AP415A - Recombinant tospovirus DNA constructs and plants comprising such constructs. - Google Patents

Recombinant tospovirus DNA constructs and plants comprising such constructs. Download PDF

Info

Publication number
AP415A
AP415A APAP/P/1993/000496A AP9300496A AP415A AP 415 A AP415 A AP 415A AP 9300496 A AP9300496 A AP 9300496A AP 415 A AP415 A AP 415A
Authority
AP
ARIPO
Prior art keywords
rna
sequence
seq
viral
ser
Prior art date
Application number
APAP/P/1993/000496A
Other versions
AP9300496A0 (en
Inventor
Grinsven Martinus Quirinus Joseph Marie Van
Haan Petrus Theodorus De
Johannes Jacobus Ludgerus Gielen
Dirk Peters
Robert Willem Goldbach
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag filed Critical Novartis Ag
Publication of AP9300496A0 publication Critical patent/AP9300496A0/en
Application granted granted Critical
Publication of AP415A publication Critical patent/AP415A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/12011Bunyaviridae
    • C12N2760/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Recombinant Impatiens Necrotic Spot Virus (INSV) DNA constructs

Description

-' IMPROVEMENTS IN OR RELATING TO ORGANIC COMPOUNDS o
The present invention relates to. plants having reduced susceptibility to infection from tospoviruses, genetic material capable of generating tolerance to tospoviruses , probes suitable for isolating and diagnosing , and processes for obtaining such plants and genetic material and probes .
Viral infections in plants are frequently responsible for detrimental effects in growth, undesirable morphological changes , decreased yield and the like. Such infections often result in a higher susceptibility to infection in infected plants to other plant pathogens and plant pests.
' Transmission of plant viruses generally occurs via insect or fungal carriers or may occur through mechanical means.
c
Plant breeders continuously look to develop varieties of crop plant species tolerant to or resistant to specific virus strains. In the past , virus resistance conferring genes have been transferred from wild types related to commercial plants into commercial varieties through breeding. The transfer of an existing resistance in the wild from the wild type gene pool to a cultivar is a tedious process in which the resistance conferring gene(s) must first be identified in a source (donor) plant species and then combined into the gene pool of a commercial variety. Resistance or tolerance generated in this way is typically active only against one or at best a few strains of the virus in question . One disadvantage of breeding cultivars
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3 for resistance to a particular virus species is that there is often a lack of a gene source suitable for conferring disease resistance within the crop species.
Other approaches to limit the effect of virus induced disease on plants include the use of chemicals such as insecticides, fungicides and the like which act against virus carriers , and/or rely on the employment of preventative methods such as efficient phytosanitary working conditions . However, the use of chemicals to combat virus disease by killing the carrier is' subject to increasingly tougher governmental regulations which present growers with a decreasing scala of permitted chemical plant-protectants.
In an alternative , a system referred to as crossprotection may be employed . Cross-protection is a phenomenon in which infection of a plant with one strain of a virus protects that plant against superinfection with a second related virus strain. The cross-protection method preferentially involves the use of avirulent virus strains to infect plants , which act to inhibit a secondary infection with a virulent strain of the same virus. However, the use of a natural cross-protection system can have several disadvantages. The method is very labour intensive because it requires inoculation of every plant crop , and carries the risk that an avirulent strain may mutate to a virulent strain, thus becoming a causal agent for crop disease in itself. A further possible hazard is that an avirulent virus strain in one plant species can act as a virulent strain in another plant species.
Several studies have indicated that the viral coat protein of the protecting virus plays an important role in crossprotection and that protection occurs when the resident virus and the challenging virus have the same or closely related coat protein structures.
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Recent developments in gene manipulation and plant transformation techniques have given rise to new methods for generating virus resistance in plants. Genetically engineered cross-protection is a form of virus resistance which phenotypically resembles natural cross-protection , but is achieved through the expression of genetic ( information of a viral coat protein from the genome of a genetically manipulated plant . Generation of virus resistance via genetic engineering has been described in for instance , EP 223 452 and reported by Abel et al [(1986) Science 232:738-743] . It was shown that expression of the tobacco mosaic virus strain Ul (TMV-Ul) coat protein gene from the genome of a transgenic plant resulted in a delay of symptom development after infection with any TMV strain. Similar results with respect to coat protein-mediated protection have also been obtained for alfalfa mosaic virus (AMV), potato virus X (PVX) and cucumber mosaic virus (CMV).
Although TMV, CMV, AMV and PVX belong to different virus
C groups, they share a common architecture: in all such viruses the viral RNA is a positive strand RNA encapsidated ( by a viral coat consisting of many individual but identical viral coat proteins.
(.
However , tospoviruses are essentially different from the plant viruses mentioned above. The genus tospovirus belongs to the family Bunyaviridae. All tospoviruses are transmitted by thrips. The virus particles are spherical in shape (80120 nm in diameter) and contain internal nucleocapsids surrounded by a lipid envelope studded with glycoprotein surface projections. The multipartite genome consists of linear single stranded RNA molecules of negative or ambisense polarity. The terminal nucleotides of these RNA molecules are characterised by a consensus sequence as follows: 5' AGAGCAAUX....................GAUUGCUCU 3', wherein X is C or U . Members of the tospovirus group include tomato spotted wilt virus (TSWV), Impatiens necrotic
BAD ORIGINAL ft
AP Ο Ο Ο 4 Ο 3
spot virus (INSV), and tomato chlorotic spot virus (TCSV), also known as tomato mottled spot virus (TMSV) or TSWV-like isolate BR-O3. A general description of a tospovirus, using TSWV as a representative of the genus tospoviruses can be found in our co-pending application EP 426 195 herein incorporated by reference .
The tospovirus particle contains at least 4 distinct structural proteins: an internal nucleocapsid protein N of 29 kd and two membrane glycoproteins: Gl, approximately 78 kd, and G2 approximately 58 kd. In addition, minor amounts of a large protein, L, approximately 260 kd have been detected in virus particles. Tospoviral genomes consist of three linear single stranded RNA molecules of about 2900 nucleotides (nt) (S RNA) , about 5000 nt , (M RNA) and about 8900 nt (L RNA) , each tightly associated with nucleocapsid proteins and a few copies of the L> protein to form circular nucleocapsids. A schematic structure outlining most properties of an INSV is given in Figure 1. Based on the above and other properties , INSV (like TSWV) has been classified as a member of the tospovirus genus.
Circumstantial evidence has been presented which suggests that an M RNA encoded gene is directly or indirectly involved in the synthesis of the Gl membrane glycoprotein [Verkleij and Peters ,(1983) J. Gen. Virol. 64:677-686] .
As mentioned above, tospoviruses such as TSWV , INSV and the like are transmitted by certain species of thrips. These tospovirus carriers belong to the family Tripidae and include tobacco thrips (Frankliniella fusca (Hinds.),, western flower thrips (F. occidentalis (Pergande)), common blossom thrips (F. Schultzei (Trybom)), chilli thrips (Scirtothrips dorsalis (Hood)), Thrips setosus (Moulton), onion thrips (T. tabaci (Lindeman, ), F. intonsa and melon thrips (T. palmi (Karny)). The tospovirus is acquired by
AP Ο Ο Ο 4 Ο 3 the virus before they pupate but adults more commonly transmit the virus. Adult thrips can remain infective throughout their lives .
Tospoviruses are widespread in temperate, subtropical and tropical climate zones throughout the world . The current distribution of tospoviruses covers all continents and makes them one of the most widely distributed of groups of plant viruses. At least 370 plant species representing 50 plant * J families, both monocotyledons and dicotyledons , are
-—i naturally infected by tospoviruses of the Bunvaviridae.
Tospoviruses seriously affect the production of food and ornamental crops . Symptoms of tospovirus infection in plants include stunting, ringspots, dark purple-brown sunken spots, stem browning, flower breaking, necrotic and pigmental lesions and patterns, yellows and non-necrotic mottle, mosaic in greens or even total plant death. Most plant hosts display only a few of these symptoms, however, the wide range of symptoms produced by tospovirus infection has complicated diagnosis of the disease and has led to individual diseases being given several different names . A further complication is that tospovirus symptoms within the same plant species may vary depending on the age of the plant, time of infection during the life-cycle of the plant , nutritional levels , environmental conditions, such as temperature , and the like.
Although TSWV has been known for many years, is widely distributed, and is the causal agent of a disease which leads to significant loss in yield in crops and ornamentals, limited progress has been made in identifying sources of genes capable of conferring resistance to TSWV or other tospoviruses . A monogenic TSWV tolerance has been identified in Lycopersicon peruvianum, but this trait has not been transferred to cultivated tomatoes so far , nor has a resistance source been identified for other crop species . The use of natural cross-protection systems to
BAD ORIGINAL
AP Ο Ο Ο 4 0 J decrease the invasive effects by tospovirus strains capable of causing damage is not well documented. Limited positive results have been reported for tomato and lettuce.
The introduction of genetic information capable of conferring resistance or tolerance to tospoviruses into plant gene pools by means of genetic manipulation provides the breeder and grower alike with a new method for combatting tospovirus induced disease. In particular, it has been found that genetic manipulation techniques may be employed to confer resistance to INSV related disease in plants .
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Detailed Description
According to the present invention there is provided a recombinant INSV DNA construct comprising a DNA sequence coding for transcription into
a) an RNA sequence of an INSV or an RNA sequence homologous thereto ;
b) an RNA sequence of an INSV or an RNA sequence homologous thereto capable of encoding for an INSV protein or a part thereof , in which one or more codons have been replaced by synonyms , or an RNA sequence homologous thereto ; or
c) an RNA sequence complementary to an RNA sequence according to a) or b) , which INSV DNA is under expression control of a promoter capable of functioning in plants and includes a terminator
V ' capable of functioning in plants.
(
The DNA sequences defined under a), b) and c) above, for the purposes of the present invention will be referred to as INSV Related DNA Sequences hereinafter. An INSV Related DNA Sequence according to the invention may be modified as appropriate to create mutants or modified sequences homologous to such INSV Related DNA Sequences from which they are derived, using methods known to those skilled in the art such as site-directed mutagenesis and the like. Such mutants or modified coding sequences are embraced within the spirit and scope of the invention.
The term RNA sequence of an INSV may refer to a sequence of the S, M or L RNA strand, preferably an S or M
AP Ο Ο Ο 4 Ο 3
The term Η RNA sequence homologous to an RNA sequence of an INSV refers to an RNA sequence of an INSV wherein a number of nucleotides have been deleted and/or added but which is still capable of hybridization to a nucleotide sequence complementary to an RNA sequence of an INSV under appropriate hybridization conditions. For the purposes of the present invention appropriate hybridization conditions may include but are not limited to , for example , an incubation for about 16 hours at 42’C , in a buffer system comprising 5 x standard saline citrate (SSC) , 0.5% sodium dodecylsulphate (SDS) , 5 x Denhardt ’ s solution , 50% formamide and 100 gg/ml carrier DNA· (hereinafter the buffer
Sx- system) , followed by washing 3x in buffer comprising 1 x
SSC and 0.1% SDS at 65'C for approximately an hour each time .
Preferably , hybridization conditions employed in the present invention may involve incubation in a buffer system for about 16 hours at 49'C and washing 3x in a buffer comprising 0.1 x SSC and 0.1% SDS at 55-C for about an hour each time . More preferably , hybridization conditions may involve incubation in a buffer system for about 16 hours at 55‘C and washing 3x in a buffer comprising 0.1 x SSC and 0.1% SDS at 65’C for approximately an hour each time .
The length of the INSV Related DNA Sequence will i.a. depend on the particular strategy to be followed , as will become apparent from the description hereinafter . In general , the INSV Related DNA Sequence may comprise at least 20 , and suitably 50 or more nucleotides .
The term promoter refers to the nucleotide sequence upstream from the transcriptional start site and which contains all the regulatory regions required for transcription, including the region coding for the leader sequence of mRNA (which leader sequence comprises the
BAD ORIGINAL ft
AP Ο Ο Ο 4 Ο 3 ribosomal binding site and initiates translation at the AUG start codon) .
Examples of promoters suitable for use in DNA constructs of the present invention include viral, fungal, bacterial, animal and plant derived promoters capable of functioning in plant cells. The promoter may express the DNA constitutively or differentially . Suitable examples of promoters differentially regulating DNA expression are promoters inducible by disease carriers, such as thrips, e.g. so-called wound-inducible promoters. It will be j-- appreciated that the promoter employed should give rise to the expression of an INSV Related DNA Sequence at a rate sufficient to produce the amount of RNA necessary to decrease INSV susceptibility in a transformed plant. The required amount of RNA to be transcribed may vary with the type of plant. Particularly preferred promoters include the cauliflower mosaic virus 35S (CaMV 35S) promoter, derivatives thereof, and a promoter inducible after wounding by a disease carrier such as thrips, e.g. a wound inducible promoter. Examples of further suitable promoters include nopaline synthase, octopine synthase and the like.
c
The term terminator refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription . Terminators are DNA 3 ‘ -non-translated sequences that contain a polyadenylation signal, that causes the addition of polyadenylate sequences to the 3 1 end of a primary transcript. Terminators active in plant cells are known and described in the literature. They may be isolated from bacteria, fungi, viruses, animals and/or plants. Examples of terminators particularly suitable for use in the DNA constructs of the invention include the nopaline synthase terminator of A. tumefaciens, the 35S terminator of CaMV and the zein terminator from Zea mays.
BAD ORIGINAL
AP 0 0 0 4 0 3
In accordance with the present invention , an RNA sequence is complementary to another RNA sequence if it is able to form a hydrogen-bonded complex therewith , according to rules of base pairing under appropriate hybridization conditions (as described hereinabove) .
The present invention also provides a vector capable of introducing the DNA construct of the invention into plants and methods of producing such vectors.
o
The term vector as employed herein refers to a vehicle with which DNA constructs of INSV or fragments thereof may be incorporated into the cells of a host organism.
The term plants refers to differentiated plants as well as undifferentiated plant material such as protoplasts, plant cells, including cybrids and hybrids, seeds, plantlets and the like which under appropriate conditions can develop into mature plants , progeny thereof and parts thereof such as cuttings , fruits of such plants and the like.
/
The invention further provides plants comprising in their C genome a DNA construct of the invention, and methods of producing such plants. Such methods include plant breeding, plantlets derived from protoplast fusion and the like.
The plants according to the invention have reduced susceptibility to diseases induced by INSV or diseases related to INSV infection and suffer from substantially fewer or none of the disadvantages and limitations of plants obtained by classical methods as mentioned hereinabove.
Many types of plants are susceptible to INSV infection however only in some types is INSV infection known to give
APΟ 00 4 0 J
Such types of plants include the ornamental or flowering plants. Examples of such plants include but are not limited to Ageratum , Amaranthus , Anthirrhinum , Aquilegia , 3egonia , Chrysanthemum , Cineraria , clover. Cosmos , cowpea , Cyclamen , Dahlia , Datura , Delphinium ,
Gerbera , Gladiolus , Gloxinia , Hippeastrum , Impatiens , Mesembryanthemum , petunia , Primula , Saint Paulia , Salpiglossis , Tagetes , Verbena , Viola , Vinca ,
Zinnia , Pelargonium and the like .
Other types of plants may be susceptible to INSV infection but these plants may not present disease symptoms directly associated with INSV infection, however such plants may present symptoms of a disease as a result of a secondary infection by a different organism made possible as a result of an initial infection by INSV. Such plants may therefore be viewed as being the subject of an INSV infection related disease and may include plants selected from a wider group of plant types. Further examples of this group of plant types may include vegetable and other crops . Such crop types include alfalfa , aubergine , beet , broad bean , broccoli , brussels sprouts , cabbage , cauliflower , celery , chicory , cow pea , cucumber , endive , gourd , groundnut , lettuce , melon , onion , papaya , pea , peanut , pepper , pineapple , potato , safflower , snap bean , soybean , spinach , squash , sugarbeet , sunflower , tobacco , tomato , water melon and the like .
The invention relates in particular to ornamental plants and preferably to those listed ornamental plants comprising in their plant genome a DNA construct of the invention.
The particular features of tospoviruses including those of INSV are illustrated hereinafter.
The S, M and L RNA are single stranded RNA molecules. The S RNA of INSV is about 3000 nucleotides long( SEQ. ID No.l ;
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
SEQ ID No. 2 ) and comprises two genes, one (SEQ ID No.3) encoding a non-structural protein (NSs) in viral sense, the other one (SEQ ID No.11) encoding the nucleocapsid protein (N) in viral complementary sense. The intergenic region between the NSs- and N-gene can be folded into a secondary structure (Seq ID No. 7 and SEQ ID No.8) . The 5'- and 3‘terminal sequences of the S RNA are capable of hybridizing to each other such that the first nucleotide is opposite (and complementary) to the last nucleotide of said S RNA strand . For the purposes of the description the doublestranded structure obtained by hybridizing both RNA termini (' will be referred to as a pan-handle (SEQ ID No.5 and SEQ
ID NO. 6) hereinafter.
The M RNA strand of INSV comprises about 5000 nucleotides (SEQ ID No. 14) . It contains at least two open reading frames, one encoding a non-structural protein (NSm) in viral sense ( SEQ ID No.15), and another open reading frame (SEQ ID No.21) in viral complementary sense. This open reading frame is translated on polysomes located on the endoplasmic reticulum where the nascent polypeptide chain is cleaved co-translationally to form the spike proteins G1 and G2 respectively. As with S RNA, the termini of the M RNA strand are complementary to each other and may likewise
