AP999A - Novel substituted imidazole compounds. - Google Patents
Novel substituted imidazole compounds. Download PDFInfo
- Publication number
- AP999A AP999A APAP/P/1997/001008A AP9701008A AP999A AP 999 A AP999 A AP 999A AP 9701008 A AP9701008 A AP 9701008A AP 999 A AP999 A AP 999A
- Authority
- AP
- ARIPO
- Prior art keywords
- alkyl
- formula
- compound
- optionally substituted
- imidazole
- Prior art date
Links
- 150000002460 imidazoles Chemical class 0.000 title abstract description 17
- 150000001875 compounds Chemical class 0.000 claims description 186
- 125000000217 alkyl group Chemical group 0.000 claims description 117
- -1 heteroarylCi_4alkyl Chemical group 0.000 claims description 89
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 74
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 48
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 201000010099 disease Diseases 0.000 claims description 42
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 42
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 39
- 239000001257 hydrogen Substances 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 239000002904 solvent Substances 0.000 claims description 33
- 125000000623 heterocyclic group Chemical group 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 30
- 125000001072 heteroaryl group Chemical group 0.000 claims description 30
- 241000124008 Mammalia Species 0.000 claims description 29
- 150000003839 salts Chemical class 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 25
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 24
- 150000002367 halogens Chemical class 0.000 claims description 24
- 229910052736 halogen Inorganic materials 0.000 claims description 23
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 22
- 125000003545 alkoxy group Chemical group 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 150000002466 imines Chemical class 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical group C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 125000001424 substituent group Chemical group 0.000 claims description 15
- 239000011593 sulfur Chemical group 0.000 claims description 15
- 150000002431 hydrogen Chemical group 0.000 claims description 14
- 230000001404 mediated effect Effects 0.000 claims description 14
- 102100023482 Mitogen-activated protein kinase 14 Human genes 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 12
- 206010040070 Septic Shock Diseases 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 claims description 10
- 150000001299 aldehydes Chemical class 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 9
- 108010084680 Heterogeneous-Nuclear Ribonucleoprotein K Proteins 0.000 claims description 8
- 206010003246 arthritis Diseases 0.000 claims description 8
- 201000005569 Gout Diseases 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 239000008194 pharmaceutical composition Substances 0.000 claims description 7
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 claims description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 7
- 125000003107 substituted aryl group Chemical group 0.000 claims description 7
- MNHRKQKSNCFFOW-UHFFFAOYSA-N 2-ethoxy-4-[5-(4-fluorophenyl)-3-piperidin-4-ylimidazol-4-yl]pyrimidine Chemical compound CCOC1=NC=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCNCC2)=N1 MNHRKQKSNCFFOW-UHFFFAOYSA-N 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- 206010040047 Sepsis Diseases 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 230000002685 pulmonary effect Effects 0.000 claims description 6
- 206010014824 Endotoxic shock Diseases 0.000 claims description 5
- 206010063837 Reperfusion injury Diseases 0.000 claims description 5
- 206010044248 Toxic shock syndrome Diseases 0.000 claims description 5
- 231100000650 Toxic shock syndrome Toxicity 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- 201000008482 osteoarthritis Diseases 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 238000006467 substitution reaction Methods 0.000 claims description 5
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 4
- 206010018634 Gouty Arthritis Diseases 0.000 claims description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 claims description 4
- 208000006011 Stroke Diseases 0.000 claims description 4
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 claims description 4
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 125000006203 morpholinoethyl group Chemical group [H]C([H])(*)C([H])([H])N1C([H])([H])C([H])([H])OC([H])([H])C1([H])[H] 0.000 claims description 4
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 claims description 4
- 206010002556 Ankylosing Spondylitis Diseases 0.000 claims description 3
- 206010063094 Cerebral malaria Diseases 0.000 claims description 3
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 3
- 206010010741 Conjunctivitis Diseases 0.000 claims description 3
- 208000011231 Crohn disease Diseases 0.000 claims description 3
- 201000004624 Dermatitis Diseases 0.000 claims description 3
- 201000001263 Psoriatic Arthritis Diseases 0.000 claims description 3
- 208000036824 Psoriatic arthropathy Diseases 0.000 claims description 3
- 208000033464 Reiter syndrome Diseases 0.000 claims description 3
- 201000010001 Silicosis Diseases 0.000 claims description 3
- 206010042496 Sunburn Diseases 0.000 claims description 3
- 208000007536 Thrombosis Diseases 0.000 claims description 3
- 206010048873 Traumatic arthritis Diseases 0.000 claims description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 230000002917 arthritic effect Effects 0.000 claims description 3
- 208000010668 atopic eczema Diseases 0.000 claims description 3
- 208000019664 bone resorption disease Diseases 0.000 claims description 3
- 230000000747 cardiac effect Effects 0.000 claims description 3
- 230000001684 chronic effect Effects 0.000 claims description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 208000027866 inflammatory disease Diseases 0.000 claims description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N isonitrile group Chemical group N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
- 208000002574 reactive arthritis Diseases 0.000 claims description 3
- 201000005404 rubella Diseases 0.000 claims description 3
- 201000004595 synovitis Diseases 0.000 claims description 3
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 claims description 2
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 208000001132 Osteoporosis Diseases 0.000 claims description 2
- 208000006673 asthma Diseases 0.000 claims description 2
- 150000004678 hydrides Chemical class 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- CCOXWRVWKFVFDG-UHFFFAOYSA-N pyrimidine-2-carbaldehyde Chemical compound O=CC1=NC=CC=N1 CCOXWRVWKFVFDG-UHFFFAOYSA-N 0.000 claims description 2
- 230000036303 septic shock Effects 0.000 claims description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical group CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 claims 2
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical group CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 claims 2
- NZVZVGPYTICZBZ-UHFFFAOYSA-N 1-benzylpiperidine Chemical group C=1C=CC=CC=1CN1CCCCC1 NZVZVGPYTICZBZ-UHFFFAOYSA-N 0.000 claims 1
- PDTYLGXVBIWRIM-UHFFFAOYSA-N 4-[5-(4-fluorophenyl)-3-piperidin-4-ylimidazol-4-yl]-2-methoxypyrimidine Chemical compound COC1=NC=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCNCC2)=N1 PDTYLGXVBIWRIM-UHFFFAOYSA-N 0.000 claims 1
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims 1
- 101100533874 Hypocrea jecorina (strain QM6a) sor5 gene Proteins 0.000 claims 1
- 208000037803 restenosis Diseases 0.000 claims 1
- 102000004127 Cytokines Human genes 0.000 abstract description 46
- 108090000695 Cytokines Proteins 0.000 abstract description 46
- 239000000203 mixture Chemical class 0.000 abstract description 25
- 239000003112 inhibitor Substances 0.000 abstract description 7
- 238000002560 therapeutic procedure Methods 0.000 abstract description 7
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 55
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 53
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 49
- 239000000047 product Substances 0.000 description 43
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 41
- 210000004027 cell Anatomy 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 37
- 238000011282 treatment Methods 0.000 description 35
- 239000002585 base Substances 0.000 description 31
- 102000004890 Interleukin-8 Human genes 0.000 description 28
- 108090001007 Interleukin-8 Proteins 0.000 description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 26
- 229940096397 interleukin-8 Drugs 0.000 description 26
- 235000019439 ethyl acetate Nutrition 0.000 description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 23
- 102000000589 Interleukin-1 Human genes 0.000 description 23
- 108010002352 Interleukin-1 Proteins 0.000 description 23
- 241000700605 Viruses Species 0.000 description 23
- 230000005764 inhibitory process Effects 0.000 description 23
- 239000007787 solid Substances 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 21
- 230000002401 inhibitory effect Effects 0.000 description 21
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 18
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 17
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 15
- 108090001005 Interleukin-6 Proteins 0.000 description 14
- 102000004889 Interleukin-6 Human genes 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 229940100601 interleukin-6 Drugs 0.000 description 14
- 210000001616 monocyte Anatomy 0.000 description 14
- 210000001744 T-lymphocyte Anatomy 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 108020004999 messenger RNA Proteins 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 12
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 210000000440 neutrophil Anatomy 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 125000001153 fluoro group Chemical group F* 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 208000014674 injury Diseases 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 208000027418 Wounds and injury Diseases 0.000 description 10
- 125000001309 chloro group Chemical group Cl* 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000006378 damage Effects 0.000 description 10
- 230000002757 inflammatory effect Effects 0.000 description 10
- 210000002540 macrophage Anatomy 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 9
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 150000002527 isonitriles Chemical class 0.000 description 9
- 241000725303 Human immunodeficiency virus Species 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 150000001408 amides Chemical class 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 208000030507 AIDS Diseases 0.000 description 7
- 206010006895 Cachexia Diseases 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 7
- 239000007832 Na2SO4 Substances 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 239000012442 inert solvent Substances 0.000 description 7
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- 125000003386 piperidinyl group Chemical group 0.000 description 7
- 150000003141 primary amines Chemical class 0.000 description 7
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 235000011152 sodium sulphate Nutrition 0.000 description 7
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- 208000030886 Traumatic Brain injury Diseases 0.000 description 6
- 239000003377 acid catalyst Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 125000004414 alkyl thio group Chemical group 0.000 description 6
- 230000016396 cytokine production Effects 0.000 description 6
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 6
- 239000002158 endotoxin Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 230000000770 proinflammatory effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000009529 traumatic brain injury Effects 0.000 description 6
- 230000006433 tumor necrosis factor production Effects 0.000 description 6
- DILXLMRYFWFBGR-UHFFFAOYSA-N 2-formylbenzene-1,4-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(S(O)(=O)=O)C(C=O)=C1 DILXLMRYFWFBGR-UHFFFAOYSA-N 0.000 description 5
- 102000014914 Carrier Proteins Human genes 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 5
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 208000036142 Viral infection Diseases 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 108091008324 binding proteins Proteins 0.000 description 5
- 208000029028 brain injury Diseases 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000003090 exacerbative effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- UQSQSQZYBQSBJZ-UHFFFAOYSA-M fluorosulfonate Chemical compound [O-]S(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-M 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 230000036407 pain Effects 0.000 description 5
- 229920000136 polysorbate Polymers 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 238000011321 prophylaxis Methods 0.000 description 5
- 150000003180 prostaglandins Chemical class 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 5
- 230000009385 viral infection Effects 0.000 description 5
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 4
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- 206010001513 AIDS related complex Diseases 0.000 description 4
- 206010061598 Immunodeficiency Diseases 0.000 description 4
- 208000029462 Immunodeficiency disease Diseases 0.000 description 4
- 102000013967 Monokines Human genes 0.000 description 4
- 108010050619 Monokines Proteins 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- 206010028289 Muscle atrophy Diseases 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000006044 T cell activation Effects 0.000 description 4
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 4
- 150000001409 amidines Chemical class 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000012024 dehydrating agents Substances 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000007813 immunodeficiency Effects 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000006210 lotion Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 230000001936 parietal effect Effects 0.000 description 4
- 238000009527 percussion Methods 0.000 description 4
- 235000015320 potassium carbonate Nutrition 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 150000003335 secondary amines Chemical class 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 3
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 3
- PVFOHMXILQEIHX-UHFFFAOYSA-N 8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9-[2-(2-bromophenyl)ethyl]purin-6-amine Chemical compound C=1C=2OCOC=2C=C(Br)C=1SC1=NC=2C(N)=NC=NC=2N1CCC1=CC=CC=C1Br PVFOHMXILQEIHX-UHFFFAOYSA-N 0.000 description 3
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 3
- 241000713704 Bovine immunodeficiency virus Species 0.000 description 3
- 241000282465 Canis Species 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- 241000713800 Feline immunodeficiency virus Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- 102100039065 Interleukin-1 beta Human genes 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 3
- 108050003243 Prostaglandin G/H synthase 1 Proteins 0.000 description 3
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 3
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 3
- 206010037660 Pyrexia Diseases 0.000 description 3
- 206010038997 Retroviral infections Diseases 0.000 description 3
- 208000005074 Retroviridae Infections Diseases 0.000 description 3
- 241000713325 Visna/maedi virus Species 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000003899 bactericide agent Substances 0.000 description 3
- 210000003651 basophil Anatomy 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 150000001642 boronic acid derivatives Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005595 deprotonation Effects 0.000 description 3
- 238000010537 deprotonation reaction Methods 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000021995 interleukin-8 production Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 229960004592 isopropanol Drugs 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 208000021601 lentivirus infection Diseases 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 125000002734 organomagnesium group Chemical group 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 3
- 230000029812 viral genome replication Effects 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 2
- UFPOSTQMFOYHJI-UHFFFAOYSA-N 2-chloropyridine-4-carbaldehyde Chemical compound ClC1=CC(C=O)=CC=N1 UFPOSTQMFOYHJI-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- TWESBRAYQPCROD-UHFFFAOYSA-N 2-methoxypyrimidine-4-carbaldehyde Chemical compound COC1=NC=CC(C=O)=N1 TWESBRAYQPCROD-UHFFFAOYSA-N 0.000 description 2
- GACUCTNCAUTQPH-UHFFFAOYSA-N 2-methylpyrimidine-4-carbothialdehyde Chemical compound CC1=NC=CC(C=S)=N1 GACUCTNCAUTQPH-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- UOQXIWFBQSVDPP-UHFFFAOYSA-N 4-fluorobenzaldehyde Chemical compound FC1=CC=C(C=O)C=C1 UOQXIWFBQSVDPP-UHFFFAOYSA-N 0.000 description 2
- MUDSDYNRBDKLGK-UHFFFAOYSA-N 4-methylquinoline Chemical compound C1=CC=C2C(C)=CC=NC2=C1 MUDSDYNRBDKLGK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 208000037487 Endotoxemia Diseases 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 108010074338 Lymphokines Proteins 0.000 description 2
- 102000008072 Lymphokines Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- 208000000112 Myalgia Diseases 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 101001055218 Oryctolagus cuniculus Interleukin-8 Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- GELXFVQAWNTGPQ-UHFFFAOYSA-N [N].C1=CNC=N1 Chemical compound [N].C1=CNC=N1 GELXFVQAWNTGPQ-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 2
- 238000007171 acid catalysis Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001266 acyl halides Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940114079 arachidonic acid Drugs 0.000 description 2
- 235000021342 arachidonic acid Nutrition 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 125000005343 heterocyclic alkyl group Chemical group 0.000 description 2
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 208000011379 keloid formation Diseases 0.000 description 2
- 210000002510 keratinocyte Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000865 liniment Substances 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- 230000011242 neutrophil chemotaxis Effects 0.000 description 2
- HCZKYJDFEPMADG-UHFFFAOYSA-N nordihydroguaiaretic acid Chemical compound C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 238000005580 one pot reaction Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229960005235 piperonyl butoxide Drugs 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000000063 preceeding effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000012258 stirred mixture Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000009772 tissue formation Effects 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 2
- 150000008648 triflates Chemical class 0.000 description 2
- 238000001665 trituration Methods 0.000 description 2
- 201000008827 tuberculosis Diseases 0.000 description 2
- JABYJIQOLGWMQW-UHFFFAOYSA-N undec-4-ene Chemical compound CCCCCCC=CCCC JABYJIQOLGWMQW-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- 125000004768 (C1-C4) alkylsulfinyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- FIZIUDOYOVLJQG-UHFFFAOYSA-N 1-[4-[4-(4-methylsulfinylphenyl)-5-(2-methylsulfinylpyrimidin-4-yl)imidazol-1-yl]piperidin-1-yl]propan-1-one Chemical compound C1CN(C(=O)CC)CCC1N1C(C=2N=C(N=CC=2)S(C)=O)=C(C=2C=CC(=CC=2)S(C)=O)N=C1 FIZIUDOYOVLJQG-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- ALOCUZOKRULSAA-UHFFFAOYSA-N 1-methylpiperidin-4-amine Chemical compound CN1CCC(N)CC1 ALOCUZOKRULSAA-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- SZXUTTGMFUSMCE-UHFFFAOYSA-N 2-(1h-imidazol-2-yl)pyridine Chemical class C1=CNC(C=2N=CC=CC=2)=N1 SZXUTTGMFUSMCE-UHFFFAOYSA-N 0.000 description 1
- AGSOOCUNMTYPSE-UHFFFAOYSA-N 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-1,2-oxazol-4-yl]propanoic acid Chemical compound CC(C)(C)C=1ON=C(OCP(O)(O)=O)C=1CC(N)C(O)=O AGSOOCUNMTYPSE-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FVKFHMNJTHKMRX-UHFFFAOYSA-N 3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidine Chemical compound C1CCN2CCCNC2=N1 FVKFHMNJTHKMRX-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- JAOINXWEFKZYIL-UHFFFAOYSA-N 4-(1-methyl-2-oxoquinolin-4-yl)oxy-n-(4-methylpyridin-2-yl)butanamide;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CC1=CC=NC(NC(=O)CCCOC=2C3=CC=CC=C3N(C)C(=O)C=2)=C1 JAOINXWEFKZYIL-UHFFFAOYSA-N 0.000 description 1
- GEIHKDMHTFBNOP-UHFFFAOYSA-N 4-(dimethoxymethyl)-2-methoxypyrimidine Chemical compound COC(OC)C1=CC=NC(OC)=N1 GEIHKDMHTFBNOP-UHFFFAOYSA-N 0.000 description 1
- AIXRGYVBRPTJPB-UHFFFAOYSA-N 4-[5-(4-fluorophenyl)-3-piperidin-4-ylimidazol-4-yl]-2-methoxypyridine Chemical compound C1=NC(OC)=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCNCC2)=C1 AIXRGYVBRPTJPB-UHFFFAOYSA-N 0.000 description 1
- YBAUSHWNSHVZFR-UHFFFAOYSA-N 4-[5-(4-fluorophenyl)-3-piperidin-4-ylimidazol-4-yl]-2-methylsulfanylpyrimidine Chemical compound CSC1=NC=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCNCC2)=N1 YBAUSHWNSHVZFR-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 1
- RTLUPHDWSUGAOS-UHFFFAOYSA-N 4-iodopyridine Chemical compound IC1=CC=NC=C1 RTLUPHDWSUGAOS-UHFFFAOYSA-N 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- HIYAVKIYRIFSCZ-CYEMHPAKSA-N 5-(methylamino)-2-[[(2S,3R,5R,6S,8R,9R)-3,5,9-trimethyl-2-[(2S)-1-oxo-1-(1H-pyrrol-2-yl)propan-2-yl]-1,7-dioxaspiro[5.5]undecan-8-yl]methyl]-1,3-benzoxazole-4-carboxylic acid Chemical compound O=C([C@@H](C)[C@H]1O[C@@]2([C@@H](C[C@H]1C)C)O[C@@H]([C@@H](CC2)C)CC=1OC2=CC=C(C(=C2N=1)C(O)=O)NC)C1=CC=CN1 HIYAVKIYRIFSCZ-CYEMHPAKSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102100021870 ATP synthase subunit O, mitochondrial Human genes 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 1
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- 101100240516 Caenorhabditis elegans nhr-10 gene Proteins 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 208000009386 Experimental Arthritis Diseases 0.000 description 1
- OUHGTOMCWYHIPN-UHFFFAOYSA-N FC(F)(F)S(=O)(=O)[IH]Br Chemical compound FC(F)(F)S(=O)(=O)[IH]Br OUHGTOMCWYHIPN-UHFFFAOYSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102100030385 Granzyme B Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 102100022893 Histone acetyltransferase KAT5 Human genes 0.000 description 1
- 101000970995 Homo sapiens ATP synthase subunit O, mitochondrial Proteins 0.000 description 1
- 101001009603 Homo sapiens Granzyme B Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001002634 Homo sapiens Interleukin-1 alpha Proteins 0.000 description 1
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 1
- 101000976900 Homo sapiens Mitogen-activated protein kinase 14 Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 238000006736 Huisgen cycloaddition reaction Methods 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100020881 Interleukin-1 alpha Human genes 0.000 description 1
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical compound N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 108020002496 Lysophospholipase Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- CDMGBJANTYXAIV-UHFFFAOYSA-N SB 203580 Chemical compound C1=CC(S(=O)C)=CC=C1C1=NC(C=2C=CC(F)=CC=2)=C(C=2C=CN=CC=2)N1 CDMGBJANTYXAIV-UHFFFAOYSA-N 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000018594 Tumour necrosis factor Human genes 0.000 description 1
- 108050007852 Tumour necrosis factor Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- FXXACINHVKSMDR-UHFFFAOYSA-N acetyl bromide Chemical compound CC(Br)=O FXXACINHVKSMDR-UHFFFAOYSA-N 0.000 description 1
- 210000001056 activated astrocyte Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003435 aroyl group Chemical group 0.000 description 1
- 150000001543 aryl boronic acids Chemical class 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- IUKQLMGVFMDQDP-UHFFFAOYSA-N azane;piperidine Chemical compound N.C1CCNCC1 IUKQLMGVFMDQDP-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- XGIUDIMNNMKGDE-UHFFFAOYSA-N bis(trimethylsilyl)azanide Chemical compound C[Si](C)(C)[N-][Si](C)(C)C XGIUDIMNNMKGDE-UHFFFAOYSA-N 0.000 description 1
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 229960002152 chlorhexidine acetate Drugs 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000020176 deacylation Effects 0.000 description 1
- 238000005947 deacylation reaction Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical compound CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- UVNXNSUKKOLFBM-UHFFFAOYSA-N imidazo[2,1-b][1,3,4]thiadiazole Chemical compound N1=CSC2=NC=CN21 UVNXNSUKKOLFBM-UHFFFAOYSA-N 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000007365 immunoregulation Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000018276 interleukin-1 production Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 239000002555 ionophore Substances 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 108010019677 lymphotactin Proteins 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- OFXSXYCSPVKZPF-UHFFFAOYSA-N methoxyperoxymethane Chemical compound COOOC OFXSXYCSPVKZPF-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 210000000929 nociceptor Anatomy 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- WXHIJDCHNDBCNY-UHFFFAOYSA-N palladium dihydride Chemical compound [PdH2] WXHIJDCHNDBCNY-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 238000003408 phase transfer catalysis Methods 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- CMCWWLVWPDLCRM-UHFFFAOYSA-N phenidone Chemical compound N1C(=O)CCN1C1=CC=CC=C1 CMCWWLVWPDLCRM-UHFFFAOYSA-N 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 125000004482 piperidin-4-yl group Chemical group N1CCC(CC1)* 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- MCSINKKTEDDPNK-UHFFFAOYSA-N propyl propionate Chemical compound CCCOC(=O)CC MCSINKKTEDDPNK-UHFFFAOYSA-N 0.000 description 1
- 239000002599 prostaglandin synthase inhibitor Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 1
- 229950005741 rolipram Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- KFZUDNZQQCWGKF-UHFFFAOYSA-M sodium;4-methylbenzenesulfinate Chemical compound [Na+].CC1=CC=C(S([O-])=O)C=C1 KFZUDNZQQCWGKF-UHFFFAOYSA-M 0.000 description 1
- WBQTXTBONIWRGK-UHFFFAOYSA-N sodium;propan-2-olate Chemical group [Na+].CC(C)[O-] WBQTXTBONIWRGK-UHFFFAOYSA-N 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- ROUYFJUVMYHXFJ-UHFFFAOYSA-N tert-butyl 4-oxopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1 ROUYFJUVMYHXFJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000006478 transmetalation reaction Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical class OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 230000001562 ulcerogenic effect Effects 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Novel 1,4,5- substituted imidazole compounds and compositions for use in therapy as cytokine inhibitors.
