042 A ARP230100042 A AR P230100042A AR 128223 A1 AR128223 A1 AR 128223A1
- Authority
- AR
- Argentina
- Prior art keywords
- photographs
- objects
- systems
- segmenting
- instances
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 2
- 239000002245 particle Substances 0.000 title 1
- 239000011435 rock Substances 0.000 title 1
- 230000000873 masking effect Effects 0.000 abstract 3
- 238000003062 neural network model Methods 0.000 abstract 3
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/005—Testing the nature of borehole walls or the formation by using drilling mud or cutting data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/22—Fuzzy logic, artificial intelligence, neural networks or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Biodiversity & Conservation Biology (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Los sistemas y métodos presentados en este documento están configurados para entrenar un modelo de red neuronal usando un primer conjunto de fotografías, en donde cada fotografía del primer conjunto de fotografías representa un primer conjunto de objetos e incluye una o más anotaciones relacionadas con cada objeto del primer conjunto de objetos; para crear automáticamente imágenes de enmascaramiento correspondientes a un segundo conjunto de objetos representados por un segundo conjunto de fotografías; para permitir el ajuste manual de las imágenes de enmascaramiento correspondientes al segundo conjunto de objetos representados por el segundo conjunto de fotografías; para reentrenar el modelo de red neuronal usando el segundo conjunto de fotografías, en donde el reentrenamiento se basa, al menos en parte, en el ajuste manual de las imágenes de enmascaramiento correspondientes al segundo conjunto de objetos representados por el segundo conjunto de fotografías; e identificar uno o más objetos individuales en un tercer conjunto de fotografías usando el modelo de red neuronal reentrenado.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/647,407 US20230220761A1 (en) | 2022-01-07 | 2022-01-07 | Systems and methods for segmenting rock particle instances |
Publications (1)
Publication Number | Publication Date |
---|---|
AR128223A1 true AR128223A1 (es) | 2024-04-10 |
Family
ID=87070360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ARP230100042A AR128223A1 (es) | 2022-01-07 | 2023-01-06 | Sistemas y métodos para segmentar instancias de partículas rocosas |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230220761A1 (es) |
CN (1) | CN118648021A (es) |
AR (1) | AR128223A1 (es) |
MX (1) | MX2024008517A (es) |
WO (1) | WO2023132935A1 (es) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116977827A (zh) * | 2023-09-25 | 2023-10-31 | 中国检验认证集团山东有限公司 | 一种基于人工智能的铁矿石检测方法和系统 |
CN117432414B (zh) * | 2023-12-20 | 2024-03-19 | 中煤科工开采研究院有限公司 | 顶板磨砂射流成缝的调控方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011016928A1 (en) * | 2009-08-07 | 2011-02-10 | Exxonmobil Upstream Research Company | Drilling advisory systems and method based on at least two controllable drilling parameters |
NO347544B1 (en) * | 2012-11-08 | 2023-12-27 | Total Sa | Method for processing an image |
WO2019028725A1 (en) * | 2017-08-10 | 2019-02-14 | Intel Corporation | CONVOLUTIVE NEURAL NETWORK STRUCTURE USING INVERTED CONNECTIONS AND OBJECTIVITY ANTERIORITIES TO DETECT AN OBJECT |
WO2019167030A1 (en) * | 2018-03-02 | 2019-09-06 | Kore Geosystems Inc. | Identifying and logging properties of core samples |
US11704804B2 (en) * | 2020-04-02 | 2023-07-18 | GE Precision Healthcare LLC | Domain adaptation using post-processing model correction |
-
2022
- 2022-01-07 US US17/647,407 patent/US20230220761A1/en active Pending
- 2022-12-20 CN CN202280089497.1A patent/CN118648021A/zh active Pending
- 2022-12-20 WO PCT/US2022/053454 patent/WO2023132935A1/en active Application Filing
- 2022-12-20 MX MX2024008517A patent/MX2024008517A/es unknown
-
2023
- 2023-01-06 AR ARP230100042A patent/AR128223A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
CN118648021A (zh) | 2024-09-13 |
US20230220761A1 (en) | 2023-07-13 |
MX2024008517A (es) | 2024-07-19 |
WO2023132935A1 (en) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AR128223A1 (es) | Sistemas y métodos para segmentar instancias de partículas rocosas | |
Cho et al. | Can neural machine translation do simultaneous translation? | |
Sibi et al. | Analysis of different activation functions using back propagation neural networks | |
CN106897545B (zh) | 一种基于深度置信网络的肿瘤预后预测系统 | |
WO2020086818A3 (en) | Detection of plant diseases with multi-stage, multi-scale deep learning | |
IL311528A (en) | GAN-CNN for MHC peptide binding prediction | |
CN109902615A (zh) | 一种基于对抗网络的多个年龄段图像生成方法 | |
CN104463243A (zh) | 基于平均脸特征的性别检测方法 | |
JP2017083990A5 (es) | ||
ZA202105148B (en) | Data processing device, data processing system, and data processing method | |
BR112022008729A2 (pt) | Método, aparelho, dispositivo, mídia não transitória legível por computador, sinal, e, mídia de armazenamento legível por computador | |
Quine | Response to Gary Ebbs (1995) | |
Chavel | The releasing of a prisoner on the eve of Passover in ancient Jerusalem | |
CN110503031B (zh) | 一种提高人脸识别准确率及通行速度的方法 | |
Lee | A Lip-reading Algorithm Using Optical Flow and Properties of Articulatory Phonation | |
Enri et al. | Sign Language Detection Using Mediapipe and Long-Short Term Memory Network | |
DE102019002869A1 (de) | Tauchermaske GMT | |
Ducuing et al. | Fairness and accountability of ML in railway market: are applicable railway laws up to regulate them? | |
Kamath et al. | A novel method for automatic device control using emotion recognition | |
Bullett et al. | Mating quadratic maps with the modular group II | |
Gluzman et al. | Identifying Disturbance Sources in Shear Flows Using The Degenerate Unmixing Estimation Technique (DUET) | |
Monteiro et al. | Control and Security System for Classroom Access Based on Facial Recognition | |
PT118356A (pt) | Método para classificação de dados de exames de manometria ano-rectal | |
Vignaraja | Introducing Emergency Simulation Training in Paediatrics: BAPIOAC19-P11 | |
de Oliveira Colares et al. | Um curriculum para ensino de melhoria do processo de software em cursos de computação |