C hybridize to form a pan-handle ( SEQ ID No.13 and SEQ
ID No.19).
The L RNA strand of INSV comprises about 8900 nucleotides. It contains complementary 3' and 5' ends for a length of from about 50 to about 80 nucleotides. The RNA has a negative polarity, with one open reading frame (ORF) located as the viral complementary strand. This ORF corresponds to a primary translation product of about 2875 amino acids in length with an anticipated Mw of between about 300,000 to about 350,000. Comparison with the polymerase proteins of other negative strand viruses indicates that this protein probably represents a viral
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Ο polymerase. In some mutant strains, shortened L RNA molecules have been found in addition to the wild type, full length L RNA. These shortened L RNAs however are observed to possess the characteristic terminal nucleotide sequences and thus are capable of forming “pan handle* structures. They are also encapsidated with nucleocapsid protein and are included in virus particles. Their presence suppresses symptom development resulting in less severe detrimental effect . Thus , these shortened L RNA molecules
L- can be regarded as defective interfering (DI) RNAs . A ς defective interfering RNA is one which is capable of interfering in replication by competing with other genomic RNAs for polymerases and therefore is capable of being replicated , and by so doing inhibits the replication and/or expression of other genomic RNAs with which it is competing .Thus , a DI RNA may comprise any RNA sequence which is capable of being replicated and may be an L , S , or M RNA within the context of the present invention . Such DI RNA sequences may comprise RNA sequences which have had nucleotides either deleted from or added thereto provided that they are capable of competing for polymerases and of £ replicating .
( A preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV RNA sequences of a pan-handle (SEQ ID No.5 , SEQ ID NO. 6 ; SEQ ID No. 18 , SEQ ID No. 19), or into INSV RNA sequences homologous thereto.
Another preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV-RNA sequences of an open reading frame in viral complementary sense i.e. having negative polarity , or into corresponding RNA sequences in which one or more codons have been replaced by their synonyms, or into RNA sequences
AP Ο Ο Ο 4 Ο 3
A further preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV-RNA sequences of a hairpin ( SEQ ID No.7 , SEQ ID No. 8 ; SEQ ID No. 13 , SEQ ID No. 16 ) , or into RNA sequences homologous thereto.
Preferably, the INSV-RNA sequence referred to hereinabove has at least 20 nucleotides. Preferably, the INSV-RNA sequence has at least 50 nucleotides.
Examples of DNA constructs suitable for use according to the invention include INSV-Related DNA Sequences coding for transcription into (reference is made to the sequence listing );
i) the viral S RNA nucleotide sequence from 1 to 3017 (SEQ. ID NO.1) ii) the viral S RNA nucleotide sequence from position 25 to 3017 (SEQ. ID No.2);
iii) the viral S RNA nucleotide sequence from 87 to 1436 (SEQ. ID NO.3);
iv) the viral S RNA nucleotide sequence from 2030 to
2868 (SEQ. ID No.4);
v) the viral S RNA pan-handle ’ structure comprising;
a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral S RNA
AP Ο Ο Ο 4 Ο 3
b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral S RNA
vi) the viral 2079; (SEQ S ID RNA No. nucleotide 7) sequence from 1437 to
vii) the viral s RNA nucleotide sequence from 1440 to
2041; (SEQ ID No. 8)
Q viii) the viral complementary S RNA nucleotide sequence from 1 to about 3017; (SEQ ID No.9) ix) the viral complementary S RNA nucleotide sequence from 1 to 2993; (SEQ ID No.10)
x) the viral complementary S RNA nucleotide sequence from 150 to 933; (SEQ ID No.11) xi) the S RNA nucleotide sequence from 1581 to 2930 of the viral complementary S RNA strand; (SEQ ID No.12);
c xii) the viral complementary S RNA secondary structure having a nucleotide sequence of 642 nucleotides from 939 to 1580; (SEQ ID No.13) xiii) S RNA nucleotide sequence from 87 to 1436 in which one or more codons have been replaced by their synonyms;
xiv) S RNA nucleotide sequence from 2080 to 2868 in which one or more codons have been replaced by their synonyms;
xv) the M RNA nucleotide sequence from 1 to 4970 (SEQ ID No.14);
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3 xvi) the Μ RNA sequence from 86 to 997 (SEQ ID No.15);
xvii) the M RNA sequence of the intergenic region from 998 to 1470 (SEQ ID No.16);
xviii) the M RNA 17) sequence from 1471 to 4884; (SEQ ID No.
xix) the M RNA pan-handle structure comprising ; a) a first nucleotide sequence of from about 30 to about
nucleotides in length from the 5' end of the viral M RNA and
b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral M RNA xx) the complementary viral M RNA sequence from 1 to 4970; (SEQ ID No.20)
O xxi) the complementary viral M RNA sequence from position 87 to position 3500 of the complementary viral M RNA sequence; ( SEQ ID No.21) xxii) the complementary viral M RNA sequence from position 3974 to 4885 (SEQ ID No.22) xxiii) rna sequences homologous to the nucleotide sequences defined under i) to xii) and xv, to xxii) hereinabove.
xxiv) fragments of sequences defined under i) to xxii)
AP ο Ο ο 4 Ο 3
Preferred INSV-Related DNA Sequences code for transcription into the RNA sequences according to sequences iv) to xii) and xv) to xxii) as defined above, or into RNA sequences homologous thereto, or into fragments thereof comprising at least 15 nucleotides, more preferably at least 20 nucleotides, and most preferably at least 50 nucleotides.
According to another preferred embodiment of the invention the DNA constructs of the invention comprise INSV Related θ DNA Sequences coding for transcription into a combination of the 5' and 3' terminal sequences (ie pan-handles) of
C viral S, M or L RNA respectively, more preferably of S or M
RNA, and most preferably of S RNA . Examples of S RNA and M RNA terminal sequences include
i) a first nucleotide sequence 36 nucleotides in length from the 5' end of the viral S RNA :
' AGAGCAATNN NNNNNNNNNN NNNNGAACAAC CCAAGC 3 ' (SEQ ID No.5 ie nucleotides from position 1 to 36 of SEQ ID No.l , where N stands for A,T,G,or
C C) c
and a second nucleotide sequence 36 nucleotides in length from the 3‘ end of the viral S RNA:
5' GATTATATG ATGTTATATT CGTGACACAA TTGCTCT 3' (SEQ ID No.6 ie nucleotides from position 2981 to 3017 of SEQ ID No.l) ii) a first nucleotide sequence of 36 nucleotides in length
AP Ο Ο Ο 4 Ο 3
51 AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAA 31 (SEQ ID No.18 ie nucleotides from position 1 to 36 of SEQ ID NO.13) and
b) a second nucleotide sequence 36 nucleotides in length from the 3' end of the viral M RNA
5' TGTTGTATGT AGAGATTTTG TTTGCACTGA TTGCTC T 3' (SEQ ID No.19 ie nucleotides from position 4941 to 4970 Of SEQ ID No. 13)
In the case of the terminus at the 5' end of the S RNA it is not known whether or not there are sixteen or seventeen nucleotides in the unknown region demarked by a series of N s , however the exact number of nucleotides in this region is not considered to be critical to the formation of pan-handle structures so long as the 5' end of the S RNA is capable of complementing the 3‘ end of the S RNA thus enabling the formation of a pan-handle structure .
The invention further provides probes suitable for use as diagnostic tools for the diagnosis of disease in plants suspected of being infected with INSV tospoviruses. Such probes comprise a labeled oligonucleotide (RNA or DNA) sequence complementary to an RNA sequence of an INSV tospovirus. The desired length of the sequence and appropriate method for diagnostic use of probes are known by those skilled in the art. A suitable probe may comprise a nucleotide sequence of at least 12 to about 800 nucleotides, preferably at least 15, more preferably more than 30 nucleotides, and most preferably from about 400 to bad ORIGINAL
AP Ο Ο Ο 4 Ο 3
600 nucleotides complementary to an RNA sequence of an INSV tospovirus .
Probes according to the invention are helpful in identifying INSV tospovirus RNA or parts thereof in infected plant material i.a. for diagnostic purposes prior to full presentation of disease symptoms in plants .
The invention accordingly also provides a diagnostic method of determining INSV tospovirus infection in plants which comprises detecting INSV tospovirus replicative forms employing the probes of the invention in dot-blot type assays .
Probes according to the invention are useful in the construction of and use of chimeric genes comprising a DNA sequence corresponding to an RNA sequence of an INSV tospovirus.
The DNA constructs of the invention may be obtained by insertion of an INSV Related DNA Sequence in an appropriate expression vector, such that the sequence is brought under expression control of a promoter capable of functioning in plants and its transcription is terminated by a terminator capable of functioning in plants.
The term “appropriate expression vector as used herein refers to a vector containing a promoter region and a terminator region which are capable of functioning in plant cells.
The insertion of an INSV Related DNA Sequence into an appropriate expression vector may be carried out in a manner known per se. Suitable procedures are illustrated in
Likewise the construction of an appropriate expression vector may be carried out in a manner known per se.
AP000403
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Plants according to the invention may be obtained by
a) inserting into the genome of a plant cell a DNA construct as hereinbefore defined;
b) obtaining transformed cells; and
c) regenerating from the transformed cells genetically transformed plants.
DNA vectors of the present invention may be inserted into the plant genome of plants susceptible to INSV infection. Such plant transformation may be carried out employing techniques known per se for the transformation of plants, such as plant transformation techniques involving Ti plasmids derived from Agrobacterium tumefaciens, A. rhizogenes or modifications thereof, naked DNA transformation or electroporation of isolated plant cells or organized plant structures, the use of micro-projectiles to deliver DNA, the use of laser systems, liposomes, or viruses or pollen as transformation vectors and the like.
Plants of the invention may be monitored for expression of an INSV-Related DNA Sequence by mechods known in the art, including Northern analysis, Southern analysis, PCR techniques and/or immunological techniques and the like. The plants of the invention show decreased susceptibility to INSV infection as demonstrated by tests whereby the plants are exposed to INSV preferentially at a concentration in the range at which the rate of disease symptoms correlates linearly with INSV concentration in the inoculum.
Methods suitable for INSV inoculation are known in the art and include mechanical inoculation, and in particular, the use of appropriate vectors.
BAD ORIGINAL Q
AP Ο ο Ο 4 0 J
Plants of the invention may also be obtained by the crossing of a plant obtained according to the methods of the invention with another plant to produce plants having in their plant genome a DNA construct of the invention.
The invention is illustrated by the following non-limiting examples and accompanying figures.
Figure 1: Schematic representation of an INSV particle .
Figure 2; Sequence strategy for INSV viral S RNA.
Figure 3: Open reading frame analysis of the INSV S RNA, full bars represent translational stop codons (TAA, TAG, TGA), half size bars indicate start codons (ATG).
Figure 4: Schematic review of the construction of a suitable expression vector (pZU-B).
Figure 5 suitable sequence. : Schematic review of the construction of a V N protein-coding
plasmid comprising the INS’
Figure 6 : Schematic review of the construction of a
suitable plasmid comprising the INSV NSs protein-coding
sequence.
Figure 7: Schematic review of the construction of a suitable plasmid comprising the INSV NSm protein-coding sequence.
Figure 8: Schematic review of the construction of a suitable plasmid comprising the INSV G1/G2 glycoprotein precursor-coding sequence.
Figure 9: Schematic review of the construction of a INSV N gene-containing plant transformation vector.
BAD ORIGINAL A
AP Ο Ο Ο 4 Ο 3
Figure 10: Schematic review of the construction of a INSV NSs gene-containing plant transformation vector.
Figure 11: Schematic review of the construction of a INSV G1/G2 glycoprotein precursor gene-containing plant transformation vector.
Figure 12: Schematic review of the construction of a INSV NSm gene-containing plant transformation vector.
Figure 13: The secondary structure located at the intergenic region of INSV S RNA.
Suitable examples of preferred INSV Related DNA Sequences coding for transcription into a sequence of the secondary structure of the intergenic region of S RNA or of RNA sequences homologous thereto are sequences coding for the 1437 to 2079 nucleotide sequence of S RNA or for a sequence homologous to such sequences.
Other advantageous features of the present invention will
AP Ο Ο Ο 4 Ο 3
MATERIAL AND METHODS
All INSV RNA-derived sequences presented here are depicted as DNA sequences for the sole purpose of uniformity. It will be appreciated that this is done for convenience.
Cultivars of Nicotiana t a ba cum and Petunia hybrida, used in plant transformation studies, are grown under standard greenhouse conditions. Axenic explant material is grown on θ standard MS media [Muras’nige and Skoog, (1962) Physiol Plant
15: 473-497] containing appropriate phytohormones and sucrose concentrations.
E. coli bacteria are grown on rotary shakers at 37°C in standard LB-medium. Agrobacterium tumefaciens strains are grown at 28°C in MinA medium supplemented with 0.1 % glucose [Ausubel et al., (1987) Current Protocols in Molecular Biology , Green Publishing Associates and Wiley Intersciences , New York , Chichester , Brisbane , Toronto , and Singapore] .
In all cloning procedures the Ξ. coli strain JM83, (F~, ,—
V. A(lac-pro), ara, rpsL, 080, dlacZMl5) is used as a recipient for recombinant plasmids.
(
Binary vectors are conjugated to Agrobacterium tumefaciens strain LBA 4404, a strain containing the Ti-plasmid vir region, (Hoekema et al. , (1983) Nature 303:179-180] in standard triparental matings using the E. coli HB101, containing the plasmid pRK2013 as a helper strain. [Figurski and Helinski, (1979) Proc. Natl. Acad. Sci.USA 76:1648-1652] Appropriate Agrobacterium tumefaciens recipients are selected on media containing rifampicin (50 gg/ml) and kanamycine (50 μg/ml) .
Cloning of fragments in the vectors pUCl9 [Yanish-Perron
AP Ο Ο Ο 4 Ο 3
ΡΒΙΝ19 [Bevan et al.,(1984) Nucl Acids Res. 12:8711-8721] or derivatives, restriction enzyme analysis of DNA, transformation to E. coli recipient strains, isolation of plasmid DNA on small as well as large scale, nicktranslation, in vitro transcription, DNA sequencing, Southern blotting and DNA gel electrophoresis are performed according to standard procedures [Maniatis et al., (1982) Molecular Cloning , a Laboratory Manual . Cold Spring Harbor Laboratory , New York ; Ausubel et al.supra, (1987)].
DNA amplification using the polymerase chain reaction (PCR) were performed as recommended by the supplier of the Tag polymerase (Perkin Elmer Cetus ).
Amplifications of RNA by reverse transcription of the target RNA followed by standard DNA amplification were performed using the Gene Amp RNA PCR Kit as recommended by the supplier (Perkin Elmer Cetus).
Examples
Example 1; Isolation of INSV particles and genetic material therein
INSV isolate NL-07, an isolate from Impatiens, is maintained on Impatiens by grafting. Virus is purified from systemically infected Nicotiana rustica leaves, after mechanical inoculation essentially as described by Tas et al. [(1977) J. Gen. Virol. 36:81-91 ] . All material used in the isolation procedure should be maintained at a temperatue of 4 °C . Twelve days after inoculation 100 grams of infected leaves are harvested and ground for 5-10 seconds at a low speed setting in 5 volumes extraction buffer (0.1 M NaH2PO4, 0.01 M Na2SO3, pH 7) in a Waring blender. The suspension is filtered through cheesecloth and the filtrate is centrifuged for 10 minutes at 16,000 x g. The resulting
AP Ο Ο Ο 4 Ο 3 pellet is resuspended in three volumes resuspension buffer (0.01 M NaH2PO4, 0.01 M Na2SO3, pH 7). The pellet is dissolved by stirring carefully at 4°C. After centrifuging for 10 minutes at 12,500 x g the pellet is discarded and the supernatant centrifuged again for 20 minutes at 50,000 x g. The pellet is resuspended in 0.2 volume of resuspension buffer (0.01 M NaH2PO4, 0.01 M Na2SO3, pH 7) and kept on ice for 30 minutes. Anti-serum raised in rabbits against material from non-infected Nicociana rustica is added to the solution and carefully stirred for 1 hour . Non-viral complexes are pelleted after 10 minutes centrifuging at 16,000 x g. The cleared supernatant is loaded on a linear 5% - 40 % sucrose gradient in resuspension buffer(0.01 M
NaH2PO4, 0.01 M Na2SO3, pH 7) , and spun for 45 minutes at 95,000 x g. The opalescent band containing INSV particles is carefully collected with a syringe and diluted 4 times with resuspension buffer. Washed viruses are pelleted by centrifugation for 1.5 hours at 21,000 x g and resuspended in one volume of resuspension buffer. Generally, 100 grams of leaf material yields approximately 0,5 mg of INSV viruses. INSV RNA is recovered preferentially from purified ζ virus preparations by SDS-phenol extractions followed by ethanol precipitation . From 1 mg INSV , 1-5 μg of RNA is
C extracted. The isolated RNA molecules are analysed for intactness by electrophoresis on an agarose gel. Three distinct RNA molecules are identified with apparent sizes of about 3000 nucleotides (S RNA), about 4900 nucleotides (M RNA) and about 8900 nucleotides (L RNA) respectively.
Example 2: Sequence determination of the 3'-termini of the INSV viral RNAs
In order to perform direct RNA sequencing , INSV RNA is extracted from purified nucleocapsids essentially according to Verkleij et al. (1983 ) supra . Twelve days after inoculation 100 grams of infected leaves are harvested and
AP Ο Ο Ο 4 Ο 3 volumes of TAS-E buffer (O.O1 M EDTA, 0.01 M NajSCb, 0.1 % cysteine, 0.1 M TRIS pH 8.0) in a Waring blender. The suspension is filtered through cheesecloth and centrifuged for 10 minutes at 1,100 x g. Nucleocapsids are recovered from the supernatant after 30 minutes of centrifuging at 66,000 x g. The pellet is carefully resuspended in one volume of TAS-R buffer (1 % Nonidet NP-40, 0.01 M EDTA, 0.01 M Na2SO3, 0.1 % cysteine, 0.01 M glycine, 0.01 M TRIS , pH 7.9). The pellet is dissolved by stirring carefully for 30 minutes at 4 °C. The supernatant is cleared by centrifuging for 10 minutes at 16,000 x g. Crude nucleocapsids are collected from the cleared supernatant by sedimentation through a 30 % sucrose cushion for 1 hour at 105,000 x g. The nucleocapsid pellet is resuspended in 400 μΐ 0.01 M Na-citrate pH 6.5, layered on a 20 - 40 % sucrose (in 0.01 M Na-citrate pH 6.5) and spun for 2 hours at 280,000 x g. The three different opalescent bands, respectively L, M and S nucleocapsid, are collected separately. INSV RNA is recovered preferentially from purified nucleocapsid preparations by SDS-phenol extractions followed by ethanol precipitation. Generally , 100 μg of RNA are obtained from 100 grams of infected leaves. The 3'-ends of the separate INSV RNAs are labeled using RNA ligase and 5'-[3:P]pCp. The end-labeled RNA molecules are separated on a low gelling temperature agarose gel [Wieslander, (1979) Anal Biochem 98: 305-309] . The enzymatic approach described by Clerx-Van Haaster and Bishop [(1980) Virology 105:564-574] and Clerx-Van Haaster et al. [(1982) J Gen Virol 61:289-292] is used to determine the 30 terminal nucleotides of the 3'and 5'-ends of both S and M RNA.
Synthetic oligonucleotides complementary to the 3'-termini are synthesized using a commercially available system (Applied Biosystems) and used for dideoxy-sequencing with reverse transcriptase.
bad original
AP Ο Ο Ο 4 Ο 3
Example 3: cDNA cloning of INSV genetic material
Oligonucleotides complementary to the 3' -end of the S RNA are used for priming first strand cDNA synthesis. With these primers, double stranded DNA to INSV RNA is synthesized according to Gubler and Hoffman ((1983) Gene 25:263-269].