Description
NOVEL SUBSTITUTED IMIDAZOLE COMPOUNDS
This invention relates to a novel group of imidazole compounds, processes for the preparation thereof, the use thereof in treating cytokine mediated diseases and pharmaceutical compositions for use in such therapy.
BACKGROUND OF THE INVENTION
Interleukin-1 (IL-1) and Tumor Necrosis Factor (TNF) are biological substances produced by a variety of cells, such as monocytes or macrophages. IL-1 has been demonstrated to mediate a variety of biological activities thought to be important in immunoregulation and other physiological conditions such as inflammation [See,' e.g., Dinarello et al., Rev. Infect. Disease. 6, 51 (1984)]. The myriad of known biological activities of IL-1 include the activation of T helper cells, induction of fever, stimulation of prostaglandin or collagenase production, neutrophil chemotaxis, induction of acute phase proteins and the suppression of plasma iron levels.
There are many disease states in which excessive or unregulated EL-1 production is implicated in exacerbating and/or causing the disease. These include rheumatoid arthritis, osteoarthritis, endotoxemia and/or toxic shock syndrome, other acute or chronic inflammatory disease states such as the inflammatory reaction induced by endotoxin or inflammatory bowel disease; tuberculosis, atherosclerosis, muscle degeneration, cachexia, psoriatic arthritis, Reiter's syndrome, rheumatoid arthritis, gout, traumatic arthritis, rubella arthritis, and acute synovitis. Recent evidence also links IL-1 activity to diabetes and pancreatic β cells.
Dinarello, J. Clinical Immunology. 5 (5), 287-297 (1985), reviews the biological activities which have been attributed to IL-1. It should be noted that some of these effects have been described by others as indirect effects of EL-1.
Excessive or unregulated TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia, secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC
AP/P/ 9 7 / 0 1 0 0 8
-1 OG 9 9 9 * Γ·
Mr' (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis.
AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, i.e., HIV-1, HIV-2 and HTV-3. As a consequence of HIV infection, T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Other viruses, such as HIV-1, HTV-2 infect T lymphocytes after T Cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HTV, the T lymphocyte must continue to be maintained in an activated state to permit HTV gene expression and/or HIV replication. Monokines, specifically TNF, are implicated in activated T-cell mediated HTV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with monokine activity such as by inhibition of monokine production, notably TNF, in an HIV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HTV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HTV infection.
Monocytes, macrophages, and related cells, such as kupffer and glial cells, have also been implicated in maintenance of the HTV infection. These cells, like T-cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. Monokines, such as TNF, have been shown to activate HTV replication in monocytes and/or macrophages [See Poli, et al„ Proc. Natl. Acad.
Sci., 87:782-784 (1990)], therefore, inhibition of monokine production or activity aids in limiting HTV progression as stated above for T-cells.
TNF has also been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, and the herpes virus for similar reasons as those noted.
Interleukin-8 (IL-8) is a chemotactic factor first identified and characterized in 1987. EL-8 is produced by several cell types including mononuclear cells, fibroblasts, endothelial cells, and keratinocytes. Its production from endothelial cells is induced by IL-1, TNF, or lipopolysachharide (LPS). Human IL-8 has been shown to act on Mouse, Guinea Pig, Rat, and Rabbit Neutrophils. Many different names have been applied to IL-8, such as neutrophil attractant/activation protein-1 (NAP-1), monocyte derived neutrophil chemotactic factor (MDNCF), neutrophil activating . factor (NAF), and T-cell lymphocyte chemotactic factor.
AP/P/ 9 7 / 0 1 0 08
-2- I
AP 00999
IL-8 stimulates a number of functions in vitro. It has been shown to have chemoattractant properties for neutrophils, T-lymphocytes, and basophils. In addition it induces histamine release from basophils from both normal and atopic individuals as well as lysozomal enzyme release and respiratory burst from neutrophils. IL-8 has also been shown to increase the surface expression of Mac-1 (CD1 lb/CD18) on neutrophils without de novo protein synthesis, this may contribute to increased adhesion of the neutrophils to vascular endothelial cells. Many diseases are characterized by massive neutrophil infiltration. Conditions associated with an increased in EL-8 production (which is responsible for chemotaxis of neutrophil into the inflammatory site) would benefit by compounds which are suppressive of IL-8 production.
IL-1 and TNF affect a wide variety of cells and tissues and these cytokines as well as other leukocyte derived cytokines are important and critical inflammatory mediators of a wide variety of disease states and conditions. The inhibition of these cytokines is of benefit in controlling, reducing and alleviating many of these disease states.
There remains a need for treatment, in this field, for compounds which are cytokine suppressive anti-inflammatory drugs, i.e. compounds which are capable of inhibiting cytokines, such as EL-1, IL-6, IL-8 and TNF.
SUMMARY OF THE INVENTION
This invention relates to the novel compounds of Formula (I) and pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable diluent or carrier.
') 25 This invention relates to a method of treating a CSBP/RK/p38 kinase mediated disease, in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).
This invention also relates to a method of inhibiting cytokines and the treatment of a cytokine mediated disease, in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).
This invention more specifically relates to a method of inhibiting the production of EL-1 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I).
This invention more specifically relates to a method of inhibiting the production of EL-8 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I).
AP/P/ 9 7 / 0 1 0 08
-3AP 00999
This invention more specifically relates to a method of inhibiting the production of TNF in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I).
' Accordingly, the present invention provides a compound of Formula (I):
Rl is a 4-pyridyl, or 4-pyrimidinyl ring which is substituted with a Ci_4 alkoxy or a Ci-4 alkylthio group, and is additionally optionally substituted independently by Ci_4 alkyl, halogen, hydroxyl, Ci_4 alkoxy, Ci-4 alkylthio, Cl-4 alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, N(Rio)C(0)Rc or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR 15;
R4 is phenyl, naphth-l-yl or naphth-2-yl, or a heteroaryl, which is optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-l-yl, 5-naphth-2-yl or 6-naphth-2-yl substituent, is halogen, cyano, nitro, -C(Z)NR7Ri7, -C(Z)ORi6, (CRioR20)vCORi2, -SR5, -SOR5, -OR12, halo-substituted-Ci-4 alkyl, Ci-4 alkyl, -ZC(Z)Ri2, -NRioC(Z)Ri6, or -(CRioR2O)vNRl()R2O and which, for other positions of substitution, is halogen, cyano, -C(Z)NRi3Ri4, -C(Z)OR3, (CRioR20)mCOR3, -S(O)mR3, -OR3, halo-substituted-Ci-4 alkyl, -Ci-4 alkyl, -(CRioR20)mNRioC(Z)R3, -NRi0S(O)m'R8, -NRloS(0)m'NR7Ri7, ZC(Z)R3 or-(CRioR20)mNRi3Ri4;
v is 0, or an integer having a value of 1 or 2;
m is 0, or the integer 1 or 2;
m' is an integer having a value of 1 or 2, m is 0, or an integer having a value of 1 to 5;
R2 is an optionally substituted heterocyclyl, or an optionally substituted heteroeyclylCi-io alkyl moiety;
n is an integer having a value of 1 to 10;
Z is oxygen or sulfur;
Rc is hydrogen, Ci-6 alkyl, C3.7 cycloalkyl, aryl, arylCi^. alkyl, heteroaryl, heteroarylCi_4alkyl, heterocyclyl, or heterocyclylC i^.alkyl Ci-4 alkyl;
R3 is heterocyclyl, heterocyclylCl -10 alkyl or Rs;
AP/P/ 9 7 / 0 1 0 0 8
-4AP 00999
R5 is hydrogen, Ci-4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moeities -SR5 being -SNR7R17 and -SOR5 being -SOH;
R7 and R17 is each independently selected from hydrogen or C1-4 alkyl or R7 and Rl7 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR 15;
Rg is Ci-10 alkyl, halo-substituted Ci_io alkyl, C2-IO alkenyl, C2-IO alkynyl, C3-7 cycloalkyl, C5-7 cycloalkenyl, aryl, arylCi-10 alkyl, heteroaryl, heteroarylCi-io alkyl, (CRioR20)nORll, (CRioR20)nS(0)mRi8, (CRioR20)nNHS(0)2Rl8, (CRl0R20)nNRl3Rl4; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl may be optionally substituted;
R9 is hydrogen, -C(Z)Ri 1 or optionally substituted Ci-10 alkyl, S(O)2Rl8, optionally substituted aryl or optionally substituted aryl-Cj-4 alkyl;
R10 and R20 is each independently selected from hydrogen or Ci_4 alkyl;
Rl 1 is hydrogen, Cl-ίο alkyl, C3-7 cycloalkyl, heterocyclyl, heterocyclyl CilOalkyl, aryl, arylCj-io alkyl, heteroaryl or heteroarylCi-io alkyl;
Rl2 is hydrogen or R16;
Rl3 and R14 is each independently selected from hydrogen or optionally substituted Ci-4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9 ;
Rl5 is Rio or C(Z)-Ci-4 alkyl;
Rl6 is Ci-4 alkyl, halo-substituted-Ci-4 alkyl, or C3-7 cycloalkyl; f 25 Ri8 is Ci-io alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, aryli-ioalkyl, heterocyclyl, , heterocyclyl-Ci-ioalkyl, heteroaryl or heteroaryli-ioalkyl;
or a pharmaceutically acceptable salt thereof.
DETAILED DESCRIPTION OF THE INVENTION 30 The novel compounds of Formula (I) may also be used in association with the veterinary treatment of mammals, other than humans, in need of inhibition of cytokine inhibition or production. In particular, cytokine mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted herein in the Methods of Treatment section, but in particular viral infections. Examples of such viruses include, but are not limited to, lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline
AP/P/ 9 7 / 0 1 0 0 8
-5AP 00999 immunodeficiency virus (FTV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
In Formula (I), suitable Rj moieties include a4-pyridyl or a 4-pyrimidinyl ring. The Rl moieties are substituted at least one time by a Ci_4 alkoxy or Ci_
4alkylthio moiety. Preferably the Ri moiety is a Ci_4 alkoxy group, such as n-butyl, isoproxy, ethoxy or methoxy. A preferred ring placement of the Rl substituent on the 4-pyridyl derivative is in the 2-position, such as 2-methoxy-4-pyridyI. A preferred ring placement on the 4-pyrimidinyl ring is also at the 2-position, such as in 2-methoxy-pyrimidinyl.
Suitable additional substituehts for the Ri heteroaryl rings are Ci-4 alkyl, halo, OH, Cf-4 alkoxy, Ci_4 alkylthio, Ci-4 alkylsulfinyl, CH2OR12, amino, mono and di-Ci-6 alkyl substituted amino, N(Ri0)C(O)Rc, or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR 15. The alkyl group in the mono- and di-Ci-6 alkylsubstituted moiety may be halo substituted, such as in trifluoro- i.e., trifluoromethyl or trifluroethyl.
When the Ri optional substituent is N(Rio)C(0) Rc, wherein Rc is hydrogen, Ci-6 alkyl, C3.7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi_4alkyl Ci_4 alkyl, Rc is preferably Ci-6 alkyl; preferably Rio is hydrogen. It is also recognized that the Rc moieties, in particular the Ci-6 alkyl group may be optionally substituted, preferably from one to three times, preferably with halogen, such as fluorine, as in trifluoromethyl or trifluroethyl.
Suitably, R4 is phenyl, naphth-1-yl or naphth-2-yl, or a heteroaryl, which is optionally substituted by one or two substituents. More preferably R4 is a phenyl or naphthyl ring. Suitable substitutions for R4 when this is a 4-phenyl, 4-naphth-l-yl,
5-naphth-2-yl or 6-naphth-2-yl moiety are one or two substituents each of which are independently selected from halogen, -SR5, -SOR5, -OR12» CF3, or -(CRioR2O)vNRioR2O> and for other positions of substitution on these rings preferred substitution is halogen, -S(O)mR3, -OR3, CF3, -(CRioR2O)mNRl3Rl4, -NRioC(Z)R3 and -NRioS(0)m’R8. Preferred substituents for the 4-position in phenyl and naphth-1-yl and on the 5-position in naphth-2-yl include halogen, especially fluoro and chloro and -SR5 and -SOR5 wherein R5 is preferably a Ci-2 alkyl, more preferably methyl; of which the fluoro and chloro is more preferred, and most especially preferred is fluoro. Preferred substituents for the 3-position in phenyl and naphth-l-yl rings include: halogen, especially fluoro and chloro; -OR3, especially Ci-4 alkoxy; CF3, NR10R20, such as amino; -NRioC(Z)R3, especially AP/P/ 9 7 / 0 1 0 0 8
-6AP 00999 »·
NHCO(Ci-io alkyl); -NRioS(0)m'R8, especially -NHSO2(Ci_i0 alkyl), and -SR3 and -SOR3 wherein R3 is preferably a Ci-2 alkyl, more preferably methyl. When the phenyl ring is disubstituted preferably it is two independent halogen moieties, such as fluoro and chloro, preferably di-chloro and more preferably in the 3,45 position. It· is also preferred that for the 3-position of both the -OR3 and -ZC(Z)R3 moietites, R3 may also include hydrogen.
