AP28A - Insecticidal alkenes. - Google Patents

Insecticidal alkenes. Download PDF

Info

Publication number
AP28A
AP28A APAP/P/1986/000043A AP8600043A AP28A AP 28 A AP28 A AP 28A AP 8600043 A AP8600043 A AP 8600043A AP 28 A AP28 A AP 28A
Authority
AP
ARIPO
Prior art keywords
compound
fluoro
hydrogen
formula
dimethyl
Prior art date
Application number
APAP/P/1986/000043A
Other versions
AP8600043A0 (en
Inventor
Alan John Whittle
Original Assignee
Ici Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Publication of AP8600043A0 publication Critical patent/AP8600043A0/en
Application filed by Ici Plc filed Critical Ici Plc
Application granted granted Critical
Publication of AP28A publication Critical patent/AP28A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5456Arylalkanephosphonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/267Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/285Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/29Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/295Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation
    • C07C45/305Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation with halogenochromate reagents, e.g. pyridinium chlorochromate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/277Unsaturated compounds having —CHO groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Compounds of formula R3-CH=CH-CR1R2-CH2OCH2R4 wherein R1 and R2 are H, alkyl or together form a cycloalkyl group with the adjacent carbon, R3 is a substituted phenyl group, R4 is an optionally substituted phenoxy phenyl group, and compositions containing them useful as insecticides, and compounds of formula HOCH2- CR1R2-CH2OCH2R4, useful as intermediates therefore.