Two different approaches are used to generate cDNA clones to the INSV viral RNAs. A first series of clones is obtained by random priming of the INSV RNA using fragmented single stranded calf thymus DNA, followed by first and second strand cDNA synthesis. cDNA is made blunt-ended using T4-DNA polymerase and ligated with T4 ligase into the Smal site of pUC19.
A second series of INSV cDNA clones is obtained by priming first strand DNA synthesis with the oligonucleotides complementary to the 20 terminal nucleotides at the 3 *-ends of the INSV RNAs. Blunt ended cDNA fragments are cloned into the Sma I site of pUCl9.
cDNA clones from both series containing viral inserts are ί selected via colony hybridization, essentially according to the method of Grunstein and Hogness [(1975) Proc. Natl.
I Acad. Sci. USA 72:3961-3965] using [32]p-labeled, randomly primed first strand cDNA as a probe. Sets of overlapping cDNA clones are selected by Southern analysis followed by plasmid walking, in order to construct a restriction map, based on cDNA derived sequences of the S RNA (Figure 2J.
Example 4: Sequence determination of the INSV S RNA
In order to determine the sequence of the S RNA 5 selected cDNA clones are subcloned into pBluescript, resulting in the plasmids pINSV-S2, pINSV-S15, pINSV-S61, plNSV-S60 and pINSV-S39 , (Figure 2). The clones are sequenced in both directions using the protocol of Zhang et al. ((1988) Nucl.
AP Ο Ο Ο 4 Ο 3 of the S RNA is determined by primer extension of the synthetic oligonucleotide INSV-S60 (5' d (AGAGCAATTGTGTCAJ. which is complementary to the 15 nucleotides of the 3'terminus. Sequence data from the INSV S RNA (3017 nt) is summarized in the sequence listing (SEQ ID No.l to SEQ ID No.12).
Computer simulated translation of the 6 different reading frames on the viral strand and viral complementary strand reveals the presence of two putative open reading frames (Figure 3). On the viral strand an open reading frame is found starting at position 87 and terminating at a UAA stopcodon at position 1436 encoding a protein of 449 amino acids with a predicted molecular mass of about 51.2 kd. This protein is a non-structural protein, tentatively designated NSs (Figure 3/ SEQ ID No. 26). The other open reading frame is located on the viral complementary strand from position 2080 to 2868 (SEQ ID No. 11) , encoding a 262 amino acid long polypeptide with a predicted molecular mass of about 28.7 kd. This open reading frame encodes the viral nucleocapsid protein N (Figure 3/ SEQ ID No 25). Thus Figure 3 shows the coding capacities of the viral and the viral complementary strand of INSV S RNA, indicating the NSs and N protein genes are expressed from subgenomic mRNAs (SEQ ID No.3 , SEQ ID No.11 respectively) . Thus, the situation occurs that a plant virus RNA has an ambisense gene arrangement. Other important features of this S RNA sequence is the existence of complementary terminal repeats capable of forming so-called pan-handle structures. These structures play an important role in replication and transcription of viral RNA. Another putative regulatory element is the secondary structure in the intergenic region of the S RNA, which most likely contains the transcription termination signals for both subgenomic mRNAs, encoding respectively the N and NSs-protein._ bad original
AP 0 0 0 4 0 3
The nucleotide sequence of the INSV M and L RNA is elucidated employing similar strategies and methods as used to determine the nucleotide sequence of the S RNA.
Example 5: Construction of an expression vector pZU-B
The recombinant plasmid pZO347 is a derivative of pBluescript carrying a 496 bp BamHI-Smal fragment containing a 426 bp 35S promoter fragment (Hindi fragment) of CaMV strain Cabb-S, linked to a 67 bp fragment of the nontranslated leader region, the so-called Ω-region, of the f tobacco mosaic virus. This results in a chimeric promoter with a complete transcriptional fusion between the promoter of CaMV to the untranslated leader of TMV. By using in vitro mutagenesis the original position of the TMV ATG startcodon is mutated to a Sinai site.
The plasmid pZO008 carries the nopaline synthase (NOS) terminator as a 260 bp Pstl-Hindlll fragment. This PstlHindlll fragment is excised from pZO008 and ligated using T4 ligase into Pstl-Hindlll linearized pZO347. The resulting recombinant plasmid pZU-B is another plant expression vector. The sequence of this 35S-Q promoter as used in the plant expression vector pZU-B is shown as SEQ ID No.23 .The resulting recombinant plasmid pZU-3 contains the 35S HincIITMV Ω fusion (35S-Ω) , unique Smal and Pstl sites and the NOS terminator (Figure 4 ). This expression vector is preferentially used in constructing translational fusions of the gene for expression downstream of the chimaeric promoter 353-Ω.
Example 6; Subcloning of the INSV N protein gene
The INSV N protein coding sequence is obtained by fusion of the cDNA clones plNSV-S60 and plNSV-S39 ( Figure 5) . The cDNA clone pINSV-S60 is subjected to Spel digestion and the fragment containing the 31-end of the INSV N protein gene is
BAD ORIGINAL A
AP Ο Ο Ο 4 Ο 3 separated electrcphoretically and purified from the gel using a DEAE membrane (NA-45, Schleicher and Schall) and cloned in the largest Spel fragment of pINSV-S39 linearized resulting in the recombinant plasmid pINSV-N. Primers are designed homologous to the translational start and stop codon. Primer INSV-066 d(GCAGATATCATGAACAAAGC) creates an EcoRV site just proximal to the start codon.
Primer INSV-070 d(GCAACCTGCAGCTCAAATCTCTT) creates a Pstl site just distal to the stop codon. These primers are used in standard PCR experiments in which pINSV-N is used as the template. The resulting PCR fragment is isolated from the gel using a DEAE membrane (NA-45, Schleicher and Schall) and cloned in the Smal linearized pBluescript to generate plasmid pINSV-N2 . The added restriction sites, EcoRV and Pstl, facilitate the construction of further plasmids. (Alternatively, one may choose to add the sites in different ways such as but not limited to site-directed mutagenesis or by ligation of other synthetic oligonucleotide linkers. Such methods are all known to a person skilled in the art.)
Example 7 : Subcloning of the INSV non-etructural protein genes (NSs gene) of INSV S RNA
The sequence of the gene corresponding to the non-structural protein NSs is isolated using RNA based PCR on isolated INSV S RNA. Two primers are designed which are homologous to regions spanning either the translational start codon or stop codon . The start codon primer contains an EcoRV site proximal to the ATG codon , the stop codon primer has a Pstl site just distal thereto . Purified INSV S RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid plNSV-NSs (Figure 6) .
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Example 8: Subcloning of the INSV non-structural protein gene (NSm gene) of the INSV M RNA
The sequence of the gene corresponding to the non-structural protein NSm is isolated using RNA based PCR on isolated INSV M RNA. Two primers are designed which are homologous to regions spanning either the translational start codon or stop codon . The start codon primer contains an EcoRV site proximal to the ATG codon, the stop codon primer has a Pstl site just distal thereto . Purified INSV S RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid pINSV-NSm (Figure 7).
Example 9: Subcloning of the INSV G1/G2 glycoprotein gene (G1/G2 gene) of the INSV M RNA
The sequence of the gene corresponding to the G1/G2 glycoprotein precursor is isolated using RNA based PCR on isolated INSV M RNA. Two primers are designed homologous to regions spanning either the translational start codon or stop codon . The start codon primer contains an EcoRV site proximal to the ATG codon, the stop codon primer has a Pstl site just distal thereto . Purified INSV M RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid pINSV-Gl/G2 (Figure 8).
BAD ORIGINAL _ - Λ Λ Γ\ i. I 1 «.
ΑΚ υ υ υ ν ν j
Example 10 : Construction of plant transformation vectors containing INSV sequences
Example 10A: N protein constructions in pZU-B
In order to make a fusion in which the ATG start codon from the N protein gene is fused directly to the 3'-end of the TMV untranslated leader of the 35S-Q promoter the start codon of the N gene has to be mutated using the PCR approach as hereinbefore described. The N protein gene is excised from the plasmid pINSV-N2 via an EcoRV-Pstl digestion. The fragment is isolated and inserted into the Smal-Pstl linearised pZU-B, resulting in recombinant plasmid pINSV-NB. The chimeric cassette containing the 35S-Q promoter, the N gene and the NOS terminator is excised from the plasmid pINSV-NB via a BamHI/Xbal digestion. The isolated chimaeric gene cassette is then inserted into the BamHI/Xbal linearized pBINl9 to create the binary transformation vector pINSV-NBB. The resulting plasmid pINSV-NBB (Figure 9) is used in plant transformation experiments using methods well known to a person skilled in the art.
Example 10B: NSs protein gene constructions in pZU-B
In order to create a fusion in which the ATG start ccdon from the NSs protein is fused directly to the 3'-end of the TMV leader of the 35S-Q promoter the start codon of the NSs gene is mutated, using the PCR approach. The plasmid pINSVNs is digested with EcoRV and Pstl and the NSs containing fragment is isolated from the gel and inserted into Smal/ Pstl linearized pZU-B resulting in the recombinant plasmid pINSV-NSsB. The chimaeric cassette containing the 35S-Q promoter, the mutated NSs protein gene and the NOS terminator is excised from the plasmid pINSV-NSsB via a BamHI/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHI/Xbal linearized pBINl9 to create the binary transformation vector pINSV-NSsBB. The
BAD ORIGINAL
AP Ο 00 4 Ο 3 resulting plasmid pINSV-NSsBB (Figure 10) is used in plant transformation experiments using methods well known to a person skilled in the art.
Example 10C: Gl/62 glycoprotein gene constructions in pZU-B
In order to create a fusion in which the ATG start codon from the G1/G2 glycoproteinprecursor is fused directly to the 3'-end of the TMV leader of the 35S-Q promoter the start codon of the G1/G2 gene is mutated, using the PCR approach. The plasmid pINSV-Gl/G2 is digested with EcoRV and Pstl and the G1/G2 containing fragment is isolated from the gel and inserted into Smal/Pstl linearized pZU-B resulting in the recombinant plasmid pINSV-Gl/G2B. The chimeric cassette containing the 35S-Q promoter, the mutated G1/G2 glycoprotein gene and the NOS terminator is excised from the plasmid pINSV-Gl/G2B via a BamHI/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHI/Xbal linearized pBlNl9 to create the binary f transformation vector pINSV-Gl/G2BB. The resulting plasmid pINSV-Gl/G2BB (Figure 11) is used in plant transformation experiments using methods well known to a person skilled in the art.
Example 10D: NSm protein gene construct iona in pZU-B
In order to create a fusion in which the ATG start codon from the NSm protein is fused directly to the 3'-end of the TMV leader of the 35S-Q promoter the startcodon of the NSm gene is mutated, using the PCR approach. The plasmid plNSVNSm is digested with EcoRV and Pstl and the NSm-containing fragment is isolated from the gel and inserted into Smal. Pstl linearized pZU-B resulting in the recombinant plasmid pINSV-NSmB. The chimeric cassette containing the 35S-Q promoter, the mutated NSm protein gene and the NOS terminator is excised from the plasmid pINSV-NSmB via a
BAD ORIGINAL ft
AP Ο Ο Ο 4 Ο 3
BamHi/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHI/Xbal linearized pBINl9 to create the binary transformation vector pINSV-NSmBB. The resulting plasmid pINSV-NSmBB (Figure 12) is used in plant transformation experiments using methods well known to a person skilled in the art.
Example 10E: 5'- and 3'-termini pan-handle f constructions in pZU-B
A DNA analysis programme is used to. locate the pan-handle element of the loop in the viral INSV S RNA. The strongest pan-handle structure that is detected includes about the first 24-25 nucleotides at the 5‘-end (1 to 24 or 25) of the viral S RNA and about the last 36 nucleotides at the 31-end
of the viral S RNA length of the pan-ha nucleotides long. (SEQ .ndle ID Nos 5 element and 6 of the respectively).The loop is about 36
These regions are synthesized on a commercial DNA
v synthesizer and appropriate linker sequences are added.
Construction of the pan-handle vectors of S and M RNA
Z results in respectively: pINSV-termS and pINSV-termM. Using appropriate restriction enzyme combination these fragments are inserted between the 35S-Q promoter and the NOS terminator of pZU-B yielding the chimeric cassettes: pINSVtermSA , pINSV-termMA , pINSV-termSB and pINSV-termMB. These cassettes are then transferred into the binary transformation vector pBINl9 using appropriate enzyme combinations yielding the following plasmids: pINSV-termSAB, plNSV-termMAB, pINSV-termSBB and pINSV-termMBB. Alternatively, it is possible to design “pan-handle constructs including the 3'- and 5'-end termini that are larger than indicated above, or separated by any other DNA sequence in order to enhance the stability of the transcripts produced from these recombinant genes in plants.
bad ORIGINAL
AP Ο Ο ο 4 ο 3
All pan-handle constructs resemble shortened tospovirus RNA molecules , specifically INSV RNA molecules and therefore can be regarded as defective interfering RNAs.
Example_1 OF-·._Construction_containing INSV 5 RNA g_eoondarY_structure region in dzu-b.
A DNA.analysis programme is used to locate a secondary structure in the viral INSV S RNA. The strongest secondary structure detectable starts at nucleotide 1440 and ends at nucleotide 2041 of SEQ ID No.l , (SEQ id No 8).
The DNA fragment carrying the secondary structure region is isolated from plNSV-S61 using a PCR approach similar to that described earlier. The two primers used contain the sequences 1440-1460 and 2021-2041 of SEQ ID No.l. The PCR fragment is excised from an agarose gel and subsequently treated with T4 polymerase to create blunt ends and is subsequently cloned into the Smal site of the expression vector pZU-B, resulting in the recombinant plasmid pINSVHpS3. The plasmid plNSV-HpSB is digested with Hindlll and the fragment containing the chimeric gene is excised from an agarose gel and ligated into Xbal linearized pBIN19, resulting in the transformation vector pINSV-HpSBB.
(It is clear to a person skilled in the art that other fragments can be isolated from the cDNA clones of the INSV S RNA containing the hairpin region as described above without interference to function. Also, a fragment containing the hairpin region may be synthesized using a DNA-synthesizer.)
Example 1 1 ; Transformation of binary vectors to tobacco plant material
Methods to transfer binary vectors to plant material are well established and known to a person skilled in the art.
Variations in procedures exist due to for instance differences in used Agrobacterium strains , different
BAD ORIGINAL A
AP Ο Ο Ο 4 Ο 3 sources of explant material , differences in regeneration systems depending on as well the cultivar as the plant species used .
The binary plant transformation vectors as described above are used in plant transformation experiments according to the following procedures. The constructed binary vector is transferred by tri-parental mating to an acceptor Agrobacterium tumefaciens strain, followed by southern analysis of the ex-conjugants for verification of proper transfer of the construct to the acceptor strain, inoculation and cocultivation of axenic explant material with the Agrobacterium tumefaciens strain of choice, selective killing of the Agrobacterium tumefaciens strain used with appropriate antibiotics, selection of transformed cells by growing on selective media containing kanamycine, transfer of tissue to shoot - inducing media, transfer of selected shoots to root inducing media, transfer of plantlets to soil, assaying for intactness of the construct by southern analyses of isolated total DNA from the transgenic plant, assaying for proper function of the inserted chimeric gene by northern analysis and/or enzyme assays and western blot analysis of proteins.
Example 12 ; Expression of INSV 3 RNA sequences in tobacco plant cells
RNA is extracted from leaves of regenerated plants using the following protocol. Grind 200 mg leaf material to a fine powder in liquid nitrogen. Add 800 μΐ RNA extraction buffer (100 mM Tris-HCl (pH 8,0), 500 mM NaCl, 2 mM EDTA, 200 mM SMercapto-ethanol, 0,4% SDS) and extract the homogenate with phenol, collect the nucleic acids by alcohol precipitation. Resuspend the nucleic acids in 0,5 ml 10 mM Tris-HCl (pH 8,0), 1 mM EDTA, add LiCl to a final concentration of 2 M, leave on ice for maximal 4 hours and collect the RNA by centrifugation. Resuspend in 400 μΐ 10 mM Tris-HCl (pH 8,0),_ bad ORIGINAL
APO 00 4 Ο 3 mM EDTA and precipitate with alcohol, finally resuspend in 50 μΐ 10 mM Tris-HCl (pH 8,0), 1 mM EDTA. RNAs are separated on glyoxal/agarose gels and blotted to Genescreen as described by van Grinsven et al. [(1986) Theor Appl Gen 73:94-101]. INSV S RNA sequences are detected using DNA or RNA probes labeled with [32P] , [35S] or by using nonradioactive labeling techniques. Based on northern analysis, it is determined to what extent the regenerated plants express chimaeric INSV S RNA sequences.
Plants transformed with chimaeric constructs containing an INSV N protein-encoding sequence are also subjected to western blot analysis. Proteins are extracted from leaves of transformed plants by grinding in sample buffer according to the method of Laemmli [(1970) Nature 244: 29-30] . A 50 gg portion of protein is subjected to electrophoresis in a 12,5 % SDS-polyacrylamide gel essentially as described by Laemmli (1970) supra . Separated proteins are transferred to nitrocellulose electrop’noretically as described by Towbin et al. [(1979) Proc. Natl. Acad. Sci. USA 76:4350-4354]. Transferred proteins are reacted with antiserum raised against purified INSV structural or non-structural proteins (Towbin et al.(1979) supra. Based on the results of the western analysis, it is determined that transformed plants do contain INSV N proteins encoded by the inserted chimaeric
AP Ο Ο Ο 4 Ο 3
Example 13: Resistance of plants against INSV infection
Transformed plants are grown in the greenhouse under standard quarantine conditions in order to prevent any infections by pathogens. The transformants are selfpollinated and the seeds harvested. Progeny plants are analyzed for segregation of the inserted gene and subsequently infected with INSV by mechanical inoculation. Tissue from plants systemically infected with INSV is ground in 5 volumes of ice-cold inoculation buffer (10 mM phosphate buffer supplemented with 1% Na2SO3) and rubbed in the presence of carborundum powder on the first two fully extended leafs of approximately 5 weeks old seedlings. Inoculated plants are monitored for symptom development during 3 weeks after inoculation.
Plants containing INSV Related DNA Sequences show reduced susceptibility to INSV infection as exemplified by a delay in symptom development, whereas untransformed control plants show severe systemic INSV symptoms within 7 days after inoculat ion.
Example 14: Use of synthetic oligonucleotides for diagnostic purposes
RNA is extracted from leaves of suspected plants using the following protocol: grind 1 gram of leaf material, preferentially showing disease symptoms, in 3 ml 100 mM Tris-HCl, 50 mM EDTA, 1.5 M NaCl and 2% CTAB (pH 8.0). After grinding, 1 ml of the homogenate is subjected to chloroform extraction and incubated at 65 °C for 10 minutes. The inorganic phase is then collected and extracted with phenol/chloroform (1:1), followed by a last extraction with chloroform. The ribonucleic acids are isolated from the inorganic phase, containing the total nucleic acids, by adding LiCl to a final concentration of 2 M. The preparation is incubated at 4°C for 1 hour, after which the ribonucleic
BAD ORIGINAL
APO 00 4 0 3 acids are collected by centrifugation. The ribonucleic acid pellet is resuspended in 25 μΐ 10 mM Tris-HCl, 1 mM EDTA (pH 8.0). The ribonucleic acids are recovered by standard alcohol precipitation. The ribonucleic acid pellet is resuspended in 25 μΐ 10 mM Tris-HCl, 1 mM EDTA (pH 8.0).
μΐ of the purified ribonucleic acids is spotted on a nylon blotting membrane (e.g. Hybond-N, Amersham UK). The presence of INSV in the plant is detected by standard hybridization, using any part or parts of the sequence isolated from virions or preferentially by designing synthetic oligomers on the basis of disclosed sequence information as a probe. (Alternatively, in vitro transcripts of regions of the INSV genome are used to detect INSV Related RNA Sequences in diseased plants.) A diseased plant is diagnosed by the occurrence of hybridization at the dot containing RNA material from the diseased plant.