Preferably, the R4 moiety is an unsubstituted or substituted phenyl moiety. More preferably, R4 is phenyl or phenyl substituted at the 4-position with fluoro and/or substituted at the 3-position with fluoro, chloro, Ci_4 alkoxy, methane10 sulfonamido or acetamido, or R4 is a phenyl di-substituted at the 3,4-position independently with chloro or fluoro, more preferably chloro. Most preferably, R4 is a 4-fluorophenyl. ‘
In Formula (I), Z is oxygen or sulfur, preferably oxygen. ι Suitably, R2 is an optionally substituted heterocyclyl, or a heterocyclylCi-10 alkyl moiety.
When R2 is an optionally substituted heterocyclyl the ring is preferably a morpholino, pyrrolidinyl, or a piperidinyl group. When the ring is optionally substituted the substituents may be directly attached to the free nitrogen, such as in the piperidinyl group or pyrrole ring, or on the ring itself. Preferably the ring is a piperidine or pyaole, more preferably piperidine. The heterocyclyl ring may be optionally substituted one to four times independently by halogen; Ci-4 alkyl; aryl, such as phenyl; arylalkyl, such as benzyl, wherein the aryl or aryl alkyl moieties themselves may be optionally substituted (as in the definition section below); C(O)ORi 1, such as the C(O)Ci_4 alkyl or C(O)OH moieties; C(O)H; C(O)Ci-4 alkyl, hydroxy substituted Ci-4 alkyl, Cl-4 alkoxy, S(O)mCi_4 alkyl (wherein m is ! 0, 1, or 2), NR10R20 (wherein Rio and R20 are independently hydrogen or Ci_
4alkyl).
Preferably if the ring is a piperidine, the ring is attached to the imidazole at the 4-position, and the substituents are directly on the available nitrogen, i.e. a l-Formyl-4-piperidine, l-benzyl-4-piperidine, l-methyl-4-piperidine, l-ethoxycarbonyl-4-piperidine. If the ring is substituted by an alkyl group and the ring is attached in the 4-position, it is preferably substituted in the 2- or 6- position or both, such as 2,2,6,6-tetramethyl-4-piperidine. Similarly, if the ring is a pyrrole, the ring is attached to the imidazole at the 3-position, and the substituents are all directly on the available nitrogen.
When R2 is an optionally substituted heterocyclyl Ci-io alkyl group, the ring is preferably a morpholino, pyrrolidinyl, or a piperidinyl group. Preferably the
-7AP/P/ 9 7 / 0 1 0 08
AP 00999 alkyl moiety is from 1 to 4 carbons, more preferably 3 or 4, and most preferably 3, such as in a propyl group. Preferred heterocyclic alkyl groups include but are not limited to, morpholino ethyl, morpholino propyl, pyrrolidinyl propyl, and piperidinyl propyl moieties. The heterocyclic ring herein is also optionally substituted in a similar manner to that indicated above for the direct attachment of the heterocyclyl. In all instances herein where there is an alkenyl or alkynyl moiety as a substituent group, the unsaturated linkage, i.e., the vinylene or acetylene linkage is preferably not directly attached to the nitrogen, oxygen or sulfur moieties, for instance in OR3, or for certain R2 moieties.
As used herein, optionally substituted unless specifically defined shall mean such groups as halogen, such as fluorine, chlorine, bromine or iodine; hydroxy; hydroxy substituted Ci-ioalkyl; Ci-io alkoxy, such as methoxy or ethoxy; S(O)m alkyl, wherein m is 0, 1. or 2, such as methyl thio, methylsulfinyl or methyl sulfonyl; amino, mono & di-substituted amino, such as in the NR7R17 group; or where the
R7R17 may together with the nitrogen to which they are attached cyclize to form a 5 to 7 membered ring which optionally includes an additional heteroatom selected from O/N/S; Cl-Π) alkyl, cycloalkyl, or cycloalkyl alkyl group, such as methyl, ethyl, propyl, isopropyl, t-butyl, etc. or cyclopropyl methyl; halosubstituted Ci-io alkyl, such CF2CF2H, or CF3; halosubstituted Ci-io alkoxy, such OCF2CF2H; an optionally substituted aryl, such as phenyl, or an optionally substituted arylalkyl, such as benzyl or phenethyl, wherein these aryl moieties may also be substituted one to two times by halogen; hydroxy; hydroxy substituted alkyl; Ci-io alkoxy; S(O)m alkyl; amino, mono & di-substituted amino, such as in the NR7R17 group; alkyl, or CF3.
In a preferred subgenus of compounds of Formula (I), Rl is 2-alkoxy-4pyridyl or 2-alkoxy-4-pyrimidinyl; R2 is morpholinyl propyl, piperidinyl, N-benzyl4-piperidinyl, or N-methyl-4-piperidinyl; and R4 is phenyl or phenyl substituted one or two times by fluoro, chloro, C1-4 alkoxy, -S(O)m alkyl, methanesulfonamido or acetamido.
Suitable pharmaceutically acceptable salts are well known to those skilled in.
the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methane sulphonic acid, ethane sulphonic acid, acetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid and mandelic acid. In addition, pharmaceutically acceptable salts of compounds of Formula (I) may also be formed with a pharmaceutically acceptable cation, for instance, if a substituent group comprises a carboxy moiety. Suitable
AP/P/ 9 7 / 0 1 0 0 8
-8AP 00999 pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations.
The following terms, as used herein, refer to:
• halo or halogens, include the halogens: chloro, fluoro, bromo and iodo.
• Ci-ioalkyl °r alkyl - both straight and branched chain radicals of 1 to 10 carbon atoms, unless the chain length is otherwise limited, including, but not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tertbutyl, n-pentyl and the like.
· The term cycloalkyi is used herein to mean cyclic radicals, preferably of to 8 carbons, including but not limited to cyclopropyl, cyclopentyl, cyclohexyl, and the like.
• The term cycloalkenyl is used herein to mean cyclic radicals, preferably of 5 to 8 carbons, which have at least one bond including but not limited to cyclopentenyl, cyclohexenyi, and the like.
• The term alkenyl is used herein at all occurrences to mean straight or branched chain radical of 2-10 carbon atoms, unless the chain length is limited thereto, including, but not limited to ethenyl, 1-propenyi, 2-propenyl, 2-methyl-lpropenyl, 1-butenyl, 2-butenyl and the like.
· aryl - phenyl and naphthyl;
• heteroaryl (on its own or in any combination, such as heteroaryloxy, or heteroaryl alkyl) - a 5-10 membered aromatic ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O or S, such as, but not limited, to pyrrole, pyrazole, furan, thiophene, quinoline, isoquinoline, quinazolinyl, pyridine, pyrimidine, oxazole, thiazole, thiadiazole, triazole, imidazole, or benzimidazole.
• heterocyclic (on its own or in any combination, such as heterocyclylalkyl) - a saturated or partially unsaturated 4-10 membered ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O, or S; such as, but not limited to, pyrrolidine, piperidine, piperazine, morpholine, tetrahydro pyran, or imidazolidine.
• The term aralkyl or heteroarylalkyl or heterocyclicalkyl is used herein to mean C)-4 alkyl as defined above attached to an aryl, heteroaryl or heterocyclic moiety as also defined herein unless otherwise indicate.
· sulfinyl - the oxide S (O) of the corresponding sulfide, the term thio refers to the sulfide, and the term sulfonyl refers to the fully oxidized S (0)2 moiety.
AP/P/ 9 7 / 0 1 0 0 8
-9AP 00999
r.>-, • aroyl - a C(O)Ar, wherein Ar is as phenyl, naphthyl, or aryl alkyl derivative such as defined above, such group include but are not limited to benzyl and phenethyl.
• alkanoyl - a C(O)Ci_i0 alkyl wherein the alkyl is as defined above.
For the purposes herein the core 4-pyrimidinyl moiety for Ri or R2 is
N
referred to as the formula;
The compounds of the· present invention may contain one or more asymmetric carbon atoms and may exist in racemic and optically active forms. All of these compounds are included within the scope of the present invention.
1θ
Exemplified compounds of Formula (I) include: l-(4-Piperidinyl)-4-(4-Flourophenyl)-5-(2-isopropoxy-4-pyrimidinyl) imidazole l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole 5-(2-Hydroxy-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole
5-(2-Methoxy-4-pyridinyl)-4-(4-fluorophenyl)-1 -(4-piperidinyl)imidazole
5-(2-zso-Propoxy-4-pyridinyl)-4-(4-fluorophenyl) -1 -(4-piperidinyl)imidazole 5-(2-Methylthio-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole 5-(2-Methylthio-4-pyrimidinyl)-4-(4-fluorophenyl)-l-[(l-methyl-4piperidinyl]imidazole
5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-1 -(4-piperidinyl)imidazole 1-(1Ethylcarboxylpiperidin-4-yl)-3-(4-thiomethylphenyl)-5-[2-(thiomethyl)pyrimidin-4-yl]-imidazole
1-(1 -Ethylcarbonylpiperidine-4-yl)-4-(4-methylsulfinylphenyl)-5-[2-methylsulfinylpyrimidin-4-yl] imidazole
A prefered grouping of compounds of Formula (I) have the structure:
Rt
R4
AP/P/ 9 7 / 0 1 0 0 8
N
Z>
N da) wherein
Rl is pyrimidinyl substituted with a Cm alkoxy, and is additionally optionally substituted independently one or more times by Cj-4 alkyl, halogen, hydroxyl,
-10AP 00999
Ci_4 alkoxy, Cl-4 alkylthio, Cl-4 alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, N(Rio)C(0)Rc or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR15;
R2 is an optionally substituted heterocyclyl, or an optionally substituted heterocyclylCi-10 alkyl moiety;
R4 is phenyl, which is optionally substituted by halogen;
RlO is independently selected from hydrogen or Ci_4 alkyl;
Rc is hydrogen, Ci-6 alkyl, C3.7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi_4alkyl, heterocyclyl, or heterocyclylCi-4alkyl C1-4 alkyl, all of which may be optionally substituted;
Rl2 is hydrogen or Ri6;
Rl6 is Ci-4 alkyl, halo-substituted-Ci-4 alkyl, or C3-7 cycloalkyl;
Rl5 is hydrogen, Cj-4 alkyl or C(Z)-Ci_4 alkyl;
Z is oxygen or sulfur;
or a pharmaceutically acceptable salt thereof.
Preferably, R2 is piperidine, l-Formyl-4-piperidine, l-benzyl-4-piperidine, 1methyl-4-piperidine, 1 -ethoxycarbonyl-4-piperidine, 2,2,6,6-tetramethyl-4piperidine, morpholino ethyl, morpholino propyl, pyrrolidinyl propyl, or piperidinyl propyl.
Another prefered grouping of compounds of Formula (I) have the structure:
AP/P/ 9 7 / 0 1 0 08 wherein
Ri is pyridyl substituted with a Ci_4 alkoxy, and is additionally optionally substituted independently one or more times by C1-4 alkyl, halogen, hydroxyl, Ci-4 alkoxy, Ci_4 alkylthio, C1-4 alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, N(Rio)C(0)Rc or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR 15;
R2 is an optionally substituted heterocyclyl, or an optionally substituted heterocyclylCi-io alkyl moiety ;
R4 is phenyl, which is optionally substituted by halogen;
RlO is independently selected from hydrogen or Ci-4 alkyl;
- 11 AP 00999
Rc is hydrogen, Ci-6 alkyl, C3.7 cycloalkyl, aryl, arylCi.4 alkyl, heteroaryl, heteroarylCi_4alkyl, heterocyclyl, or heterocyclylCi_4alkyl Ci_4 alkyl, all of which may be optionally substituted;
Rl2 is hydrogen or R)6;
R16 is C1 -4 alkyl, halo-substituted-C 1.4 alkyl, or C3-7 cycloalkyl;
Rl5 is hydrogen, C{-4 alkyl or C(Z)-Ci-4 alkyl;
Z is oxygen or sulfur;
or a pharmaceutically acceptable salt thereof.
Preferably, R2 is piperidine, l-Formyl-4-piperidine, l-benzyl-4-piperidine, 110 methyl-4-piperidine, l-ethoxycarbonyl-4-piperidine, 2,2,6,6-tetramethyl-4piperidine, morpholino ethyl, morpholino propyl, pyrrolidinyl propyl, or piperidinyl propyl.
The compounds of Formula (I) may be obtained by applying synthetic procedures, some of which are illustrated in Schemes I to XI herein. The synthesis provided for in these Schemes is applicable for the producing compounds of Formula (I) having a variety of different R), R2, and R4 groups which are reacted, employing optional substituents which are suitably protected, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, in those cases, then affords compounds of the nature generally disclosed. Once the imidazole nucleus has been established, further compounds of Formula (I) may be prepared by applying standard techniques for functional group interconversion, well known in the art.
For instance: -C(O)NR)3Ri4 from -CO2CH3 by heating with or without catalytic metal cyanide, e.g. NaCN, and HNR13R14 in CH3OH; -OC(O)R3 from OH with e.g., C1C(O)R3 in pyridine; -NRio-C(S)NRl3Rl4 from -NHR10 with an alkylisothiocyante or thiocyanic acid; NR6C(O)OR6 from -NHR6 with the alkyl chloroformate; -NRioC(0)NRi3Ri4 from -NHR10 by treatment with an isocyanate, e.g. HN=C=O or RioN=C=0; -NRio-C(0)Rs from -NHR10 by treatment with ClC(O)R3 in pyridine; C(=NRio)NRl3Rl4 from -C(NRi3Ri4)SR3 with H3NR3+OAc by heating in alcohol; C(NRi3Ri4)SR3 from -C(S)NRi3Ri4 with
R6-I in an inert solvent, e.g. acetone; C(S)NRi3Ri4 (where R13 or R14 is not hydrogen) from -C(S)NH2 with HNRi3Ri4-C(=NCN)-NRi3Ri4 from C(=NR)3Ri4)-SR3 with NH2CN by heating in anhydrous alcohol, alternatively from -C(=NH)-NRi3Ri4 hy treatment with BrCN and NaOEt in EtOH; -NR10C(=NCN)SR8 from -NHR10 by treatment with (RsS)2C=NCN; NR10SO2R3 from 35 NHR10 by treatment with CISO2R3 by heating in pyridine; NRioC(S)R3 from NRjoC(0)R8 by treatment with Lawesson's reagent [2,4-Z?z's,(4-methoxyphenyl)l,3,2,4-dithiadiphosphetane-2,4-disulfide]; -NR10SO2CF3 from -NHR6 with triflic
AP/P/ 9 7 / 0 1 0 0 8
- 12AP 00999 anhydride and base wherein R3, R6, RlO, Rl3 and R14 are as defined in Formula (I) herein.
Precursors of the groups Rj, R2 and R4 can be other Rj, R2 and R4 groups which can be interconverted by applying standard techniques for functional group 5 interconversion. For example a compound of the formula (I) wherein R2 is halo substituted C]_io alkyl can be converted to the corresponding Ci_jq alkylNg derivative by reacting with a suitable azide salt, and thereafter if desired can be reduced to the corresponding Ci_iQalkylNH2 compound, which in turn can be reacted with RjgSfO^X wherein X is halo (e.g., chloro) to yield the corresponding
Ci-i0alkylNHS(0)2Ri8 compound.
Alternatively a compound of the formula (I) where R2 is halo-substituted
Ci_io-alkyl can be reacted with an amine R13R14NH to yield the corresponding Ci_io-alkylNRi3Ri4 compound, or can be reacted with an alkali metal salt of RjgSH to yield the corresponding Cj.joalkylSRig compound.
AP/P/ 9 7 / 0 1 0 0 8
- 13AP 00999
R4CHO (V) + Ar S(O^ H
H2NCHO
R4CH2NH2 (vm)
Formylating agent
CHCI3 NaOH CH2C12 H2O, PTC
A
R4CH2NHCHO ' dehydrating agent
AP/P/ 9 7 / 0 1 0 0 8
Referring to Scheme I the compounds of Formula (I) are suitably prepared by 5 reacting a compound of the Formula (Π) with a compound of the Formula (HI) wherein p is 0 or 2, R|, Rg and R4 are as defined herein, for Formula (I), or are precursors of the groups Rj, Rg and R4, and Ar is an optionally substituted phenyl group, and thereafter if necessary converting a precursor of Rj, Rg and R4 to a group Rl,RgandR410 Suitably, the reaction is performed at ambient temperature or with cooling (e.g. -50° to 10°) or heating in an inert solvent such as methylene chloride, DMF,
- 14AP 00999 tetrahydrofuran, toluene, acetonitrile, or dimethoxyethane in the presence of an appropriate base such as 1,8-diazabicyclo [5.4.0.] undec-7-ene (DBU) or a guanidine base such as 1,5,7-triaza-bicyclo [4.4.0] dec-5-ene (TBD). The intermediates of formula (Π) have been found to be very stable and capable of storage for a long time.
Preferably, p is 2. PTC is defined as a phase transfer catalyst.
Compounds of the Formula (II) have the structure:
Ar-S(O)p
wherein p is 0, or 2; R4 is as defined for Formula (I) and Ar is an optionally substituted aryl as defined herein. Suitably, Ar is phenyl optionally substituted by Ci_4alkyl, Cj_4 alkoxy or halo. Preferably Ar is phenyl or 4-methylphenyl, i.e. a tosyl derivative.
Reaction of a compound of the Formula (Π) wherein p = 2, with a compound of the Formula (ΠΙ) in Scheme I gives consistently higher yields of compounds of
Formula (I) than when p=0. In addition, the reaction of Formula (Π) compounds wherein p = 2 is more environmentally and economically attractive. When p=0, the preferred solvent used is methylene chloride, which is environmentally unattractive for large scale processing, and the preferred base, TBD, is also expensive, and produces some byproducts and impurities, than when using the commercially attractive synthesis (p=2) as further described herein.