Description

This invention relates to novel ethers useful as insecticides and their preparation, to insecticidal compositions thereof and to methods of combating and controlling insect pests therewith.
In a first aspect the invention provides compounds of formula :
(I)
HX-CHX1-CR1R2-CH2OCH2
wherein W represents hydrogen or one or two substituents selected from halo, alkyl of up to four carbon atoms, alkoxy of up to four carbon atoms, and fluoroalkyl of up to four carbon atoms; X and_xl both represent hydrogen or together represent a second bond between the adjacent carbon atoms; Y represents hydrogen or halogen; Z represents hydrogen, halogen or alkyl of up to four carbon atoms; and R^ and R2 each represent hydrogen or alkyl of up to four carbon atoms, or R1 and r2 together represent an alkylene group of from two to five carbon atoms.
Preferred compounds of formula I are those wherein W is selected from hydrogen, fluoro, chloro, methyl, methoxy, ethoxy or trifluoromethyl; X and X1 each represent hydrogen or together represent a second bond between the adjacent carbon atoms; Y is hydrogen or fluoro; Z is hydrogen, and R and R are methyl or ethyl * or together represent the group
More preferred compounds of formula I are those wherein W represents hydrogen or a 4-fluoro, 4-chloro, 4methyl or 4-methoxy group, X and X^· represent a second bond between the adjacent carbon atoms, Y is hydrogen or 4-fluoro, Z is hydrogen and and R2 are both methyl.
BAD ORIGINAL s
Such compounds contain a double bond giving rise to Z and E isomers. E isomers appear to be more insecticidally useful than Z isomers although products containing a mixture of Z and E isomers may also be useful, and the present invention includes within its scope all isomeric forms in isolation, and mixtures of isomers, of the compounds of formula I.
Particular examples of compounds of formula I are set out in Table I and II below. In Table I the compounds conform to the formula :
TABLE I
Ccrpound Nurber i 1 w i t 1 [ R1 1 1 1 R2 1 1 Y Z Iscmer or Iscmer Ratio (E:Z)
1 1 : 4-Cl i ch3 ch3 H H 1:1 j
2 4-Cl ! ch3 ch3 H H Z
3 4-<2h ch3 ch3 H H z
4 4-C2H5O ®3 ch3 H H E
5 4-F CH3 ch3 F H z
6 4-F ch3 ch3 F H E
7 4-Cl ch3 ch3 F H 83:17
8 4-<H3 Oi3 F H 86:14
9 H ch3 ch3 F H · 86:14
10 4-C2H5O ®3 ch3 F H E
11 4-F ch3 ch3 H H 80:20
12 4^F3 ch3 ch3 H H E
13 4-Cl OT3 ch3 H H 9:1
14 4-CH3 ch3 ch3 H H 4:1
15 3,5-Cl ch3 ch3 H H 2:3
16 2-F ch3 ch3 H H 17:3
17 3-F ch3 ch3 H H 9:1
18 3,4-F2 ch3 ch3 H H 13:7
19 4-F ch2 -ch2 H H E
20 4-F ch2- -ch2 H H Z
21 H ch3 | ch3 F H Z
22 4-Cl ch2 -ch2 H H E
23 4-Cl ch2 -ch2 H H Z
24 4-CH3O ch3 ch3 F H E
25 4-Cl ch3 CH3CH2 H i H E
APO 0 0 0 2 8
BAD ORIG*nal
TABLE I (CONT'D)
: Ccrpocnd Number W Rl R2 Y Z Isomer or Isomer Ratio (EtZ) j I
26 4-C1 ch3 C2«5 H H 2 1
27 4-CF3 ch3 F H E 1 1
29 4-F ch3 ch3 F Cl E ' 1
30 4-C1 ch3 ®3 F Cl E ί
31 4-C1 ch3 ch3 H Cl E
32 4-F ch3 ch3 H ch3 E 1
In the following description the group of formula
is referred to hereinafter as R4 and the group of formula :
Wis referred to as R3“.
The compounds of the invention may be prepared by reacting an aldehyde of formula :
0CH-CRLR2-CHo0CHoR4 wherein R^, R2 and R4 are as defined hereinabove, with a triphenylphosphonium salt of formula :
R3CH2P(Ph)3 +.Hal“ where R^ is as defined hereinabove and Hal“ represent a 10 halide ion, in the presence of a base e.g. an alkali metal alkoxide, under the conditions of the Wittig reaction.
The E and Z isomers may be separated by e.g. chromatographic means.
The invention includes in a further aspect compounds 15 of formula :
och-cr1r2-ch2och2r4 which have not previously been described as useful intermediates in the preparation of the ethers of the bad original invention. They may be prepared by oxidation of novel compounds of formula :
HOCH2-CR1R2-CH2OCH2R4 wherein R^ , R2 and are as defined hereinabove. A suitable oxidising agent is pyridinium chlorochromate.
In a yet further aspect therefore the invention includes the compounds of formula :
hoch2-cr1r2-ch2och2r4 useful as intermediates herein.
These compounds can be prepared by reacting a benzyl halide of formula R^-Q (where Q is halo, preferably chloro 10 or bromo) with a diol of formula :
hoch2-cr1r2-ch2oh in the presence of a base, e.g. sodium hydride.
The following Scheme illustrates the preparation of
E,Z-3,3-dimethyl-l-(4-fluorophenyl)-4-(4-fluoro-3-phenoxybenzyloxy)but-l-ene.
Scheme
AP 0 0 0 0 2 8 (a) Sodium hydride/tetrahydrofuran (b) Pyridinium chlorochromate/dichloromethane (c) 4-fluorophenyltriphenylphoephonium bromide/potaaeium t-butoxide/diethyl ether bad original
The compound of formula I wherein X and X*· each represent hydrogen may be obtained by reduction of the corresponding compounds of formula I wherein X and X^ represent a second bond between the adjacent carbon atoms, by for example, hydrogenation over a metal catalyst such as palladium supported on charcoal.
Further details of the processes for preparing the compounds of the invention may be ascertained from the specific Examples hereinafter.
The compounds of formula I may be used to combat and control infestations of insect pests and also other invertebrate pests, for example, acarine pests. The insect and acarine pests which may be combated and controlled by the use of the invention compounds include those pests associated with agriculture (which term includes the growing of crops for food and fibre products, horticulture and animal husbandry), forestry, the storage of products of vegetable origin, such as fruit, grain and timber, and also those pests associated with the transmission of diseases of man and animals.
In order to apply the compounds to the locus of the pests they are usually formulated into conpositions which include in addition to the insecticidally active ingredient or ingredients of formula I suitable inert diluent or carrier materials, and/or surface active agents .
The compounds of the invention may be the sole active ingredient of the composition or they may be admixed with one or more additional active ingredients such as insecticides, insecticide synergists, herbicides, fungicides or plant growth regulators where appropriate.
Suitable additional active ingredients for inclusion in admixture with the conpounds of the invention may be compounds which will broaden the spectrum of activity of the compounds of the invention or increase their persistence at the locus of the pest. They may synergise the activity of the compounds of the invention or complement the activity for example by increasing the speed of effect, improving knockdown or overcoming repellency. Additionally multi-component mixtures of this type may help to overcome or prevent the development of resistance to individual components.
The particular insecticide, herbicide or fungicide included in the mixture will depend upon its intended utility and the type of complementary action required. Examples of suitable insecticides include the following :
(a) Pyrethroids such as permethrin, esfenvalerate, deltamethrin, cyhalothrin, biphenthrin, fenpropathrin, cyfluthrin, tefluthrin, fish safe pyrethroids for example ethofenprox, natural pyrethrin, tetramethrin, s-biollethrin, fenfluthrin, prallethrin and 5-benzyl-3-furylmethyl-(E)-(1R, 3S)2,2-dimethyl-3-(2-oxothiolan-3ylidenemethyl)cyclopropane carboxylate;
(b) Organophosphates such as profenofos, sulprofos, methyl parathion, azinphos-methyl, demeton-s-methyl, heptenophos, thiometon, fenamiphos, monocrotophos, profenophos, triazophos, methamidophos, dimethoate, phosphamidon, malathion, chlorpyrifos, phoealone, fensulfothion, fonofos, phorate, phoxim, pyrimiphosmethyl, fenitrothion or diazinon;
(c) Carbamates (including aryl carbamates) such as pirimicarb, cloethocarb, carbofuran, ethiofencarb, aldicarb, thiofurox, carbosulfan, bendiocarb, fenobucarb, propoxur or oxamyl;
I 0 0 0 0 dV (d) Benzoyl ureas such as triflumuron, chlorofluazuron;
BAD ORIGINAL &
(e) Organic tin compounds such as cyhexatin, fenbutatin oxide, azocyclotin;
(f) Macrolides such as. avermectins or milbemyins, for example such as abamectin, avermectin, and milbemycin;
(g) Hormones such as juvenile hormone, juvabione,or ecdysones;
(h) Pheromones;
(i) Organochlorine compounds such as benzene hexachloride, DDT, chlordane or dieldrin.
In addition to the major chemical classes of insecticide listed above, other insecticides having particular targets may be employed in the mixture if appropriate for the intended utility of the mixture. For instance selective insecticides for particular crops, for example stemborer specific insecticides for use in rice such as cartap or buprofezin, can be employed. Alternatively insecticides specific for particular insect species/stages for example ovolarvicides such as clofentazine, f lubenzimine, hexythiazox and tetradifon, motilicides such as dicofol or propargite, acaricides such as bromopropvlate, chlorobenzilate, or insect growth regulators such as hydramethylon, cyromazin, methoprene, chlorofluazuron and diflubenzuron may also be included in the compositions.
Examples of suitable insecticide synergists for use in the compositions include piperonyl butoxide, sesamex, and dodecyl imidazole.
Suitable herbicides, fungicides and plant growth regulators for inclusion in the compositions will depend
Ο*'® upon the intended target and the effect required. An example of a rice selective herbicide which can be included is propanil, an example of a plant growth regulator for use in cotton is Pix, and examples of fungicides for use in rice include blasticides such as blasticidin-S. The choice of other ingredients to be used in mixture with the active ingredient will often be within the normal skill of the formulator, and will be made from known alternatives depending upon the total effect to be achieved.