BAD ORIGINAL &
AP Ο Ο Ο 4 Ο 3
SEQUENCE LISTING
SEQ. ID No. 1
Sequence type: Nucleotide Sequence length: 3017 nucleotides Strandedness: single stranded
Molecule type: Viral S RNA nucleotide sequence from position 1 to position 3017
Original Source Organism: Impat iens Necrotic Spot Virus
AGAGCAATNN NNNNNNNNNN NNNNGAACAA CCAAGCTACA ACAAATCTTA CAATATTGTC 60
AATTACATTA CTACTTCCAT TTTAACATGT CTAGTGCAAT GTATGAAACA ATTATCAAAT 120
CGAAGTCCTC AATCTGGGGA ACAACATCTT CGGGTAAAGC AGTAGTAGAT AGTTATTGGA 180
TTCATGATCA ATCTTCCGGA AAGAAGTTGG TCGAAGCTCA ACTCTATTCT GACTCCAGGA 240
GCAAGACCAG TTTCTGTTAC ACTGGTAAAG TTGGCTTTCT CCCAACAGAA GAAAAAGAAA 300
TTATAGTGAG ATGTTTTGTG CCTATTTTTG ATGACATTGA TCTGAATTTC TCCTTTTCAG 360
GGAATGTTGT CGAAATTCTG GTCAGATCTA ACACAACAAA CACAAACGGT GTTAAACATC 420
AAGGTCATCT CAAAGTGTTA TCCTCTCAGT TGCTCAGAAT GCTTGAAGAG CAAATAGCAG 480
TGCCTGAAAT TACTTCAAGA TTCGGTCTGA AAGAATCTGA CATCTTCCCT CCAAATAATT 540
TCATTGAAGC TGCAAATAAA GGATCATTGT CTTGTGTCAA AGAAGTCCTT TTTGATGTCA 600
AGTATTCAAA CAACCAATCC ATGGGCAAAG TCAGTGTTCT TTCTCCTACC AGAAGTGTTC 660
ATGAATGGCT GTACACACTT AAGCCTGTTT TTAACCAATC CCAGACCAAC AACAGGACAG 720
TAAACACTTT GGCTGTAAAA TCACTGGCAA TGTCTGCAAC TTCTGATTTA ATGTCAGATA 780
CTCATTCGTT TGTCAGGCTC AATAATAACA AGCCTTTTAA AATCAGCCTT TGGATGCGCA 340
TCCCTAAAAT AATGAAATCA AACACATACA GCCGGTTCTT CACCCTGTCT GATGAATCTT 900
CTCCTAAAGA GTATTATATA AGCATTCAAT GTCTTCCGAA TCACAACAAT GTTGAAACAG 960
TCATTGAATA TAACTTTGAT CAGTCAAACC TCTTCTTGAA TCAACTCCTT CTAGCAGTGA 1020
TTCATAAAAT TGAGATGAAT TTTTCTGATC TAAAAGAACC TTACAATGTT ATCCATGATA 1CS0
TGTCGTATCC TCAAAGAATT gttcattcac TTCTTGAAAT CCACACAGAA CTTGCTCAAA 1140
CTGTCTGTGA CAGTGTTCAG CAAGACATGA TTGTCTTCAC TATAAATGAG CCAGATCTAA 1200
AGCCAAAAAA GTTTGAGCTA GGGAAAAAGA CTTTAAATTA TTCAGAAGAT GGTTATGGGA 1260
GAAAATATTT CCTTTCTCAG ACCTTGAAAA GTCTTCCGAG AAACTCACAA ACAATGTCTT 1320
ATTTGGATAG CATCCAGATG CCCGATTGGA AATTTGACTA TGCTGCAGGT GAAATAAAAA 1380
BAD ORIGINAL L
AP Ο Ο Ο 4 Ο 3
TTTCTCCTAG ATCAGAGGAT GTTTTGAAAG CTATTTCTAA ATTAGATTTA AATTAACCTT 1440
GGTTAAACTT GTCCCTAAGT AAAGTTTGTT TACATGCATT TAGATCAGAT TAAACAAATC 1500
TAATAACAGA TAAACCAAAA ACAATCATAT GAAATAAATA AATAAACATA AAATATATAA 1560
AAAATACAAA AAAAATCATA AAATAAATAA AAACCAAAAA AGGATGGCCT TCGGGCACAA 1620
TTTGGTTGCT TTAATAATGC TTTAAAATGA ATGTATTAGT AAATTATAAA CTTTAAATCC 1680
AATCTACTCA CAAATTGGCC AAAAATTTGT ATTTGTTTTT GTTTTTGTTT TTTGTTTTTT 1740
GTTTTTGTTT TGTTTTATTT GTTTTTTATT TTGTTTTTTG TTTTTTGTTT TTTATTTTAT 1800
TTATATATAT ATATATATAT ATTTTGTAGT ggtttttatt gtttttatta TTTTTTGTAG 1860
CTTTTTTACT TGTTTATTTC ACACGCAAAC ACACTTTCAA GTTTATATAT TAAAACACAC 1920 *
ATTAAACTTA TTTCAAATAA TTTATAAAAG CACACTTAAT ACACTCAAAC AATAATTAAT 1980
TATTTTATTT TTTATTTTAT TTTTTATTTT TATTATTTTT ATTTTTATTT ATTTAAATGC 2040
ATTTAACACA ACACAAAGCA AACCAAGCTC AAATCTCTTT TAAATAGAAT catttttccc 2100
AAAATCAATA GTAGCATTAA ACATGCTGTA AATGGATGTA AGCCCTTCTT TGTAGTGGTC 2160
CATTGCAGCA AGTCCTTTAG CTTTCGGACT ACAAGCCTTT AGTATATCTG CATATTGTTT 2220
AGCCTTGCCA ATTTCAACAG AGTTCATGCT ATATCCTTTG CTTTTTAGAA CTGTGCACAC 2230
TTTCCCAACT gcctctttag TGCTAAACTT AGACATGTCA ATTCCAAGCT CAACATGTTT 2340
AGCATCTTGA TAAATAGCCG GAACTAGTGC AGCTATTTCA AAATTCAGTA CAGATGCTAT 2400
CAGAGGAAGA CTTCCTCCTA AGAGAACACC CAAGACACAG GATTTCAAAT CTGTGGTTGC 2460
AAGACCATAT GAGGCAATCA GAGGGTGACT TGGAAGGCTA TTTATAGCTT CAGTCAGAGC 2520
AGATCCATTG TCCTTTATCA TTCCAACAAG ATGAACTCTC ACCATTGCAT CAAGTCTTCG 2530
GAAAGTCATA TCATTGACCC CAACTCTTTC TGAATTGTTT CTAGTTTTCT TAATTGTGAC 2640
TGATCCAAAA GTGAAGTCAG CACTCTTAAT GACTCTCATT ATAGATTGCC TATTCTTGAG 2700
GAAGGATAGG CAGGATGCAG TAGTCATGTT CTGAATCTTT TCACGGTTGT TGGTAAAGAA 2760
GTCAGTGAAA TTGAAAGACC CTTCATTTTG AGTTTCCTCA AATTCTAAGG AATCAGATTG 2820
AGTCAAAAGC TTGACTATGT TCTCCTTGGT AATCTTTGCT TTGTTCATCT TGATCTGCTG 2880
ACTTTACTAA CTTTAAAGCT TAAAGTGTTC AAATTACTAA ATAGTACTTG CGGTTAAAGT 2940
AGTATTTGGT AAAATTTGTA ATTTTTCAGT TTCTAGCTTT GGATTATATG ATGTTATATT 3000
CGTGACACAA TTGCTCT 3 017
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
SEQ ID NO: 2
Sequence type: nucleotides
Sequence length: 2993 nucleotides
Strandedness: single stranded
Molecule type: Viral S RNA nucleotide sequence from position 25 to position 3017 of SEQ ID NO.l
Original Source Organism: Impatiens Necrotic Spot Virus
GAACAACCAA GCTACAACAA ATCTTACAAT ATTGTCAATT ACATTACTAC TTCCATTTTA 60
ACATGTCTAG TGCAATGTAT GAAACAATTA TCAAATCGAA GTCCTCAATC TGGGGAACAA 120
CATCTTCGGG TAAAGCAGTA GTAGATAGTT ATTGGATTCA TGATCAATCT TCCGGAAAGA 180
AGTTGGTCGA AGCTCAACTC TATTCTGACT CCAGGAGCAA GACCAGTTTC TGTTACACTG 240
GTAAAGTTGG CTTTCTCCCA ACAGAAGAAA AAGAAATfAT AGTGAGATGT TTTGTGCCTA 300
TTTTTGATGA CATTGATCTG AATTTCTCCT TTTCAGGGAA TGTTGTCGAA ATTCTGGTCA 360
GATCTAACAC AACAAACACA AACGGTGTTA AACATCAAGG TCATCTCAAA GTGTTATCCT 420
CTGAGTTGCT CAGAATGCTT GAAGAGCAAA TAGCAGTGCC TGAAATTACT TCAAGATTCG 480
GTCTGAAAGA ATCTGACATC TTCCCTCCAA ATAATTTCAT TGAAGCTGCA AATAAAGGAT 540
CATTGTCTTG TGTCAAAGAA GTCCTTTTTG ATGTCAAGTA TTCAAACAAC CAATCCATGG 600
GCAAAGTCAG TGTTCTTTCT CCTACCAGAA GTGTTCATGA ATGGCTGTAC ACACTTAAGC 660
ctgtttttaa CCAATCCCAG ACCAACAACA GGACAGTAAA CACTTTGGCT GTAAAATCAC 720
TGGCAATGTC TGCAACTTCT GATTTAATGT CAGATACTCA TTCGTTTGTC AGGCTCAATA 780
ATAACAAGCC TTTTAAAATC AGCCTTTGGA TGCGCATCCC TAAAATAATG AAATCAAACA 840
CATACAGCCG GTTCTTCACC CTGTCTGATG AATCTTCTCC TAAAGAGTAT TATATAAGCA 900
TTCAATGTCT TCCGAATCAC AACAATGTTG AAACAGTCAT TGAATATAAC TTTGATCAGT 960
CAAACCTCTT CTTGAATCAA CTCCTTCTAG CAGTGATTCA TAAAATTGAG ATGAATTTTT 1020
CTGATCTAAA AGAACCTTAC AATGTTATCC ATGATATGTC GTATCCTCAA AGAATTGTTC 1080
ATTCACTTCT TGAAATCCAC ACAGAACTTG CTCAAACTGT CTGTGACAGT GTTCAGCAAG 1140
ACATGATTGT CTTCACTATA AATGAGCCAG ATCTAAAGCC AAAAAAGTTT GAGCTAGGGA 1200
AAAAGACTTT AAATTATTCA GAAGATGGTT ATGGGAGAAA ATATTTCCTT TCTCAGACCT 1260
TGAAAAGTCT TCCGAGAAAC TCACAAACAA TGTCTTATTT GGATAGCATC CAGATGCCCG 1320
ATTGGAAATT TGACTATGCT GCAGGTGAAA TAAAAATTTC TCCTAGATCA GAGGATGTTT 1380
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
TGAAAGCTAT TTCTAAATTA GATTTAAATT AACCTTGGTT AAACTTGTCC CTAAGTAAAG 1440
TTTGTTTACA TGCATTTAGA TCAGATTAAA CAAATCTAAT AACAGATAAA CCAAAAACAA 1500
TCATATGAAA TAAATAAATA AACATAAAAT ATATAAAAAA TACAAAAAAA ATCATAAAAT 1560
AAATAAAAAC CAAAAAAGGA TGGCCTTCGG GCACAATTTG GTTGCTTTAA TAATGCTTTA 1620
AAATGAATGT ATTAGTAAAT TATAAACTTT AAATCCAATC TACTCACAAA TTGGCCAAAA 1680
ATTTGTATTT GTTTTTGTTT TTGTTTTTTG TTTTTTGTTT TTGTTTTGTT TTATTTGTTT 1740
TTTATTTTGT TTTTTGTTTT TTGTTTTTTA ΤΤΤΤΑΤΤΤΑΤ ΑΤΑΤΑΤΑΤΑΤ ΑΤΑΤΑΤΑΤΤΤ 1800
TGTAGTGGTT TTTATTGTTT ΤΤΑΤΤΑΤΤΤΤ TTGTAGCTTT TTTACTTGTT TATTTCACAC 1860 ί'’', ' GCAAACACAC TTTCAAGTTT ATATATTAAA ACACACATTA AACTTATTTC ΑΑΑΤΑΑΤΤΤΑ 1920 ( TAAAAGCACA CTTAATACAC TCAAACAATA ΑΤΤΑΑΤΤΑΤΤ ΤΤΑΤΤΤΤΤΤΑ ΤΤΤΤΑΤΤΤΤΤ 1980
ΤΑΤΤΤΤΤΑΤΤ ΑΤΤΤΤΤΑΤΤΤ ΤΤΑΤΤΤΑΤΤΤ AAATGCATTT AACACAACAC AAAGCAAACC 2040
AAGCTCAAAT CTCTTTTAAA TAGAATCATT TTTCCCAAAA TCAATAGTAG CATTAAACAT 2100
GCTGTAAATG GATGTAAGCC CTTCTTTGTA GTGGTCCATT GCAGCAAGTC CTTTAGCTTT 2160
CGGACTACAA GCCTTTAGTA TATCTGCATA TTGTTTAGCC TTGCCAATTT CAACAGAGTT 2220
CATGCTATAT CCTTTGCTTT TTAGAACTGT GCACACTTTC CCAACTGCCT CTTTAGTGCT 2280
AAACTTAGAC ATGTCAATTC CAAGCTCAAC ATGTTTAGCA TCTTGATAAA TAGCCGGAAC 2340
TAGTGCAGCT ATTTCAAAAT TCAGTACAGA TGCTATCAGA GGAAGACTTC CTCCTAAGAG 2400
AACACCCAAG ACACAGGATT TCAAATCTGT GGTTGCAAGA CCATATGAGG CAATCAGAGG 2460 θ GTGACTTGGA AGGCTATTTA TAGCTTCAGT CAGAGCAGAT CCATTGTCCT TTATCATTCC 2520 ζ- . AACAAGATGA ACTCTCACCA TTGCATCAAG TCTTCGGAAA GTCATATCAT TGACCCCAAC 2580
TCTTTCTGAA TTGTTTCTAG TTTTCTTAAT TGTGACTGAT CCAAAAGTGA AGTCAGCACT 2640
CTTAATGACT CTCATTATAG ATTGCCTATT CTTGAGGAAG GATAGGCAGG ATGCAGTAGT 2700
CATGTTCTGA ATCTTTTCAC GGTTGTTGGT AAAGAAGTCA GTGAAATTGA AAGACCCTTC 2760
ATTTTGAGTT TCCTCAAATT CTAAGGAATC AGATTGAGTC AAAAGCTTGA CTATGTTCTC 2320
CTTGGTAATC TTTGCTTTGT TCATCTTGAT CTGCTGACTT TACTAACTTT AAAGCTTAAA 2830
GTGTTCAAAT TACTAAATAG TACTTGCGGT TAAAGTAGTA TTTGGTAAAA TTTGTAATTT 2940
AP Ο Ο Ο 4 Ο 3
SZQ ID NO. 3
Sequence type: Nucleotide
Sequence length: 1350 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA nucleotide sequence coding for the non-structural (NSs) protein from position 87 to position 1435 of SEQ ID NO :1
Original source organism: Impatiens Necrotic Spot Virus
ATGTCTAGTG CAATGTATGA AACAATTATC AAATCGAAGT CCTCAATCTG GGGAACAACA 60
TCTTCGGGTA AAGCAGTAGT AGATAGTTAT TGGATTCATG ATCAATCTTC CGGAAAGAAG 120
TTGGTCGAAG CTCAACTCTA TTCTGACTCC AGGAGCAAGA CCAGTTTCTG TTACACTGGT 180
AAAGTTGGCT TTCTCCCAAC AGAAGAAAAA GAAATTATAG TGAGATGTTT TGTGCCTATT 240
TTTGATGACA TTGATCTGAA TTTCTCCTTT TCAGGGAATG TTGTCGAAAT TCTGGTCAGA 300
TCTAACACAA CAAACACAAA CGGTGTTAAA CATCAAGGTC ATCTCAAAGT GTTATCCTCT 350
CAGTTGCTCA GAATGCTTGA AGAGCAAATA GCAGTGCCTG AAATTACTTC AAGATTCGGT 420
CTGAAAGAAT CTGACATCTT CCCTCCAAAT AATTTCATTG AAGCTGCAAA TAAAGGATCA 480
TTGTCTTGTG TCAAAGAAGT CCTTTTTGAT GTCAAGTATT CAAACAACCA ATCCATGGGC 540
AAAGTCAGTG TTCTTTCTCC TACCAGAAGT GTTCATGAAT GGCTGTACAC ACTTAAGCCT 500
GTTTTTAACC AATCCCAGAC CAACAACAGG ACAGTAAACA CTTTGGCTGT AAAATCACTG 550
GCAATGTCTG CAACTTCTGA TTTAATGTCA GATACTCATT CGTTTGTCAG GCTCAATAAT 720
AAC zirtGC C TT TTAAAATCAG CCTTTGGATG CGCATCCCTA AAATAATGAA ATCAAACACA 730
TACAGCCGGT TCTTCACCCT GTCTGATGAA TCTTCTCCTA AAGAGTATTA TATAAGCATT 840
CAATGTCTTC CGAATCACAA CAATGTTGAA ACAGTCATTG AATATAACTT TGATCAGTCA 900
aacctcttct TGAATCAACT CCTTCTAGCA GTGATTCATA AAATTGAGAT GAATTTTTCT 950
GATCTAAAAG AACCTTACAA TGTTATCCAT GATATGTCGT ATCCTCAAAG AATTGTTCAT 1020
TCACTTCTTG AAATCCACAC AGAACTTGCT CAAACTGTCT GTGACAGTGT TCAGCAAGAC 1080
ATGATTGTCT TCACTATAAA TGAGCCAGAT CTAAAGCCAA AAAAGTTTGA GCTAGGGAAA 1140
AAGACTTTAA ATTATTCAGA AGATGGTTAT GGGAGAAAAT ATTTCCTTTC TCAGACCTTG 1200
AAAAGTCTTC CGAGAAACTC ACAAACAATG TCTTATTTGG ATAGCATCCA GATGCCCGAT 1260
TGGAAATTTG ACTATGCTGC AGGTGAAATA AAAATTTCTC CTAGATCAGA GGATGTTTTG 1320
AAAGCTATTT CTAAATTAGA TTTAAATTAA 1350
bad original
AP Ο Ο Ο 4 Ο 3
SEQ ID NO: 4
Sequence type: Nucleotide
Sequence length: 789 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA nucleotide sequence from 2080 to 2868 of SEQ ID NO: 1
Original Source Organism: Impatiens Necrotic Spot Virus < TTAAATAGAA TCATTTTTCC CAAAATCAAT AGTAGCATTA AACATGCTGT AAATGGATGT 60
AAGCCCTTCT TTGTAGTGGT CCATTGCAGC AAGTCCTTTA GCTTTCGGAC TACAAGCCTT 120
TAGTATATCT GCATATTGTT TAGCCTTGCC AATTTCAACA GAGTTCATGC TATATCCTTT 180
GCTTTTTAGA ACTGTGCACA CTTTCCCAAC TGCCTCTTTA GTGCTAAACT TAGACATGTC 240
AATTCCAAGC TCAACATGTT TAGCATCTTG ATAAATAGCC GGAACTAGTG CAGCTATTTC 300
AAAATTCAGT ACAGATGCTA TCAGAGGAAG ACTTCCTCCT AAGAGAACAC CCAAGACACA 360
GGATTTCAAA TCTGTGGTTG CAAGACCATA TGAGGCAATC AGAGGGTGAC TTGGAAGGCT 420
ATTTATAGCT TCAGTCAGAG CAGATCCATT GTCCTTTATC ATTCCAACAA GATGAACTCT 480
CACCATTGCA TCAAGTCTTC GGAAAGTCAT ATCATTGACC CCAACTCTTT CTGAATTGTT 540 θ TCTAGTTTTC TTAATTGTGA CTGATCCAAA AGTGAAGTCA GCACTCTTAA TGACTCTCAT 600
TATAGATTGC CTATTCTTGA GGAAGGATAG GCAGGATGCA GTAGTCATGT TCTGAATCTT 660
TTCACGGTTG TTGGTAAAGA AGTCAGTGAA ATTGAAAGAC CCTTCATTTT GAGTTTCCTC 720
AAATTCTAAG GAATCAGATT GAGTCAAAAG CTTGACTATG TTCTCCTTGG TAATCTTTGC 780
APO00403
SEQ ID KO i 5
Sequence Type: Nucleotide
Sequence length: 36 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA nucleotide sequence from the 5' end of the viral S RNA sequence
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATNN NNNNNNNNNN NNNNGAACAAC CCAAGC
SEQ ID NO :6
Sequence Type: Nucleotide
Sequence length: 36 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA nucleotide sequence from the 3' end of the viral S RNA sequence
Original Source Organism: Impatiens Necrotic Spot Virus
GATTATATGA TGTTATATTC GTGACACAAT TGCTCT
SEQ ID Ho. 7
Sequence type: Nucleotide
Sequence length:643 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA
Original Source Organism: Impatiens Necrotic Spot Virus
CCTTGGTTAA acttgtccct AAGTAAAGTT tgtttacatg CATTTAGATC AGATTAAACA
AATCTAATAA CAGATAAACC AAAAACAATC atatgaaata AATAAATAAA CATAAAATAT
ATAAAAAATA CAAAAAAAAT CATAAAATAA ataaaaacca AAAAAGGATG GCCTTCGGGC
ACAATTTGGT TGCTTTAATA ATGCTTTAAA ATGAATGTAT TAGTAAATTA TAAACT7TAA
ATCCAATCTA CTCACAAATT GGCCAAAAAT TTGTATTTGT TTTTGTTTTT GTTTTTTGTT
T-tttgtTTTT GTTTTGTTTT atttgttttt TATTTTGTTT TTTGTTTTTT GTTTTTTATT
BAD ORIGINAL
AP Ο Ο Ο 4 0 j
ΤΤΑΤΤΤΑΤΑΤ ATATΑΤΑΤΑΤ ATATATTTTG TAGTGGTTTT TATTGTTTTT ΑΤΤΑΤΤΤΤΤΤ 420
GTAGCTTTTT TACTTGTTTA TTTCACACGC AAACACACTT TCAAGTTTAT ATATTAAAAC 480
ACACATTAAA CTTATTTCAA ATAATTTATA AAAGCACACT TAATACACTC AAACAATAAT 540
ΤΑΑΤΤΑΤΤΤΤ ΑΤΤΊΤΊΤΑΤΤ ΤΤΑΤΤΤΤΤΤΑ ΊΤΤΤΤΑΤΤΑΤ ΤΤΤΤΑΤΤΤΤΤ ΑΤΤΤΑΤΤΤΑΑ 600
ATGCATTTAA CACAACACAA AGCAAACCAA GCTCAAATCT CTT 643
SSQ ID No. 9
Sequence type: Nucleotide
Sequence length: 602 nucleotides
Strandedness: Single stranded
Molecule type: Viral S RNA from 1440 to 2041 of SEQ ID No.l Original Source Organism: Impatiens Necrotic Spot Virus
TGGTTAAACT TGTCCCTAAG
CTAATAACAG ATAAACCAAA
AAAAATACAA AAAAAATCAT
ATTTGGTTGC TTTAATAATG
CAATCTACTC ACAAATTGGC
C- TGTTTTTGTT TTGTTTTATT
( TTTATATATA TATATATATA
V GCTTTTTTAC TTGTTTATTT
CATTAAACTT ATTTCAAATA
TTATTTTATT TTTTATTTTA
CA
TAAAGTTTGT TTACATGCAT TTAGATCAGA TTAAACAAAT 60
AACAATCATA TGAAATAAAT AAATAAACAT AAAATATATA 120
AAAATAAATA AAAACCAAAA AAGGATGGCC TTCGGGCACA 180
CTTTAAAATG AATGTATTAG TAAATTATAA ACTTTAAATC 240
CAAAAATTTG TATTTGTTTT TGTTTTTGTT TTTTGTTTTT 300
TGTTTTTTAT TTTGTTTTTT gttttttgtt TTTTATTTTA 360
TATTTTGTAG TGGTTTTTAT tgtttttatt ATTTTTTGTA 420
CACACGCAAA CACACTTTCA agtttatata TTAAAACACA 480
ATTTATAAAA GCACACTTAA TACACTCAAA CAATAATTAA 540
TTTTTTATTT TTATTATTTT ΤΑΤΤΤΤΤΑΤΤ TATTTAAATG 600
602
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
SEQ ID HO: 9
Sequence type: Nucleotide
Sequence length: 3017 nucleotides
Strandedness: single stranded
Molecule type: Complementary viral S RNA nucleotide sequence from 1 to about 3017
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATTG TGTCACGAAT ATAACATCAT ATAATCCAAA GCTAGAAACT GAAAAATTAC 60
AAATTTTACC AAATACTACT TTAACCGCAA GTACTATTTA GTAATTTGAA CACTTTAAGC 120
TTTAAAGTTA GTAAAGTCAG CAGATCAAGA TGAACAAAGC AAAGATTACC AAGGAGAACA 180
TAGTCAAGCT TTTGACTCAA TCTGATTCCT TAGAATTTGA GGAAACTCAA AATGAAGGGT 240
CTTTCAATTT CACTGACTTC TTTACCAACA ACCGTGAAAA GATTCAGAAC ATGACTACTG 300
CATCCTGCCT ATCCTTCCTC AAGAATAGGC AATCTATAAT GAGAGTCATT AAGAGTGCTG 360
ACTTCACTTT TGGATCAGTC ACAATTAAGA AAACTAGAAA CAATTCAGAA AGAGTTGGGG 420
TCAATGATAT GACTTTCCGA AGACTTGATG CAATGGTGAG AGTTCATCTT GTTGGAATGA 430
TAAAGGACAA TGGATCTGCT CTGACTGAAG CTATAAATAG CCTTCCAAGT CACCCTCTGA 540
TTGCCTCATA TGGTCTTGCA ACCACAGATT TGAAATCCTG TGTCTTGGGT GTTCTCTTAG 600
GAGGAAGTCT TCCTCTGATA GCATCTGTAC tgaattttga AATAGCTGCA CTAGTTCCGG 660
CTATTTATCA AGATGCTAAA CATGTTGAGC TTGGAATTGA CATGTCTAAG TTTAGCACTA 720
AAGAGGCAGT TGGGAAAGTG TGCACAGTTC TAAAAAGCAA AGGATATAGC ATGAACTCTG 730
TTGAAATTGG CAAGGCTAAA CAATATGCAG ATATACTAAA GGCTTGTAGT CCGAAAGCTA 840
AAGGACTTGC TGCAATGGAC CACTACAAAG AAGGGCTTAC ATCCATTTAC AGCATGTTTA 9C0
ATGCTACTAT TGATTTTGGG AAAAATGATT CTATTTAAAA GAGATTTGAG CTTGGTTTGC 960
TTTGTGTTGT GTTAAATGCA TTTAAATAAA TAAAAATAAA AATAATAAAA ATAAAAAATA 1020
AAATAAAAAA TAAAATAATT AATTATTGTT TGAGTGTATT AAGTGTGCTT TTATAAATTA 1080
TTTGAAATAA GTTTAATGTG TGTTTTAATA TATAAACTTG AAAGTGTGTT TGCGTGTGAA 1140
ATAAACAAGT AAAAAAGCTA CAAAAAATAA TAAAAACAAT AAAAACCACT ACAAAATATA 1200
TATATATATA TATATAAATA AAATAAAAAA CAAAAAACAA AAAACAAAAT AAAAAACAAA 1260
TAAAACAAAA CAAAAACAAA AAACAAAAAA CAAAAACAAA AACAAATACA AATTTTTGGC 1320
CAATTTGTGA GTAGATTGGA TTTAAAGTTT ATAATTTACT AATACATTCT TTTAAAGCAT 1330
TATTAAAGCA ACCAAATTGT GCCCGAAGGC CATCCTTTTT TGGTTTTTAT TTATTTTATG 1440
attttttttg TATTTTTTAT ATATTTTATG TTTATTTATT TATTTCATAT GATTGTTTTT 1500
GGTTTATCTG TTATTAGATT TGTTTAATCT GATCTAAATG CATGTAAACA AACTTTACTT 1560
AGGGACAAGT TTAACCAAGG TTAATTTAAA TCTAATTTAG AAATAGCTTT CAAAACATCC 1620
TCTGATCTAG GAGAAATTTT TATTTCACCT GCAGCATAGT CAAATTTCCA ATCGGGCATC 1630
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
TGGATGCTAT CCAAATAAGA CATTGTTTGT GAGTTTCTCG GAAGACTTTT CAAGGTCTGA 1740
GAAAGGAAAT ATTTTCTCCC ATAACCATCT TCTGAATAAT TTAAAGTCTT TTTCCCTAGC 1800
TCAAACTTTT TTGGCTTTAG ATCTGGCTCA TTTATAGTGA AGACAATCAT GTCTTGCTGA 1860
ACACTGTCAC AGACAGTTTG AGCAAGTTCT GTGTGGATTT CAAGAAGTGA ATGAACAATT 1920
CTTTGAGGAT ACGACATATC ATGGATAACA TTGTAAGGTT CTTTTAGATC AGAAAAATTC 1980
ATCTCAATTT TATGAATCAC TGCTAGAAGG AGTTGATTCA AGAAGAGGTT TGACTGATCA 2040
AAGTTATATT CAATGACTGT TTCAACATTG TTGTGATTCG GAAGACATTG AATGCTTATA 2100
TAATACTCTT TAGGAGAAGA TTCATCAGAC AGGGTGAAGA ACCGGCTGTA TGTGTTTGAT 2160
TTCATTATTT TAGGGATGCG CATCCAAAGG CTGATTTTAA AAGGCTTGTT ATTATTGAGC 2220
CTGACAAACG AATGAGTATC TGACATTAAA TCAGAAGTTG CAGACATTGC CAGTGATTTT 2280
ACAGCCAAAG TGTTTACTGT CCTGTTGTTG GTCTGGGATT GGTTAAAAAC AGGCTTAAGT 2340
GTGTACAGCC ATTCATGAAC ACTTCTGGTA GGAGAAAGAA CACTGACTTT GCCCATGGAT 2400
TGGTTGTTTG AATACTTGAC ATCAAAAAGG ACTTCTTTGA CACAAGACAA TGATCCTTTA 2460
TTTGCAGCTT CAATGAAATT ATTTGGAGGG AAGATGTCAG ATTCTTTCAG ACCGAATCTT 2520
GAAGTAATTT CAGGCACTGC TATTTGCTCT TCAAGCATTC TGAGCAACTG AGAGGATAAC 2580
ACTTTGAGAT GACCTTGATG TTTAACACCG TTTGTGTTTG TTGTGTTAGA TCTGACCAGA 2640
ATTTCGACAA CATTCCCTGA AAAGGAGAAA TTCAGATCAA TGTCATCAAA AATAGGCACA 2700
AAACATCTCA CTATAATTTC TTTTTCTTCT GTTGGGAGAA AGCCAACTTT ACCAGTGTAA 2760
CAGAAACTGG TCTTGCTCCT GGAGTCAGAA TAGAGTTGAG CTTCGACCAA CTTCTTTCCG 2320
GAAGATTGAT CATGAATCCA ATAACTATCT ACTACTGCTT TACCCGAAGA TGTTGTTCCC 2330
CAGATTGAGG ACTTCGATTT GATAATTGTT TCATACATTG CACTAGACAT GTTAAAATGG 2940
AAGTAGTAAT GTAATTGACA ATATTGTAAG ATTTGTTGTA GCTTGGTTGT TCNNNNNNNN 3000
NNNNNNNNNA TTGCTCT 3 017
SEQ ID NO: 10
Sequence Type: Nucleotide
Sequence length: 2993
Strandedness: Single stranded
Molecule type: Complementary S RNA nucleotide sequence from 1 to 2993 zt SEQ ID NO :9
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATTG TGTCACGAAT ATAACATCAT ATAATCCAAA GCTAGAAACT GAAAAATTAC 60
AAATTTTACC AAATACTACT TTAACCGCAA GTACTATTTA GTAATTTGAA CACTTTAAGC '.20
TTTAAAGTTA GTAAAGTCAG CAGATCAAGA TGAACAAAGC AAAGATTACC AAGGAGAACA '.30 bad original O
AP Ο Ο Ο 4 Ο 3
TAGTCAAGCT TTTGACTCAA TCTGATTCCT TAGAATTTGA GGAAACTCAA AATGAAGGGT 240 CTTTCAATTT CACTGACTTC TTTACCAACA ACCGTGAAAA GATTCAGAAC ATGACTACTG 300
CATCCTGCCT ATCCTTCCTC AAGAATAGGC AATCTATAAT GAGAGTCATT AAGAGTGCTG 360
ACTTCACTTT TGGATCAGTC ACAATTAAGA AAACTAGAAA CAATTCAGAA AGAGTTGGGG 420 TCAATGATAT GACTTTCCGA AGACTTGATG CAATGGTGAG AGTTCATCTT GTTGGAATGA 480 TAAAGGACAA TGGATCTGCT CTGACTGAAG CTATAAATAG CCTTCCAAGT CACCCTCTGA 540 TTGCCTCATA TGGTCTTGCA ACCACAGATT TGAAATCCTG TGTCTTGGGT GTTCTCTTAG 600 GAGGAAGTCT TCCTCTGATA GCATCTGTAC TGAATTTTGA AATAGCTGCA CTAGTTCCGG 660 CTATTTATCA AGATGCTAAA CATGTTGAGC TTGGAATTGA CATGTCTAAG TTTAGCACTA 720 AAGAGGCAGT TGGGAAAGTG TGCACAGTTC TAAAAAGCAA AGGATATAGC ATGAACTCTG 780
TTGAAATTGG CAAGGCTAAA CAATATGCAG ATATACTAAA GGCTTGTAGT CCGAAAGCTA 840 *
AAGGACTTGC TGCAATGGAC CACTACAAAG AAGGGCTTAC ATCCATTTAC AGCATGTTTA 900
ATGCTACTAT TGATTTTGGG AAAAATGATT CTATTTAAAA GAGATTTGAG CTTGGTTTGC 960
TTTGTGTTGT GTTAAATGCA ΤΤΤΑΑΑΤΑΑΑ ΤΑΑΑΑΑΤΑΑΑ ΑΑΤΑΑΤΑΑΑΑ ΑΤΑΑΑΑΑΑΤΑ 1020
ΑΑΑΤΑΑΑΑΑΑ ΤΑΑΑΑΤΑΑΤΤ AATTATTGTT TGAGTGTATT AAGTGTGCTT ΤΤΑΤΑΑΑΤΤΑ 1080
TTTGAAATAA GTTTAATGTG TGTTTTAATA TATAAACTTG AAAGTGTGTT TGCGTGTGAA 1140
ATAAACAAGT AAAAAAGCTA CAAAAAATAA TAAAAACAAT AAAAACCACT ACAAAATATA 1200
ΤΑΤΑΤΑΤΑΤΑ ΤΑΤΑΤΑΑΑΤΑ ΑΑΑΤΑΑΑΑΑΑ CAAAAAACAA AAAACAAAAT AAAAAACAAA 1260
TAAAACAAAA CAAAAACAAA AAACAAAAAA CAAAAACAAA AACAAATACA AATTTTTGGC 1320 CAATTTGTGA GTAGATTGGA TTTAAAGTTT ATAATTTACT AATACATTCA TTTTAAAGCA 13 80
TTATTAAAGC AACCAAATTG TGCCCGAAGG CCATCCTTTT TTGGTTTTTA ΤΤΤΑΤΤΤΤΑΤ 1440
GATTTTTTTT GTATTTTTTA ΤΑΤΑΤΤΤΤΑΤ GTTTATTTAT TTATTTCATA TGATTGTTTT 1500 TGGTTTATCT GTTATTAGAT TTGTTTAATC TGATCTAAAT GCATGTAAAC AAACTTTACT 1560
TAGGGACAAG TTTAACCAAG GTTAATTTAA ATCTAATTTA GAAATAGCTT TCAAAACATC 1620
CTCTGATCTA GGAGAAATTT TTATTTCACC TGCAGCATAG TCAAATTTCC AATCGGGCAT 1680 CTGGATGCTA TCCAAATAAG ACATTGTTTG TGAGTTTCTC GGAAGACTTT TCAAGGTCTG 1740 AGAAAGGAAA TATTTTCTCC CATAACCATC TTCTGAATAA TTTAAAGTCT TTTTCCCTAG 1800 CTCAAACTTT TTTGGCTTTA GATCTGGCTC ATTTATAGTG AAGACAATCA TGTCTTGCTG 1860 AACACTGTCA CAGACAGTTT GAGCAAGTTC TGTGTGGATT TCAAGAAGTG AATGAACAAT 1920 TCTTTGAGGA TACGACATAT CATGGATAAC ATTGTAAGGT TCTTTTAGAT CAGAAAAATT 1980 CATCTCAATT TTATGAATCA CTGCTAGAAG GAGTTGATTC AAGAAGAGGT TTGACTGATC 2040 AAAGTTATAT TCAATGACTG TTTCAACATT GTTGTGATTC GGAAGACATT GAATGCTTAT 2100 ATAATACTCT TTAGGAGAAG ATTCATCAGA CAGGGTGAAG AACCGGCTGT ATGTGTTTGA 2160 TTTCATTATT TTAGGGATGC GCATCCAAAG GCTGATTTTA AAAGGCTTGT TATTATTGAG 2220 CCTGACAAAC GAATGAGTAT CTGACATTAA ATCAGAAGTT GCAGACATTG CCAGTGATTT 2280 TACAGCCAAA GTGTTTACTG TCCTGTTGTT GGTCTGGGAT TGGTTAAAAA CAGGCTTAAG 2340 TGTGTACAGC CATTCATGAA CACTTCTGGT AGGAGAAAGA ACACTGACTT TGCCCATGGA 2400
AP Ο Ο Ο 4 Ο 3
TTGGTTGTTT GAATACTTGA CATCAAAAAG GACTTCTTTG ACACAAGACA ATGATCCTTT 2460
ATTTGCAGCT TCAATGAAAT TATTTGGAGG GAAGATGTCA GATTCTTTCA GACCGAATCT 2520 TGAAGTAATT TCAGGCACTG CTATTTGCTC TTCAAGCATT CTGAGCAACT GAGAGGATAA 2580 CACTTTGAGA TGACCTTGAT GTTTAACACC GTTTGTGTTT GTTGTGTTAG ATCTGACCAG 2640 AATTTCGACA ACATTCCCTG AAAAGGAGAA ATTCAGATCA ATGTCATCAA AAATAGGCAC 2700 AAAACATCTC ACTATAATTT CTTTTTCTTC TGTTGGGAGA AAGCCAACTT TACCAGTGTA 2760 ACAGAAACTG GTCTTGCTCC TGGAGTCAGA ATAGAGTTGA GCTTCGACCA ACTTCTTTCC 2820 GGAAGATTGA TCATGAATCC AATAACTATC TACTACTGCT TTACCCGAAG ATGTTGTTCC 2880 CCAGATTGAG GACTTCGATT TGATAATTGT TTCATACATT GCACTAGACA TGTTAAAATG 2940 GAAGTAGTAA TGTAATTGAC AATATTGTAA GATTTGTTGT AGCTTGGTTG TTC 2993