As noted, Scheme I utilizes the 1,3-dipolar cycloadditions of an anion of a substituted aryl thiomethylisocyanide (when p=0) to an imine. More specifically, this reaction requires a strong base, such as an amine base, to be used for the deprotonation step. The commercially available TBD is preferred although t25 butoxide, Li+ or Na+, or K+ hexamethyldisilazide may also be used. While methylene chloride is the prefered solvent, other halogenated solvents, such as chloroform or carbon tetrachloride; ethers, such as THF, DME, DMF, diethylether, tbutyl methyl ether; as well as acetonitrile, toluene or mixtures thereof can be utiltized. The reaction may take place from about -20°C to about; 40°C, preferably from about 0°C to about 23°C, more preferably from about 0°C to about 10°C, and most preferably about 4°C for reactions involving an R[ group of pyrimidine. For compounds wherein Rj is pyridine, it is recognized that varying the reations
AP/P/ 9 7 / 0 1 0 0 8
-15. . I *
AP 0 0 9 9 9 conditions of both temperature and solvent may be necessary, such as decreasing temperatures to about -50°C or changing the solvent to THF.
In a further process, compounds of Formula (I) may be prepared by coupling a suitable derivative of a compound of Formula (IX):
wherein Ti is hydrogen and T4 is R4 , or alternatively Ti is R) and T4 is H in which Rl, R2 and R4 are as hereinbefore defined; with: (i) when Ti is hydrogen, a suitable derivative of the heteroaryl ring RiH, under ring coupling conditions, to effect coupling of the heteroaryl ring Ri to the imidazole nucleus at position 5; (ii) when T4 is hydrogen, a suitable derivative of the aryl ring R4H, under ring coupling conditions, to effect coupling of the aryl ring R4 to the imidazole nucleus at position
4.
Such aryl/heteroaryl coupling reactions are well known to those skilled in the art. In general, an organometallic synthetic equivalent of an anion of one component is coupled with a reactive derivative of the second component, in the presence of a suitable catalyst. The anion equivalent may be formed from either the imidazole of Formula (IX), in which case the aryl/heteroaryl compound provides the reactive derivative, or the aryl/heteroaryl compound in which case the imidazole provides the reactive derivative. Accordingly, suitable derivatives of the compound of Formula (IX) or the aryl/heteroaryl rings include organometallic derivatives such as organomagnesium, organozinc, organostannane and boronic acid derivatives and suitable reactive derivatives include the bromo, iodo, fluorosulfonate and trifluoromethanesulphonate derivatives. Suitable procedures are described in WO
91/19497, the disclosure of which is incorporated by reference herein.
Suitable organomagnesium and organozinc derivatives of a compound of Formula (IX) may be reacted with a halogen, fluorosulfonate or triflate derivative of the heteroaryl or aryl ring, in the presence of a ring coupling catalyst, such as a palladium (Ο) or palladium (Π) catalyst, following the procedure of Kumada et al., Tetrahedron Letters, 22, 5319 (1981). Suitable such catalysts include tetrakis(triphenylphosphine)paIladiumandPdCl2[l,4-fcw-(diphenylphosphino)-butane], optionally in the presence of lithium chloride and a base, such as triethylamine. In . addition, a nickel (II) catalyst, such as Ni(II)Cl2(l,2-biphenylphosphino)ethane, may
AP/P/ 9 7 / 0 1 0 0 8
- 16AP 00999 also be used for coupling an aryl ring, following the procedure of Pridgen et al., J. Org. Chem, 1982, 47, 4319. Suitable reaction solvents include hexamethylphosphoramide. When the heteroaryl ring is 4-pyridyl, suitable derivatives include 4-bromoand 4-iodo-pyridine and the fluorosulfonate and triflate esters of 4-hydroxy pyridine.
Similarly, suitable derivatives for when the aryl ring is phenyl include the bromo, fluorosulfonate, triflate and, preferably, the iodo-derivatives. Suitable organomagnesium and organozinc derivatives may be obtained by treating a compound of Formula (IX) or the bromo derivative thereof with an alkyllithium compound to yield the corresponding lithium reagent by deprotonation or transmetallation, respectively. This lithium intermediate may then be treated with an excess of a magnesium halide .or zinc halide to yield the corresponding organometallic rea'gent.
A trialkyltin derivative of the compound of Formula (IX) may be treated with a bromide, fluorosulfonate, triflate, or, preferably, iodide derivative of an aryl or heteroaryl ring compound, in an inert solvent such as tetrahydrofuran, preferably containing 10% hexamethylphosphoramide, in the presence of a suitable coupling catalyst, such as a palladium (0) catalyst, for instance rerrafo's-(triphenylphosphine)palladium, by the method described in by Stille, J. Amer. Chem. Soc, 1987,109, 5478, US Patents 4,719,218 and 5,002,942, or by using a palladium (Π) catalyst in the presence of lithium chloride optionally with an added base such as triethylamine, in an inert solvent such as dimethyl formamide. Trialkyltin derivatives may be conveniently obtained by metallation of the corresponding compound of Formula (IX) with a lithiating agent, such as j-butyl-lithium or n-butyllithium, in an ethereal solvent, such as tetrahydrofuran, or treatment of the bromo derivative of the corresponding compound of Formula (IX) with an alkyl lithium, followed, in each case, by treatment with a trialkyltin halide. Alternatively, the bromo- derivative of a compound of Formula (IX) may be treated with a suitable heteroaryl or aryl trialkyl tin compound in the presence of a catalyst such as ieirakw-(triphenyl-phosphine)palladium, under conditions similar to those described above.
Boronic acid derivatives are also useful. Hence, a suitable derivative of a compound of Formula (IX), such as the bromo, iodo, triflate or fluorosulphonate derivative, may be reacted with a heteroaryl- or aryl-boronic acid, in the presence of a palladium catalyst such as teirakis-(triphenylphosphine)-palladium or PdCl2[l,4Zn's-(diphenyl-phosphino)-butane] in the presence of a base such as sodium bicarbonate, under reflux conditions, in a solvent such as dimethoxyethane (see
Fischer and Haviniga, Rec. Trav. Chim. Pays Bas, 84,439, 1965, Snieckus, V.,
Tetrahedron Lett., 29, 2135, 1988 and Terashimia, M., Chem. Pharm. Bull., 11,
AP/P/ 9 7 / 0 1 0 0 8
- 17_ -,»/4 5/·
ΛΡ 00999
4755, 1985). Non-aqueous conditions, for instance, a solvent such as DMF, at a temperature of about 100°C, in the presence of a Pd(II) catalyst may also be employed (see Thompson W J et al, J Org Chem, 49, 5237, 1984). Suitable boronic acid derivatives may be prepared by treating the magnesium or lithium derivative with a trialkylborate ester, such as triethyl, tri-zTo-propyl or tributylborate, according to standard procedures.
In such coupling reactions, it will be readily appreciated that due regard must be exercised with respect to functional groups present in the compounds of Formula (IX). Thus, in general, amino and sulfur substituents should be non-oxidised or protected..
Compounds of Formula (IX) are imidazoles and may be obtained by any of the procedures herein before described for preparing compounds of Formula (I). In particular, an oc-halo-ketone or other suitably activated ketones R4COCH2Hal (for compounds of Formula (IX) in which T) is hydrogen) or RiCOCH2Hal (for compounds of Formula (IX) in which T4 is hydrogen) may be reacted with an amidine of the formula R2NH-C=NH, wherein R2 is as defined in Formula (I), or a salt thereof, in an inert solvent such as a halogenated hydrocarbon solvent, for instance chloroform, at a moderately elevated temperature, and, if necessary, in the presence of a suitable condensation agent such as a base. The preparation of suitable a-halo-ketones is described in WO 91/19497. Suitable reactive esters include esters of strong organic acids such as a lower alkane sulphonic or aryl sulphonic acid, for instance, methane or p-toluene sulphonic acid. The amidine is preferably used as the salt, suitably the hydrochloride salt, which may then be converted into the free amidine in situ., by employing a two phase system in which the reactive ester is in an inert organic solvent such as chloroform, and the salt is in an aqueous phase to which a solution of an aqueous base is slowly added, in dimolar amount, with vigorous stirring. Suitable amidines may be obtained by standard methods, see for instance, Garigipati R, Tetrahedron Letters, 190,31,1989.
Compounds of Formula (I) may also be prepared by a process which comprises reacting a compound of Formula (IX), wherein Tl is hydrogen, with an Nacyl heteroaryl salt, according to the method disclosed in US patent 4,803,279, US patent 4,719,218 and US patent 5,002,942, to give an intermediate in which the heteroaryl ring is attached to the imidazole nucleus and is present as a 1,4-dihydro derivative thereof, which intermediate may then be subjected to oxidative35 deacylation conditions (Scheme II). The heteroaryl salt, for instance a pyridinium salt, may be either preformed or, more preferably, prepared in situ by adding a substituted carbonyl halide (such as an acyl halide, an aroyl halide, an arylalkyl
AP/P/ 9 7 / 0 1 0 0 8
- 18-4401-I
AF 00999 haloformate ester, or, preferably, an alkyl haloformate ester, such as acetyl bromide, benzoylchloride, benzyl chloroformate, or, preferably, ethyl chloroformate) to a solution of the compound of Formula (IX) in the heteroaryl compound RjH or in an inert solvent such as methylene chloride to which the heteroaryl compound has been added. Suitable deacylating and oxidising conditions are described in U.S. Patent Nos. 4,803,279, 4,719,218 and 5,002,942, which references are hereby incorporated by reference in their entirety. Suitable oxidizing systems include sulfur in an inert solvent or solvent mixture, such as decalin, decalin and diglyme, p-cymene, xylene or mesitylene, under reflux conditions, or, preferably, potassium Z-butoxide in t10 butanol with dry air or oxygen.
fj?2
HN
NH
S/decalin,A or K* t-butoxide/air
In a further process, illustrated in Scheme ΙΠ below, compounds of Formula (I) may be prepared by treating a compound of Formula (X) thermally or with the aid of a cyclising agent such as phosphorus oxychloride or phosphorus pentachloride (see Engel and Steglich, Liebigs Ann Chem, 1978,1916 and Strzybny et al., J Org Chem, 1963,28, 3381). Compounds of Formula (X) may be obtained, for instance, by acylating the corresponding a-keto-amine with an activated formate derivative such as the corresponding anhydride, under standard acylating conditions followed ) by formation of the imine with R2NH2. The aminoketone may be derived from the
.) parent ketone by examination and reduction and the requisite ketone may in turn be prepared by decarboxylation of the beta-ketoester obtained from the condensation of an aryl (heteroaryl) acetic ester with the RjCOX component.
AP/P/ 9 7 / 0 1 0 0 8
x +
1. ) NaOMe
2. ) HCI
1. )NaNO;, HCI, H2O
2. ) reduce
1. ) 0 O
2. )NH2R2, -H2O
Rr r;
formula (X) pocia
SCHEME ΙΠ
In Scheme IV illustrated below, two (2) different routes which use ketone (formula XI) for preparing a compound of Formula (I). A heterocyclic ketone (XI) is
- 19AP 00999 prepared by adding the anion of the alkyl heterocycie such as 4-methyl-quinoline (prepared by treatment thereof with an alkyl lithium, such as «-butyl lithium) to an N-alkyl-O-alkoxybenzamide, ester, or any other suitably activated derivative of the same oxidation state. Alternatively, the anion may be condensed with a benzaldehyde, to give an alcohol which is then oxidised to the ketone (XI).
SCHEME IV
In a further process, N-substituted compounds of Formula (I) may be prepared by treating the anion of an amide of Formula (ΧΠ):
R1CH2NR2COH (ΧΠ) wherein Ri and R2 with:
(a) a nitrile of the Formula (ΧΙΠ):
R4CN (ΧΠΙ) wherein R4 is as hereinbefore defined, or (b) an excess of an acyl halide, for instance an acyl chloride, of the Formula (XIV):
R4COHal (XTV) wherein R4 is as hereinbefore defined and Hal is halogen, or a corresponding anhydride, to 20 give a to-acylated intermediate which is then treated with a source of ammonia, such as ammonium acetate.
AP/P/ 9 7 / 0 1 0 0 8
R2HN base //“Η O
1.) Li+ -N(i-Pr).
— . ...............— >
(XII)
SCHEME V
-20AP 00999
One variation of this approach is illustrated in Scheme V above. A primary amine (R2NH2) is treated with a halomethyl heterocycle of Formula R1CH2X to give the secondary amine which is then converted to the amide by standard techniques. Alternatively the amide may be prepared as illustrated in scheme V by alkylation o'f the formamide with R1CH2X. Deprotonation of this amide with a strong amide base, such as lithium di-zso-propyl amide or sodium bis(trimethylsilyl)amide, followed by addition of an excess of an aroyl chloride yields the hw-acylated compound which is then closed to an imidazole compound of Formula (I), by heating in acetic acid containing ammonium acetate. Alternatively, the anion of the amide may be reacted with a substituted aryl nitrile to produce the imidazole of Formula (I) directly.
The following description and schemes are further exemplification of the process as previously-described above in Scheme I. Various pyrimidine aldehyde derivatives 6 and 7 as depicted in scheme VI below, can be prepared by modification of the procedures of Bredereck et al. (Chem. Ber. 1964,97, 3407) whose disclosure is incorporated by reference herein. These pyrimidine aldehydes are then utilized as intermediates in the synthesis as further described.
.) )
AP/P/ 9 7 / 0 1 0 0 8
-21 AP 00999
SFL
RO
Η O
H XO
Scheme VI
The reaction of imines with tosylmethyl isonitriles was first reported by van 5 Leusen (van Leusen, et al., J. Org. Chem. 1977,42,1153.) Reported were the following conditions: tert butyl amine(/BuNH2) in dimethoxyethane (DME), K2CO3 in MeOH, and NaH in DME. Upon re-examination of these conditions each was found produce low yields. A second pathway involving amine exchange to produce the t-butyl imine followed by reaction with the isocyanide to produce a 1-fBu imidazole was also operating. This will likely occur using any primary amine as a base. The secondary amines, while not preferred may be used, but may also decompose the isonitrile slowly. Reactions will likely require about 3 equivalents of amine to go to completion, resulting in approximately 50% isolated yields. Hindered secondary amines (diisopropylamine) while usable are very slow and generally not too effective. Use of tertiary and aromatic amines, such as pyridine, and triethylamine gave no reaction under certain test conditions, but more basic types
AP/P/ 9 7 / 0 1 0 08
-22ϊ .., j., · ,
ΑΡ 00999 such as DBU, and 4-dimethylamino pyridine (DMAP) while slow, did produce some yields and hence may be suitable for use herein.
As depicted in Schemes VII and VIII below, the pyrimidine aldehydes of Scheme VI, can be condensed with a primary amine, to generate an imine, which may suitably be isolated or reacted in situ, with the desired isonitrile in the presence of a variety of suitable bases, and solvents as described herein to afford the 5-(4pyrimidinyl)-substituted imidazoles, wherein R.2 and R4 are as defined herein for Formula (I) compounds.
One preferred method for preparing compounds of Formula (I) is shown below in Scheme VII. The imines, prepared and isolated in a separate step were often tars, which were hard to handle. The black color was also often carried over into the final product. The yield for making the imines varied, and environmentally less-acceptable solvents, such as CH2CI2 were often used in their preparation.
This reaction, wherein p=2, requires a suitable base for the reaction to proceed. The reaction requires a base strong enough to deprotonate the isonitrile. Suitable bases include an amine, a carbonate, a hydride, or an alkyl or aryl lithium reagent; or mixtures thereof. Bases include, but are not limited to, potassium carbonate, sodium carbonate, primary and secondary amines, such as morpholine, piperidine, pyrrolidine, and other non-nucleophilic bases.
Suitable solvents for use herein, include but are not limited to N,N-dimethylformamide (DMF), MeCN, halogenated solvents, such as methylene chloride or chloroform, tetrahydrofuran (THF), dimethylsulfoxide (DMSO), alcohols, such as methanol or ethanol, benzene, or toluene, or DME. Preferably the solvent is DMF, DME, THF, or MeCN, more preferably DMF. Product isolation may generally be accomplished by adding water and filtering the product as a clean compound.
Me
Me
XR
X = O, S
AP/P/ 9 7 / 0 1 0 0 8
SCHEME VII
While not convenient for large scale work, addition of NaH to the isonitrile, 30 perhaps with temperatures lower than 25 °C (in THF) are likely needed.
-2310 * ο*1·*
ΑΡ 00999
Additionally, BuLi has also been reported to be an effective base for deprotonating tosyl benzylisonitriles at -50°C. (DiSanto,et al., Synth. Commun. 1995, 25, 795).
Various temperature conditions may be utilized depending upon the preferred base. For instance, tBuNH2/DME , K2CO3/MeOH, K2CO3 in DMF, at temperatures above 40 °C, the yields may drop to about 20% but little difference is expected between 0°C and 25 °C. Consequently, temperature ranges below 0 °C , and above 80 °C are contemplated as also being within the scope of this invention. Preferably, the temperature ranges are from about 0 °C to about 25 °C.
As shown in Scheme VUI below, the imine is preferably formed in situ in a solvent. This preferred synthesis, is a process which occurs as a one-pot synthesis. Suitably, when the primary amine is utilized as a salt, the reaction may further include a base, such as potassium carbonate prior to the addition of the isonitrile. Alternatively, the piperidine nitrogen may be required to be protected as shown below. Reaction conditions, such as solvents, bases, temperatures, etc. are similar to those illustrated and discussed above for the isolated imine as shown in Scheme VII. One skilled in the art would readily recognize that under some circumstances, the in situ formation of the imine may require dehydrating conditions, or may require acid catalysis.
BOC
OR Ntt,
BOC
DMF
5h
ΝγΝ
OR
AP/P/ 9 7 / 0 1 0 08
-2420
AT 3 0 9 9 9
Scheme IX, describes an alternative process for making compounds of formula (I). In this particular instance, the alkylthio moiety is oxidized to the alkylsulfinyl or sulfonly moiety which is reacted with a suitable alkoxy moiety.