The ratio of the compound of the invention to any other active ingredient in the composition will depend upon a number of factors including the type of insect pests to be controlled, and the effects required from the mixture. However in general, the additional active ingredient of the composition will be applied at about the rate it would usually be employed if used on its own, or at a lower rate if synergism occurs.
The compositions may be in the form of dusting powders wherein the active ingredient is mixed with a solid diluent or carrier, for example kaolin, bentonite, kieselguhr, or talc, or they may be in the form of granules, wherein the active ingredient is absorbed in a porous granular material, for example pumice.
Alternatively the compositions may be in the form of liquid preparations to be used as dips or sprays, which are generally aqueous dispersions or emulsions of the active ingredient in the presence of one or more known wetting agents, dispersing agents or emulsifying agents (surface active agents).
Wetting agents, dispersing agents and emulsifying agents may be of the cationic, anionic or non-ionic type. Suitable agents of the cationic type include, for example, quaternary ammonium compounds, for example cetyltriraethyl ammonium bromide. Suitable agents of the anionic type bad original
2 0 0 0 0 dV
include, for example, soaps, salts of aliphatic monoesters or sulphuric acid, for example sodium lauryl sulphate, salts of sulphonated aromatic compounds, for example sodium dodecylbenzenesulphonate, sodium, calcium or ammonium lignosulphonate, or butylnaphthalene sulphonate, and a mixture of the sodium salts of diisopropyl- and triisopropylnaphthalene sulphonates. Suitable agents of the non-ionic type include, for example, the condensation products of ethylene oxide with fatty alcohols such as oleyl alcohol or cetyl alcohol, or with alkyl phenols such as octyl phenol, nonyl phenol and octyl cresol. Other non-ionic agents are the partial esters derived from long chain fatty acids and hexitol anhydrides, the condensation products of the said partial esters with ethylene oxide, and the lecithins.
The compositions may be prepared by dissolving the active ingredient in a suitable solvent, for example, a ketonic solvent such as diacetone alcohol, or an aromatic solvent such as trimethylbenzene and adding the mixture so obtained to water which may contain one or more known wetting, dispersing or emulsifying agents.
Other suitable organic solvents are dimethyl formamide, ethylene dichloride, isopropyl alcohol, propylene glycol and other glycols, diacetone alcohol, toluene, kerosene, white oil, methylnaphthalene, xylenes and trichloroethylene, Nmethyl-2-pyrrolidone and tetrahydrofurfuryl alcohol (THFA).
The compositions which are to be used in the form of aqueous dispersions or emulsion'^ are generally supplied in the form of a concentrate'containing a high proportion of the active ingredient or ingredients, the said concentrate to be diluted with water before use. These concentrates are often required to withstand storage for prolonged periods and after such storage, to be capable of dilution with water to form aqueous preparations which remain homogenous for a sufficient time to enable them to be applied by conventional
include, for example, soaps, salts of aliphatic monoesters or sulphuric acid, for example sodium lauryl sulphate, salts of sulphonated aromatic compounds, for example sodium dodecylbenzenesulphonate, sodium, calcium or ammonium 1 ignosulphonate, or butylnaphthalene sulphonate, and a mixture of the sodium salts of diisopropyl- and triisopropylnaphthalene sulphonates. Suitable agents of the non-ionic type include, for example, the condensation products of ethylene oxide with fatty alcohols such as oleyl alcohol or cetyl alcohol, or with alkyl phenols such as octyl phenol, nonyl phenol and octyl cresol. Other non-ionic agents are the partial esters derived from long chain fatty acids and hexitol anhydrides, the condensation products of the said partial esters with ethylene oxide, and the lecithins.
The compositions may be prepared by dissolving the active ingredient in a suitable solvent, for example, a ketonic solvent such as diacetone alcohol, or an aromatic solvent such as trimethylbenzene and adding the mixture so obtained to water which may contain one or more known wetting, dispersing or emulsifying agents.
Other suitable organic solvents are dimethyl formamide, ethylene dichloride, isopropyl alcohol, propylene glycol and other glycols, diacetone alcohol, toluene, kerosene, white oil, methylnaphthalene, xylenesand trichloroethylene, Nmethyl-2-pyrrolidone and tetrahydrofurfuryl alcohol (THFA).
The compositions which are Λο be used in the form of
V aqueous dispersions or emulsions’are generally supplied in the form of a concentrate containing a high proportion of the active ingredient or ingredients, the said concentrate to be diluted with water before use. These concentrates are often required to withstand storage for prolonged periods and after such storage, to be capable of dilution with water to form aqueous preparations which remain homogenous for a sufficient time to enable them to be applied by conventional
AP 0 0 0 0 2 8 bad original spray equipment. The concentrates may contain 10-85% by weight of the active ingredient or ingredients. When diluted to form aqueous preparations such preparations may contain varying amounts of the active ingredient depending upon the purpose for which they are to be used. For agricultural or horticultural purposes, an aqueous preparation containing between 0.0001% and 0.1% by weight of the active ingredient is particularly useful.
In use the compositions are applied to the pests, to 10 the locus of the pests, to the habitat of the pests, or to growing plants liable to infestation by the pests, by any of the known means of applying pesticidal compositions, for example, by dusting or spraying.
The compositions of the invention are very toxic to 15 wide varieties of insect and other invertebrate pests, including, for example, the following:
Myzus persicae (aphids)
Aphis fabae (aphids)
Megoura viceae (aphids)
Aedes aegypti (mosquitoes)
Dysdercus fasciatus (capsids)
Musca domestica (houseflies)
Pieris braesicae (white butterfly, larvae)
Plutella maculipennis (diamond back moth, larvae)
Phaedon cochleariae (mustard beetle)
Tetranychus cinnabarinus (carmine spider mite)
Tetranychus urticae (red spider mites)
Aonidiella spp. (scale insects)
Trialeuroidea spp. (white flies)
Blattella germanica (cockroaches)
Spodoptera littoralis (cotton leaf worm)
Heliothis virescens (tobacco budworms)
Chortiocetes terminifera (locusts)
Diabrotica spp. (rootworme)
Agrotis spp. (cutworms)
Chilo parte 1lus (maize stem borers)
Ni laparvata lugens (plant hopper s)
The compounds of formula I and compositions comprising them have shown themselves to be particularly useful in controlling pests of maize and rice such as Chilo (stem borers) as well as lepidopteran pests of cotton, for example Spodoptera spp. and Heliothis spp.
Although all of the invention compounds of formula I show insecticidal properties in the tests described hereinafter in the Examples they are not all equally effective at the particular rates tested to all of the test species.
Some of the compounds are particularly useful for the control of insect pests of rice because they show high levels of activity against rice pests such as Chilo sp. and Nilaparvata sp. at rates which are not toxic to fish, thus enabling their use in paddy rice where fish are cultivated in the paddy.
The various aspects of the invention are illustrated in the following Examples.
EXAMPLE 1
This Example illustrates the preparation of 1,1di (hydroxymethyl) cyclopropane.
A solution of diethyl-1,1-cyclopropane-dicarboxylate (lOg) in tetrahydrofuran (25 cn?) was added dropwise to a stirred suspension of lithium aluminium hydride (2.15g) in tetrahydrofuran (75 cm^ ) whilst the reaction temperature was maintained below 20*C When the addition was complete the mixture was allowed to warm to the ambient temperature (ca. 25*C), and allowed to stir for a further 2 hours. A saturated solution of sodium potassium tartrate was then
AP 0 0 0 0 2 8 bad original &
added carefully to the reaction mixture, which was then allowed to stand for 18 hours. The mixture was extracted into ethylacetate several times and the combined extracts dried over anhydrous magnesium sulphate. Removal of the solvent by evaporation gave 1,1-di(hydroxymethy1) 5 cyclopropane (3g).
1H nmr (CDC13) ppm : 0.5 (s,4H) ; 2.7 (broad s,2H); and 3.6 (s,4H).
Infra red (liquid film) : 3400 and 1020 cm-3.
EXAMPLE 2
This Example illustrates the preparation of 110 hydroxymethy 1-1- ( 3-phenoxybenzyloxymethy1)cyclopropane.
A solution of 1 , 1 -d ϊ hvdro some thy lcy-1 o-^or'ane f?c) in t · teat ···.. -ran was acdad dropwiss to a suspension of sodium hydride (0.35g) in tetrahydrofuran (30 cm3). After effervescence has ceased, tetrabutyl15 ammonium iodide (lg) was added to the grey suspension followed by a solution of 3-phenoxybenzy1 bromide (3.88g) in tetrahydrofuran (15 cm3) at the ambient temperature and the mixture stirred for a further 2 hours. The mixture was poured into water and extracted with ethylacetate.
?f> The extracts were combined, dried over magnesium sulphate and concentrated by evaporation of the solvent, and the residual oil purified by column chromatography using a silica gel column eluting first with dichloromethane, followed then by ethylacetate, to give 1-hydroxymethyl-l25 (3-phenoxybenzyloxymethy1) cyclopropan-1-ol (1.7g).
nmr (C~713) ppm : 0.5 (s,4H); 2.45 (broad s,lH); 3.4 (s,2H); 3.5 (s,2H); 4.5 (s,2H); and
6.9-7.5 (m,9H).
Infra red (liquid film) : 3450, 1575, 1475, 1245 and cml (major peaks only).
680
EXAMPLE 3
This Example illustrates the preparation of 2,2dimethyl-3-(3-phenoxybenzyloxy)propan-1-ol.