SEQ ID NO: 11
Sequence type: Nucleotide
Sequence length: 789 nucleotides
Strandedness: Single stranded
Molecule type: Viral complementary S RNA nucleotide sequence coding for the nucleocapsid (N) protein from position 150 to position 938 of
SEQ ID NO:9
Original Source Organism: Impatiens Necrotic Spot Virus
ATGAACAAAG CAAAGATTAC CAAGGAGAAC ATAGTCAAGC TTTTGACTCA ATCTGATTCC 60
TTAGAATTTG AGGAAACTCA AAATGAAGGG TCTTTCAATT TCACTGACTT CTTTACCAAC 120
AACCGTGAAA AGATTCAGAA CATGACTACT GCATCCTGCC TATCCTTCCT CAAGAATAGG 180
CAATCTATAA TGAGAGTCAT TAAGAGTGCT GACTTCACTT TTGGATCAGT CACAATTAAG 240
AAAACTAGAA ACAATTCAGA AAGAGTTGGG GTCAATGATA TGACTTTCCG AAGACTTGAT 300
GCAATGGTGA GAGTTCATCT TGTTGGAATG ATAAAGGACA ATGGATCTGC TCTGACTGAA 360
GCTATAAATA GCCTTCCAAG TCACCCTCTG ATTGCCTCAT ATGGTCTTGC AACCACAGAT 420
TTGAAATCCT GTGTCTTGGG TGTTCTCTTA GGAGGAAGTC TTCCTCTGAT AGCATCTGTA 480
CTGAATTTTG AAATAGCTGC ACTAGTTCCG GCTATTTATC AAGATGCTAA ACATGTTGAG 540
CTTGGAATTG ACATGTCTAA GTTTAGCACT AAAGAGGCAG TTGGGAAAGT GTGCACAGTT 600
CTAAAAAGCA AAGGATATAG CATGAACTCT GTTGAAATTG GCAAGGCTAA ACAATATGCA 660
GATATACTAA AGGCTTGTAG TCCGAAAGCT AAAGGACTTG CTGCAATGGA CCACTACAAA 720
GAAGGGCTTA CATCCATTTA CAGCATGTTT AATGCTACTA TTGATTTTGG GAAAAATGAT 780
AP Ο Ο Ο 4 Ο 3
SEQ ID NO: 12
Sequence type: Nucleotide
Sequence length: 1350 nucleotides
Strandedness: Single stranded ·
Molecule type: Complementary S RNA nucleotide sequence (to the viral S RNA nucleotide sequence) from position 1581 to position 2930 of SEQ ID NO:9
Original Source Organism: Impatiens Necrotic Spot Virus
TTAATTTAAA TCTAATTTAG AAATAGCTTT CAAAACATCC TCTGATCTAG GAGAAATTTT 60
TATTTCACCT GCAGCATAGT CAAATTTCCA ATCGGGCATC TGGATGCTAT CCAAATAAGA 120
CATTGTTTGT GAGTTTCTCG GAAGACTTTT CAAGGTCTGA GAAAGGAAAT ATTTTCTCCC 180
ATAACCATCT TCTGAATAAT TTAAAGTCTT TTTCCCTAGC TCAAACTTTT TTGGCTTTAG 240
ATCTGGCTCA TTTATAGTGA AGACAATCAT gtcttgctga ACACTGTCAC AGACAGTTTG 300
AGCAAGTTCT GTGTGGATTT CAAGAAGTGA ATGAACAATT CTTTGAGGAT ACGACATATC 360
ATGGATAACA TTGTAAGGTT CTTTTAGATC AGAAAAATTC ATCTCAATTT TATGAATCAC 420
TGCTAGAAGG AGTTGATTCA AGAAGAGGTT TGACTGATCA AAGTTATATT CAATGACTGT 480
TTCAACATTG TTGTGATTCG GAAGACATTG AATGCTTATA TAATACTCTT TAGGAGAAGA 540
TTCATCAGAC AGGGTGAAGA ACCGGCTGTA TGTGTTTGAT TTCATTATTT TAGGGATGCG 600
CATCCAAAGG CTGATTTTAA AAGGCTTGTT ATTATTGAGC CTGACAAACG AATGAGTATC 660
TGACATTAAA TCAGAAGTTG CAGACATTGC CAGTGATTTT ACAGCCAAAG TGTTTACTGT 720
CCTGTTGTTG GTCTGGGATT GGTTAAAAAC AGGCTTAAGT GTGTACAGCC ATTCATGAAC 780
ACTTCTGGTA GGAGAAAGAA CACTGACTTT GCCCATGGAT TGGTTGTTTG AATACTTGAC 840
ATCAAAAAGG ACTTCTTTGA CACAAGACAA TGATCCTTTA TTTGCAGCTT CAATGAAATT 900
ATTTGGAGGG AAGATGTCAG ATTCTTTCAG ACCGAATCTT GAAGTAATTT CAGGCACTGC 960
TATTTGCTCT TCAAGCATTC TGAGCAACTG AGAGGATAAC actttgagat GACCTTGATG 1020
TTTAACACCG TTTGTGTTTG TTGTGTTAGA TCTGACCAGA ATTTCGACAA CATTCCCTGA 1080
AAAGGAGAAA TTCAGATCAA TGTCATCAAA AATAGGCACA AAACATCTCA CTATAATTTC 1140
TTTTTCTTCT GTTGGGAGAA AGCCAACTTT ACCAGTGTAA CAGAAACTGG TCTTGCTCCT 1200
GGAGTCAGAA TAGAGTTGAG CTTCGACCAA CTTCTTTCCG GAAGATTGAT CATGAATCCA 1260
ATAACTATCT ACTACTGCTT TACCCGAAGA TGTTGTTCCC CAGATTGAGG ACTTCGATTT 1320
GATAATTGTT TCATACATTG CACTAGACAT 1350
BAD ORIGINAL
APO00403
SEQ ID NO :13
Sequence type: Nucleotide
Sequence length: 642 nucleotides
Strandedness: single stranded
Molecule type: Viral complementary S RNA strand of the intergenic region from position 939 to position 1580 of SEQ ID NO:9
Original Source Organism:Impatiens Necrotic Spot Virus
AAGAGATTTG AGCTTGGTTT GCTTTGTGTT GTGTTAAATG CATTTAAATA AATAAAAATA 60
AAAATAATAA AAATAAAAAA TAAAATAAAA AATAAAATAA TTAATTATTG TTTGAGTGTA 120
TTAAGTGTGC TTTTATAAAT TATTTGAAAT AAGTTTAATG TGTGTTTTAA TATATAAACT 180
TGAAAGTGTG TTTGCGTGTG AAATAAACAA GTAAAAAAGC TACAAAAAAT AATAAAAACA 240
ATAAAAACCA CTACAAAATA TATATATATA TATATATAAA TAAAATAAAA AACAAAAAAC 300
AAAAAACAAA ATAAAAAACA AATAAAACAA AACAAAAACA AAAAACAAAA AACAAAAACA 360
AAAACAAATA CAAATTTTTG GCCAATTTGT GAGTAGATTG GATTTAAAGT TTATAATTTA 420
CTAATACATT CTTTTAAAGC ATTATTAAAG CAACCAAATT GTGCCCGAAG GCCATCCTTT 480
TTTGGTTTTT ΑΤΤΤΑΤΊΤΤΑ TGATTTTTTT tgtatttttt ATATATTTTA TGTTTATTTA 540
TTTATTTCAT ATGATTGTTT ttggtttatc TGTTATTAGA TTTGTTTAAT CTGATCTAAA 600
TGCATGTAAA CAAACTTTAC TTAGGGACAA GTTTAACCAA GG 642
SEQ ID NO :14 ( Sequence type:Nucleotide
Sequence length: 4970 nucleotides Strandedness: single stranded Molecule type: Viral M RNA
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAATTCA ATCATTATCT TCTCAATATT 60 TTAATTCTTA ATCTACCGTC CAGAGATGAA TAGTTTTTTC AAATCACTCA GATCATCTAG 120 CAGCAGGGAG CTAGATCACC CTAGGGTTAC AACTACCCTC TCTAAACAAG GAGCAGACAT 180 TGTTGTACAC AATCCTTCTG CTAATCACAA CAACAAGGAA GTTCTCCAAA GAGCCATGGA 240 TAGCTCTAAA GGGAAGATTT TGATGAACAA TACAGGCACC TCATCACTAG GCACATATGA 300 GTCTGACCAG ATATCTGAAT CAGAGTCTTA TGATCTTTCT GCTAGAATGA TTGTTGATAC 360 AAATCATCAT ATCTCCAGCT GGAAAAATGA TCTTTTTGTA GGTAATGGTG ATAAAGCTGC 420 AACCAAGATA ATTAAGATAC ATCCAACCTG GGATAGCAGA AAACAATACA TGATGATCTC 480
AP Ο 00 4 Ο 3
TTTAATTGAT CCTAACAAGA GTGTTAATGC CAGAACTGTT TTGAAAGGGC AAGGAAGCAT 600
TAAAGATCCT ATATGTTTTG TTTTTTATCT AAATTGGTCC ATTCCAAAAG TTAACAACAC 660
TTCAGAGAAT TGTGTTCAGC TTCATTTATT ATGTGATCAA GTTTACAAGA AAGATGTTTC 720
TTTTGCTAGT GTCATGTATT CTTGGACAAA AGAATTCTGT GATTCACCAA GAGCAGATCT 780
GGATAAAAGC TGCATGATAA TACCCATCAA TAGGGCTATT AGAGCCAAAT CGCAAGCCTT 840
CATTGAAGCC TGCAAGTTAA TCATACCTAA AGGCAATTCT GAAAAGCAAA TTAGAAGACA 900
ACTTGCAGAG CTAAGTGCTA ATTTAGAGAA ATCTGTTGAA GAAGAGGAGA ATGTTACTGA 960
TAACAAGATA GAGATATCAT TTGATAATGA AATCTAAATA TGTTTTCATT TAATAATAAA 1020
TAATATATAT TGTTCATAAT ATTTTGAATG TTTAAGTAAA AAATAAAGCA AGATAAAAAA 1080
CTATATATAT ATATATATAT AGAAGTATAA AATATATATG TATTTGTGTT TAAAAACAAA 1140
TCAAAAACCA AAAAAGAAAA AAGAAAAAAT AAACAAAAAA CAAAAACAAA AACAAAAACA 1200
AACAAAAAGC AAAAAATAGA AAAAAGTTGA AAAAAACCAA AAAAATTTTT TTTGTAAATA 1260
AATAAGGCTC CGGCCAGATT TGGTCTAAGA CCTTTTTATT TGTTTTTATA CATTTTATTT 1320
GTTTTTGTTG ATTTTTATTT TTATTATTTT ΤΑΤΑΤΤΤΓΤΤ ATATAGTTTG CTTATTTAAC 1380
ACTTATTTAG ACAAATTAAA TTTATTTGAT TACAATCATT CTGCCTTATT TAATTTAAAA 1440
CACATTTGGT GTATATTCCA ATGAATTTAA TCATATACCG CTGAAGTCTA GAGGAGGTCT 1500
TCTTCTAGTG ATGGTGTCTT TACCAGAAGA CGTGGAAACC AAAGAATAAT CATTAGTGTC 1560
TTCAATATAT TTTGTCTTGT AAGACTTGTT TCTAACATAG CCTCTACACA TTGTGGCAAC 1620
AATAGAGCAG AGGTAAGCAA GAGCAAATAC AAAGAGTATG AGCAATACTA CTCTGACTGT 1680
ATCAAAGAAG GATCCAAAGT GGCTTGCTAT AAAGTTAAAA GGGCTTTTAA CATAGTCCCA 17 4 0
AAAGCTCCAA ACTGATGTGT CAGAATTATA TTGCTGTTCC TCGTGTGCAT GTTGGTCATT 1800
TTGATCAATT ATGTTTTCTG GTTCCAGCAC AGCAACAGAA TCTACAAGTG CCTCAACTGA 1860
GTATGATTTG TCTCCTTCTG GTTCTATAAT CATTTTTTGT TTTTCTGGGT TAGAAGTGCA 1920
GAACATTGTC AAGTTATACT TATTAGCACC TTTCTTTACT GCTATCTGGT ATGTTGACAA 1980
TGAACATTGT TTCATGGTTA ACCTTGCAGA AAAAGTTATG TCTGATATAA ATGAGGCAGC 2040
ACACCTCAGC CCTTGGCTAC ATAAGAAACA TCCCTTACAG CTTAAAGAGA CAGAACTCAA 2100
TATAGGCTTT TTTGGTACAG TTTTAAACAA TTCAGAAGGT AGATCCAAAA CAATTTTAAG 2160
CTTACCTAGA CTAAAGATCT TTTCCATATA AAAACTATTC TGGTCAGTAA ACTGAACTGG 2220
AATGTCCGAT atttggttca AACCTGTTTT AAATCTGTAT GTGTCATAAC CACATGATTT 2280
TATCGTAATT GTTTTTTTAC CAATTGCTGA ACAATCCCAG GACAGATCGT TTGTATCTAA 2340
TGTTTTCTTA GAGAAAATGG GATCACCTTG GTGTGAAAGT TGAGGATGAC CAAACATTTT 2400
TGATGGATTA TTTAATCTAG CTATGTTTCC CGCATATACG TGACTATCAG GTCCATGAGC 2460
TATCAGCTGG CCTATTGTTA AGCCATCATT ATGGAAATCC GCTAATATAT CAGCCTGGAA 2520
ATATCCTGAT TCAGATGGGA CTTCCTCAGA TACAGTGAAA CACTTTGCTC CCACAAATCC 2580
AGATATACAT ACTTCAGACT TGATTGTTGA TTTAATAACA GAATAAATCC TGAAAGATTG 2640
ATCCATATCA TACACATTTC TACAAAACCC ACAAGTGGCT CCTTCATTGA TAGCCAAACA 2700
CCAAACCTCT TCACAACCCC AGTAAGATGT TGGTGTTATG CAGAAATCTT GATACCCAGT 2760
AP000403 )
TATCGGTTGT TCTTTTCTGC AATCTGAGCA TTTACCTGTG CATGTTGAAA AGAAATCAGT 2820 GTGGGTGCTT TGTATAGGAG CTGTAGTGTA TTGTTCAGAA ACATCATACT GTATTCTAAC 2880 ΤΤΤΤΤΤΑΑΤΑ TAAACAACAA ACTTCTGAGC AGTGCTAGAA CTTTTGTCAT TAAGAGAGAA 2940 AACTGTGCCC CCACCTGATA ATAAAGATTC TTCTATCATG TATCTATATT TTCCATCTAT 3000
CACCGAGTCA AATATGAGAG ATTTTCTTGG AAAAATGCTT TCAGGTATGT CTGATTCATT 3060 AGATTTAAGT GCATCTCCAG AAATGTATCC ATATTTTTCA GTTTTATTGT AGAAATCAAT 3120 TATACCATTC CTAAGCCTTT TCATGAAGTG TAGATTCACA GCATTCAATC CCAATGTGTC 3180 ACCAGAATAT TCTAAGAACC CATTATCTAA AGGCTTGCTT TGGAAAATAG AGGCATACTC 3240 ACAACCAAAT CTGCATTTGA CAAAAGTTAC TAAAGCATTT TCAGTTATCC TGCCTTTGCA 3300 TTCTTGATAA GGTATACAAT CCATAGGACC TTCTGTCACA ACATTGGTTA GAAAGTTAGA 3360 TTCTACAATA GAATTTTCTT TAATAGCACA GAAGCATTGG TCTTTTTCAG GACATTTGTC 3420 *' ATATCTGTTT GTAACAAAGC GGTCACAACC AGGGACATAA TAACAGCTAT CCAAACACTG 3480 AGCAGTTTGA GCCATAGACA TAGGCATCTG TGACAAAATC AGAAATCCTA TCAAAGTTTC 3540 TGTGACTGCT TTTAGGAAAG AGAGGCCTAT TTTTGTATTA ACTATCAAAT GGAACCATTC 3600 AATGCTAGCC CAGTTGTATT TTTTATTCTT CTCTGCTGTT CTAGTTATTA TAGGACATTC 3660 TTCTGAGTGT TCTTCAGAGG CTTTGTTTTT GTTACAAATG CATAATTTTG AGCATTCATG 3720 GGTTACCAAA CATAAATTTC CACAGACCTT ACATTTCAAG GGAAAATAAG ACCATAAATA 3780 ATTTATCAGT AGTAGTATAG GATACGTTAT CAATCCCAGA AGATCATACC CATAGAACAG 3840 TGTTTTAGAT GTTTTGTTTA CCAAGTACCT TATAGGGAAA TAGACAATCA GAGCAATCAT 3900
GATCAATCTA AACCATGAGA AGTTGATGCA AGCAGTTTGT TTGTAAATAT TTTTGGAGTA 3960 CTTTATAATA CAATCTCTAA CTCTTTTGTC CACTAAAGGA ACTTTAGAAG ACTTGTCACC 4020
GCACAATAGG TTATGCTTAC CATCCATATT TTCTTCTGTG AAAGTCAAAC TAACTGAGCC 4080
AGAGAAGCTT ATTATGGAAT GGCTCATGTC ACTTCCTTCT CTTTTGACGA CGTAACCCAT 4140 GATTTTCTCA GGTGTAGTTA ATGAAACTGT ATAAGAATTA ACTATGTTTG TTTTTGATAT 4200
TTTACAATCA CCTGAGAATT TCACACTCTG GAGAGAGACT GTGCCATTAG TTGGTCTAGA 4260
ATTGTACATG ATTGGATAAT TGTAATTCTC CAAACTTTCA ATTATATAGA ATTTAGTTCC 4320
TATAGATAAT TTCCTTTTGT TATCGATTTT TGTTATTGGT ACAACTGGAA CAGTTTCAAA 4380 GCTTCTTGGC AATTCAGAAG ATCCTTCACA GTTTCCCAAT TTAGTTATAG TGTCACTGAT 4440 ACATGAATAT ATAACACCAT TGCTTTCTAC TTGGTAATAA ACATTGAATG TTGAAACTCC 4500 TTTAATGCTA CAAGTCAAAC TTGAAGCATT TAGGCATGGA TTTGGTAAAT CCATAACTGA 4560 TATAGTTGTT GGTGTAGAAG ACAATCCACT TGGAGATTGA GGTACCTCAT TATTGGCAAG 4620 AACAGTTTGA GTATCTCGTG TTGGTCTAAG GGTTTTACCT GTTGCATTCT GGAGCATTTC 4680 AGCCAAAGTA TCTAGAATTT CATTTTTATG ATCTACAGAA CGGTCATAAT AAGCTTCATC 4740 ATAAATTTCT GGATGATCGC CCCTTTCAAC ATGAATCTTT GCATCTGTCT CCTTTAATGC 4800 CATAAAGGAT AAGATAACAG AAGTAACAAC TAGTGTACAT ACACTAATTT TAACAAGTAA 4860 CTCGCACATC TTTAGAATTT TCATTCTAAA AAGTCGAATA ACACTAGTTC TAAAATTGCT 4910 TTATGAGTTT GATCTGTTGT ATGTAGAGTT TTGTTTGCAC TGATTGCTCT 4970
BAD ORIGINAL
AP 0 00 4 0 3
SEQ ID NO» 15
Sequence type: Nucleotide
Sequence length: 912 nucleotides
Strandedness: single strand
Molecule type: Viral M RNA nucleotide sequence coding for the NSm protein gene from position 86 to position 997 of SEQ ID NO:14
Original Source Organism: Impatiens Necrotic Spot Virus
ATGAATAGTT TTTTCAAATC ACTCAGATCA TCTAGCAGCA GGGAGCTAGA TCACCCTAGG 60
GTTACAACTA CCCTCTCTAA ACAAGGAGCA GACATTGTTG TACACAATCC TTCTGCTAAT 120
CACAACAACA AGGAAGTTCT CCAAAGAGCC ATGGATAGCT CTAAAGGGAA GATTTTGATG 180
AACAATACAG GCACCTCATC ACTAGGCACA TATGAGTCTG ACCAGATATC TGAATCAGAG 240
TCTTATGATC TTTCTGCTAG AATGATTGTT GATACAAATC ATCATATCTC CAGCTGGAAA 300
AATGATCTTT TTGTAGGTAA TGGTGATAAA GOTGCAACCA AGATAATTAA GATACATCCA 360
ACCTGGGATA GCAGAAAACA ATACATGATG ATCTCAAGGA TAGTTATCTG GATATGCCCT 420
ACTATAGCTG ATCCTGATGG GAAATTGGCT GTAGCTTTAA TTGATCCTAA CAAGAGTGTT 480
AATGCCAGAA CTGTTTTGAA AGGGCAAGGA AGCATTAAAG ATCCTATATG TTTTGTTTTT 540
TATCTAAATT GGTCCATTCC AAAAGTTAAC AACACTTCAG AGAATTGTGT TCAGCTTCAT 600
TTATTATGTG ATCAAGTTTA CAAGAAAGAT GTTTCTTTTG CTAGTGTCAT GTATTCTTGG 6 6 0
ACAAAAGAAT TCTGTGATTC ACCAAGAGCA GATCTGGATA AAAGCTGCAT GATAATACCC
ATCAATAGGG CTATTAGAGC CAAATCGCAA GCCTTCATTG AAGCCTGCAA GTTAATCATA ~30
CCTAAAGGCA attctgaaaa GCAAATTAGA AGACAACTTG CAGAGCTAAG TGCTAATTTA 34 0
GAGAAATCTG TTGAAGAAGA GGAGAATGTT ACTGATAACA AGATAGAGAT ATCATTTGAT 9 0 0
AATGAAATCT AA ? 1 2
SEQ ID No »16
Sequence type: nucleotide
Sequence length: 473 nucleotides
Strandedness: single stranded
Molecule type: Intergenic region of viral M RNA from position 998 to position 1470 of SEQ ID NO:14
Original Source Organism: Impatiens necrotic spot virus
ATATGTTTTC ATTTAATAAT AAATAATATA TATTGTTCAT AATATTTTGA ATGTTTAAGT -?
AAAAAATAAA GCAAGATAAA AAACTATATA TATATATATA TATAGAAGTA TAAAATATAT 120
ATGTATTTGT GTTTAAAAAC AAATCAAAAA CCAAAAAAGA AAAAAGAAAA AATAAACA-A I 60
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
AAACAAAAAC AAAAACAAAA ACAAACAAAA AGCAAAAAAT AGAAAAAAGT TGAAAAAAAC 240 CAAAAAAATT TTTTTTGTAA ATAAATAAGG CTCCGGCCAG ATTTGGTCTA AGACCTTTTT 300 ATTTGTTTTT ATACATTTTA TTTGTTTTTG TTGATTTTTA ΤΤΙΤΤΑΤΤΑΤ ΊΤΤΤΑΤΑΤΤΤ 360 TTTATATAGT TTGCTTATTT AACACTTATT TAGACAAATT ΑΑΑΤΤΤΑΤΤΤ GATTACAATC 420 ATTCTGCCTT ΑΤΤΤΑΑΤΤΤΑ AAACACATTT GGTGTATATT CCAATGAATT ΤΑΑ 473
SEQ ID Νο. 17
Sequence type: Nucleotide
Sequence length: 3414 nucleotides
Strandedness: single stranded
Molecule Type: Viral M RNA from 1471 - 4884
Original Source Organism: Impatiens Necrotic Spot Virus
TCATATACCG CTGAAGTCTA GAGGAGGTCT TCTTCTAGTG ATGGTGTCTT TACCAGAAGA 60
CGTGGAAACC AAAGAATAAT CATTAGTGTC TTCAATATAT TTTGTCTTGT AAGACTTGTT 120
TCTAACATAG CCTCTACACA TTGTGGCAAC AATAGAGCAG AGGTAAGCAA GAGCAAATAC 180
AAAGAGTATG AGCAATACTA CTCTGACTGT ATCAAAGAAG GATCCAAAGT GGCTTGCTAT 240
AAAGTTAAAA GGGCTTTTAA CATAGTCCCA AAAGCTCCAA ACTGATGTGT CAGAATTATA 300
TTGCTGTTCC TCGTGTGCAT GTTGGTCATT TTGATCAATT ATGTTTTCTG GTTCCAGCAC 360
AGCAACAGAA TCTACAAGTG CCTCAACTGA GTATGATTTG TCTCCTTCTG GTTCTATAAT 420
CATTTTTTGT TTTTCTGGGT TAGAAGTGCA GAACATTGTC AAGTTATACT TATTAGCACC 480
TTTCTTTACT GCTATCTGGT ATGTTGACAA TGAACATTGT TTCATGGTTA ACCTTGCAGA 540
AAAAGTTATG TCTGATATAA ATGAGGCAGC ACACCTCAGC CCTTGGCTAC ATAAGAAACA 600
TCCCTTACAG CTTAAAGAGA CAGAACTCAA TATAGGCTTT TTTGGTACAG TTTTAAACAA 660
TTCAGAAGGT AGATCCAAAA CAATTTTAAG CTTACCTAGA CTAAAGATCT TTTCCATATA 720
AAAACTATTC TGGTCAGTAA ACTGAACTGG AATGTCCGAT ATTTGGTTCA AACCTGTTTT 780
AAATCTGTAT GTGTCATAAC CACATGATTT TATCGTAATT GTTTTTTTAC CAATTGCTGA 840
ACAATCCCAG GACAGATCGT TTGTATCTAA TGTTTTCTTA GAGAAAATGG GATCACCTTG 900
GTGTGAAAGT TGAGGATGAC CAAACATTTT TGATGGATTA TTTAATCTAG CTATGTTTCC 960
CGCATATACG TGACTATCAG GTCCATGAGC TATCAGCTGG CCTATTGTTA AGCCATCATT 1020
ATGGAAATCC GCTAATATAT CAGCCTGGAA ATATCCTGAT TCAGATGGGA CTTCCTCAGA 1080
TACAGTGAAA CACTTTGCTC CCACAAATCC AGATATACAT ACTTCAGACT TGATTGTTGA 1140
TTTAATAACA GAATAAATCC TGAAAGATTG ATCCATATCA TACACATTTC TACAAAACCC 1200
ACAAGTGGCT CCTTCATTGA TAGCCAAACA CCAAACCTCT TCACAACCCC AGTAAGATGT 1260
TGGTGTTATG CAGAAATCTT GATACCCAGT TATCGGTTGT TCTTTTCTGC AATCTGAGCA 1320
TTTACCTGTG CATGTTGAAA AGAAATCAGT GTGGGTGCTT TGTATAGGAG CTGTAGTGTA 1380
BAD ORIGINAL
APO00403
TTGTTCAGAA ACATCATACT GTATTCTAAC TTTTTTAATA TAAACAACAA ACTTCTGAGC 1440 AGTGCTAGAA CTTTTGTCAT TAAGAGAGAA AACTGTGCCC CCACCTGATA ATAAAGATTC 1500 TTCTATCATG TATCTATATT TTCCATCTAT CACCGAGTCA AATATGAGAG ATTTTCTTGG 1560 AAAAATGCTT TCAGGTATGT CTGATTCATT AGATTTAAGT GCATCTCCAG AAATGTATCC 1620 ATATTTTTCA GTTTTATTGT AGAAATCAAT TATACCATTC CTAAGCCTTT TCATGAAGTG 1680 TAGATTCACA GCATTCAATC CCAATGTGTC ACCAGAATAT TCTAAGAACC CATTATCTAA 1740 AGGCTTGCTT TGGAAAATAG AGGCATACTC ACAACCAAAT CTGCATTTGA CAAAAGTTAC 1800 TAAAGCATTT TCAGTTATCC TGCCTTTGCA TTCTTGATAA GGTATACAAT CCATAGGACC 1860 TTCTGTCACA ACATTGGTTA GAAAGTTAGA TTCTACAATA GAATTTTCTT TAATAGCACA 1920 GAAGCATTGG TCTTTTTCAG GACATTTGTC ATATCTGTTT GTAACAAAGC GGTCACAACC 1980 AGGGACATAA TAACAGCTAT CCAAACACTG AGCAGTTTGA GCCATAGACA TAGGCATCTG 2040’ TGACAAAATC AGAAATCCTA TCAAAGTTTC TGTGACTGCT TTTAGGAAAG AGAGGCCTAT 2100 TTTTGTATTA ACTATCAAAT GGAACCATTC AATGCTAGCC CAGTTGTATT TTTTATTCTT 2160
CTCTGCTGTT CTAGTTATTA TAGGACATTC TTCTGAGTGT TCTTCAGAGG CTTTGTTTTT 2220
GTTACAAATG CATAATTTTG AGCATTCATG GGTTACCAAA CATAAATTTC CACAGACCTT 2280 ACATTTCAAG GGAAAATAAG ACCATAAATA ATTTATCAGT AGTAGTATAG GATACGTTAT 2340
CAATCCCAGA AGATCATACC CATAGAACAG TGTTTTAGAT GTTTTGTTTA CCAAGTACCT 2400
TATAGGGAAA TAGACAATCA GAGCAATCAT GATCAATCTA AACCATGAGA AGTTGATGCA 2460
AGCAGTTTGT TTGTAAATAT TTTTGGAGTA CTTTATAATA CAATCTCTAA CTCTTTTGTC 2520 CACTAAAGGA ACTTTAGAAG ACTTGTCACC GCACAATAGG TTATGCTTAC CATCCATATT 2580
TTCTTCTGTG AAAGTCAAAC TAACTGAGCC AGAGAAGCTT ATTATGGAAT GGCTCATGTC 2540
ACTTCCTTCT CTTTTGACGA CGTAACCCAT GATTTTCTCA GGTGTAGTTA ATGAAACTGT 2700
ATAAGAATTA ACTATGTTTG TTTTTGATAT TTTACAATCA CCTGAGAATT TCACACTCTG 2760 GAGAGAGACT GTGCCATTAG TTGGTCTAGA ATTGTACATG ATTGGATAAT TGTAATTCTC 2820
CAAACTTTCA ATTATATAGA ATTTAGTTCC TATAGATAAT TTCCTTTTGT TATCGATTTT 2880 TGTTATTGGT ACAACTGGAA CAGTTTCAAA GCTTCTTGGC AATTCAGAAG ATCCTTCACA 2940 GTTTCCCAAT TTAGTTATAG TGTCACTGAT ACATGAATAT ATAACACCAT TGCTTTCTAC 3000 TTGGTAATAA ACATTGAATG TTGAAACTCC TTTAATGCTA CAAGTCAAAC TTGAAGCATT 3060 TAGGCATGGA TTTGGTAAAT CCATAACTGA TATAGTTGTT GGTGTAGAAG ACAATCCACT 3120 TGGAGATTGA GGTACCTCAT TATTGGCAAG AACAGTTTGA GTATCTCGTG TTGGTCTAAG 3180 GGTTTTACCT GTTGCATTCT GGAGCATTTC AGCCAAAGTA TCTAGAATTT CATTTTTATG 3240 ATCTACAGAA CGGTCATAAT AAGCTTCATC ATAAATTTCT GGATGATCGC CCCTTTCAAC 3300 ATGAATCTTT GCATCTGTCT CCTTTAATGC CATAAAGGAT AAGATAACAG AAGTAACAAC 3360
AP Ο Ο Ο 4 Ο 3
SEQ ID NO: 18
Sequence type: nucleotide
Sequence length: 36 nucleotides
Strandedness: single stranded
Molecule type: 5' end of M RNA pan-handle
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAA 36
SEQ ID NO: 19
Sequence type: Nucleotide
Sequence length: 36 nucleotides
Strandedness: single stranded
Molecule type: 3* end of M RNA pan-handle '
Original Source Organism: Impatiens Necrotic Spot Virus
CTGTTGTATG TAGAGTTTTG TTTGCACTGA TTGCTC 36
SEQ ID NO: 20
Sequence type: Nucleotide
Sequence length: 4970 nucleotides
Strandedness: single stranded
Molecule type: Complementary M RNA
Original Source Organism: Impatiens Necrotic Spot Virus
AGAGCAATCA GTGCAAACAA AACTCTACAT ACAACAGATC AAACTCATAA AGCAATTTTA 60
GAACTAGTGT TATTCGACTT TTTAGAATGA AAATTCTAAA GATGTGCGAG TTACTTGTTA 120
AAATTAGTGT ATGTACACTA GTTGTTACTT CTGTTATCTT atcctttatg GCATTAAAGG 180
AGACAGATGC AAAGATTCAT GTTGAAAGGG GCGATCATCC AGAAATTTAT GATGAAGCTT 240
ATTATGACCG TTCTGTAGAT CATAAAAATG AAATTCTAGA TACTTTGGCT GAAATGCTCC 300
AGAATGCAAC AGGTAAAACC CTTAGACCAA CACGAGATAC TCAAACTGTT CTTGCCAATA 360
ATGAGGTACC TCAATCTCCA AGTGGATTGT CTTCTACACC AACAACTATA TCAGTTATGG 420
ATTTACCAAA TCCATGCCTA AATGCTTCAA GTTTGACTTG TAGCATTAAA GGAGTTTCAA 480
CATTCAATGT TTATTACCAA GTAGAAAGCA ATGGTGTTAT ATATTCATGT ATCAGTGACA 540
CTATAACTAA ATTGGGAAAC TGTGAAGGAT CTTCTGAATT GCCAAGAAGC TTTGAAACTG 600
BAD ORIGINAL &
AP Ο Ο Ο 4 Ο 3 ι
TTCCAGTTGT ACCAATAACA AAAATCGATA ACAAAAGGAA ATTATCTATA GGAACTAAAT 660
TCTATATAAT TGAAAGTTTG GAGAATTACA ATTATCCAAT CATGTACAAT TCTAGACCAA 720
CTAATGGCAC AGTCTCTCTC CAGAGTGTGA AATTCTCAGG TGATTGTAAA ATATCAAAAA 780
CAAACATAGT TAATTCTTAT ACAGTTTCAT TAACTACACC TGAGAAAATC ATGGGTTACG 840
TCGTCAAAAG AGAAGGAAGT GACATGAGCC ATTCCATAAT AAGCTTCTCT GGCTCAGTTA 900
GTTTGACTTT CACAGAAGAA AATATGGATG GTAAGCATAA CCTATTGTGC GGTGACAAGT 960
CTTCTAAAGT TCCTTTAGTG GACAAAAGAG TTAGAGATTG TATTATAAAG TACTCCAAAA 1020
ATATTTACAA ACAAACTGCT TGCATCAACT TCTCATGGTT TAGATTGATC ATGATTGCTC 1080
TGATTGTCTA TTTCCCTATA AGGTACTTGG TAAACAAAAC ATCTAAAACA CTGTTCTATG 1140
GGTATGATCT TCTGGGATTG ATAACGTATC CTATACTACT ACTGATAAAT TATTTATGGT 1200
CTTATTTTCC CTTGAAATGT AAGGTCTGTG G.AAATTTATG TTTGGTAACC CATGAATGCT 1260
CAAAATTATG CATTTGTAAC AAAAACAAAG CCTCTGAAGA ACACTCAGAA GAATGTCCTA 1320
TAATAACTAG AACAGCAGAG AAGAATAAAA AATACAACTG GGCTAGCATT GAATGGTTCC 1380
ATTTGATAGT TAATACAAAA ATAGGCCTCT CTTTCCTAAA AGCAGTCACA GAAACTTTGA 1440
TAGGATTTCT GATTTTGTCA CAGATGCCTA TGTCTATGGC TCAAACTGCT CAGTGTTTGG 1500
ATAGCTGTTA TTATGTCCCT GGTTGTGACC GCTTTGTTAC AAACAGATAT GACAAATGTC 1560
CTGAAAAAGA CCAATGCTTC TGTGCTATTA AAGAAAATTC TATTGTAGAA TCTAACTTTC 1620
TAACCAATGT TGTGACAGAA GGTCCTATGG ATTGTATACC TTATCAAGAA TGCAAAGGCA 1680
GGATAACTGA AAATGCTTTA GTAACTTTTG TCAAATGCAG ATTTGGTTGT GAGTATGCCT 1740
CTATTTTCCA AAGCAAGCCT TTAGATAATG GGTTCTTAGA ATATTCTGGT GACACATTGG 1800
GATTGAATGC TGTGAATCTA CACTTCATGA AAAGGCTTAG GAATGGTATA ATTGATTTCT 1860
ACAATAAAAC TGAAAAATAT GGATACATTT CTGGAGATGC ACTTAAATCT AATGAATCAG 1920
ACATACCTGA AAGCATTTTT CCAAGAAAAT CTCTCATATT TGACTCGGTG ATAGATGGAA 1980
AATATAGATA CATGATAGAA GAATCTTTAT TATCAGGTGG GGGCACAGTT TTCTCTCTTA 2040
ATGACAAAAG TTCTAGCACT GCTCAGAAGT TTGTTGTTTA TATTAAAAAA GTTAGAATAC 2100
AGTATGATGT TTCTGAACAA TACACTACAG CTCCTATACA AAGCACCCAC ACTGATTTCT 2160
TTTCAACATG CACAGGTAAA TGCTCAGATT GCAGAAAAGA ACAACCGATA ACTGGGTATC 2220
AAGATTTCTG CATAACACCA ACATCTTACT GGGGTTGTGA AGAGGTTTGG TGTTTGGCTA 2280
TCAATGAAGG AGCCACTTGT GGGTTTTGTA GAAATGTGTA TGATATGGAT CAATCTTTCA 2340
GGATTTATTC TGTTATTAAA TCAACAATCA AGTCTGAAGT ATGTATATCT GGATTTGTGG 2400
GAGCAAAGTG TTTCACTGTA TCTGAGGAAG TCCCATCTGA ATCAGGATAT TTCCAGGCTG 2460
ATATATTAGC GGATTTCCAT AATGATGGCT TAACAATAGG CCAGCTGATA GCTCATGGAC 2520
CTGATAGTCA CGTATATGCG GGAAACATAG CTAGATTAAA TAATCCATCA AAAATGTTTG 2580
GTCATCCTCA ACTTTCACAC CAAGGTGATC CCATTTTCTC TAAGAAAACA TTAGATACAA 2640
ACGATCTGTC CTGGGATTGT TCAGCAATTG GTAAAAAAAC AATTACGATA AAATCATGTG 2700
GTTATGACAC ATACAGATTT AAAACAGGTT TGAACCAAAT ATCGGACATT CCAGTTCAGT 2760