Scheme IX
Another embodiment of the present invention is the novel hydrolysis of 210 thiomethylpyrimidine acetal to 2-thiomethylpyrimidine aldehyde, as shown in
Scheme X below. Hydrolysis of the acetal to aldehyde using various known reaction conditions, such as formic acid, did not produce a satisfactory yield of the aldehyde, <13%) was obtained. The preferred synthesis involves the use of AcOH (fresh) as solvent and con-centrated H2SO4 under heating conditions, preferably a catalytic amount of sulfuric acid. Heating conditions include temperatures from about 60 to 85°C, preferably from about 70 to about 80°C as higher temperatures show a darkening of the reaction mixture. After the reaction is complete the mixture is cooled to about room temperature and the acetic acid is removed. A more preferred alternative procedure to this involves heating the acetal in 3N HCI at 40°C for about
18 hours, cooling and extracting the bicarbonate neutralized solution into EtOAc.
SMe
SMe
AP/P/ 9 7 / 0 1 0 08
Scheme X
While these schemes herein are presented, for instance, with an optionally 25 substituted piperidine moiety for the resultant R2 position, or a 4-fluoro phenyl for
R4, any suitable R2 moiety or R4 moiety may be added in this manner if it can be prepared on the primary amine. Similarly, any suitable R4 can be added via the isonitrile route.
-25AP 00999
The compounds of Formula (H), in Scheme I, may be prepared by the methods of van Leusen et al., supra. For example a compound of the Formula (Π) may be prepared by dehydrating a compound of the Formula (IV)-Scheme I, wherein Ar, R4 and p are as defined herein.
Suitable dehydrating agents include phosphorus oxychloride, oxalyl chloride, thionyl chloride, phosgene, or tosyl chloride in the presence of a suitable base such as triethylamine or diisopropylethylamine, or similar bases, etc. such as pyridine. Suitable solvents are dimethoxy ether, tetrahydrofuran, or halogenated solvents, preferably THF. The reaction is most efficent when the reaction temperatures are kept between -10°C and 0°C. At lower temperatures incomplete reaction occurs and at higher temperatures, the solution turns dark and the product yield drops.
The compounds of formula (IV)-Scheme I may be prepared by reacting a compound of the formula (V)-Scheme I, R4CHO where R4 is as defined herein, with ArS(0)pH and formamide with or without water removal, preferably under dehydrating conditions, at ambient or elevated temperature e.g. 30° to 150°, conveniently at reflux, optionally in the presence of an acid catalyst. Alternatively trimethysilylchloride can be used in place of the acid catalyst. Examples of acid catalysts include camphor-10-sulphonic acid, formic acid, p-toluenesulphonic acid, hydrogen chloride or sulphuric acid.
An optimal method of making an isonitrile of Formula (Π) is illustrated below, in Scheme XI.
SO^Tol
| TolSOaH 90% ; | a | NHCHO |
| 3 |
AP/P/ 9 7 / 0 1 0 0 8
0.5 M THF POCI3 _
-10too °C 30 min
70% yield SCHEME XI
The conversion of the substituted aldehyde to the tosylbenzyl formamide may be accomplished by heating the aldehyde, 1-Scheme XI, with an acid, such as p-26AP 00999 toluene-sulfonic acid, formic acid or camphorsulfonic acid; with formamide and ptoluene-sulfinic acid [under reaction conditions of about 60°C for about 24 hours]. Preferably, no solvent is used. The reaction, may give poor yields (< 30%) when solvents, such as DMF, DMSO, toluene, acetonitrile, or excess formamide are used.
Temperatures less than 60°C are generally poor at producing the desired product, and temperatures in excess of 60°C may produce a product which decomposes, or obtain a benzylic bis-formamide, 2-Scheme XI.
Another embodiment of the present invention is the synthesis of the tosyl benzyl formamide compound, achieved by reacting the bisformamide intermediate,
2-Scheme XI with p-toluenesulfinic acid. In this preferred route, preparation of the bis-formamide from the aldehyde is accomplished by heating the aldehyde with formamide, in a suitable solvent with acid catalysis. Suitable solvents are toluene, acetonitrile, DMF, and DMSO or mixtures thereof. Acid catalysts, are those well known in the art, and include but are not limited to hydrogen chloride, p15 toluenesulfonic acid, camphorsulfonic acid, and other anhydrous acids. The reaction can be conducted at temperatures ranging from about 25°C to 110°C, preferably about 50°C, suitably for about 4 to about 5 hours, longer reaction times are also acceptable. Product decomposition and lower yields may be observed at higher temperatures (>70°C) at prolonged reactions times. Complete conversion of the product generally requires water removal from the reaction mixture.
Preferred conditions for converting a bis-formamide derivative to the tosyl benzyl formamide are accomplished by heating the bisformamide in a suitable solvent with an acid catalyst and p-toluenesulfinic acid. Solvents for use in this reaction include but are not limited to toluene, and acetonitrile or mixtures thereof.
Additional mixtures of these solvents with DMF, or DMSO may also be used but may result in lower yields. Temperatures may range from about 30°C to about 100°C. Temperatures lower than 40°C and higher than 60°C are not preferred as the yield and rate decreases. Preferably the range is from about 40 to 60°C, most preferably about 50°C. The optimal time is about 4 to 5 hours, although it may be longer. Preferably, acids used include but are not limited to, toluenesulfonic acid, camphorsulfonic acid, and hydrogen chloride and other anhydrous acids. Most preferably the bisformamide is heated in toluene:acetonitrile in a 1:1 ratio, with p-toluenesulfinic acid and hydrogen chloride.
Another embodiment of the present invention is the preferred synthetic route for synthesis of the tosylbenzyl formamide compound which is accomplished using a one-pot procedure. This process first converts the aldehyde to the bis-formamide derivative and subsequently reacts the bis-formamide derivative with toluenesulfinic
AP/P/ 9 7 / 6 1 0 0 8
-27AP 00999 acid. This procedure combines the optimized conditions into a single, efficient process. High yields, >90% of the aryl benzylformamide may be obtained in such a manner.
Preferred reaction conditions employ a catalyst, such as trimethylsilyl 5 chloride (TMSC1), in a preferred solvent, toluene-.acetonitrile, preferably in a 1:1 ratio. A reagent, such as TMSC1, is preferred which reacts with water produced therein and at the same time produces hydrogen chloride to catalyze the reaction. Also preferred is use of hydrogen chloride and p-toluenesulfonic acid. Therefore, three suitable reaction conditions for use herein include 1) use of a dehydrating agent which also provides hydrogen chloride, such as TMSC1; or by 2) use of a suitable dehydrating agent and a suitable source of acid source, such as but not limited to, camphorsulfonic acid, hydrogen chloride or toluenesulfonic acid; and 3) alternative dehydrating conditions, such as the azeotropic removal of water, and using an acid catalyst and p-toluene sulfinic acid.
Compounds of the formula (II) where p is 2 may also be prepared by reacting in the presence of a strong base a compound of the formula (VI) -Scheme I, R4CH2NC with a compound of the formula (VII)-Scheme I, ArSC^Li wherein R4 and Ar are as defined herein and Lj is a leaving group such as halo, e.g. fluoro. Suitable strong bases include, but are not limited to, alkyl lithiums such as butyl lithium or lithium diisopropylamide (Van Leusen et al.. Tetrahedron Letters. No. 23, 2367-68(1972)).
The compounds of formula (VI)-Scheme I may be prepared by reacting a compound of the formula (Vlll)-Scheme I, R4CH2NH2 with an alkyl formate (e.g. ethylformate) to yield an intermediate amide which can be converted to the desired isonitrile by reacting with well known dehydrating agent, such as but not limited to ) oxalyl chloride, phosphorus oxychloride or tosyl chloride in the presence of a suitable base such as triethylamine.
Alternatively a compound of the formula (VIH) - Scheme I may be converted to a compound of the formula (VI)- Scheme I by reaction with chloroform and sodium hydroxide in aqueous dichloromethane under phase transfer catalysis.
The compounds of the formula (ΠΙ) - Scheme I may be prepared by reacting a compound of the formula Rj CHO with a primary amine R2NH2.
The amino compounds of the formula (VDI) - Scheme I are known or can be prepared from the corresponding alcohols, oximes or amides using standard functional group interconversions.
Suitable protecting groups for use with hydroxyl groups and the imidazole nitrogen are well known in the art and described in many references, for instance,
AP/P/ 9 7 / 0 1 0 0 8
-28AP 00999
Protecting Groups in Organic Synthesis, Greene T W, Wiley-Interscience, New York, 1981. Suitable examples of hydroxyl protecting groups include silyl ethers, such as t-butyldimethyl or t-butyldiphenyl, and alkyl ethers, such as methyl connected by an alkyl chain of variable link, (CRioR2O)n· Suitable examples of imidazole nitrogen protecting groups include tetrahydropyranyl.
Pharmaceutically acid addition salts of compounds of Formula (I) may be obtained in known manner, for example by treatment thereof with an appropriate amount of acid in the presence of a suitable solvent.
METHODS OF TREATMENT
The compounds of Formula (I) or a pharmaceutically acceptable salt thereof can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment of any disease state in a human, or other mammal, which is exacerbated or caused by excessive or unregulated cytokine production by such mammal's cell, such as but not limited to monocytes and/or macrophages.
Compounds of Formula (I) are capable of inhibiting proinflammatory cytokines, such as IL-1, IL-6, IL-8 and TNF and are therefore of use in therapy. IL1, IL-6, IL-8 and TNF affect a wide variety of cells and tissues and these cytokines, as well as other leukocyte-derived cytokines, are important and critical inflammatory mediators of a wide variety of disease states and conditions. The inhibition of these pro-inflammatory cytokines is of benefit in controlling, reducing and alleviating many of these disease states.
Accordingly, the present invention provides a method of treating a cytokinemediated disease which comprises administering an effective cytokine-interfering amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof. Compounds of Formula (I) are capable of inhibiting inducible proinflammatory proteins, such as COX-2, also referred to by many other names such as prostaglandin endoperoxide synthase-2 (PGHS-2) and are therefore of use in therapy. These proinflammatory lipid mediators of the cyclooxygenase (CO) pathway are produced by the inducible COX-2 enzyme. Regulation, therefore of COX-2 which is responsible for the these products derived from arachidonic acid, such as prostaglandins affect a wide variety of cells and tissues are important and critical inflammatory mediators of a wide variety of disease states and conditions. Expression of COX-1 is not effected by compounds of Formula (I). This selective inhibition of COX-2 may alleviate or spare ulcerogenic liability associated with inhibition of COX-1 thereby inhibiting prostoglandins essential for cytoprotective effects. Thus inhibition of these pro-inflammatory mediators is of benefit in
AP/P/ 9 7 / 0 1 0 0 8
-29AP 00999 controlling, reducing and alleviating many of these disease states. Most notably these inflammatory mediators, in particular prostaglandins, have been implicated in pain, such as in the sensitization of pain receptors, or edema. This aspect of pain management therefore includes treatment of neuromuscular pain, headache, cancer pain, and arthritis pain. Compounds of Formula (I) or a pharmaceutically acceptable salt thereof, are of use in the prophylaxis or therapy in a human, or other mammal, by inhibition of the synthesis of the COX-2 enzyme.
Accordingly, the present invention provides a method of inhibiting the synthesis of COX-2 which comprises administering an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof. The present invention also provides for a method of prophylaxis treatment in a human, or other mammal, by inhibition of the synthesis of the COX-2 enzyme.
In particular, compounds of Formula (I) or a pharmaceutically acceptable salt thereof are of use in the prophylaxis or therapy of any disease state in a human, or other mammal, which is exacerbated by or caused by excessive or unregulated IL-l, IL-8 or TNF production by such mammal's cell, such as, but not limited to, monocytes and/or macrophages.
Accordingly, in another aspect, this invention relates to a method of inhibiting the production of IL-l in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
There are many disease states in which excessive or unregulated IL-l production is implicated in exacerbating and/or causing the disease. These include rheumatoid arthritis, osteoarthritis, stroke, endotoxemia and/or toxic shock syndrome, other acute or chronic inflammatory disease states such as the inflammatory reaction induced by endotoxin or inflammatory bowel disease, tuberculosis, atherosclerosis, muscle degeneration, multiple sclerosis, cachexia, bone resorption, psoriatic arthritis, Reiter's syndrome, rheumatoid arthritis, gout, traumatic arthritis, rubella arthritis and acute synovitis. Recent evidence also links IL-l activity to diabetes, pancreatic β cells and Alzheimer's disease.
In a further aspect, this invention relates to a method of inhibiting the production of TNF in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
Excessive or unregulated TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic
AP/P/ 9 7 / 0 1 0 0 8
-30P50437-1
AP 00999 shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, stroke, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, such as osteoporosis, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis and pyresis.
Compounds of Formula (I) are also useful in the treatment of viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo. The viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibiting-compounds of Formula (1). Such viruses include, but are not limited to HIV-1, HTV-2 and HTV15 3, Cytomegalovirus (CMV), Influenza, adenovirus and the Herpes group of viruses, such as but not limited to, Herpes Zoster and Herpes Simplex. Accordingly, in a further aspect, this invention relates to a method of treating a mammal afflicted with a human immunodeficiency virus (HIV) which comprises administering to such mammal an effective TNF inhibiting amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
Compounds of Formula (I) may also be used in association with the veterinary treatment of mammals, other than in humans, in need of inhibition of TNF production. TNF mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples of such viruses include, but are not limited to, lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline immunodeficiency virus (FTV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
The compounds of Formula (I) may also be used topically in the treatment or prophylaxis of topical disease states mediated by or exacerbated by excessive cytokine production, such as by IL-1 or TNF respectively, such as inflamed joints, eczema, psoriasis and other inflammatory skin conditions such as sunburn; inflammatory eye conditions including conjunctivitis; pyresis, pain and other conditions associated with inflammation.
Compounds of Formula (I) have also been shown to inhibit the production of
IL-8 (Interleukin-8, NAP). Accordingly, in a further aspect, this invention relates to
AP/P/ 9 7 / 0 1 0 08
-31P50437-1
AP 00 9 9 9 a method of inhibiting the production of IL-8 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
There are many disease states in which excessive or unregulated IL-8 5 production is implicated in exacerbating and/or causing the disease. These diseases are characterized by massive neutrophil infiltration such as, psoriasis, inflammatory bowel disease, asthma, cardiac and renal reperfusion injury, adult respiratory distress syndrome, thrombosis and glomerulonephritis. All of these diseases are associated with increased EL-8 production which is responsible for the chemotaxis of neutrophils into the inflammatory site. In contrast to other inflammatory cytokines (IL-1, TNF, and IL-6), EL-8 has the unique property of promoting neutrophil chemotaxis and activation. Therefore, the inhibition of IL-8 production would lead to a direct reduction in the neutrophil infiltration.
The compounds of Formula (I) are administered in an amount sufficient to inhibit cytokine, in particular IL-1, IL-6, IL-8 or TNF, production such that it is regulated down to normal levels, or in some case to subnormal levels, so as to ameliorate or prevent the disease state. Abnormal levels of EL-1, EL-6, IL-8 or TNF, for instance in the context of the present invention, constitute: (i) levels of free (not cell bound) EL-1, EL-6, EL-8 or TNF greater than or equal to 1 picogram per ml; (ii) any cell associated IL-1, EL-6, EL-8 or TNF; or (iii) the presence of IL-1, EL-6, IL-8 or TNF mRNA above basal levels in cells or tissues in which DL-Ί, IL-6, IL-8 or TNF, respectively, is produced.
The discovery that the compounds of Formula (I) are inhibitors of cytokines, specifically EL-1, EL-6, EL-8 and TNF is based upon the effects of the compounds of
Formulas (I) on the production of the IL-1, IL-8 and TNF in in vitro assays which are described herein.
As used herein, the term inhibiting the production of IL-1 (IL-6, IL-8 or TNF) refers to:
a) a decrease of excessive in vivo levels of the cytokine (EL-1, IL-6, EL-8 or
TNF) in a human to normal or sub-normal levels by inhibition of the in vivo release .
of the cytokine by all cells, including but not limited to monocytes or macrophages;
b) a down regulation, at the genomic level, of excessive in vivo levels of the cytokine (EL-1, IL-6, IL-8 or TNF) in a human to normal or sub-normal levels;
c) a down regulation, by inhibition of the direct synthesis of the cytokine (EL35 1, IL-6, IL-8 or TNF) as a postranslational event; or
d) a down regulation, at the translational level, of excessive in vivo levels of the cytokine (IL-1, IL-6, IL-8 or TNF) in a human to normal or sub-normal levels.
AP/P/ 9 7 / 0 1 0 08
-32P50437-1
AP 00999
As used herein, the term TNF mediated disease or disease state refers to any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another monokine to be released, such as but not limited to IL-1, IL-6 or IL-8. A disease state in which, for instance, IL-1 is a major component, and whose production or action, is exacerbated or secreted in response to TNF, would therefore be considered a disease stated mediated by TNF.
As used herein, the term cytokine refers to any secreted polypeptide that affects the functions of cells and is a molecule which modulates interactions between cells in the immune, inflammatory or hematopoietic response. A cytokine includes, but is not limited to, monokines and lymphokines, regardless of which cells produce them. For instance, a monokine is generally referred to as being produced and secreted by a mononuclear cell, such as a macrophage and/or monocyte. Many other cells however also produce monokines, such as natural killer cells, fibroblasts, basophils, neutrophils, endothelial cells, brain astrocytes, bone marrow stromal cells, epideral keratinocytes and B-lymphocytes. Lymphokines are generally referred to as being produced by lymphocyte cells. Examples of cytokines include, but are not limited to, Interleukin-1 (EL-1), Interleukin-6 (IL-6), Interleukin-8 (EL-8), Tumor Necrosis Factor-alpha (TNF-α) and Tumor Necrosis Factor beta (TNF-β).
As used herein, the term cytokine interfering or cytokine suppressive amount refers to an effective amount of a compound of Formula (I) which will cause a decrease in the in vivo levels of the cytokine to normal or sub-normal levels, when given to a patient for the prophylaxis or treatment of a disease state which is exacerbated by, or caused by, excessive or unregulated cytokine production.
As used herein, the cytokine referred to in the phrase inhibition of a cytokine, for use in the treatment of a HIV-infected human is a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HIV gene expression and/or replication and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration.
As TNF-β (also known as lymphotoxin) has close structural homology with
TNF-α (also known as cachectin) and since each induces similar biologic responses and binds to the same cellular receptor, both TNF-a and TNF-β are inhibited by the compounds of the present invention and thus are herein referred to collectively as TNF unless specifically delineated otherwise.