A solution of 2,2-dimethylpropan-l, 3-diol (15.6g) in tetrahydrofuran (100 cm3) was added in small aliquots to a stirred suspension of sodium hydride (1.8g) in tetrahydrofuran (100 cm3) with cooling. After effervescence had ceased, tetra-n-butylammonium iodide (5g) was added to the resultant grey suspension followed by addition of solution of 3-phenoxybenzyl bromide (19.7g) in dry tetrahydrofuran (100 cm^) at the ambient temperature (ca. 25’C), and the mixture stirred for a further 2 hours. The mixture was poured into water and extracted with ethyl acetate. The extracts were combined, dried over anyhydrous magnesium sulphate and concentrated by evaporation of the solvent. The residual oil was identified as a mixture of 2,2dimethyl-3-(3-phenoxybenzyloxy )propan-l-ol and 2,2dimethylpropan-1,3-diol by nmr and infra red spectroscopic examination.
nmr (CDClj) ppm : 0.9 (s,6H); 2.4 (broad s,lH); 3.3 (s,2H); 3.5 (broad d,lH); 4.5 (s,2H); and 6.8-7.5 (m,9H).
Infra red (liquid film) : 3340, 1585, 1490 and 1255 cm1.
Λ. «
EXAMPLE 4 &P0 0 0 0 2 8
This Example illustrates the preparation of 2-ethyl2-methyl-3-(3-phenoxybenzyloxy)propan-l-ol.
2-Ethyl-2-methylpropan-l, 3-diol (9.44g) was reacted according to the procedure laid out in Example 2 to give the crude product as an impure oil. Distillation through a kugelrohr apparatus give two fractions. The first being 44% by gas chromatography the desired compound whilst the
BAD ORIG’naL
second fraction (B. pt. 2OO’C/O.O3 mmHg) was the desired 2-e thy 1-2-me thy 1-3 -(3-phenoxybenzyloxy) propan-1-o1 (3.6g ) .
^•H nmr (CDCI3) ppm : 0.8 (m,6H); 1.4 (m,2H); 2.5 (broad s,lH); 3.4 (s,2H); 3.5 (broad s,2H);
4.5 (s,2H); and 6.9-7.5 (m,9H).
Infra red (liquid film) : 3450, 1590, 1490, 1260, 1220, and 695 cm'l (major peaks only).
EXAMPLE 5
This Example illustrates the preparation of 2,2dimethy1-3-(4 — fluoro-3-phenoxybenzyloxy)propan-l-ol.
A solution of 2,2-dimethylpropan-l,3-diol (5.2g) in tetrahydrofuran (35 cm2) was added in a small aliquots to a stirred suspension of sodium hydride (0.6g) in tetrahydrofuran (35 cm2) with cooling. After effervescence had ceased tetrabutylammonium iodide (1.7g) was added to the resultant grey suspension followed by addition of a solution of 4-fluoro-3-phenoxybenzyl bromide (7. lg) in dry tetrahydrofuran (30 cra^) at the ambient temperature (ca. 25’C), and the mixture stirred for a further 2 hours. The mixture was poured into water and extracted with ethyl acetate. The extracts were combined, dried over anhydrous magnesium sulphate and concentrated by evaporation of the solvent and the residual oil identified as a mixture of 2,2-dimethyl-3-(4-fluoro-3-phenoxybenzyloxy) propan-l-ol and some unreacted 2,2-dimethylpropan-1,3-diol by nmr and infra red spectroscopic examination.
nmr (CDCI3) ppm : 0.9 (s,6H); 2.2 (broad s,lH); 3.3 (s,2H); 3.5 (s,2H); 4.4 (s,2H); and
6.9-7.4 (m,8H).
BAD ORIGINAL
Infra red (liquid film) : 3400, 1595, 1515, 1280, 1215 cm“l (major peaks only).
EXAMPLE 6
This Example illustrates the preparation of 2,2dimethyl-3-(3-phenoxybenzyloxy)propan-1-a 1.
A solution of 2,2-dimethyl-3-(3-phenoxybenzyloxy)propan-l-ol (15g) in dry dichloromethane (50 cm^) was added dropwise to a stirred suspension of pyridinium chlorochromate (18.75g) in dichloromethane (100 cm^ ) whilst the reaction temperature was maintained within the range 0-5’C. When the addition was complete, the mixture was allowed to warm to the ambient temperature (ca. 25*C) over a period of 2 hours. After the reaction mixture had been diluted with diethyl ether, the ethereal layer was decanted and filtered through cellte. The solvent was removed by evaporation and the residual oil purified by column chromatography using a silica gel column and eluting with dichloromethane as eluent, to yield 2,2dimethyl-3-(3-phenoxybenzyloxy)propane-l-al (7.2g) as an orange oil.
1H nmr (CDCl3)ppm : 1.1 (s,6H); 3.45 (s,2H); 4.5 (s,2H);
6.8-7.4 (m,9H); and 9.55 (s,lH).
Infra red (liquid film) : 1735, 1590, 1490, 1445, 1250, 1215, 1100 and 690 cm-1.
EXAMPLE 7
This Example illustrates the preparation of 2-ethyl2-methy1-3-(3-phenoxybenzyloxy)p ropan-1-a 1.
AP 0 0 0 0 ? 8 bad original £
2-Ethyl-2-methyl-3- (3-phenoxybenzyloxy)propan-l-ol (3.6g) was reacted according to the procedure in Example 6. The crude product was distilled through a kugelrohr apparatus to give 2-ethy1-2-methyl-3-(3-phenoxybenzyloxy)propan-l-al (2.35g) (Bpt 17O*C/O.O7 mm Hg ).
XH nmr (CDClj) ppm . 0.8 (t,3H); 1.05 (s,3H),· 1.55 (m,2H);
3.4 (d.lH); 3.5 (d,lH); 4.45 (s,2H);
6.9-7.4 (m,9H); and 9.5 (s,lH).
Infra red (liquid film) : 1730, 1590, 1490, 1260, 1220, and 695 cm“l.
EXAMPLE 8
This Example illustrates the preparation of 1-formyl1— (3-phenoxybenzyloxymethyl)cyclopropane.
A solution of dry dimethyl sulphoxide (0.87g) in dichloromethar t. (12 cm^) was added dropwise to a stirred solution of oxalyl chloride (0.75g) in dichloromethane (12 cm^) maintained at -70*C. After a period of five minutes had elapsed, a solution of 2-cyclopropyl-3-(3phenoxybenzyloxy)propane-l-ol (1.45g) in dichloromethane (6 cnrb was added dropwise, followed by triethylamine (2.3g) five minutes later. When the addition was complete the mixture was allowed to warm to the ambient temperature •>\'3r a period of 2 hours. The reaction mixture was poured into water, and extracted with diethyl ether. The extracts were combined, dried over anhydrous magnesium sulphate and concentrated by evaporation of the solvent.
The residual oil (1.5g) was purified by column chromatography using a silica gel column and eluting with dichloromethane to yield 1-formyl-l-(3-phenoxybenzyloxymethyl ) eye lopr . pane (lg).
BAD ORIGINAL ft LH nmr (CDCl-j) ppm : 1.2 (m,4H); 3.7 (s,2H); 4.5 (s,2H);
6.9-7.4 (m,9H); and 9.0 (s,lH).
Infra red (liquLd film) : 1715, 1590, 1490, 1260, 1220, and 1100 cm^.
EXAMPLE 9
This Example illustrates the preparation of 2,2dimethyl-3-(4-fluoro-3-phenoxybenzyloxy)propan-l-al.
A solution of 2,2-dimethyl-3-(4-fluoro-3-phenoxybenzyloxy)propan-1-ol (5.0g) in dichloromethane (30 cm^) was added dropwise to a stirred suspension of pyridinium chlorochromate (6.77g) in dichloromethane (20 cn?) whilst the reaction temperature was maintained within the range 0-5’C. When the addition was complete the mixture was allowed to warm to the ambient temperature over a period of 2 hours. The solvent was removed and the residual oil (3.0g) purified by column chromatography using a silica gel column and eluting with a 10:1 (by volume) mixture mixture of petroleum ether (boiling range 40-60*) and diethyl ether to yield 2,2-dimethyl-3-(4-fluoro-3phenoxybenzyloxy)propan-l-al (1.5g) as a yellow oil.
nmr (CDClj) ppm : 1.1 (s,6H); 3.5 (s,2H); 4.5 (s,2H);
7.0-7.5 (m,8H); 9.6 (s,lH).
Infra red (liquid film) : 1735, 1590, 1510, 1490, 1280, 1210 cml (major peaks only).
EXAMPLE 10
This Example illustrates the preparation of 3,325 dimethy1-4-(4-fluoro-3-phenoxybenzyloxy)but-l-ene.
Methyltriphenylphosphonium bromide (3g) was added in portions to a stirred suspension of potassium t-butoxide (0.92g) in dry diethyl ether (25 cm3), and the resultant
AP 0 0 0 0 2 8
BAD original mixture stirred for 30 minutes after which a solution of 2,2-dimethy1-3- (4 -f1uoro-3-phenoxybenzyloxy) propan-1 - a 1 ( 2. 5g) in diethyl ether (25 cm^) was added to the mixture.
An exotherm was noted, and after 10 minutes the mixture was poured into water, and extracted with ethylacetate, the extracts combined, washed with water and dried over anhydrous magnesium sulphate, and concentrated by evaporation of the solvent to yield a yellow oil. This was flash chromatographed on a silica gel column with dichloromethane as eluent to yield 2,2-dimethyl-l-(4fluoro-3-phenoxybenzyloxy)but-3-ene (1.6g) as a pale yellow liquid.
XH nmr (CDClj) ppm : 1.0 (s,6H); 3.2 (s,2H); 4.4 (s,2H);
4.95 (m,2H); 5.8 (dd,lH); and 7.0-7.4 (m,8H).
Infra red {liquid film) : 2980, 1590, 1515, 1490, 1285, 1215, and 690 cm-^.
EXAMPLE 11
This Example illustrates the preparation of 4-fluorobenzyltriphenylphosphonium bromide .
A solution of 3-fluorobenzyl bromide (4.73g) in dry toluene (5.0 cm ) was added to a stirred suspension of triphenylphosphine (4.87g) in dry toluene (5.0 cm^) and after 30 minutes the resultant precipitate was collected by filtration and washed with toluene :o yield 4-fluorobenzyltriphenylphosphonium bromide (7.1g) as a white solid .
1H nmr (CDC13) ppm : 5.15 (d,2H); 6.8-7.2 (m,4H); 7.5-7.9 (m,15H).
BAD ORIGINAL ft
EXAMPLE 12
The following compounds were prepared in an analogous manner to that described in Example 11 from the appropriate benzyl halide and triphenylphosphine.
4-Chlorobenzyltriphenylphosphonium bromide from 45 chlorobenzylbromide.
rH nmr (CDC13) ppm : 5.50 (d,2H); 7.1 (s,4H); and 7.5-8.0 (m,15H).
4-Methylbenzyltriphenylphosphonium bromide from 4me thylbenzylbromide.
nmr (CDCl^) ppm : 2.2 (d,3H); 5.3 (d,2H); and 7.0-8.0 (m,19H).
4-Tri fluoromethylbenzyItriphenylphosphonium bromide from 4-trifluoromethylbenzylbromide.
TH nmr (CDCl-j) ppm : 5.85 (d,2H) and 7.0-8.0 (m,19H).
3,5-Dichlorobenzyltriphenylphosphonium bromide from
3,5-dichlorobenzylbromide.
nmr (CDCl-j) ppm : 5.5 (d,2H); and 7.05-7.8 (m,18H).
2- Fluorobenzyltriphenylphosphonium bromide from 2fluorobenzyl bromide.
nmr (CDC13) ppm : 5.5 (d,2H); 6.7-7.3 (m,3H); and 7.48.0 (m,16H).
3- Fluorobenzyltriphenylphosphonium bromide from 3fluorobenzyl bromide.
ΔΡ 0 0 Ο n ? r
BAD ORIGINAL hi nmr (CDClj) ppm : 5.35 (d,2H); 6.7-7.3 (m,3H); and 7.58-0 (m,16H).
3,4-DifLuorobenzyltriphenylphosphonium bromide from 3,4-dlf1uorobenzylbromide.
XH nmr (CDCl-j) ppm : 5.7 (d,2H), 6.7-7.2 (m,2H); and 7.58.0 (m,16H).
4-Ethoxybenzyltriphenylphosphonium chloride from 4ethoxybenzylchloride.
ΓΗ nmr (CDC13) ppm : 1.35 (t,3H); 3.9 (q,2H); 5.3 (d,2H);
6.5 (d,2H)? 6.9 (dd,2H); and 7.5 (m,15H).
EXAMPLE 13
This Example illustrates the preparation of 4-ethoxybenzyl chloride.