TTACTGACCA GAATAGTTTT TATATGGAAA AGATCTTTAG TCTAGGTAAG CTTAAAATTG 2820
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
TTTTGGATCT ACCTTCTGAA TTGTTTAAAA CTGTACCAAA AAAGCCTATA TTGAGTTCTG 2880
TCTCTTTAAG CTGTAAGGGA TGTTTCTTAT GTAGCCAAGG GCTGAGGTGT GCTGCCTCAT 2940
TTATATCAGA CATAACTTTT TCTGCAAGGT TAACCATGAA ACAATGTTCA TTGTCAACAT 3000
ACCAGATAGC AGTAAAGAAA GGTGCTAATA AGTATAACTT GACAATGTTC TGCACTTCTA 3060
ACCCAGAAAA ACAAAAAATG ATTATAGAAC CAGAAGGAGA CAAATCATAC TCAGTTGAGG 3120
CACTTGTAGA TTCTGTTGCT GTGCTGGAAC CAGAAAACAT AATTGATCAA AATGACCAAC 3180
ATGCACACGA GGAACAGCAA TATAATTCTG ACACATCAGT TTGGAGCTTT TGGGACTATG 3240
TTAAAAGCCC TTTTAACTTT ATAGCAAGCC ACTTTGGATC CTTCTTTGAT ACAGTCAGAG 3300
TAGTATTGCT CATACTCTTT GTATTTGCTC TTGCTTACCT CTGCTCTATT GTTGCCACAA 3360
) TGTGTAGAGG CTATGTTAGA AACAAGTCTT ACAAGACAAA ATATATTGAA GACACTAATG 3420
ATTATTCTTT GGTTTCCACG TCTTCTGGTA AAGACACCAT CACTAGAAGA AGACCTCCTC 3480 *'
TAGACTTCAG CGGTATATGA TTAAATTCAT TGGAATATAC ACCAAATGTG TTTTAAATTA 3540
AATAAGGCAG AATGATTGTA ATCAAATAAA TTTAATTTGT CTAAATAAGT GTTAAATAAG 3600
CAAACTATAT AAAAAATATA AAAATAATAA AAATAAAAAT CAACAAAAAC AAATAAAATG 3660
TATAAAAACA AATAAAAAGG TCTTAGACCA AATCTGGCCG GAGCCTTATT TATTTACAAA 3720
AAAAATTTTT TTGGTTTTTT TCAACTTTTT TCTATTTTTT GCTTTTTGTT TGTTTTTGTT 3730
TTTGTTTTTG TTTTTTGTTT ATTTTTTCTT TTTTCTTTTT TGGTTTTTGA TTTGTTTTTA 3840
AAC AC AAAT A CATATATATT TTATACTTCT ATATATATAT ATATATATAG TTTTTTATCT 3900
TGCTTTATTT TTTACTTAAA CATTCAAAAT ATTATGAACA ATATATATTA TTTATTATTA 3960
AATGAAAACA TATTTAGATT TCATTATCAA ATGATATCTC TATCTTGTTA TCAGTAACAT 4020
TCTCCTCTTC TTCAACAGAT TTCTCTAAAT TAGCACTTAG CTCTGCAAGT TGTCTTCTAA 4090
TTTGCTTTTC AGAATTGCCT TTAGGTATGA TTAACTTGCA GGCTTCAATG AAGGCTTGCG 4140
ATTTGGCTCT AATAGCCCTA TTGATGGGTA TTATCATGCA GCTTTTATCC AGATCTGCTC 4200
TTGGTGAATC ACAGAATTCT TTTGTCCAAG AATACATGAC ACTAGCAAAA GAAACATCTT 4250
TCTTGTAAAC TTGATCACAT AATAAATGAA GCTGAACACA ATTCTCTGAA GTGTTGTTAA 4320
CTTTTGGAAT GGACCAATTT AGATAAAAAA CAAAACATAT AGGATCTTTA ATGCTTCCTT 4330
GCCCTTTCAA AACAGTTCTG GCATTAACAC TCTTGTTAGG ATCAATTAAA GCTACAGCCA 4440
ATTTCCCATC AGGATCAGCT ATAGTAGGGC ATATCCAGAT AACTATCCTT GAGATCATCA 4500
TGTATTGTTT TCTGCTATCC CAGGTTGGAT GTATCTTAAT TATCTTGGTT GCAGCTTTAT 4550
CACCATTACC TACAAAAAGA TCATTTTTCC AGCTGGAGAT ATGATGATTT GTATCAACAA 4520
TCATTCTAGC AGAAAGATCA TAAGACTCTG ATTCAGATAT CTGGTCAGAC TCATATGTGC 4530
CTAGTGATGA GGTGCCTGTA TTGTTCATCA AAATCTTCCC TTTAGAGCTA TCCATGGCTC 4^40
TTTGGAGAAC TTCCTTGTTG TTGTGATTAG CAGAAGGATT GTGTACAACA ATGTCTGCTC 4300
CTTGTTTAGA GAGGGTAGTT GTAACCCTAG GGTGATCTAG CTCCCTGCTG CTAGATGATC 4 s50
TGAGTGATTT GAAAAAACTA TTCATCTCTG GACGGTAGAT TAAGAATTAA AATATTGAGA 4'-20
AGATAATGAT TGAATTCGGC TAGATATAAT TTTGATGCAC TGATTGCTCT 4-70
bad ORIGINAL
AP Ο Ο Ο 4 Ο 3
SEQ ID NO: 21
Sequence type: Nucleotide
Sequence length: 3414 nucleotides
Strandedness: Single stranded
Molecule type: Complementary M RNA coding for the G1/G2 precursor proteins from position 87 to position 3500 of SEQ ID NO: 20
Original Source Organism:
ATGAAAATTC TAAAGATGTG CGAGTTACTT GTTAAAATTA GTGTATGTAC ACTAGTTGTT 60
ACTTCTGTTA TCTTATCCTT TATGGCATTA AAGGAGACAG ATGCAAAGAT TCATGTTGAA 120
AGGGGCGATC ATCCAGAAAT TTATGATGAA GCTTATTATG ACCGTTCTGT AGATCATAAA 180
AATGAAATTC TAGATACTTT GGCTGAAATG CTCCAGAATG CAACAGGTAA AACCCTTAGA 240
CCAACACGAG ATACTCAAAC TGTTCTTGCC AATAATGAGG TACCTCAATC TCCAAGTGGA 300
TTGTCTTCTA CACCAACAAC TATATCAGTT ATGGATTTAC CAAATCCATG CCTAAATGCT 360
TCAAGTTTGA CTTGTAGCAT TAAAGGAGTT TCAACATTCA ATGTTTATTA CCAAGTAGAA 420
AGCAATGGTG TTATATATTC atgtatcagt GACACTATAA CTAAATTGGG AAACTGTGAA 480
GGATCTTCTG AATTGCCAAG AAGCTTTGAA ACTGTTCCAG TTGTACCAAT AACAAAAATC 540
GATAACAAAA GGAAATTATC TATAGGAACT aaattctata TAATTGAAAG TTTGGAGAAT 600
TACAATTATC CAATCATGTA CAATTCTAGA CCAACTAATG GCACAGTCTC TCTCCAGAGT 660
GTGAAATTCT CAGGTGATTG TAAAATATCA AAAACAAACA TAGTTAATTC TTATACAGTT 720
TCATTAACTA CACCTGAGAA AATCATGGGT TACGTCGTCA AAAGAGAAGG AAGTGACATG 780
AGCCATTCCA TAATAAGCTT CTCTGGCTCA GTTAGTTTGA CTTTCACAGA AGAAAATATG 840
GATGGTAAGC ATAACCTATT GTGCGGTGAC AAGTCTTCTA AAGTTCCTTT AGTGGACAAA 900
AG AGTTAGAG ATTGTATTAT AAAGxAClCC AAAAATATTT ACAAACAAAC TGCTTGCATC 960
AACTTCTCAT GGTTTAGATT GATCATGATT GCTCTGATTG TCTATTTCCC TATAAGGTAC 1020
TTGGTAAACA AAACATCTAA AACACTGTTC TATGGGTATG ATCTTCTGGG ATTGATAACG 1080
TATCCTATAC TACTACTGAT AAATTATTTA TGGTCTTATT TTCCCTTGAA ATGTAAGGTC 1140
TGTGGAAATT TATGTTTGGT AACCCATGAA TGCTCAAAAT TATGCATTTG TAACAAAAAC 1200
AAAGCCTCTG AAGAACACTC AGAAGAATGT CCTATAATAA CTAGAACAGC AGAGAAGAAT 1260
AAAAAATACA ACTGGGCTAG CATTGAATGG TTCCATTTGA TAGTTAATAC AAAAATAGGC 1320
CTCTCTTTCC TAAAAGCAGT CACAGAAACT TTGATAGGAT TTCTGATTTT GTCACAGATG 1380
CCTATGTCTA TGGCTCAAAC TGCTCAGTGT TTGGATAGCT GTTATTATGT CCCTGGTTGT 1440
GACCGCTTTG TTACAAACAG ATATGACAAA TGTCCTGAAA AAGACCAATG CTTCTGTGCT 1500
ATTAAAGAAA ATTCTATTGT AGAATCTAAC TTTCTAACCA ATGTTGTGAC AGAAGGTCCT 1560
ATGGATTGTA TACCTTATCA AGAATGCAAA GGCAGGATAA CTGAAAATGC TTTAGTAACT 1620
TTTGTCAAAT GCAGATTTGG TTGTGAGTAT GCCTCTATTT TCCAAAGCAA GCCTTTAGAT 1680
APO0040 3
C'·
AATGGGTTCT TAGAATATTC TGGTGACACA TTGGGATTGA ATGCTGTGAA TCTACACTTC 1740
ATGAAAAGGC TTAGGAATGG TATAATTGAT TTCTACAATA AAACTGAAAA ATATGGATAC 1800
ATTTCTGGAG ATGCACTTAA ATCTAATGAA TCAGACATAC CTGAAAGCAT TTTTCCAAGA 1860
AAATCTCTCA TATTTGACTC GGTGATAGAT GGAAAATATA GATACATGAT AGAAGAATCT 1920
TTATTATCAG GTGGGGGCAC AGTTTTCTCT CTTAATGACA AAAGTTCTAG CACTGCTCAG 1980
AAGTTTGTTG TTTATATTAA AAAAGTTAGA ATACAGTATG ATGTTTCTGA ACAATACACT 2040
ACAGCTCCTA TACAAAGCAC CCACACTGAT TTCTTTTCAA CATGCACAGG TAAATGCTCA 2100
GATTGCAGAA AAGAACAACC GATAACTGGG TATCAAGATT TCTGCATAAC ACCAACATCT 2160
TACTGGGGTT GTGAAGAGGT TTGGTGTTTG GCTATCAATG AAGGAGCCAC TTGTGGGTTT 2220
Θ TGTAGAAATG TGTATGATAT GGATCAATCT TTCAGGATTT ATTCTGTTAT TAAATCAACA 2280
ATCAAGTCTG AAGTATGTAT ATCTGGATTT GTGGGAGCAA AGTGTTTCAC TGTATCTGAG 2340 ’
GAAGTCCCAT CTGAATCAGG ATATTTCCAG GCTGATATAT TAGCGGATTT CCATAATGAT 2400
GGCTTAACAA TAGGCCAGCT GATAGCTCAT GGACCTGATA GTCACGTATA TGCGGGAAAC 2460
ATAGCTAGAT TAAATAATCC ATCAAAAATG TTTGGTCATC CTCAACTTTC ACACCAAGGT 2520
GATCCCATTT TCTCTAAGAA AACATTAGAT ACAAACGATC TGTCCTGGGA TTGTTCAGCA 2580
ATTGGTAAAA AAACAATTAC GATAAAATCA TGTGGTTATG ACACATACAG ATTTAAAACA 2640
GGTTTGAACC AAATATCGGA CATTCCAGTT CAGTTTACTG ACCAGAATAG TTTTTATATG 2700
GAAAAGATCT TTAGTCTAGG TAAGCTTAAA ATTGTTTTGG ATCTACCTTC TGAATTGTTT 2760
AAAACTGTAC CAAAAAAGCC TATATTGAGT TCTGTCTCTT TAAGCTGTAA GGGATGTTTC 2820
TTATGTAGCC AAGGGCTGAG GTGTGCTGCC TCATTTATAT CAGACATAAC TTTTTCTGCA 2880
AGGTTAACCA TGAAACAATG TTCATTGTCA ACATACCAGA TAGCAGTAAA GAAAGGTGCT 2940
) AATAAGTATA ACTTGACAAT gttctgcact TCTAACCCAG AAAAACAAAA AATGATTATA 3000
a > t - . GAACCAGAAG GAGACAAATC ATACTCAGTT GAGGCACTTG TAGATTCTGT TGCTGTGCTG 3060
( ’ GAACCAGAAA ACATAATTG ATCAAAATGAC CAACATGCAC ACGAGGAACA GCAATATAAT 3120
TCTGACACAT CAGTTTGGAG CTTTTGGGAC TATGTTAAAA GCCCTTTTAA CTTTATAGCA 3180
AGCCACTTTG GATCCTTCTT TGATACAGTC AGAGTAGTAT TGCTCATACT CTTTGTATTT 3240
GCTCTTGCTT acctctgctc TATTGTTGCC ACAATGTGTA GAGGCTATGT TAGAAACAAG 3300
TCTTACAAGA CAAAATATAT TGAAGACACT AATGATTATT CTTTGGTTTC CACGTCTTCT 3360
GGTAAAGACA CCATCACTAG AAGAAGACCT CCTCTAGACT TCAGCGGTAT ATGA 3414
SEQ ID No. 22
Sequence types Nucleotide
Sequence length: 912 nucleotides
Strandedness: single stranded
Molecule type: Complementary viral M RNA from 3974 to 4885 of SEQ ID No. 20
AP Ο Ο Ο 4 Ο 3
I
TTAGATTTCA TTATCAAATG ATATCTCTAT CTTGTTATCA GTAACATTCT CCTCTTCTTC 60
AACAGATTTC TCTAAATTAG CACTTAGCTC TGCAAGTTGT CTTCTAATTT GCTTTTCAGA 120
ATTGCCTTTA GGTATGATTA ACTTGCAGGC TTCAATGAAG GCTTGCGATT TGGCTCTAAT 180
AGCCCTATTG ATGGGTATTA TCATGCAGCT TTTATCCAGA TCTGCTCTTG GTGAATCACA 240
GAATTCTTTT GTCCAAGAAT ACATGACACT AGCAAAAGAA ACATCTTTCT TGTAAACTTG 300
ATCACATAAT AAATGAAGCT GAACACAATT CTCTGAAGTG TTGTTAACTT TTGGAATGGA 360
CCAATTTAGA TAAAAAACAA AACATATAGG atctttaatg CTTCCTTGCC CTTTCAAAAC 420
AGTTCTGGCA TTAACACTCT TGTTAGGATC AATTAAAGCT ACAGCCAATT TCCCATCAGG 480
ATCAGCTATA GTAGGGCATA TCCAGATAAC TATCCTTGAG ATCATCATGT ATTGTTTTCT 540
GCTATCCCAG GTTGGATGTA TCTTAATTAT CTTGGTTGCA GCTTTATCAC CATTACCTAC 600
AAAAAGATCA TTTTTCCAGC TGGAGATATG ATGATTTGTA TCAACAATCA TTCTAGCAGA 660
AAGATCATAA GACTCTGATT CAGATATCTG GTCAGACTCA TATGTGCCTA GTGATGAGGT 720
GCCTGTATTG TTCATCAAAA TCTTCCCTTT AGAGCTATCC ATGGCTCTTT GGAGAACTTC 780
CTTGTTGTTG TGATTAGCAG AAGGATTGTG TACAACAATG TCTGCTCCTT GTTTAGAGAG 840
GGTAGTTGTA ACCCTAGGGT GATCTAGCTC CCTGCTGCTA GATGATCTGA GTGATTTGAA 900
AAAACTATTC AT 912
SEQ ID No. 23
Sequence type: Nucleotide
Sequence length: 446 nucleotides
Strandedness: Single stranded
Molecule type: CaMV 35S' promoter and Ω sequence of tobacco mosaic virus Original Source Organism:
GGATCCGGAA CATGGTGGAG CACGACACGC TTGTCTACTC CAAAAATATC 50 AAAGATACAG TCTCAGAAGA CCAAAGGGCA ATTGAGACTT TTCAACAAAG 100 TTATTGTGAA GATAGTGGAA AAGGAAGGTG GCTCCTACAA ATGCCATCAT 150 TGCGATAAAG GAAAGGCCAT CGTTGAAGAT GCCTCTGCCG ACAGTGGTCC 200 CAAAGATGGA CCCCCACCCA CGAGGAGCAT CGTGGAAAAA GAAGACGTTC 250 CAACCACGTC TTCAAAGCAA GTGGATTGAT GTGATATCTC CACTGACGTA 300 AGGGATGACG CACAATCCCA CTATCCTTCG CAAGACCCTT CCTCTATATA 350 AGGAAGTTCA TTTCATTTGG AGAGGACTTT TTACAACAAT TACCAACAAC 400
AP Ο Ο Ο 4 Ο 3
SEQ ID NO :24
Sequence type:Amino acid
Sequence length: 303 amino acids (NSm protein)
Original Source Organism: Impatiens Necrotic Spot Virus c
Met Asn Ser Phe Phe 5 Lys Ser Leu Arg Ser 10 Ser Ser Ser Arg Glu 15 15
Leu Asp His Pro Arg 20 Val Thr Thr Thr Leu 25 Ser Lys Gin Gly Ala 30 30
Asp lie Val Val His 35 Asn Pro Ser Ala Asn 40 His Asn Asn Lys Glu 45 45
Val Leu Gin Arg Ala 50 Met Asp Ser Ser Lys 55 Gly Lys He Leu Met 60 60
Asn Asn Thr Gly Thr 65 Ser Ser Leu Gly Thr 70 Tyr Glu Ser Asp Gin 75 75
lie Ser Glu Ser Glu 80 Ser Tyr Asp Leu Ser 85 Ala Arg Met lie Val 90 90
Asp Thr Asn His His 95 lie Ser Ser Trp Lys 100 Asn Asp Leu Phe Val 105 105
BAD ORIGINAL £
AP Ο Ο Ο 4 Ο 3
Gly Asn Gly Asp Lys Ala Ala Thr Lys lie 115 lie Lys He His Pro 120 120
110
Thr Trp Asp Ser Arg Lys Gin Tyr Met Met lie Ser Arg He Val 135
125 130 135
lie Trp lie Cys Pro Thr lie Ala Asp Pro Asp Gly Lys Leu Ala 150
140 145 150
Val Ala Leu lie Asp Pro Asn Lys Ser Val Asn Ala Arg Thr Val 165
155 160 165
Leu Lys Gly Gin Gly Ser He Lys Asp Pro He Cys Phe Val Phe 180
170 175 180
Tyr Leu Asn Trp Ser He Pro Lys Val Asn Asn Thr Ser Glu Asn 195
185 190 195
Cys Val Gin Leu His Leu Leu Cys Asp Gin Val Tyr Lys Lys Asp 210
200 205 210
Val Ser Phe Ala Ser Val Met Tyr Ser Trp Thr Lys Glu Phe Cys 225
215 220 . 225
Asp Ser Pro Arg Ala Asp Leu Asp Lys Ser Cys Met He He Pro 240
230 235 240
He Asn Arg Ala He Arg Ala Lys Ser Gin Ala Phe He Glu Ala 255
245 250 255
Cys Lys Leu He He Pro Lys Gly Asn Ser Glu Lys Gin lie Arg 270
260 265 270
Arg Gin Leu Ala Glu Leu Ser Ala Asn Leu Glu Lys Ser Val Glu 285
275 280 285
Glu Glu Glu Asn Val Thr Asp Asn Lys lie Glu lie Ser Phe Asp 300
290 295 300
Asn Glu lie 3 03
SEQ ID NO :25
Sequence types Amino acids
Sequence length: 262 amino acids (N protein)
Original Source Organism: Impatiens Necrotic Spot Virus
Met Asn Lys Ala Lys 5 He Thr Lys Glu Asn 10 lie Val Lys Leu Leu 15 15
Thr Gin Ser Asp Ser 20 Leu Glu Phe Glu Glu 25 Thr Gin Asn Glu Gly 30 3 0
Ser Phe Asn Phe Thr 35 Asp Phe Phe Thr Asn 40 Asn Arg Glu Lys lie 45 45
Gin Asn Met Thr Thr 50 Ala Ser Cys Leu Ser 55 Phe Leu Lys Asn Arg 60 6 ·?
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3 οο
Gin Ser He Met Arg 65 Val He Lys Ser Ala 70 Asp Phe Thr Phe Gly 75 75
Ser Val Thr He Lys 80 Lys Thr Arg Asn Asn 85 Ser Glu Arg Val Gly 90 90
Val Asn Asp Met Thr 95 Phe Arg Arg Leu Asp 100 Ala Met Val Arg Val 105 105
His Leu Val Gly Met 110 lie Lys Asp Asn Gly 115 Ser Ala Leu Thr Glu 120 120
Ala lie Asn Ser Leu 125 Pro Ser His Pro Leu 130 lie Ala Ser Tyr Gly 135 135
Leu Ala Thr Thr Asp 140 Leu Lys Ser Cys Val 145 Leu Gly Val Leu Leu 150 150
Gly Gly Ser Leu Pro 155 Leu He Ala Ser Val 160 Leu Asn Phe Glu He 165 165
Ala Ala Leu Val Pro 170 Ala He Tyr Gin Asp 175 Ala Lys His Val Glu 180 180
Leu Gly He Asp Met 185 Ser Lys Phe Ser Thr 190 Lys Glu Ala Val Gly 195 195
Lys Val Cys Thr Val Leu Lys Ser Lys Gly Tyr Ser Met Asn Ser 210
200 205 210
Val Glu He Gly Lys Ala Lys Gin Tyr Ala Asp lie Leu Lys Ala 225
215 220 225
Cys Ser Pro Lys Ala Lys Gly Leu Ala Ala Met Asp His Tyr Lys 240
230 235 240
Glu Gly Leu Thr Ser lie Tyr Ser Met Phe Asn Ala Thr lie Asp 255
245 250 255
Phe Gly Lys Asn Asp Ser lie 262
260
SEQ ΙΟ NO: 26
Sequence type: Amino acid
Sequence length: 449 amino acids
Molecule type: NSs protein
Original Source Organism: Impatiens Necrotic Spot Virus
Met Ser Ser Ala Met lyr Glu Thr lie He Lys Ser Lys Ser Ser 15 5 10 15 lie Trp Gly Thr Thr Ser Ser Gly Lys Ala Val Val Asp Ser Tyr 30
AP Ο Ο Ο 4 Ο 3 (?)
Trp Ile His Asp Gin 35 Ser Ser Gly
Leu Tyr Ser Asp Ser 50 Arg Ser Lys
Lys Val Gly Phe Leu 65 Pro Thr Glu
Cys Phe Val Pro Ile 80 Phe Asp Asp
& Ser Gly Asn Val Val 95 Glu Ile Leu
C Thr Asn Gly Val Lys 110 His Gin Gly
Gin Leu Leu Arg Met 125 Leu Glu Glu
Thr Ser Arg Phe Gly 140 Leu Lys Glu
Asn Phe Ile Glu Ala 155 Ala Asn Lys
Glu Val Leu Phe Asp 170 Val Lys Tyr
Lys Val Ser Val Leu 185 Ser Pro Thr
4 Tyr Thr Leu Lys Pro 200 Val Phe Asn
( Thr Val Asn Thr Leu 215 Ala Val Lys
Ser Asp Leu Met Ser 230 Asp Thr His
Asn Lys Pro Phe Lys 245 Ile Ser Leu
Met Lys Ser Asn Thr 260 Tyr Ser Arg
Ser Ser Pro Lys Glu 275 Tyr Tyr Ile
His Asn Asn Val Glu 290 Thr Val Ile
Asn Leu Phe Leu Asn 305 Gin Leu Leu
Glu Met Asn Phe Ser 320 Asp Leu Lys
Lys Lys 40 Leu Val Glu Ala Gin 45 45
Thr Ser 55 Phe Cys Tyr Thr Gly 60 60
Glu Lys 70 Glu Ile Ile Val Arg 75 75
Ile Asp 85 Leu Asn Phe Ser Phe 90 90
Val Arg 100 Ser Asn Thr Thr Asn 105 105
His Leu 115 Lys Val Leu Ser Ser 120 120
Gin Ile 130 Ala Val Pro Glu Ile 135 135
Ser Asp 145 Ile Phe Pro Pro Asn 150 150
Gly Ser 160 Leu Ser Cys Val Lys 165 165
Ser Asn 175 Asn Gin Ser Met Gly 180 180
Arg Ser 190 Val His Glu Trp Leu 195 195
Gin Ser 205 Gin Thr Asn Asn Arg 210 210
Ser Leu 220 Ala Met Ser Ala Thr 225 225
Ser Phe 235 Val Arg Leu Asn Asn 240 240
Trp Met 250 Arg Ile Pro Lys Ile 255 255
Phe Phe 265 Thr Leu Ser Asp Glu 270 270
Ser Ile 280 Gin Cys Leu Pro Asn 285 285
Glu Tyr 295 Asn Phe Asp Gin Ser 300 300
Leu Ala 310 Val He His Lys Ile 315 315
Glu Pro 325 Tyr Asn Val Ile His 330 330
AP Ο Ο Ο 4 Ο 3
Asp Met Ser Tyr Pro 335 Gin Arg Ila Val His 340 Ser Leu Leu Glu lie 345 345
His Thr Glu Leu Ala 350 Gin Thr Val Cys Asp 355 Ser Val Gin Gin Asp 360 360
Met He Val Phe Thr 365 He Asn Glu Pro Asp 3.70 Leu Lys Pro Lys Lys 375 375
Phe Glu Leu Gly Lys 380 Lys Thr Leu Asn Tyr 385 Ser Glu Asp Gly Tyr 390 390
Gly Arg Lys Tyr Phe 395 Leu Ser Gin Thr Leu 400 Lys Ser Leu Pro Arg 405 405
Asn Ser Gin Thr Met 410 Ser Tyr Leu Asp Ser 415 lie Gin Met Pro Asp 420 420
Trp Lys Phe Asp Tyr 425 Ala Ala Gly Glu lie 430 Lys lie Ser Pro Arg 435 435
Ser Glu Asp Val Leu Lys Ala lie Ser Lys Leu Asp Leu 440 445 . SEQ ID NO :27 Sequence type: Amino acid Sequence length: 1137 eunino acids (G1G2 precursor protein) Original Source Organism: Impatiens Necrotic Spot Virus Asn 1 449
Met Lys lie Leu Lys 5 Met Cys Glu Leu Leu 10 Val Lys lie Ser Val 15 15
Cys Thr Leu Val Val 20 Thr Ser Val lie Leu 25 Ser Phe Met Ala Leu 30 30
Lys Glu Thr Asp Ala 35 Lys lie His Val Glu 40 Arg Gly Asp His Pro 45 45
Glu lie Tyr Asp Glu 50 Ala Tyr Tyr Asp Arg 55 Ser Val Asp His Lys 60 60
Asn Glu lie Leu Asp 65 Thr Leu Ala Glu Met 70 Leu Gin Asn Ala Thr 75 75
Gly Lys Thr Leu Arg 80 Pro Thr Arg Asp Thr 85 Gin Thr Val Leu Ala 90 90
Asn Asn Glu Val Pro 95 Gin Ser Pro Ser Gly 100 Leu Ser Ser Thr Pro 105 105
Thr Thr lie Ser Val 110 Met Asp Leu Pro Asn 115 Pro Cys Leu Asn Ala 120 120
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
Ser Ser Leu Thr Cys 125 Ser He Lys Gly Val 130 Ser Thr Phe Asn Val 135 135
Tyr Tyr Gin Val Glu 140 Ser Asn Gly Val lie 145 Tyr Ser Cys He Ser 150 150
Asp Thr He Thr Lys 155 Leu Gly Asn Cys Glu 160 Gly Ser Ser Glu Leu 165 165
Pro Arg Ser Phe Glu 170 Thr Val Pro Val Val 175 Pro lie Thr Lys lie 180 180
Asp Asn Lys Arg Lys 185 Leu Ser lie Gly Thr 190 Lys Phe Tyr lie He 195 195
Glu Ser Leu Glu Asn 200 Tyr Asn Tyr Pro He 205 Met Tyr Asn Ser Arg 210 210
Pro Thr Asn Gly Thr 215 Val Ser Leu Gin Ser 220 Val Lys Phe Ser Gly 225 225
Asp Cys Lys He Ser 230 Lys Thr Asn lie Val 235 ^sn Ser Tyr Thr Val 240 240
Ser Leu Thr Thr Pro 245 Glu Lys lie Met Gly 250 Tyr Val Val Lys Arg 255 255
Glu Gly Ser Asp Met 260 Ser His Ser lie lie 265 Ser Phe Ser Gly Ser 270 270
Val Ser Leu Thr Phe 275 Thr Glu Glu Asn Met 280 Asp Gly Lys His Asn 285 285
Leu Leu Cys Gly Asp 290 Lys Ser Ser Lys Val 295 Pro Leu Val Asp Lys 300 300
Arg Val Arg Asp Cys 305 lie lie Lys Tyr Ser 310 Lys Asn He Tyr Lys 315 315
Gin Thr Ala Cys He 320 Asn Phe Ser Trp Phe 325 Arg Leu He Met lie 330 330
Ala Leu lie Val Tyr 335 Phe Pro lie Arg Tyr 340 Leu Val Asn Lys Thr 345 345
Ser Lys Thr Leu Phe 350 Tyr Gly Tyr Asp Leu 355 Leu Gly Leu lie Thr 360 360
Tyr Pro lie Leu Leu 365 Leu He Asn Tyr Leu 370 Trp Ser Tyr Phe Pro 375 375
Leu Lys Cys Lys Val 380 Cys Gly Asn Leu Cye 385 Leu Val Thr His Glu 390 390
Cys Ser Lys Leu Cys 395 lie Cys Asn Lys Asn 400 Lys Ala Ser Glu Glu 405 405
His Ser Glu Glu Cys 410 Pro He He Thr Arg 415 Thr Ala Glu Lys Asn 420 420
BAD ORIGINAL &
AP Ο Ο Ο 4 Ο 3 ) 72
Lys Lys Tyr Asn Trp 425 Ala Ser lie Glu Trp 430 Phe His Leu lie Val 435 435
As η Thr Lys He Gly 440 Leu Ser Phe Leu Lys 445 Ala Val Thr Glu Thr 450 450
Leu He Gly Phe Leu 455 lie Leu Ser Gin Met 460 Pro Met Ser Met Ala 465 465
Gin Thr Ala Gin Cys 470 Leu Asp Ser Cys Tyr 475 Tyr Val Pro Gly Cys 480 480
Asp Arg Phe Val Thr 485 Asn Arg Tyr Asp Lys 490 Cys Pro Glu Lys Asp 495 495
'\ Gin Cys Phe Cys Ala 500 lie Lys Glu Asn Ser 505 He Val Glu Ser Asn 510 510
Phe Leu Thr Asn Val 515 Val Thr Glu Gly Pro 520 Met Asp Cys lie Pro 525 525
Tyr Gin Glu Cys Lys 530 Gly Arg lie Thr Glu 535 Asn Ala Leu Val Thr 540 540
Phe Val Lys Cys Arg 545 Phe Gly Cys Glu Tyr 550 Ala Ser lie Phe Gin 555 555
Ser Lys Pro Leu Asp 560 Asn Gly Phe Leu Glu 565 Tyr Ser Gly Asp Thr 570 570
Leu Gly Leu Asn Ala 575 Val Asn Leu His Phe 580 Met Lys Arg Leu Arg 585 585
Asn Gly lie He Asp 590 Phe Tyr Asn Lys Thr 595 Glu Lys Tyr Gly Tyr 600 600
C lie Ser Gly Asp Ala 605 Leu Lys Ser Asn Glu 610 Ser Asp He Pro Glu 615 615
< Ser lie Phe Pro Arg 620 Lys Ser Leu lie Phe 625 Asp Ser Val He Asp 630 630
Gly Lys Tyr Arg Tyr 635 Met He Glu Glu Ser 640 Leu Leu Ser Gly Gly 645 645
Gly Thr Val Phe Ser 650 Leu Asn Asp Lys Ser 655 Ser Ser Thr Ala Gin 660 660
Lys Phe Val Val Tyr 665 lie Lys Lys Val Arg 670 Ila Gin Tyr Asp Val 675 675
Ser Glu Gin Tyr Thr 680 Thr Ala Pro He Gin 685 Ser Thr His Thr Asp 690 590
Phe Phe Ser Thr Cys 695 Thr Gly Lys Cys Ser 700 Asp Cys Arg Lys Glu 705 7 05
Gin Pro lie Thr Gly 710 Tyr Gin Asp Phe Cys 715 lie Thr Pro Thr Ser 720 <» 1 1 4. V
BAD ORIGINAL &
AP Ο Ο Ο 4 Ο 3
Ο ™
Tyr Trp Gly Cys Glu Glu Val Trp Cys Leu Ala lie Asn Glu Gly 735 725 730 735
Ala Thr Cys Gly Phe Cys Arg Asn Val Tyr Asp Met Asp Gin Ser 7 50 740 745 750
Phe Arg lie Tyr Ser Val lie Lys Ser Thr lie Lys Ser Glu Val 765 755 760 765
Cys He Ser Gly Phe Val Gly Ala Lys Cys Phe Thr Val Ser Glu 780 770 775 780
Glu Val Pro Ser Glu Ser Gly Tyr Phe Gin Ala Asp He Leu Ala 795 785 790 795
Asp Phe His Asn Asp Gly Leu Thr lie Gly Gin Leu lie Ala His 810 800 805 810 /', Gly Pro Asp Ser His Val Tyr Ala Gly Asn lie Ala Arg Leu Asn 825
815 820 825
Asn Pro Ser Lys Met Phe Gly His Pro Gin Leu Ser His Gin Gly 840 830 835 840
Asp Pro He Phe Ser Lys Lys Thr Leu Asp Thr Asn Asp Leu Ser 855 845 850 855
Trp Asp Cys Ser Ala He Gly Lys Lys Thr He Thr He Lys Ser 870 860 865 870
Cys Gly Tyr Asp Thr Tyr Arg Phe Lys Thr Gly Leu Asn Gin He 385 875 880 885
Ser Asp lie Pro Val Gin Phe Thr Asp Gin Asn Ser Phe Tyr Met 900 890 895 900
Glu Lys He Phe Ser Leu Gly Lys Leu Lys He Val Leu Asp Leu 915 905 910 915 ( Pro Ser Glu Leu Phe Lys Thr Val Pro Lys Lys Pro He Leu Ser 930
920 925 930
Ser Val Ser Leu Ser Cys Lys Gly Cys Phe Leu Cys Ser Gin Gly 945 935 940 945
Leu Arg Cys Ala Ala Ser Phe He Ser Asp He Thr Phe Ser Ala 960 950 955 960
Arg Leu Thr Met Lys Gin Cys Ser Leu Ser Thr Tyr Gin He Ala 975 965 970 975
Val Lys Lys Gly Ala Asn Lys Tyr Asn Leu Thr Met Phe Cys Thr 990 980 985 990
Ser Asn Pro Glu Lys Gin Lys Met He He Glu Pro Glu Gly Asp 1005 995 1000 1005
Lys Ser Tyr Ser Val Glu Ala Leu Val Asp Ser Val Ala Val Leu 1020
AP Ο Ο Ο 4 Ο 3
Glu Pro Glu Asn lie 1025 He Asp Gin Asn Asp Gin His Ala His Glu 1035
1030 1035
Glu Gin Gin Tyr Asn Ser Asp Thr Ser Val Trp Ser Phe Trp Asp 1050
1040 1045 1050
Tyr Val Lys Ser Pro Phe Asn Phe lie Ala Ser His Phe Gly Ser 1065
1055 1060 1065
Phe Phe Asp Thr Val Arg Val Val Leu Leu He Leu Phe Val Phe 1080
1070 1075 1080
Ala Leu Ala Tyr Leu Cys Ser lie Val Ala Thr Met Cys Arg Gly 1095
1085 1090 1095
Tyr Val Arg Asn Lys Ser Tyr Lys Thr Lys Tyr He Glu Asp Thr 1110
1100 1105 1110
ρ
Asn Asp Tyr Ser Leu Val Ser Thr Ser Ser Gly Lys Asp Thr He 1125
1115 1120 1125
Thr Arg Arg Arg Pro Pro Leu Asp Phe Ser Gly lie 1137
1130 1135
BAD ORIGINAL
AP Ο Ο Ο 4 Ο 3
HAVING NOW PARTICULARIV DFSCRI8FD AND ASCFR?*·—rf ·\ ΛΗΑΤ MA.V.·.» Ή· :... · ·,
ΤΟ βν ri.nl OrtiVlEL;. I, Μ DlClARL lhAI rthAi * Λ, Ci-,· .· ·,