A new member of the MAP kinase family, alternatively termed CSBP, p38, or RK, has been identified independently by several laboratories recently [See L^ee et al., Nature, Vol. 300 n(72), 739-746 (1994)]. Activation of this novel protein kinase
AP/P/ 97 / 0 1 0 08
-33P50437-1
AP 00999 via dual phosphorylation has been observed in different cell systems upon stimulation by a wide spectrum of stimuli, such as physicochemical stress and treatment with lipopolysaccharide or proinflammatory cytokines such as interleukin1 and tumor necrosis factor. The cytokine biosynthesis inhibitors, of the present invention, compounds of Formula (I), have been determined to be potent and selective inhibitors of CSBP/p38/RK kinase activity. These inhibitors are of aid in determining the signaling pathways involvement in inflammatory responses. In particular, for the first time a definitive signal transduction pathway can be prescribed to the action of lipopolysaccharide in cytokine production in macrophages. In addition to those diseases already noted, treatment of stroke, neurotrauma, cardiac and renal reperfusion injury, thrombosis, glomerulonephritis, diabetes and pancreatic β cells, multiple sclerosis, muscle degeneration , eczema, psoriasis, sunburn, and conjunctivitis are also included.
The cytokine inhibitors were subsequently tested in a number of animal models for anti-inflammatory activity. Model systems were chosen that were relatively insensitive to cyclooxygenase inhibitors in order to reveal the unique activities of cytokine suppressive agents. The inhibitors exhibited significant activity in many such in vivo studies. Most notable are its effectiveness in the collagen-induced arthritis model and inhibition of TNF production in the endotoxic shock model. In the latter study, the reduction in plasma level of TNF correlated with survival and protection from endotoxic shock related mortality. Also of great importance are the compounds effectiveness in inhibiting bone resorption in a rat fetal long bone organ culture system. Griswold et al., (1988) Arthritis Rheum. 31:1406-1412; Badger, et al., (1989) Circ. Shock 27,51-61; Votta et al., (1994)zn vitro. Bone 15, 533-538; Lee et al., (1993). B Ann. N. Y. Acad. Sci. 696, 149-170.
In order to use a compound of Formula (I) or a pharmaceutically acceptable salt thereof in therapy, it will normally be Formulated into a pharmaceutical composition in accordance with standard pharmaceutical practice. This invention, therefore, also relates to a pharmaceutical composition comprising an effective, non30 toxic amount of a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.
Compounds of Formula (I), pharmaceutically acceptable salts thereof and pharmaceutical compositions incorporating such may conveniently be administered by any of the routes conventionally used for drug administration, for instance, orally, topically, parenterally or by inhalation. The compounds of Formula (I) may be administered in conventional dosage forms prepared by combining a compound of Formula (I) with standard pharmaceutical carriers according to conventional
AP/P/ 9 7 / 0 1 0 08
-34P50437-1
AP 00999 procedures. The compounds of Formula (I) may also be administered in conventional dosages in combination with a known, second therapeutically active compound. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation. It will be appreciated that the form and character of the pharmaceutically acceptable character or diluent is dictated by the amount of active ingredient with which it is to be combined, the route of administration and other well-known variables. The carrier(s) must be acceptable in the sense of being compatible with the other ingredients of the Formulation and not deleterious to the recipient thereof.
The pharmaceutical carrier employed may be, for example, either a solid or liquid. Exemplary of solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Exemplary of liquid carriers are syrup, peanut oil, olive oil, water and the like. Similarly, the carrier or diluent may include time delay material well known to the art, such as glyceryl mono-stearate or glyceryl distearate alone or with a wax.
A wide variety of pharmaceutical forms can be employed. Thus, if a solid carrier is used, the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form or in the form of a troche or lozenge. The amount of solid carrier will vary widely but preferably will be from about 25mg. to about lg. When a liquid carrier is used, the preparation will be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampule or nonaqueous liquid suspension.
Compounds of Formula (I) may be administered topically, that is by nonsystemic administration. This includes the application of a compound of Formula (I) externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream. In contrast, systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.
Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose. The active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, for instance from 1% to 2% by weight of the Formulation. It may however comprise as much as 10% w/w but preferably will comprise less than 5% w/w, more preferably from 0.1% to 1% w/w of the Formulation.
AP/P/ 9 7 / 0 1 0 0 8
-35P50437-1
AP 00999
Lotions according to the present invention include those suitable for application to the skin or eye. An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops. Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
Creams, ointments or pastes according to the present invention are semi-solid Formulations of the active ingredient for external application: They may be made by mixing the active ingredient in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy base. The base may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, com, arachis, castor or olive oil; wool fat or its derivatives or a fatty acid such as steric or oleic acid together with an alcohol such as propylene glycol or a macrogel. The Formulation may incorporate any suitable surface active agent such as an anionic, cationic or non-ionic surfactant such as a sorbitan ester or a polyoxyethylene derivative thereof. Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
Drops according to the present invention may comprise sterile aqueous or oily solutions or suspensions and may be prepared by dissolving the active ingredient in a suitable aqueous solution of a bactericidal and/or fungicidal agent and/or any other suitable preservative, and preferably including a surface active agent. The resulting solution may then be clarified by filtration, transferred to a suitable container which is then sealed and sterilized by autoclaving or maintaining at 98-100° C. for half an hour. Alternatively, the solution may be sterilized by filtration and transferred to the container by an aseptic technique. Examples of bactericidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01 %) and chlorhexidine acetate (0.01%). Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glycol.
Compounds of formula (I) may be administered parenterally, that is by intravenous, intramuscular, subcutaneous intranasal, intrarectal, intravaginal or intraperitoneal administration. The subcutaneous and intramuscular forms of parenteral administration are generally preferred. Appropriate dosage forms for such administration may be prepared by conventional techniques. Compounds of
AP/P/ 9 7 / 0 1 0 08
-36P50437-1
AP 00999
Formula (I) may also be administered by inhalation, ±at is by intranasal and oral inhalation administration. Appropriate dosage forms for such administration, such as an aerosol Formulation or a metered dose inhaler, may be prepared by conventional techniques.
For all methods of use disclosed herein for the compounds of Formula (I), the daily oral dosage regimen will preferably be from about 0.1 to about 80 mg/kg of total body weight, preferably from about 0.2 to 30 mg/kg, more preferably from about 0.5 mg to 15mg. The daily parenteral dosage regimen about 0.1 to about 80 mg/kg of total body weight, preferably from about 0.2 to about 30 mg/kg, and more preferably from about 0.5 mg to 15mg/kg. The daily topical dosage regimen will preferably be from 0.1 mg to .150 mg, administered one to four, preferably two or three times daily. ‘ The daily inhalation dosage regimen will preferably be from about 0.01 mg/kg to about 1 mg/kg per day. It will also be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a compound of
Formula (I) or a pharmaceutically acceptable salt thereof will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a compound of Formula (I) or a pharmaceutically acceptable salt thereof given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
The novel compounds of Formula (I) may also be used in association with the veterinary treatment of mammals, other than humans, in need of inhibition of cytokine inhibition or production. In particular, cytokine mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted herein in the Methods of Treatment section, but in particular viral infections. Examples of such viruses include, but are not limited to, lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline immunodeficiency virus (FIV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
The invention will now be described by reference to the following biological examples which are merely illustrative and are not to be construed as a limitation of the scope of the present invention.
AP/P/ 9 7 / 0 1 0 08
-37P50437-1
AP 00999
BIOLOGICAL EXAMPLES
The cytokine-inhibiting effects of compounds of the present invention were determined by the following in vitro assays:
Interleukin -1 (IL-1)
Human peripheral blood monocytes are isolated and purified from either fresh blood preparations from volunteer donors, or from blood bank buffy coats, according to the procedure of Colotta et al, J Immunol, 132, 936 (1984). These monocytes (lx 1()6) are plated in 24-well plates at a concentration of 1-2 million/ml per well. The cells are allowed to adhere for 2 hours, after which time non-adherent cells are removed by gentle washing'. Test compounds are then added to the cells for lh before the addition of lipopolysaccharide (50 ng/ml), and the cultures are incubated at 37°C for an additional 24h. At the end of this period, culture supernatants are removed and clarified of cells and all debris. Culture supernatants • are then immediately assayed for EL-1 biological activity, either by the method of
Simon et al., J. Immunol. Methods, 84, 85, (1985) (based on ability of IL-1 to stimulate a Interleukin 2 producing cell line (EL-4) to secrete IL-2, in concert with A23187 ionophore) or the method of Lee et al., J. ImmunoTherapy, 6 (1), 1-12 (1990) (ELISA assay).
A representative compound of Formula (I), Example 1, demonstrated positive inhibition in this assay.
Tumour Necrosis Factor (TNF):
Human peripheral blood monocytes are isolated and purified from either blood bank buffy coats or plateletpheresis residues, according to the procedure of Colotta, R. et al., J Immunol, 132(2), 936 (1984). The monocytes are plated at a t 25 density of 1x10^ cells/ml medium/well in 24-well multi-dishes. The cells are allowed to adhere for 1 hour after which time the supernatant is aspirated and fresh medium (1 ml, RPMI-1640, Whitaker Biomedical Products, Whitaker, CA) containing 1% fetal calf serum plus penicillin and streptomycin (10 units/ml) added. The cells are incubated for 45 minutes in the presence or absence of a test compound at InM-lOmM dose ranges (compounds are solubilized in dimethyl sulfoxide/ethanol, such that the final solvent concentration in the culture medium is 0.5% dimethyl sulfoxide/0.5% ethanol). Bacterial lipopoly-saccharide (E. coli 055:B5 [LPS] from Sigma Chemicals Co.) is then added (100 ng/ml in 10 ml phosphate buffered saline) and cultures incubated for 16-18 hours at 37°C in a 5%
CC>2 incubator. At the end of the incubation period, culture supernatants are removed from the cells, centrifuged at 3000 rpm to remove cell debris. The supernatant is then assayed for TNF activity using either a radio-immuno or an
AP/P/ 9 7 / 0 1 0 08
-38P50437-1
AP 00999
ELISA assay, as described in WO 92/10190 and by Becker et al., J Immunol, 1991, 147, 4307.
EL-1 and TNF inhibitory activity does not seem to correlate with the property of the compounds of Formula (I) in mediating arachidonic acid metabolism inhibition. Further the ability to inhibit production of prostaglandin and/or leukotriene synthesis, by nonsteroidal anti-inflammatory drugs with potent cyclooxygenase and/or lipoxygenase inhibitoiy activity does not mean that the compound will necessarily also inhibit TNF or IL-1 production, at non-toxic doses. In vivo TNF assay:
While the above indicated assay in an in vitro assay, the compounds of
Formula (I) may also be tested in an in vivo system such as described in :
(1) Griswold et al., Drugs Under Exp, and Clinical Res..XIX (6), 243-248 (1993); or (2) Boehm, et-al., Journal Of Medicinal Chemistry 39, 3929-3937 (1996) whose disclosures are incorporated by reference herein in their entirety.
Interleukin -8 (IL-8 ):
Primary human umbilical cord endothelial cells (HUVEC) (Cell Systems, Kirland, Wa) are maintained in culture medium supplemented with 15% fetal bovine serum and 1% CS-HBGF consisting of aFGF and heparin. The cells are then diluted
20-fold before being plated (250μ1) into gelating coated 96-well plates. Prior to use, culture medium are replaced with fresh medium (200μ1). Buffer or test compound (25μ1, at concentrations between 1 and 10μΜ) is then added to each well in quadruplicate wells and the plates incubated for 6h in a humidified incubator at 37°C in an atmosphere of 5% CO2· At the end of the incubation period, supernatant is removed and assayed for IL-8 concentration using an EL-8 ELISA kit obtained from R&D Systems (Minneapolis, MN). All data is presented as mean value (ng/ml) of multiple samples based on the standard curve. IC50's where appropriate are generated by non-linear regression analysis.
Cytokine Specific Binding Protein Assay
A radiocompetitive binding assay was developed to provide a highly reproducible primary screen for structure-activity studies. This assay provides many advantages over the conventional bioassays which utilize freshly isolated human monocytes as a source of cytokines and ELISA assays to quantify them. Besides being a much more facile assay, the binding assay has been extensively validated to highly correlate with the results of the bioassay. A specific and reproducible cytokine inhibitor binding assay was developed using soluble cystosolic fraction from THP.l cells and a radiolabeled compound. Patent Application USSN 08/123175 Lee et al.,
AP/P/ 9 7 / 0 1 0 08
-39P50437-1
AP 00999 filed September 1993, USSN; Lee et al., PCT 94/10529 filed 16 September 1994 and Lee et al., Nature 300, n(72), 739-746 (Dec. 1994) whose disclosures are incorporated by reference herein in its entirety describes the above noted method for screening drugs to identify compounds which interact with and bind to the cytokine specific binding protein (hereinafter CSBP). However, for purposes herein the binding protein may be in isolated form in solution, or in immobilized form, or may be genetically engineered to be expressed on the surface of recombinant host cells such as in phage display system or as fusion proteins. Alternatively, whole cells or cytosolic fractions comprising the CSBP may be employed in the screening protocol.
Regardless of the form of the binding protein, a plurality of compounds are contacted with the binding protein under'conditions sufficient to form a compound/ binding protein complex and compound capable of forming, enhancing or interfering with said complexes are detected.
Representative final compounds of Formula (I), Examples 1 to 4, and 6 have all demonstrated positive inhibitory activity of an IC50 of < 50uM in this binding assay.
CSBP KINASE ASSAY:
This assay measures the CSBP-catalyzed transfer of 32p from [a-32p] ATP to threonine residue in an epidermal growth factor receptor (EGFR)-derived peptide (T669) with the following sequence: KRELVEPLTPSGEAPNQALLR (residues
661-681). (See Gallagher et al., Regulation of Stress Induced Cytokine Production by Pyridinyl Imidazoles: Inhibition of CSPB Kinase, BioOrganic & Medicinal Chemistry, to be published 1996).
Kinase reactions (total volume 30 ul) contain: 25 mM Hepes buffer, pH 7.5;
10 mM MgCl2; 170 uM ATPO); 10 uM Na ortho vanadate; 0.4 mM T669 peptide;
and 20-80 ng of yeast-expressed purified CSBP2 (see Lee et al., Nature 300, n(72), 739-746 (Dec. 1994)). Compounds (5 ul from [6X] stock(2)) are pre-incubated with the enzyme and peptide for 20 min on ice prior to starting the reactions with 32P/MgATP. Reactions are incubated at 30 °C for 10 min and stopped by adding 10 ul of 0.3 M phosphoric acid. 32P-labeled peptide is separated on phosphocellulose (Wattman, p81) filters by spotting 30 ul reaction mixture. Filters are washed 3 times with 75 mM phosphoric acid followed by 2 washes with H2O, and counted for 32P, (1) The Km of CSBP for ATP was determined to be 170 uM. Therefore, compounds screened at the Km value of ATP.
(2) Compounds are usually dissolved in DMSO and are diluted in 25 mM
Hepes buffer to get final concentration of DMSO of 0.17%.
AP/P/ 97 / 0 1 0 08
-40P50437-1
AP 00999
Representative final compounds of Formula (I), Examples 1,5 8, and 9 have all demonstrated positive inhibitory activity of an IC5Q of < 50uM in this binding assay. Example 10 demonstrated an IC50 of > 50uM in this assay.
Prostoglandin endoperoxide synthase-2 (PGHS-2) assay:
The following assay describes a method for determining the inhibitory effects of compounds of Formula (I) on human PGHS-2 protein expression in LPS stimulated human monocytes.
Method: Human peripheal blood monocytes were isolated from buffy coats by 10 centrifugation through Ficoll. and Percoll gradients. Cells were seeded at 2 X lO^/well in 24 well plates and allowed to adhere for 1 hour in RPMI supplemented with 1% human AB serum, 20mM L-glutamine, Penicillin-Streptomycin and lOmM HEPES. Compounds were added at various concentrations and incubated at 37°C for 10 minutes. LPS was added at 50 ng/well (to induce enzyme expression) and incubated overnight at 37°C. The supernatant was removed and cells washed once in cold PBS. The cells were lysed in 100μ1 of cold lysis buffer(50mM Tris/HCl pH 7.5, 150mM NaCl, 1% NP40,0.5% sodium deoxycholate, 0.1% SDS, 300ug/ml DNAse, 0.1% TRITON X-l00, lmM PMSF, ImM leupeptin, ImM pepstatin). The lysate was centrifuged (10,000 X g for 10 min. at 4°C) to remove debris and the soluble fraction was subjected to SDS PAGE, analysis (12% gel). Protein separated on the gel were transferred onto nitrocellulose membrane by electrophoretic means for 2 hours at 60 volts. The membrane was pretreated for one hour in PBS/0.1% Tween 20 with 5% non-fat dry milk. After washing 3 times in PBS/Tween buffer, the membrane was incubated with a 1:2000 dilution of a monospecific antiserum to
PGHS-2 or a 1:1000 dilution of an antiserum to PGHs-1 in PBS/Tween with 1%
BSA for one hour with continuous shaking. The membrane was washed 3X in PBS/Tween and then incubated with a 1:3000 dilution of horseradish peroxidase conjugated donkey antiserum to rabbit Ig (Amersham) in PBS/Tween with 1% BSA for one hour with continuous shaking. The membrane was then washed 3X in
PBS/Tween and the ECL immunodetection system (Amersham) was used to detect the level of expression of prostaglandin endoperoxide synthases-2.
Results: The following compounds were tested and found to be active in this assay (i.e., inhibited LPS induced PGHS-2 protein expression in rank order potency similar to that for inhibiting cytokine production as noted in assays indicated):
4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole
6-(4-Fluorophenyl)-2,3-dihydro-5-(4-pyridinyl)imidazo[2,l-b]thiazole; and
Dexamethasone
AP/P/ 9 7 / 0 1 0 08
-41 P50437-1
AP 00999 'Several compounds were tested and found to be inactive (up to lOuM): 2-(4-Methylsulfinylphenyl)-3-(4-pyridyl)-6,7-dihydro-(5H)-pyrrolo[l,2a]imidazole;rolipram ; phenidone and NDGA.