4-Ethoxybenzyl alcohol (5g) and concentrated hydrochloric acid (8.5 craA were vigorously stirred together for 30 minutes. The 2 phases were then allowed to separate, and the lower layer separated off, and diluted with chloroform. The organic solution was dried over anhydrous magnesium sulphate, and removal of the solvent by evaporation gave 4-ethoxybenzyl chloride (5.6g). (This product is not stable on keeping, so was converted immediately to the phosphonium salt - see Example 12).
ΣΗ nmr (CDCl-j) ppm : 1.3 (t,3H); 4.0 (q,2H); 4.6 (s,2H);
6.9 (d,2H); and 7.3 (d,2H).
EXAMPLE 14
This Example illustrates the preparation of 3,5dichlorobenzyl bromide.
A solution of triphenylphosphine (8.1g) in diethyl ether (100 cm ) was added to a stirred solution of 3,55 dichlorobenzyl alcohol (5g) and 1,2dibromotetrachloroethane (9.9g) in diethyl ether whilst maintaining the reaction temperature below 5*C. When the addition was complete the reaction mixture was allowed to warm to the ambient temperature (ca. 25*C), and the mixture stirred for a further 2 hours. The precipitated solid was removed by filtration, and the filtrate concentrated by evaporation of the solvent to give 3,5dichlorobenzyl bromide (6.8g).
TH nmr (CDC13) : 4.4 (s,2H); 7.3 (s,3H).
EXAMPLE 15
This Example illustrates the preparation of 3,3dimethyl-1- ( 4-fluorophenyl) -4- (4-fluoro-3-phenoxybenzyloxy)but-l-ene.
4-Fluorobenzyltriphenylphosphonium bromide (0.79g) was added in small portions to a stirred suspension of potassium t-butoxide (0.2g) in dry diethylether (4.0 cm^) and the resultant mixture stirred for 30 minutes after which a solution of 2,2-dimethyl-3-(4-fluoro-3-phenoxybenzyloxy)propan-l-al (0.5g) in diethyl ether (4.0 cm^) was added to the mixture. * After a further one hour the mixture was poured into water and extracted with ethyl acetate, the extracts combined, washed with water and dried over anhydrous magnesium sulphate, and concentrated by evaporation of the solvent to yield a white solid (l.Og). This was flash chromatographed on a silica gel
AP 0 0 0 0 2 8
BAD ORIGINAL column with dichlororaethane to yield 3,3-dimethy 1-1 - (4 f1uoro-3-phenoxybenzyloxy)but-L-ene (0.45g) as a colourless oil, identified by nmr spectroscopy as a mixture of the Z and E isomers (ratio 3:1).
XH nmr (CDC13) ppm : 0.9, 1.1 (2s,6H); 3.05, 3.2 (2s,2H);
4.3, 4.45 (2s,2H); 5.6 and 6.4, and 6.15 and 6.3, (2xABq, 2H); 6.Θ-7.4 (m,12H). -------Infra red (liquid film) : 1590, 1510, 1490, 1215 cm’^ (major peaks only).
The Z and E isomers were separated by hplc using a automated Gilson apparatus fitted with a silica gel column of dimensions 2.5 x 42 cm, using petroleum ether (boiling range 40-60*) containing 1% (by volume) diethyl ether as eluent, and a flow rate of 30 cm^/rainute. Both were obtained as clear oils.
Isomer A (identified as 100% Z isomer) ΧΗ nmr (CDC13) ppm : 0.9 (s,6H); 3.1 (s,2H); 4.3 (s,2H);
5.6, 6.4 (d,2H, J=12.5 Hz); 6.9-7.4 (m,12H).
Isomer B (identified as mixture of 87% E-isomer and 13% Zi s ome r) r
XH nmr (CDCl3)ppm : 1.l (s,6H); 3.25 (s,2H); 4.45 (s,2H);
6.1, 6.3 (d,2H, J=16.2 Hz); 6.9-7.4 (m,12H).
EXAMPLE 16
The following confounds were prepared in an
BAD ORIGINAL analogous manner to that described in Example 15 from the appropriate benzyltriphenylphosphonium salts and the appropriate aldehyde.
(i) 3, 3-Dimethy1-1-(4-chlorophenyl )-4-(3-phenoxybenzyl5 oxy)but-l-ene from 4-chloropheny1-triphenylphosphonium bromide and 2,2-dimethyl-3-(3-phenoxybenzyloxy)-propan-1al. The product was identified by nmr spectroscopy as a mixture of the Z and E isomers (ratio 2:1), which were separated as before using hexane containing 1.5% (by volume) diethyl ether as eluent.
Isomer A (identified as 86% Z isomer) nmr (CDC13) ppm : 0.9 (s,6H); 3.1 (s,2H); 4.4 (s,2H);
5.6 (d,lH); 6.4 (d,lH); and 6.9-7.4 (m,13H).
Isomer B (identified as 90% E isomer) XH nmr (CDCI3) ppm : 1.1 (s,6H); 3.25 (s,2H),· 4.5 (s,2H);
6.2 (d,lH); 6.3 (d,lH); and 6.9-7.4 (m,13H).
(ii) 3, 3-Dimethyl-1-(4-chlorophenyl)-4-(4-fluoro-320 phenoxybenzyloxy)but-l-ene from 4-chlorobenzyltriphenylphosphonium bromide and 2,2-dimethyl-3-(4-fluoro-3phenoxybenzyloxy)propan-l-a1. The product isomers were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 90% Z isomer) lH nmr (CDCI3) PPm 5 °·9 (s,6H); 3.1 (s,2H); 4.35 (e,2H);
5.6 (d,lH); 6.4 (d,lH); and 7.0-7.4 (m,12H).
APO 0 0 0 2 8 bad original
Isomer B (identified as 85% E isomer) nmr (CDCl-j) ppm : 1.1 (s,6H); 3.2 (s,2H); 4.45 (s,211);
6.2 (d,lH); 6.3 (d.lH); and 7.0-7.4 m,12H).
(iii) 3,3-Dimethyl-l-(4-methylphenyl)-4-(4-fluoro-3phenoxybenzyloxy)but-l-ene from 4methylbenzyltriphenylphosphonium bromide and 2,2-dimethyl3-(4-fluoro-3-phenoxybenzyloxy)propan-l-al. The product was identified as a mixture of Z and E isomers (ratio 1:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 95% Z isomer) nmr (CDClj) ppm : 0.95 (s,6H); 2.3 (s,3H); 3.1 (s,2H);
4.3 (s,2H); 5.55 (d.lH)f 6.45 (d,lH); and 6.95-7.4 (m,12H).
Isomer B (identified as 86% E isomer) nmr (CDCl^) ppm : 1.1 (s,6H); 2.3 (s,3H); 3.25 (s,2H);
(iv) 3,3-Dimethy1-1-phenyl-4-(4-fluoro-3-phenoxybenzy1oxy)but-l-ene from benzyltriphenylphosphonium bromide and 2,2-dimethyl-3-(4-fluoro-3-phenoxybenzyloxy)propan-l-al. The product was identified as a mixture of the Z and E isomers (ratio 1:1) by gae chromatography which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 95% Z isomer) nmr (CDClj) ppm
0.95 (s,6H) 5.55 (d,lH) (m,13H).
3.1 (s,2H); 4.3 (s,2H) ; 6.5 (d,1H) and 6.95-7.4
Isomer B (identified as 86% E isomer) nmr (CDC13) ppm : 1.1 (s,6H); 3.25 (s,2H); 4.45 (s,2H);
6.2 (d,lH); 6.3 (d,lH); and 6.9-7.4 (m,13H).
(v) 3,3-Dimethy1-1-(4-ethoxyphenyl )-4-(4-fluoro-3phenoxybenzyloxy)but-l-ene from 4-ethoxyphenyltriphenylphosphonium chloride and 2,2-dimethyl-3-(4-fluoro-3phenoxybenzyloxy)prop-l-al. The product was identified as a mixture of the Z and E isomers (ratio 1:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 90% Z isomer) nmr (CDC13) ppm : 0.95 (s,6H); 1.4 (t,3H); 3.1 (s,2H);
4.0 (q,2H); 4.3 (s,2H); 5.5 (d,lH);
6.4 (d,lH); and 6.7-7.4 (m,12H).
Isomer B (identified as 90% E isomer)
K * 1H nmr (CDC13) ppm : 1.1 (s,6H); 1.3 (t,3H); 3.25 (s,2H);
4.00 (q,2H)? 4.4 (s,2H); 6.1 (d,lH); 6.25 (d,lH); and 6.7-7.4 (m,12H).
(vi) 3,3-Dimethyl-l-(4-ethoxyphenyl)-4-( 3-phenoxybenzyloxy)but-l-ene from 4-ethoxyphenyltriphenylphosphonium bad original chLonie and 2,2-dimethy1-3-(3-phenoxybenzyloxy)propan-1 a 1. The product was identified as a mixture of the Z and E isomers (ratio 1:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 100% Z isomer) 1H nmr (CDCl-j) ppm : 0.95 (s,6H); 1.4 (t,3H); 3.15 (s,2H);
4.0 (q,2H); 4.4 (s,2H); 5.55 (d,lH); 6.45 (d,lH); and 6.7-7.4 (m,13H).
Isomer B (identified as 88% E isomer) XH nmr (CDCl-j) ppm : 1.1 (s,6H); 1.4 (t,3H); 3.25 (s,2H);
4.0 (q,2H); 4.5 (d,2H); 6.1 (d,lH);
6.3 (d,lH); and 6.7-7.4 (m,13H).
(vii ) 3,3-Dimethyl-1-( 4-fluorophenyl )-4-( 3-phenoxybenzy1oxy)but-l-ene from 4-fluorophenyltriphenylphosphonium bromide and 2,2-dimethyl-3-(3-phenoxybenzyloxy)propan-lal. The product was identified as a mixture of the Z and E isomers (ratio 2:1) by gas chromatography, which wer separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 90% Z isomer) nmr (CDClj) ppm : 0.9 (s,6H); 3.1 (s,2H); 4.4 (s,2H);
5.6 (d,lH); 6.45 (d,lH); and 6.9-7.4 (m,13H).
Isomer B (identified as 80% E isomer)
BAD ORIGINAL &
nmr (CDC13) ppm : 1.1 (s.6H ) ; J.25 (s,2H); 4.5 (s,2H);
6.15 (d,lH): 6.30 (d,lH); and 6.9-7.4 (m, 13H ) .
(viii) 3,3-Dimethyl-l-(4-methylphenyl)-4-(3-phenoxybenzy15 oxy)but-l-ene from 4-methylphenyltriphenylphosphoniurn bromide and 2,2-dimethyl-3-(3-phenoxybenzyloxy) propan-1al. The product was identified as a mixture of Z and E isomers (ratio 1:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 80% Z isomer) ΓΗ nmr (CDC13) ppm : 0.9 (s,6H); 2.3 (s,3H); 3.15 (s,2H);
4.4 (s,2H); 5.55 (d,lH); 6.45 (d.lH); and 6.9-7.4 (m,13H).
Isomer B (identified as 80% E isomer)
H nmr (CDC13) ppm : 1.1 (s,6H); 2.3 (s,3H); 3.2 (s,2H);
4.5 (s,2H); 6.2 (d,lH); 6.3 (d,lH);
and 6.9-7.4 (m,13H).
(i x) 3,3-Dimethy1-1-(3,5-di chlorophenyl)-4-(3-phenoxy20 benzyloxy)but-l-ene from 3,5-dichlorophenyltriphenylphosphonium bromide and 2,2-dimethyl-3-(3-phenoxybenzy1oxy)propan-l-a1. The product was identified as a mixture of Z and E isomers (ratio 3:2) by gas chromatography. The isomers could not be separated.
1h nmr (CDC13) ppm . 0.9, 1.1 (s,6H); 3.1, 3.25 (s,2H);
4.4, 4.5 (s,2H); 5.6, 6.2 (d,lH); 6.25, 6.3 (d.lH); and 6.9-7.4 (m,12H).
bad original ( x ) 3 , 3-0 ime thy1 - 1 - (2-f 1 uorophenyI )-4-(3-phenoxybenzy1 3xy)b’Jt-i-ene from 2-f1uoropheny11riphenyLphosphoniurn bromide and 2,2-dinethy1-3-(3-phenoxybenzyloxy) propan-1al. The product was identified as a mixture of 2 and E isomers (ratio 2:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl
ether (by volume) as eluent.
Isomer A (identified as 70% Z isomer)
nmr (CDCl-j) ppm : 0.9 (s,6H); 3.15 (s,2H); 4.4 (s,2H); 5.75 (d,lH); 6.3 (d,lH); and 6.9-7.4 (m,13H).
Isomer B (identi f ied as 85% E isomer)
nmr (CDClj) ppm : 1.1 (s,6H); 3.3 (s,2H); 4.5 (s,2H); 6.3 (d,lH); 6.5 (d,lH); and 6.9-7.4 (m,13H).
(xi) 3,3-Dimethyl-l-{3-f1uoropheny1)-4-(3-phenoxybenzy1oxy)but-l-ene from 3-fluorophenyltriphenylphosphonium bromide and 2,2-dimethyl-3-(3-phenoxybenzyloxy)propan-lal. The product was identified as a mixture of Z and E isomers (ratio 1.4:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyL ether (by volume) a eluent.
Isomer A (identified as 95% Z isomer) nmr (CDCl-j) ppm : 0.95 (s,6H); 3.15 (s, H); 4.4 (s,2H);
5.6 (d,lH); 6.45 (d,lH); and 6.8-7.4 (m,13H).
Isomer B (identified as 90% E isomer)
BAD ORIGINAL LH nmr (CDC13) ppm : 1.1 (s,6H); 3.3 (s, 2H) ; 4.5 (s,2H);
6.25 (d.lH); 6.3 (d,lH); and 6.9-7.4 (m, 13H).