Claims (6)

  1. CLAIMS: 1. Recombinant INSV DNA constructs comprising a DNA sequence coding for transcription into
    a) an RNA sequence of an INSV or an RNA sequence homologous thereto ;
    b) an RNA sequence of an INSV or an RNA sequence homologous thereto capable of encoding for an INSV protein or a part thereof , in which one or more codons have been replaced by synonyms , or an RNA sequence homologous thereto ; or
    c) an RNA sequence complementary to an RNA sequence according to a) or b), which INSV DNA is under expression control of a promoter and a terminator capable of functioning in plants.
  2. 2. A DNA construct according to Claim 1, wherein the INSV DNA sequences code for transcription into:
    i) the viral S RNA nucleotide sequence from 1 to 3017 (SEQ. ID No.l) ii) the viral S RNA nucleotide sequence from position 25 to 3017 (SEQ. ID No.2);
    iii) the viral S RNA nucleotide sequence from 87 to 1436 (SEQ. ID No.3);
    iv) the viral S RNA nucleotide sequence from 2080 to 2868 (SEQ. ID No.4);
    BAD ORIGINAL
    APΟ Ο ο 4 Ο 3
    ν) the viral S RNA * pan-handle · structure comprising
    a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral S RNA and
    b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral S RNA vi) the viral S RNA nucleotide sequence from 1437 to 2079; (SEQ ID No. 7) vii) the viral S RNA nucleotide sequence from 1440 to 2041; (SEQ ID No.8) viii) the viral complementary S RNA nucleotide sequence from 1 to about 3017; (SEQ ID No.9) ix) the viral complementary S RNA nucleotide sequence from 1 to 2993; (SEQ ID No.10)
    x) the viral complementary S RNA nucleotide sequence from 150 to 938; (SEQ ID No.11) xi) the S RNA nucleotide sequence from 1581 to 2930 of the viral complementary S RNA strand; (SEQ ID No.12);
    xii) the viral complementary S RNA secondary structure having a nucleotide sequence of 642 nucleotides from 939 to 1580; (SEQ ID No.13)
    BAD ORIGINAL ft
    AP Ο Ο Ο 4 Ο 3
    Ο xiii) xiv) χν) xvi) xvii) xviii) xix) t
    xx) xxi)
    S RNA nucleotide sequence from 87 to 1436 in which one or more codons have been replaced by their synonyms;
    S RNA nucleotide sequence from 2080 to 2868 in which one or more codons have been replaced by their synonyms;
    the M RNA nucleotide sequence from 1 to 4970 (SEQ ID NO.14);
    the M RNA sequence from 86 to 997 (SEQ ID No.15);
    the M RNA sequence of the intergenic region from 993 to 1470 (SEQ ID No.16);
    the M RNA sequence from 1471 to 4884; (SEQ ID No. 17) the M RNA pan-handle structure comprising : a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral M RNA and
    b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral M RNA;
    the complementary viral M RNA sequence from 1 to 4970; (SEQ ID No.20) the complementary viral M RNA sequence from position 87 to position 3500 of the complementary viral M RNA sequence; ( SEQ ID No.21)
    BAD ORIGINAL
    AP Ο Ο Ο 4 Ο 3 xxii) the complementary viral M RNA sequence from position 3974 to 4385 (SEQ ID No.22) xxiii) RNA sequences homologous to the nucleotide sequences defined under i) to xii) and xv) to xxii) hereinabove.
    xxiv) fragments of sequences defined under i) to xxii) hereinabove.
  3. 3. A DNA construct according to Claim 1, wherein the DNA sequence codes for transcription into INSV-RNA sequences of a pan-handle, or into RNA sequences homologous thereto.
  4. 4. A DNA construct according to Claim 1 wherein the DNA sequence codes for transcription into INSV-RNA sequences of a pan-handle wherein the pan-handle structure comprises two complementary strands comprising 36 nucleotides in length.
  5. 5. A DNA construct according to Claim 1, wherein the DNA sequence codes for transcription into INSV RNA sequences of an open reading frame in viral complementary sense, or into corresponding RNA sequences in which one or more codons have been replaced by synonyms thereof, or into RNA sequences homologous thereto.
  6. 6. A DNA construct according to Claim 1, wherein the the DNA sequence codes for transcription into INSVRNA sequences of a secondary structure, or into RNA
APAP/P/1993/000496A 1992-03-19 1993-03-18 Recombinant tospovirus DNA constructs and plants comprising such constructs. AP415A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB929206016A GB9206016D0 (en) 1992-03-19 1992-03-19 Improvements in or relating to organic compounds