None of the compounds tested was found to inhibit PGHS-1 or cPLA2 5 protein levels in similar experiments.
TNF-α in Traumatic Brain Injury Assay
The present assay provides for examination of the expression of tumor necrosis factor mRNA in specific brain regions which follow experimentally induced lateral fluid-percussion traumatic brain injury (TBI) in rats. Adult Sprague-Dawley rats (n=42) are anesthetized with sodium pentobarbital (60 mg/kg, i.p.) and subjected to lateral fluid-percussion brain injury of moderate severity (2.4 atm.) centered over the left temporaparietal cortex (n=18), or sham treatment (anesthesia and surgery without injury, n=18). Animals are sacrificed by decapitation at 1, 6 and 24 hr. post injury, brains removed, and tissue samples of left (injured) parietal cortex (LC), corresponding area in the contralateral right cortex (RC), cortex adjacent to injured parietal cortex (LA), corresponding adjacent area in the right cortex (RA), left hippocampus (LH) and right hippocampus (RH) are prepared. Total RNA is isolated and Northern blot hybridization is performed and quantitated relative to an TNF-a positive control RNA (macrophage = 100%). A marked increase of TNF- a mRNA expression is observed in LH (104+17% of positive control, p < 0.05 compared with sham), LC (105±21 %, p< 0.05) and LA (69±8%, p < 0.01) in the traumatized hemisphere 1 hr. following injury. An increased TNF- a mRNA expression is also observed in LH (46±8%, p < 0.05), LC (30±3%, p < 0.01) and LA (32±3%, p < 0.01) at 6 hr. which resolves by 24 hr. following injury. In the contralateral hemisphere, expression of TNF- a mRNA is increased in RH (46±2%, p < 0.01), RC (4±3%) and RA (22+8%) at 1 hr. and in RH (28± 11%), RC (7±5%) and RA (26±6%, p < 0.05) at 6 hr. but not at 24 hr. following injury. In sham (surgery without injury) or naive animals, no consistent changes in expression of TNF- a mRNA is observed in any of the 6 brain areas in either hemisphere at any times. These results indicate that following parasagittal fluid-percussion brain injury, the temporal expression of TNFa mRNA is altered in specific brain regions, including those of the non-traumatized hemisphere. Since TNF- a is able to induce nerve growth factor (NGF) and stimulate the release of other cytokines from activated astrocytes, this post-traumatic alteration in gene expression of TNF- a plays an important role in both the acute and regenerative response to CNS trauma.
AP/P/ 9 7 / 0 1 0 08
-42P50437-1
AP 00999
CNS Injury model for IL-β mRNA
This assay characterizes the regional expression of interleukin-IB (IL-IB) mRNA in specific brain regions following experimental lateral fluid-percussion traumatic brain injury (TBI) in rats. Adult Sprague-Dawley rats (n=42) are anesthetized· with sodium pentobarbital (60 mg/kg, i.p.) and subjected to lateral fluidpercussion brain injury of moderate severity (2.4 atm.) centered over the left temporaparietal cortex (n=18), or sham treatment (anesthesia and surgery without injury). Animals are sacrificed at 1, 6 and 24 hr. post injury, brains removed, and tissue samples of left (injured) parietal cortex (LC), corresponding area in the contralateral right cortex (RC), cortex adjacent to injured parietal cortex (LA), corresponding adjacent area in the right cortex (RA), left hippocampus (LH) and right hippocampus-(RH) were prepared. Total RNA is isolated and Northern blot hybridization is performed and the quantity of brain tissue IL-IB mRNA is presented as percent relative radioactivity of IL-1B positive macrophage RNA which is loaded on same gel. At 1 hr. following brain injury, a marked and significant increase in expression of IL-1B mRNA is observed in LC (20.0±0.7% of positive control, n=6, p < 0.05 compared with sham animal), LH (24.5+0.9%, p < 0.05) and LA (21.5±3.1%, p < 0.05) in the injured hemisphere, which remained elevated up to 6 hr. post injury in the LC (4.0±0.4%, n=6, p < 0.05) and LH (5.0±1.3%, p < 0.05). In sham or naive animals, no expression of IL-1B mRNA is observed in any of the respective brain areas. These results indicate that following TBI, the temporal expression of IL-IB mRNA is regionally stimulated in specific brain regions. These regional changes in cytokines, such as IL-IB play a role in the post-traumatic pathologic or regenerative sequelae of brain injury.
SYNTHETIC EXAMPLES
The invention will now be described by reference to the following examples which are merely illustrative and are not to be construed as a limitation of the scope of the present invention. All temperatures are given in degrees centigrade, all solvents are highest available purity and all reactions run under anydrous conditions in an argon atmosphere unless otherwise indicated. Mass spectra were performed upon a VG Zab mass spectrometer using fast atom bombardment, unless otherwise indicated. 1 H-NMR (hereinafter NMR) spectra were recorded at 250 MHz using a Bruker AM 250 or Am 400 spectrometer. Multiplicities indicated are: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet and br indicates a broad signal. Sat. indicates a saturated solution, eq indicates the proportion of a molar equivalent of reagent relative to the principal reactant.
AP/P/ 9 7 / 0 1 0 08
-43P50437-1
AP 00999
Flash chromatography is run over Merck Silica gel 60 (230 - 400 mesh). Example 1
5-(2-Methoxy-4-pyrimidinyl')-4-f4-fluorophenyl)-l-(4-piperidinyl)imidazole
a) 2-N-Methylthiopyrimidine-4-carboxaldehvde dimethyl acetal 5 Pyruvic aldehyde dimethyl acetal (60 mL, 459 mmol) and N,N-dimethyl formamide dimethyl acetal (60 mL, 459 mmol) were stirred together at 100° for 18 h. The mixture was cooled.
Methanol (300 mL), thiourea (69.6 g) and sodium methoxide (231 mL, 25 wt% in MeOH) were added to the above mixture and stirred at 70° for 2 h. After cooling, iodomethane (144 mL) was added dropwise and the mixture was stirred 3 h. at room temp. After diluting with EtOAc and H2O, the organic phase was separated, dried (Na2SO4),and concentrated to yield the title compound as a brown oil (75.5 g, 82% yield). !H NMR (CDCI3): d 8.17 (d, 1H), 6.77 (d, 1H), 5.15 (s, 1H), 3.40 (s, 6H).
b) 2- Methoxypyrimidine-4-carboxaldehyde dimethyl acetal
The product of the preceding example (5.0 g, 25 mmol) was dissolved in methanol (100 mL), cooled to 4°and a solution of oxone (9.21g), in H2O (100 mL) was added dropwise (T < 15°). Wanned to 23°, stirred 2h, poured into 10 % aq NaOH (250 mL) and extracted with EtOAc. The extracts were washed with 10% aq
NaOH, dried (Na2SO4), filtered, concentrated, and flash chromatographed (70% hexane/EtOAc) to afford 1.66g (36%) of the title compound. ESP+ (Mass Spec) m/z 185 (MH+).
c) 2- Methoxypyrimidine-4-carboxaldehyde
The product of the preceding example (0.54 g, 2.93 mmol), was dissolved in
3 M HCI (2.17 mL, 6.5 mmol) and stirred at 23° for 3 days, cooled to 4°, layered with EtOAc and made slightly basic by the addition of solid Na2CO3. Extraction with EtOAc (5 x 40 mL) afforded 0.309 g (76%) of the title compound as a white solid. *H NMR (CDCI3): d 9.96 (s,l), 8.78 (d,l), 7.46 (d, 1), 4.10 (s, 3).
d) l-t-Butoxycarbonyl-4-aminopiperidine
1- t-Butoxycarbonyl piperidine-4-one (commercially available from
Lancaster Chem) (39.9 g, 0.20 mol), THF (150 mL), H2O (300 mL), and Η,ΝΟΗ HCI (55.2,0.80 mol) were dissolved together and NajCO3 (55.2 g, 0.53 mol) was added in small portions. The mixture was stirred at 23° for 14 h, most of the THF was evaporated in vacuo, adjusted to pH > 10 with 50% aq NaOH, extracted with
EtOAc(5 x 50 mL) and concentrated to a white foam. Triturated with hexane, filtered and the solid was dried in vacuo to afford 40.31 g of the title compound.
AP/P/ 9 7 / 0 1 0 08
-44P50437-1
AP 00999
The above residue was dissolved in EtOH (absolute, 1 L) and Raney Ni (50 mL of a slurry in EtOH) was added and the mixture· was reduced under H2 (50 psi) for 3.5 h. The catalyst was filtered off and washed with EtOH to afford. Concentration afforde 38.44g (96% overall) of the title compound as a colorless oil which solidified to a white solid upon standing at -20°.
e) 4-Fluorophenyl-tolylsulfonomethyIformamide
To a suspension Of p-toluenesulfinic acid sodium salt (30 g) in H2O (100 mL) was added methyl t-butyl ether (50 mL) followed by dropwise addition of cone HCI (15 mL). After stirring 5 min, the organic phase was removed and the aqueous phase was extracted with methyl t-butyl ether. The organic phase was dried (Na2SC>4) and concentrated to near dryness. Hexane was added and the resulting precipitate collected to afford-p-toluenesulfinic acid; yield 22 g.
p-Toluenesulfinic acid (22 g, 140.6 mmol), p-fluorobenzaldehyde (22 mL, 206 mmol), formamide (20 mL, 503 mmol) and camphor sulphonic acid (4 g, 17.3 mmol) were combined and stirred at 60 0 18 h. The resulting solid was broken up and stirred with a mixture of MeOH (35 mL) and hexane (82 mL) then filtered. The solid was resuspended in MeOH / hexanes (1:3, 200 mL) and stirred vigorously to break up the remaining chunks. Filtration afforded the title compound (27 g, 62 % yield): !H NMR (400 MHz, CDCI3) d 8.13 (s, IH), 7.71 (d, 2H), 7.43 (dd, 2H),
7.32 (d, 2H), 7.08 (t, 2H), 6.34 (d, IH), 2.45 (s, 3H).
f) 4-FluorophenyI-toIylsulfonomethylisocyanide
4-Fluorophenyl-tolyIsulfonomethylformamide (2.01g, 6.25 mmol) in DME (32 mL) was cooled to -10 °C. POCI3 (1.52 mL, 16.3 mmol) was added followed by the dropwise addition of triethyiamine (4.6 mL, 32.6 mmol) in DME (3mL) keeping the internal temperature below -5 °. The mixture was gradually warmed to ambient temperature over 1 h., poured into H2O and extracted with EtOAc. The organic phase was washed with sat aq NaHCO3, dried (Na2SO4), and concentrated. The resulting residue was triturated with petroleum ether and filtered to afford the title compound (1.7 g, 90% yield): !H NMR (CDCI3) d 7.63 (d, 2H), 7.33 (m, 4H), 7.10 (t, 2H), 5.60 (s, IH), 2.50 (s, 3H).
g) 2- Methoxypyrimidine-4-carboxaldehyde ri-t-butoxycarbonyl-4aminopiperidinel imine
The product of example 1(d) (0.308 g, 2.23 mmol), and the product of example 1(c) (0.468 g, 2.34 mmol) were combined in CH,C12 (50 mL) and stirred at
23 for 16h. Concentration afforded the title compound as a light orange foam. ^H
AP/P/ 9 7 / 0 1 0 08
-45P50437-1
AP 00999
NMR (CDCI3): d 8.56 (d, 1), 8.26 (s, 1), 7.57 (d, 1), 4.05 (s and m, 4), 3.5 (m, 2), 3.0 (m, 2), 1.75 (m, 4), 1.46 (s, 9).
h) 5-(2-Methoxy-4-pyrimidinvI')-4-(4-fluorophenyl)-l-f(l-t-butoxycarbonyl)-4piperidinyllimidazole
The product of the preceding example, DMF (5 mL), the product of example
1(f) (0.708 g, 2.23 mmol) and iC,CO3 (0.308 g, 2.23 mmol) were combined and stirred for 2 days, diluted with EtgO and filtered. The filtrate was concentrated under high vacuum to a brown solid. Trituration with Et2O and hexane (1:1, 200 mL) afforded the title compound as a tan solid. Crystallization from acetone/hexane afforded O.5O5g (64% from the product of example 4(c). ESP+ (Mass Spec) m/z 453 (MH+).
i) 5-(2-Methoxv-4-pyrimidinyl')-4-(4-fluorophenyI~)-l-(4-piperidinyI)inu.dazole The product of the preceding example (0.505g, 1.43 mmol), was added to ice cold TFA, under Ar. The resulting solution was warmed to 23° and stirred 1.5 h.
The TFA was removed'in vacuo the residue was dissolved in EtOAc and extracted into H2O (2 x 20 mL). The combined aqueous phases were layered with EtOAc and cooled to 4°, made basic by the addition of 10% aqueous NaOH and the aqueous was extracted with EtOAc (4 x 25 mL). The combined extracts were dried (Na2SO4) and concentrated to a white crystalline solid. Trituration of the solid with hexane afforded 165 mg of white solid. Evaporation of the above filtrate afforded an additional 133mg of slightly yellow crystals. Total yield 298 mg (59%). For the first crop of crystals: mp 159-160°.
Example 2
5z£24so4Pfopwiyz42^ynniidinyl)z4^4TluoiOphenyl)d2d^zpiEendinyl)imidazole_
a) 2-Methylthiopyrimidine-4-carboxaldehyde
The product of example 1(a) (9.96 g, 50 mmol), and 3 N HCI (42 mL,
126 mmol) were combined and stirred at 48° for 16h, cooled to 23°, combined with EtOAc (200mL) and made basic by the addition of solid NagCOg (12.6 g, 150 mmol). The aqueous phase was extracted with EtOAc (4 x 150 mL, dried (NagSOq), concentrated and the residue was filtered through a pad of silica (ca 150 mL) with CHgClg to afford 7.49 g (97%) of the title compound ^H NMR (CDCI3): δ 9.96 (s, l),8.77(d, 1), 7.44 (d, 1), 2.62 (s, 3).
AP/P/ 9 7 / 0 1 0 08
-46P50437-1
AP 00999
b) 2-Methylthiopyrimidine-4-carboxaldehyde 1 -t-butoxycarbonvl-4aminopiperidine imine
The product of the previous step (4.84 g, 31.4 mmol), MgSC>4 (ca 2 g), the product of example 1(d) (6.51 g, 32.6 mmol) and CH2CI2 (100 mL) were combined and stirred at 23 0 for 16 h. Filtration and concentration of the filtrate afforded the title compound as a yellow oil. NMR (CDCI3): δ 8.57 (d, 1), 8.27 (s, 1), 7.58 (d, 1), 4.05 (m, 2), 3.55 (m, 1), 3.00 (m, 2), 2.60 (s, 3), 1.75 (m, 4), 1.48 (s, 9).
c) 5-(2-Methylthio-4-pyrimidinyl)-4-( 4-fluorophenyl)-1 -if 1 -t-butoxvcarbonyl)4-piperidinyllimidazole
The product of the previous example and the product of example 1(f) (9.41 g,
32.6 mmol), DMF (64 mL) and K2CO3 (4.43 g, 32.4 mmol) were reacted by the procedure of example 1(h) to afford 9.07 g of product (62% from the product of example 1(a). MS ES+ m/z = 470 (MH+).
,! d) 5-(2-Methylsulfinyl-4-pyrimidinyl)-4-(4-fluorophenyl)-1 -ί( 1 -t15 butoxycarbonylM-piperidinynimidazole
The product of the previous example (4.69g, 10 mmol) was dissolved in
THF, cooled to -10° and oxone (6.14g, 10 mmol) in H2O (50 mL) was added dropwise (T < 5°). The resulting mixture was warmed to 20° over ca 50 min, poured into a vigorously stirred mixture of 10% aq NaOH (300 mL), ice (100 mL), and EtOAc (300 mL). The EtOAc was separated, dried (Na2SO4), and concentrated to a yellow oil. Flash chromatography (0-2% MeOH in CH2CI2) afforded 3.58g (74%). ESP+ (Mass Spec) m/z 486 (MH+).
e) 5-(2-iso-Propoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-1 -- [Υ 1 -tbutoxycarbonyD-4-piperidinyIlimidazole NaH (60% in mineral oil) was washed with dry THF and layered with more THF (5 mL) and anhydrous iso-propanol (1.15 ) mL) was added. When the bubbling subsided the resulting soln was recooled to 23° and the product of the previous example (0.58 g, 1.19 mmol) in THF (5 mL) was added dropwise. After 5 min the reaction was shaken with EtOAc (ca 100 mL) and H2O (50 mL) and the phases were separated and the EtOAc was dried and concentrated. The residue was crystallized from acetone/hexane to afford 335 mg of the title compound (58%). MS ES+ m/z = 482 (MH+).
f) 5-f2-iso-Propoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-1-(4piperidinyDimidazole The product of the preceeding example (325 mg, 0.68 mmol) was treated with TFA by the procedure of example l(i). The crude product was crystallized from Et2O/hexane to afford 106 mg (41%) of white crystals, mp = 121 122°.
AP/P/ 9 7 / 0 1 0 08
-47P50437-1
AP 00999
Example 3
5-f2-Hydroxy-4-pyrimidinyl~)-4-f4-fluorophenyl~)-l-('4-piperidinyl)imidazole trifluoroacetate
a) 5-f2-Methylsulfonyl-4-pyrimidinyl)-4-f4-fluorophenyl)-1-ΓΠ -tbutoxycarbonyfl^-piperidinyllimidazole
The product of example 2(c) (9.07 g, 19.3 mmol), dissolved in THF was cooled to -10° and oxone (28.5g, 46.4 mmol)in H2O (250 mL)was added dropwise.
The resulting mixture was stirred at 23° for 24h, combined with ice (100 mL) and 10 CH2CI2 and washed with brine (100 mL), dried (Na2SC>4), concentrated and dried in vacuo to afford 8.27 g (85%). MS ES+ m/z = 502 (MH+).
b) 5-(2-Hydroxy-4-pyrimidinyl)-4-('4-fluorophenyl~)-1 -Γ( 1 -t-butoxycarbonvl)-4piperidinyll imidazole ’
The product of the previous example (141 mg, 0.28 mmol) was dissolved in 15 THF (5 mL) to which was added 50% aq NaOH (150 uL, ca 1.8 mmol). The soln was stirred for 3 days and a precipitate formed. The solid was filtered off, washed with THF, and dried in vacuo to afford the title compound. MS ES+ m/z = 440 (MH+).