(xn) 3,3 -Dimethyl -1 - ( 3,4-di fluorophenyl )-4-(3 -phenoxy5 benzyloxy)but-l-ene from 3,4-difluorophenyltriphenylphosphonium bromide and 2,2-dimethyl-3-(3-phenoxybenzyloxy)propan-l-a 1. The product was identified as a mixture of Z and E isomers (ratio 2.5:1) by gas chromatography, which were separated as before using hexane containing
1.5% diethyl ether (by volume) as eluent.
Isomer A was not isolated.
Isomer B (identified as 65% E isomer) :H nmr (CDC13) ppm : 1.1 (s,6H); 3.3 (s,2H); 4.5 (s,2H);
6.2 (d,lH); 6.25 (d,lH); and 6.9-7.4 (12H).
(xiii) 1-02-(4-fluorophenyl)ethen-1-y1]-1-(3-phenoxybenzyloxymethyl)cyclopropane from 4-fluorophenyltriphenylphosphonium bromide and l-formyl-l-(3-phenoxybenzyloxymethyl)cyclopropane. The product was identified as a mixture of Z and E isomers (ratio 1.5:1) by gas chromatography;, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as eluent.
Isomer A (identified as 100% Z isomer) aH nmr (CDCI3) Ppm : 0.45 (m,2H); 0.65 (m,2H); 3.45 (s,2H); 4.5 (s,2H); 5.8 (d,lH); 6.4 (d,lH); and 6.9-7.5 (m,13H).
Z 0 0 0 0 dV
BAD ORIGINAL
Isomer B (identified as 100¾ E isomer) 1H nmr (CDCl-j) ppm : 0.8 (s,4H ) ; 3.5 (s,2H) ; 4.55 (s,2H);
5.9 (d,1H); 6.4 (d,lH); and 6.9-7.4 ( m, 13H ) .
(xiv) 1-[2 - (4-chloropheny1)ethen-l-y1]-1-(3-phenoxybenzyloxymethyl)cycLopropane from 4-chlorophenyltripheny 1phosphonium bromide and 1-formyl-l-(3-phenoxybenzyloxymethy 1) eyelopropane. The product was identified as a mixture of Z and E isomers (ratio 1.3:1) by gas chromatography, which were separated as before using hexane containing 1.5% diethyl ether (by volume) as e Luent.
Isomer A (identified as 100% Z isomer) ΣΗ nmr (CDCl-j) ppm : 0.45 (m,2H); 0.65 (m,2H); 3.45 (s,2H); 4.5 (s,2H); 5.85 (d,lH); 6.4 (d,lH); and 6.9-7.5 (m,13H).
Isomer B (identified as 100% E isomer) nmr (CDClg) ppm : 0.8 (s,2H); 3.5 (s,2H); 4.55 (s,2H);
6.0 (d,lH); 6.4 (d,lH); and 6.9-7.4 (m,13H).
(xv) 3-Ethyl-3-methy1-1-(4-chlorophenyl )-4-(3-phenoxybenzyloxy)but-l-ene from 4-chlorophenyltriphenylphosphonium bromide and 2 -ethyl-2-methyl-3-( 3-phenoxybenzyloxy )propan-l-a 1. The product was identified as a mixture of Z and E isomers (ratio 1.35:1) by gas chromatography, which were separated as before using hexane containing 2% diethyl ether (by volume) as eluent.
Isomer A (identified as 90% Z isomer)
BAD original £ nmr (CDC13) ppm : 0.8 (t,3H); 0.35 (s,3H); 1.4 (m,2H);
3.15 (2x d,2H) ; 4.4 (s,2H) ; 5.5 (d, 1H) .-6.5 (d, 1H) ,· and 6.9-7.4 ( m, 1 3H ) .
Isomer B (identified as 95% E isomer) nmr (CDC13) ppm : 0.8 (t,3H); 1.1 (s,3H); 1.45 (m,2H);
3.3 (s,2H); 4.5 (s,2H); 6.15 (d,lH); 6.25 (d,l;H); and 6.9-7.4 (m,13H).
EXAMPLE 17
This Example illustrates the preparation of 3,3dimethyl-l-(4-trifluoromethylphenyl)-4-(3-phenoxybenzyloxy)but-l-ene.
A suspension of sodium hydride (O.lg) in dry dimethylsulphoxide (15 cm^) was heated to 65*C for a period of 1¾ hours. After cooling to the ambient temperature (ca. 25*C) 4-trifluoromethylphenyltriphenylphosphonium bromide (1.75g) was added in portions, and the mixture was stirred for a further hour. A solution of 2,2-dimethy1-3-(3-phenoxybenzyloxy)propan-l-al in dimethylsulphoxide (15 cn?) was then added, and after stirring for 2 hours, the reaction mixture was poured into water and extracted into ethylacetate. The extracts were combined, washed with water and dried over anhydrous magnesium sulphate, and concentrated by evaporation of the solvent to yield an orange oil. This was flash t -S chromatographed on a silica' gel column with dichloromethane as eluent to yield 3,3-dimethyl-l-(4-trifluoromethylphenyl)-4-(3-phenoxybenzyloxy)but-1-ene (0.7g) as a colourless oil, identified by nmr spectroscopy as an impure mixture of the Z and E isomers (ratio 3:1).
The Z and E isomers were separated in an analogous manner to that described in Example 15 using hexane containing diethyl ether (1.5% by volume) as eluent.
APO 0 0 0 2 8
BAD original 0» isomer A (identified as 95% 2 isomer)
H nmr (C DC 1 j) ppm : 0.9 (s,6H); 3-1 5.7 ( d , 1H ) ; 6.5 (m,13H) . (s, 2H) ; ( d , 1H ) ; 4.4 and ( s , 2 H ) 6.9-7.
somer B (identified as 90% E isomer)
H nmr (CDClj) ppm : 1.1 (s,6H); 3.3 6.4 (s,2H); and (s,2H); 6.8-7.6 4- 5 ( m, : (s,2H) L 3H) .
EXAMPLE 18
This Example illustrates the preparation of 3,3dimethyl-1-(4-methoxypheny1)-4-(4-fluoro-3-phenoxybenzyloxy)but-1-ene·
A stirred mixture of 3,3-dimethyl-4-(4-fluoro-3phenoxybenzyloxy)but-l-ene (0.27g), jo-iodoanisole (0.21g), palladium (II) diacetate (0.02g), tri-o-toluylphosphine (0.054g) and tetramethylethylenediamine (O.lg) was heated at 160*C for 24 hours. After cooling, the mixture was poured into dilute aqueous hydrochloric acid, and extracted into ethyl acetate, the extracts combined, washed with water, dried over anhydrous magnesium sulphate, and concentrated by evaporation of the solvent to yield a brown oil. The crude product was distilled through a kugelrohr apparatus to give 3,3-dimethyl-l-(4me thoxyphenyl )-4-(4-fluoro-3-phenoxybenzyloxy)but-1-ene (0.033g), as an oil, containated by 30% of 3,3-dimethyl-2(4-methoxyphenyl )-4-(4-fLuoro-3-phenoxybenzyloxy)but-1ene. -- XH nmr (CDC13) ppm : 1.1 and 1.12 (s,6H); 3.15 and 3.25 (s,2H); 3.8 (s,2H); 4.4 and 4.45 (s,2H); 4.85 (s,0.3H); 5.15 (s,0.3H); 6.1 (d,0.7H); 6.3 (d,0.7H); and 6.87.4 (m,12H).
BAD ORIGINAL £ infra red (lLquid film
1620, 1600, 1520, 1500, 1290,
1255, and 1220 cm-1.
EXAMPLE 19
This ExampLe illustrates the preparation of 3,3dimethyl-l-(4-chloropheny1)-4-(3-phenoxybenzyloxy) butane .
1% (by weight) Palladium on carbon (0.15g) was added to a solution of 3,3-dimethyl-1 -(4-chloropheny1)-4-(3phenoxybenzyloxy)but-l-ene (0.3g) in ethylacetate (15 cm^). The stirred reaction mixture was then kept under an atmosphere of hydrogen until the uptake of gas had ceased.
The reaction mixture was then removed from the hydrogenation apparatus, filtered, and the filtrate concentrated by removal of the solvent by evaporation.
The crude residual oil was purified by column chromatography using a silica gel column and eluting with hexane containing ethyl acetate (varying from 5% to 10% by volume) to give 3,3-dimethyl-l-(4-chlorophenyl)-4-(3phenoxybenzyloxy)butane (0.16g) as a colourless oil.
nmr (CDClj) ppm : 0.95 (s,6H); 1.55 (m,2H); 2.5 (m,2H);
3.2 (s,2H); 4.5 (s,2H); and 6.9-7.4 (m,13H).
Infra red (liquid film) : 1590, 1490, 1255, 1215 and 1095
AP 0 0 n 0 ? n
EXAMPLE 20
The following compound was made in an analogous manner to that described in Example 19.
3,3-Dimethyl-l-(4-ethoxyphenyl)-4-(3-phenoxybenzyloxy)butane from 3,3-dimethyl-l-(4-ethoxyphenyl)-4-(3phenoxybenzyloxy)but-l-ene.
badowginw- S0
‘H r.mr (TDClj) ppm : 0.9 (s,6H); 1.4 (t, 3H ) ; 1 . 5 (m, 2H
2 . 5 (m,2H ) ; 3 . 2 (s,2H) ; 4.0 (q. 2H
4. 5 (s,2H ) ; and 6.8-7.4 (m,13H )
EXAMPLE 21
This Example illustrates the insecticidal properties of the Products of this invention.
The activity of the Product was determined using a variety of insect pests. The Product was used in the form of liquid preparations containing 500 or 100 parts per million (ppm) by weight of the Product. The preparations were made by dissolving the Product in acetone and diluting the solutions with water containing 0.01% by weight of a wetting agent sold under the trade name LISSAPOL NX until the liquid preparations contained the required concentration of the Product. Lissapol is a Registered Trade Mark.
The test procedure adopted with regard to each pest was basically the same and comprised supporting a number of the pests on a medium which was usually a host plant or a foodstuff on which the pests feed, and treating either or both the pests and the medium with the preparations.
The mortality of the pests was then assessed at periods usually varying from one to three days after the trea tment.
In the case of the species Musca domestica (housefly), additional tests to determine the knockdown effect of the compounds were performed. Details are given in Table III.
The results of the tests are given in Table IV for each of the Products, at the rate in parts per million given in the second column as a grading of mortality designated as A, B or C wherein A indicates 80-100% mortality or knockdown, B indicates 50-79% mortality or
BAD ORIGINAL A knockdown and C indicates less than 50% mortality or knockdown .
In Table IV the pest organism used is designated by a letter code and the pests species, the support medium or food, and the type and duration of test is given in Table 111 .
APO 0 0 0 2 8 bad ORIGINAL $
TABLE III
BAD ORIGINAL $
TABLE III (CONTT/D)
DURATION (days) in u $
m
c
Cq p Q «3
o 0 r 3
Λ x Ό
ω C_4 D υ •H
kfi c 0 in
Γ» j o c Φ
o 2 OS
Q r—4 $ r-1 & ρ
C-t b
a, c c Φ
o s 0 ρ 0 ρ in
Cl M p rtl P nJ U~l
Cl O p Q S' £ S’ r4 nJ Φ
K o (0 0 ω o *“L
m m
P P
rL
3 3
Ό Ό in
<0 nJ Ifl nJ P
0 υ 3
1 •r4 1 «—4
rn •P P i—i in
ω W) in <0 w Φ u
u Φ Φ •H £ Φ Ui
ω CL •o »—4 L-l Ό Cp & B
co Φ Φ
«3 m /0 0 6
r . 0 2 υ 3
Ln in rt in Q •rL 4->
M 2 ,c 2 3= £ w
p Σ Σ o
2 >
E M s
c Φ
Cd Q Q Pi
-5 s £ £ u
g 8 t-·
«3 □
Ό
4J in
Φ
P <0 o
>p
Si p
<0
Φ
P
P p ti
S3
bad ORIGINAL
AP 0 0 0 0 2 8
TABI£ IV -
Carpound ι Number ! 1 < ! Rate (ppm) TO MP NL MD KD MD · ~ 0G HV CP 08
-( 1 ! 500 B C B A B c A A C
2 i 500 c c C C C c C B c
3 500 c C C C c c C C c
4 ! 500 c C c C c c C C c
t 5 500 c c c C c c C c c
6 500 B A A A A A A A A
7 500 C A C A A C A A A
8 500 c A A A A B A A A
9 500 c A A A A C A A A
10 500 c B C B B C A A C
11 500 c C A A B C A A B
12 500 c B A C C B C A C
13 500 B A A A B C A A A
! 14 500 C C B C C C A A B
15 500 C C C C C C C A C
16 500 c c C c C C C C C
1 I 17 500 c c C c c c A A c
18 500 B c C c c c A A c
19 100 C c C c c c A C c
20 500 C B C c c c C A c
21 100 C C C c c c C A c
22 500 C C B c c c C A c
23 500 C c A c c c c A c
24 500 B B A A A c B A c
oil
BAD ORIGINAL
TABLE IV
Ccnpound Number Rate (ppn) 1 , TU 1 MP NL MD KD MD 03 — HV CP DB
1 25 500 : c B B c B A A C
26 J 500 | c C C c C C C c C
AP 0 0 0 0 2 8
PP 33634
NCB/dlc
Aug 86 *T
BAD ORIGINAL^ Ofl