Publications (2)

Publication Number Publication Date
AP9300496A0 AP9300496A0 (en) 1993-04-30
AP415A true AP415A (en) 1995-09-29

Family

ID=10712460

Family Applications (1)

Application Number Title Priority Date Filing Date
APAP/P/1993/000496A AP415A (en) 1992-03-19 1993-03-18 Recombinant tospovirus DNA constructs and plants comprising such constructs.

Country Status (10)

Country Link
US (1) US5773700A (en)
EP (1) EP0566525A3 (en)
JP (1) JPH067170A (en)
AP (1) AP415A (en)
AU (1) AU664241B2 (en)
CA (1) CA2091806A1 (en)
GB (1) GB9206016D0 (en)
IL (1) IL105086A0 (en)
MX (1) MX9301522A (en)
ZA (1) ZA931985B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU685428B2 (en) 1993-01-29 1998-01-22 Cornell Research Foundation Inc. Tomato spotted wilt virus
GB9505907D0 (en) * 1995-03-23 1995-05-10 Sandoz Ltd Improvements in or relating to organic compounds
BR9807587A (en) * 1997-02-19 2000-03-21 Cornell Res Foundation Inc DNA construction, dna expression vector, host cell, transgenic plant, process to give plants a trace, transgenic plant seed, and process to give plants a trace
US6121511A (en) * 1997-09-12 2000-09-19 Ball Horticultural Company Production of transgenic impatiens
US6528703B1 (en) 1998-09-11 2003-03-04 Ball Horticultural Company Production of transgenic impatiens
US6818804B1 (en) 1999-10-22 2004-11-16 Cornell Research Foundation, Inc. Tospovirus resistance in plants
MXPA03009627A (en) 2001-04-24 2004-01-29 Cornell Res Foundation Inc Synthetic nucleic acid molecule for imparting multiple traits.
US9441244B2 (en) 2003-06-30 2016-09-13 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
US9233131B2 (en) 2003-06-30 2016-01-12 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
CN101124321B (en) 2004-11-05 2012-02-29 恰根北美控股有限公司 Compositions and methods for purifying nucleic acids from stabilization reagents
ITUD20060280A1 (en) * 2006-12-29 2008-06-30 Univ Degli Studi Udine ARTIFICIAL SEQUENCE OF DNA EVENT FUNCTION OF LEADER IN 5 '(5'-UTR) OPTIMIZED FOR THE OVEREXPRESSION OF HETEROLOGICAL PLANT PROTEINS
US8669413B2 (en) * 2009-11-25 2014-03-11 Hm.Clause, Inc. Breeding and selection for resistance to melon severe mosaic virus (MeSMV)
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
CN103561774B (en) 2011-04-22 2016-12-14 加利福尼亚大学董事会 There is adeno-associated virus virion and the using method thereof of variant capsids
US9738879B2 (en) 2012-04-27 2017-08-22 Duke University Genetic correction of mutated genes
EP3597741A1 (en) 2012-04-27 2020-01-22 Duke University Genetic correction of mutated genes
ITUD20130002A1 (en) * 2013-01-16 2014-07-17 Transactiva S R L ARTIFICIAL SEQUENCE OF DNA HAVING LEADER FUNCTION IN 5 '(5'-UTR) OPTIMIZED FOR THE OVER-EXPRESSION OF RECOMBINANT PLANTS AND PLANT FOR THE PRODUCTION OF RECOMBINANT PLANT PROTEINS
US9828582B2 (en) 2013-03-19 2017-11-28 Duke University Compositions and methods for the induction and tuning of gene expression
CN105247044B (en) 2013-05-31 2021-05-07 加利福尼亚大学董事会 Adeno-associated virus variants and methods of use thereof
KR102551324B1 (en) 2013-06-05 2023-07-05 듀크 유니버시티 Rna-guided gene editing and gene regulation
KR102537394B1 (en) 2014-03-17 2023-05-30 애드베룸 바이오테크놀로지스, 인코포레이티드 Compositions and methods for enhanced gene expression in cone cells
WO2016081924A1 (en) 2014-11-20 2016-05-26 Duke University Compositions, systems and methods for cell therapy
JP6929791B2 (en) 2015-02-09 2021-09-01 デューク ユニバーシティ Compositions and methods for epigenome editing
CN114480502A (en) 2015-03-02 2022-05-13 阿德夫拉姆生物技术股份有限公司 Compositions and methods for intravitreal delivery of polynucleotides to retinal cones
WO2016154344A1 (en) 2015-03-24 2016-09-29 The Regents Of The University Of California Adeno-associated virus variants and methods of use thereof
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
KR20180038558A (en) 2015-08-25 2018-04-16 듀크 유니버시티 Compositions and methods for improving specificity in genomic manipulation using RNA-guided endonuclease
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
CN114672516A (en) 2016-07-29 2022-06-28 加利福尼亚大学董事会 Adeno-associated virus virions with variant capsids and methods of use thereof
AU2017345470B2 (en) 2016-10-19 2023-08-03 Adverum Biotechnologies, Inc. Modified AAV capsids and uses thereof
AU2018324477A1 (en) 2017-08-28 2019-10-17 The Regents Of The University Of California Adeno-associated virus capsid variants and methods of use thereof
CN118059211A (en) * 2024-01-09 2024-05-24 珠海市藤栢医药有限公司 Polypeptide-containing pharmaceutical composition and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426195A1 (en) * 1989-11-03 1991-05-08 S&amp;G Seeds B.V. Improvements in or relating to organic compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426195A1 (en) * 1989-11-03 1991-05-08 S&amp;G Seeds B.V. Improvements in or relating to organic compounds

Also Published As

Publication number Publication date
IL105086A0 (en) 1993-07-08
EP0566525A3 (en) 1993-12-08
AU3523793A (en) 1993-09-23
GB9206016D0 (en) 1992-04-29
US5773700A (en) 1998-06-30
JPH067170A (en) 1994-01-18
EP0566525A2 (en) 1993-10-20
AU664241B2 (en) 1995-11-09
CA2091806A1 (en) 1993-09-20
AP9300496A0 (en) 1993-04-30
MX9301522A (en) 1994-07-29
ZA931985B (en) 1994-09-19

Similar Documents

Publication Publication Date Title
AP415A (en) Recombinant tospovirus DNA constructs and plants comprising such constructs.
EP0426195B1 (en) Improvements in or relating to organic compounds
JP3281512B2 (en) Methods for producing virus-resistant plants
US6777588B2 (en) Methods and means for producing barley yellow dwarf virus resistant cereal plants
AU2001297906A1 (en) Method and means for producing barley yellow dwarf virus resistant cereal plants
US5939600A (en) Nucleic acids encoding tospovirus genome and expression thereof
AU683071B2 (en) Virus resistant plants
AU6129894A (en) Tomato spotted wilt virus
CA2074541A1 (en) Organic compounds
EP1169463B1 (en) Method for conveying bnyvv resistance to sugar beet plants
US20040068764A1 (en) Method of enhancing virus-resistance in plants and producing virus-immune plants
US5428144A (en) Maize dwarf mosaic virus cDNA
US20040139494A1 (en) Infection resistant plants and methods for their generation
JP2003334087A (en) Promoter originated from plant virus
HU218417B (en) Process for producing plants of diminished infection-sensitivity
AU2002220347A1 (en) Method of enhancing virus-resistance in plants and producing virus-immune plants
CA2431875A1 (en) Infection resistant plants and methods for their generation