5-(2-Hydroxy-4-pyrimidinyl)-4-f4-fluorophenyl)-l-(4-piperidinyl)imidazole 20 c) The product of the previous example and TFA (3 mL) were combined and stirred for 30 min, concentrated and the residue was triturated with Et20 and filtered and the white solid was washed with Et2O, dried in vacuo to afford 114 mg (90% of monoTFA salt from the product of example 3(a). mp = 80 - 110° (dec).
Example 4
5-(2-Methoxy-4-pyridinyl')-4-f4-fluorophenyl) -l-(4-piperidinyl)imidazole
a) 2-Chloropyridine-4-carboxaldehyde l-t-butoxycarbonyl-4-aminopiperidine imine
2-Chloropyridine-4-carboxaldehyde was prepared as described in the patent 30 literature (WPI Acc. No. 88-258820/37) whose disclosure is incorporated by reference in its entirety herein. This aldehyde was reacted with the product of example 1(d) by the procedure of example 1(g) to afford the title compound as a yellow oil, apparently a mixture of imine isomers based on NMR.. ^H NMR (CD3CI): 5 8.49, 8.35 (2d, IH), 8.22, 8,21 (2s, 1), 7.57, 7.29 (2s, IH), 7.45, 7.12 (2d,
IH), 2.93 (m, 1), 2.70 (m, 3), 1.64 (m, 3), 1.42, 1.40 (2s, 9), 1.17 (m, 2).
b) 5-('2-Chloro-4-pyridinvl) 4-(4-fluorophenyf)-1 -(1 -t-butoxycarbonvlpiperidin4-yl)imidazole
APIPI 9 7 / 0 1 0 08
-48P50437-1
,)
ΑΡ 00999
The product of example 4(a) was reacted with the product of example 1(f) by the procedure of example 1(h). The crude product was filtered through silica eluting with 0 - 2% MeOH in CH2CI2 to afford the title compound as a light yellow solid. MS ES+ m/z = 457,459 (MH+).
c) 5-f2-Methoxy-4-pyridinyl') 4-(4-fluorophenyl)-1 -(1 -t-butoxycarbonyl piperidin-4-yllimidazoIe
The product of the preceeding example (l.Og, 2.19 mmol) was dissolved in 25% NaOMe in MeOH (20 mL) and heated to reflux for 1 h, cooled and combined with H2O and extracted with EtOAc (2x). The extracts were dried (Na2SO4) and concentrated. The residue was flash chromatographed (0 - 30% EtOAc in hexane) afforded 300 mg (32%) of the. title compound as a brown solid.
Crystals from acetone/hexane. MS ES+ m/z = 453 (MH+).
d) 5-(2-Methoxy-4-pyridinyl)-4-(4-fluorophenyl') -l-(4-piperidinyl)imidazole
The product of the previous example was reacted by the procedure of example 1 (i). The crude product was triturated with 1:10 Et2O/hexane filtered and dried in vacuo to afford the title compound as a white solid. mp=136 - 137.
Example 5
5-(2-fro-Propoxy-4-pyridinyn-4-(4-fluorophenyl') -l-(4-piperidinyl)imidazole
The product was prepared by the procedure of Example 4 substituting sodium isopropoxide and isopropanol for sodium methoxide and methanol. MS ES+ m/z = 381 (MH+).
0 I 0 / L 6 /d/dV
Example 6
5-(2-Methylthio-4-pyrimidinyl')-4-(4-fluorophenyD-l-(4-piperidinyl')imidazole
The product of example 2(c) was reacted by the procedure of example l(i) to afford the title compound, mp = 182 - 183°.
Example 7
5-(2-Methylthio-4-pyrimidinyl)-4-( 4-fIuorophenyP-1 -Γ( 1 -methyD-4piperidinyllimidazole
a) 2-Methylthiopyrimidine-4-carboxaldehyde l-methyl-4-aminopiperidine imine
The product of example 2(a) was reacted with 1-methyl 4-amino piperidine by the procedure of example 2(b) to afford the title compound.
b) 5-f 2-Methylthio-4-pyrimidiny 1)-4-( 4-fluorophenyl)-1 - if 1 -methv 1)-4piperi dinv 11 imidazole
-4935
P50437-1
AF 00999
The product of the previous example was reacted with the product of example 1(f) by the procedure of example l(i) to afford the title compound, mp = 181 - 182°.
Example 8
5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole
a) 5-( 2-Ethoxy-4-pyrimidinyl)-4-(4-fluoropheny 1)-1 -f (1 -t-butoxycarbonvl )-4piperidinyHimidazole The title compound was prepared by the method of example 2(e) except that anhydrous EtOH was used in place of 2-propanol.
b) 5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole
The· product of the proceeding example was treated with TFA by the procedure of example l(i) to afford the title compound as white crystals, mp = 128 129.
Ί 25
Example 9
-(1 -Ethylcarboxylpiperidin-4-yl)-3-( 4-thiomethylphenyl)-5-f2(thiomethyBpyrimidin-4-yl1-imidazole
a) 4-Thiomethylphenyl-tolysulfonomethylisocyanide
The titled compound was prepared using the proceedures 1 (e) & (f) substituting 4thiomethylbenzaldhyde for 4-fluorobenzaldehyde.
b) 2-Thiomethylpyrimidine-4-carboxaldehyde[ 1 -ethoxycarbonyl-4aminopiperidine]imine
The titled compound was prepared using the proccedure of example 2 (b) substituting the commercially available l-ethoxycarbonyl-4-aminopiperidine for 1-tbutoxycarbonyl-4-aminopiperidine
c) l-(l-Ethylcarboxylpiperidin-4-yl)-3-(4-thiomethylphenyl)-5-[2(thiomethyl)pyrimidin-4-yl]-imidazole4-thiomethylphenyltolysulfonomethylisocyanide (9.0g, 29.2 mmol) and 2-thiomethylpyrimidine-4carboxaldehyde[l-ethoxycarbonyl-4-aminopiperidine] imine (7.0g, 22.1 mmol) allowed to react according to the proceedure of example 1 (h). Upon completion of the reaction most of the DMF was evaporated in high vacuo, the remaining solution poured into water and extracted with EtOAc. The extracts were washed with water, brine, dried (Na2SO4), filtered, concentrated, and flash chromatographed (60%
EtOAc/hexane) to yield the titled compound (4.0g, 38.5% yield). ESP+ (Mass Spec) m/z 471 (MH+).
AP/P/ 97 / 0 1 0 08
-50P50437-1
AP 00999
Example 10 l-('l-Ethylcarbonylpiperidine-4-yl)-4-f4-methylsulfinyIphenyI')-5-r2-methylsuIfinylpyrimidin-4-yll imidazole
The product of the previous example (2g, 4.26mmol) was dissolved in THF cooled 5 to -10° and OXONE (3.3g, 8.52mmol) in water (10 ml) was added dropwise (T <
5°). The resulting mixture was warmed to 20° over 50 mins, poured into a vigorously stirred mixture of 10% aq NaOH (150 ml), ice (100 ml), and EtOAc was separated, dried (NaoSOzj.), and concentrated to a yellow solid. Recristallized from
EtOAc/hexhane (1:10) to afford the titled compound (80mg). ESP+ (Mass Spec) m/z
502 (MH+).
All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.
The above description fully discloses the invention including preferred embodiments thereof. Modifications and improvements of the embodiments specifically disclosed herein are within the scope of the following claims. Without further elaboration, it is believed that one skilled in the are can, using the preceding description, utilize the present invention to its fullest extent. Therefore the Examples herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.
Claims (21)
- What is Claimed Is:1. A compound represented by the formula :Rl is a 4-pyrimidinyl ring which is substituted with a Cj-4 alkoxy and is additionally optionally substituted independently by Cl.4 alkyl, halogen, hydroxyl, Cl.4 alkoxy, Ci-4alkylthio, Ci-4 alkylsulfinvl, CH?ORi2, amino, mono and di- Ci-6 alkyl substituted amino, N(Rio)C(0)Rc or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR15;R4 is phenyl, naphth-l-yl or naphth-2-yl, or a heteroaryl, which is optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4phenyl, 4-naphth-l-yl, 5-naphth-2-yl or 6-naphth-2-yl substituent, is halogen, cyano. nitro, C(Z)NR7Ri7, C(Z)ORi6, (CRl0R20)vCORl2, SR5, SOR5, OR12, halosubstituted-Ci-4 alkyl, Cj-4 alkyl, ZC(Z)R]2, NRioC(Z)Ri6, or (CRioR20)vNRioR20 and which, for other positions of substitution, is halogen, cyano, C(Z)NRi3Ri4,). C(Z)OR3, (CRioR20)mCOR3, S(O)mR3, OR3, halo-substituted-C 1.4 alkyl, Cj-4 J alkyl, (CRioR2o)mNRloC(Z)R3, NRi0S(O)m'R8, NRioS(0)m'NR7Rl7, ZC(Z)R3 or (CRioR2O)mNRl3Rl4; v is 0, or an integer having a value of 1 or 2; m is 0, or the integer 1 or 2;m' is an integer having a value of 1 or 2,. m is 0, or an integer having a value of 1 to 5;R2 is an optionally substituted heterocyclyl, or an optionally substituted heterocyclylCi - i 0 alkyl moiety ;-527 lfi AP 00999Z is oxygen or sulfur;Rc is hydrogen, Ci_6 alkyl, C3_7 cycloalkyl, aryl, arylCi.4 alkyl, heteroaryl, heteroarylCi_4alkyl, heterocyclyl, or heterocyclylCi-4alkyl Cl-4 alkyl;R3 is heterocyclyl, heterocyclylCi-10 alkyl or Rg;R5 is hydrogen, Cl.4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moieties -SR5 being -SNR7R17 and -SOR5 being -SOH;R7 and R17 is each independently selected from hydrogen or Cl.4 alkyl or R7 and R17 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR 15;Rg is Cl-ίο alkyl, halo-substituted Cl_l0 alkyl, C2-10 alkenyl, Cg-lO alkynyl, C3.7 ) cycloalkyl, C5-7 cycloalkenyl,-aryl, arylCi-10 alkyl, heteroaryl, heteroarylCi-io alkyl, (CRioR20)nORll, (CRioR20)nS(0)mRi8, (CRioR20)nNHS(0)2Ri8, (CRioR2O)nNRl3Rl4; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl may be optionally substituted;n is an integer having a value of 1 to 10;R9 is hydrogen, -C(Z)Ri 1 or optionally substituted Cj-io alkyl, S(O)2Rl8, optionally substituted aryl or optionally substituted aryl-Cj-4 alkyl;RjO and R20 is each independently selected from hydrogen or Cl .4 alkyl;Rl 1 is hydrogen, Cj-10 alkyl, C3-7 cycloalkyl, heterocyclyl, heterocyclyl Cl-ioalkyl, aryl, arylCl-10 alkyl, heteroaryl or heteroarylCi-io alkyl;Rf 2 is hydrogen or R16;Rl3 and R14 is each independently selected from hydrogen or optionally substituted Cj .4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;Rl5 is Rio or C(Z)-Cj-4 alkyl;Rl6 is Ci-4 alkyl, halo-substituted-Ci-4 alkyl, or C3-7 cycloalkyl;-53AP Ο Ο 9 9 9Rig is Cl_lo alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclylCi-ioalkyl, heteroaryl or heteroarylalkyl;or a pharmaceutically acceptable salt thereof.
- 2. The compound according to Claim 1 wherein Ri is substituted with an isopropoxy, ethoxy, or methoxy group.
- 3. The compound according to Claim 1 wherein R4 is an optionally substituted phenyl.
- 4. The compound’according to Claim· 3 wherein the phenyl is substituted one or more times independently by halogen,-SR5, -S(O)R5, -ORl2, halo-substituted-Ci-4 alkyl, or ,Ci-4alkyl.)
- 5. The compound according to.Claim 1 wherein R2 is morpholino propyl, piperidine, N-methylpiperidine, N-benzylpiperidine, or 2,2,6,6-tetramethylpiperidine.
- 6. The compound according to Claim 1 which is:l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-isopropoxy-4-pyrimidinyl) imidazole; l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole; or 5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-1 -(4-piperidinyl)imidazole;or a pharmaceutically acceptable salt thereof.1
- 7. A pharmaceutical composition comprising a compound according to any of Claims 1 ) to 6 and a pharmaceutically acceptable carrier or diluent.
- 8. A pharmaceutical composition comprising l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-isopropoxy-4-pyrimidinyl) imidazole;1 -(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole; or 5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-1 -(4-piperidinyl)imidazole;or a pharmaceutically acceptable salt thereof, and a a pharmaceutically acceptable carrier or diluent.-54AP 00999
- 9. A method of treating a CSBP/RK/p38 kinase mediated disease, in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I) according to any of Claims 1 to 7.
- 10. The method according to claim 9 wherein the disease is psoriatic arthritis. Reiter's syndrome, rheumatoid arthritis, gout, gouty arthritis, traumatic arthritis, rubella arthritis and acute synovitis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic condition, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcososis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis.·, glomerularonephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, eczema, contact dermititis, psoriasis, sunburn, or conjunctivitis.
- 11. A process for preparing a compound of Formula (I) as defined in Claim 1 which comprises reacting a compound of the Formula (II) :Ar-S(O)p (Π)J with a compound of the Formula (III):RtNR (HI) wherein p is 0 or 2; and a base strong enough to deprotonate the isonitrile moiety of Formula (II); and R|, R2 and R4 are as defined in Claim 1 or are precursors of the groups Rj, R2 and R4 and Ar is an optionally substituted phenyl group, and thereafter if necessary, converting a precursor of Rp R2 and R4 to a group R|, R2 and R4.-55AP 00999
- 12. The process according to Claim 11 wherein p=0, and TBD is the base.
- 13. The process according to Claim 11 wherein p=2, and the base is an amine, a carbonate, a hydride, or an alkyl or aryl lithium reagent.
- 14. The process according to Claim 11 wherein the imine of Formula (III), is isolated prior to reaction with Formula (II).
- 15. The process according to Claim 11 wherein the imine of Formula (III), is formed in situ prior to reaction with Formula (II).
- 16. The process according to Claim 15 wherein the imine is formed in situ by reacting an aldehyde of the formula Rj CHO, wherein Ri is as defined for Formula (I), with a primary amine of the formula R2NH2, wherein R2 is as defined for Formula (I).
- 17. The process according to Claim 16 wherein formation of the imine in situ utilizes dehydrating conditions.
- 18. The process according to Claim 15 which further comprises a solvent which is N,N-dimethylformamide (DMF), a halogenated solvent, tetrahydro furan (THF), dimethylsulfoxide (DMSO), an alcohol, benzene, toluene, or DME.
- 19. The process according to Claim 16 wherein the aldehyde Rj CHO is a pyrimidine aldehyde of the formula:X whereinX is C1.4 alkoxy, and Xp is hydrogen, or is defined as the optional substituent group on the R] moiety in Formula (I) according to Claim 1, to yield a compound of Formula (I) or a pharmaceutically acceptable salt thereof. ,-56AP 00999
- 20. The process according to Claim 19 wherein the primary amine R2NH2 is R? is piperidine, l-Formyl-4-piperidine, 1 -benzyl-4-piperidine, 1 -methyl-4-piperidine, 1 -ethoxycarbonyl-4-piperidine, 2,2,6,6-tetramethyl-4-piperidine, morpholino ethyl, morpholino propyl, pyrrolidinyl propyl, or piperidinyl propyl.
- 21. The process according to Claim 18 wherein the compound is:l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-isopropoxy-4-pyrimidinyl) imidazole l-(4-Piperidinyl)-4-(4-Fluorophenyl)-5-(2-methoxy-4-pyrimidinyl) imidazole; or5-(2-Ethoxy-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole; or a pharmaceutically acceptable salt thereof.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US1997/000529 WO1997025046A1 (en) | 1996-01-11 | 1997-01-10 | Novel substituted imidazole compounds |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AP9701008A0 AP9701008A0 (en) | 1997-07-31 |
| AP999A true AP999A (en) | 2001-08-11 |
Family
ID=3460732
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| APAP/P/1997/001008A AP999A (en) | 1997-01-10 | 1997-06-09 | Novel substituted imidazole compounds. |
Country Status (1)
| Country | Link |
|---|---|
| AP (1) | AP999A (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996021452A1 (en) * | 1995-01-09 | 1996-07-18 | Smithkline Beecham Corporation | Certain 1,4,5-tri-substituted imidazole compounds useful as cytokine |
-
1997
- 1997-06-09 AP APAP/P/1997/001008A patent/AP999A/en active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996021452A1 (en) * | 1995-01-09 | 1996-07-18 | Smithkline Beecham Corporation | Certain 1,4,5-tri-substituted imidazole compounds useful as cytokine |
Also Published As
| Publication number | Publication date |
|---|---|
| AP9701008A0 (en) | 1997-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU726084C (en) | Novel substituted imidazole compounds | |
| US5739143A (en) | Imidazole compounds and compositions | |
| EP0900083B1 (en) | Novel substituted imidazole compounds | |
| AP1270A (en) | Certain 1, 4, 5-Tri-substituted imidazole compounds useful as cytokine. | |
| EP0831830B1 (en) | Imidazole compounds | |
| US6329526B1 (en) | Cycloalkyl substituted imidazoles | |
| US5929076A (en) | Cycloalkyl substituted imidazoles | |
| EP0999842A1 (en) | Novel substituted imidazole compounds | |
| EP0883402A1 (en) | Novel cycloalkyl substituded imidazoles | |
| AP999A (en) | Novel substituted imidazole compounds. | |
| AU763507B2 (en) | Novel substituted imidazole compounds | |
| AU699646C (en) | Imidazole compounds | |
| HK1022624B (en) | Novel substituted imidazole compounds | |
| HK1052690A (en) | Process for the preparation of tosylbenzylformamides | |
| HK1057540A (en) | Pyridyl and pyrimidinyl imines as intermediates for imidazole derivatives |