Claims (10)

1.
A compound of formula;
CHsCH ·* CRLR2-CH2OCH2
O wherein W represents hydrogen or one or two substituents selected from halo, alkyl of up to four carbon atoms, alkoxy of up to four carbon atoms, and fluoroalkyl of one or two carbon atoms;
Y represents hydrogen or halogen; Z represents hydrogen, halogen or alkyl of up to four carbon atoms; 1 2 and R and R each represent hydrogen of alkyl of up 1 2 to four carbon atoms, or R and R together represent an alkylene group of from two to five carbon atoms.
2. A compound according to claim 1 wherein W is selected from hydrogen, fluoro, chloro, methyl, methoxy, ethoxy or trifluorornethyl;
Y is hydrogen or fluoro, Z is hydrogen, R^ and
R* are methyl or ethyl or together represent the group -ch2-ch2-.
3. A compound according to claim 2 wherein W is in the
4-position and is hydrogen, fluoro, chloro, methyl or methoxy, Y is hydrogen or 4-fluoro, Z is hydrogen 1 2 and R and R are both methyl.
BAD ORIGINAL
20 6
A compound according to claim 3 in the form of the Elsomer, substantially free from the Z-isomer.
A compound according to claim 1 selected from the group of compounds comprising of :
E-3, 3-dimethy 1-1- ( 4-chlorophenyl )-4-( 3-phenoxybenzy1oxy)but-l-ene,
E-3, 3-dimethyl - ( 4-f luorophenyl )-4-( 3-phenoxybenzyloxy)but-l-ene,
E-3,3-dimethy1-1-pheny1-4-(4-fluoro-3-phenoxybenzy1oxy)but-l-ene,
E-3,3-dimethyl-1- (4-f luorophenyl)-4-(4-fluoro-3phenoxybenzyloxy)but-l-ene,
E-3,3-dimethyl-1-(4-methylphenyl)-4-{4-fluoro-3phenoxybenzyloxy)but-l-ene,
E-3,3-dimethyl-l-(4-methoxyphenyl)-4-fluoro-3phenoxybenzyloxy)but-l-ene, and
3, 3-dimethyl-l - (4-chlorophenyl) -4- ( 3-phenoxybenzy 1 oxy)butane.
Π
Ik
An insecticidal composition comprising as active ingredient an insecticidally effective amount of a compound according to claim 1 in association with an insecticidally inert diluent or carrier.
A method of combating insect pests at a locus which comprises applying to the locus an insecticidally effective amount of a composition according to claim 6.
AP O 0 0 0 2 8
BAD ORIGINAL
8. A process for preparing a compound as defined in claim 1 which comprises reacting a compound of formula :
aH2P(Ph)3 + . Hal'
1 9
5 wherein W, Y, Z, R and R have any of the meanings as defined in claim 1 and Hal- represents a halide ion, said reaction taking place in the presence of a base under the conditions of the Wittig reaction, to obtain a compound as defined in claim 1 wherein X and
10- X1 together represent a second bond between the adjacent carbon atoms, and thereafter, if desired, reducing said compound to obtain the corresponding compound wherein X and X^· each represent hydrogen.
9. A compound of formula :
HOCH2 CR1R2
10. A process for preparing claim 9 which comprises formula :
a compound as defined in reacting a compound of hoch2- cr1r2— ch2oh ^ORIGINAL $ with a compound of formula :
wherein Y, Z, Q is halo.
and Rz are as definec in claim 9 and
11. A compound of formula : - wherein Y, Z, R^ and R2 are as defined in claim 1
12. A process for preparing a compound as defined in claim 11 which comprises oxiding a compound of formula :
cr
C-;
O c
c.
a wherein Y, Z, R1 and R2 are as defined in claim 11.
13. A compound of formula :
jXz^Y'CH2P ( Ph ) . Hal” wherein W represents one from halo, alkyl, alkoxy represents a halide ion.
or two substituents selected and fluoroalkyl, and Hal”
APAP/P/1986/000043A 1985-09-23 1986-09-05 Insecticidal alkenes. AP28A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB858523464A GB8523464D0 (en) 1985-09-23 1985-09-23 Insecticidal alkenes

Publications (2)

Publication Number Publication Date
AP8600043A0 AP8600043A0 (en) 1986-08-01
AP28A true AP28A (en) 1988-12-20

Family

ID=10585608

Family Applications (1)

Application Number Title Priority Date Filing Date
APAP/P/1986/000043A AP28A (en) 1985-09-23 1986-09-05 Insecticidal alkenes.

Country Status (19)

Country Link
US (1) US4705900A (en)
EP (1) EP0220810B1 (en)
JP (1) JPS6272642A (en)
CN (1) CN1016336B (en)
AP (1) AP28A (en)
AT (1) ATE53831T1 (en)
AU (1) AU6259386A (en)
BR (1) BR8604472A (en)
DE (1) DE3670837D1 (en)
ES (1) ES2001980A6 (en)
GB (2) GB8523464D0 (en)
GR (1) GR862392B (en)
HU (1) HU202054B (en)
IL (1) IL79983A (en)
MY (1) MY100142A (en)
NZ (1) NZ217451A (en)
OA (1) OA08414A (en)
PT (1) PT83413B (en)
ZA (1) ZA866660B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248834A (en) * 1984-04-09 1993-09-28 British Technology Group Limited Pesticides
US4788348A (en) * 1987-08-12 1988-11-29 Imperial Chemical Industries Plc Insecticidal alkenes
US4900758A (en) * 1989-05-11 1990-02-13 Ici Americas Inc. Novel insecticides
US5635194A (en) * 1993-11-12 1997-06-03 Shell Oil Company Detergent range ethoxylated alcohols to control black flies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1579839A (en) * 1977-04-16 1980-11-26 Lafon Labor Chlorophenoxybenzene derivatives
DE3317908A1 (en) * 1982-05-18 1983-12-22 Mitsui Toatsu Chemicals, Inc., Tokyo NEW AROMATIC ALKAN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND SUCH A DERIVATIVE INSECTICIDE AND ACARICIDAL AGENT CONTAINING ACTIVE SUBSTANCE
EP0125204A1 (en) * 1983-04-12 1984-11-14 Ciba-Geigy Ag 3-Phenoxybenzyl (2-phenyl-2,2-alkylene-ethyl) ethers, process for their preparation and their use as pesticides
JPS59225135A (en) * 1983-06-06 1984-12-18 Sumitomo Chem Co Ltd Ether derivative, its preparation, and insecticide and acaricide comprising it as active ingredient

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078256A (en) * 1954-09-24 1963-02-19 Basf Ag Production of unsaturated compounds
US2913498A (en) * 1956-09-18 1959-11-17 Metal & Thermit Corp Process for preparing aromatic phosphorus compounds
US3379752A (en) * 1964-05-20 1968-04-23 Merck & Co Inc Phenoxy substituted 3-hydroxyalkanoic acids and a method for their preparation
US3418377A (en) * 1965-03-15 1968-12-24 Dow Chemical Co Diphenyl ether polyols
US3444216A (en) * 1966-11-16 1969-05-13 Upjohn Co Process for the oxidation of primary and secondary alcohols
US3726886A (en) * 1970-12-07 1973-04-10 Dow Chemical Co Adducts of alkenyl isocyanates with hydroxymethylated diphenyl oxide and derivatives thereof
CA1059692A (en) * 1974-06-21 1979-07-31 George A. Doorakian Latent catalysts for promoting reaction of epoxides with phenols and/or carboxylic acids
DE2502786A1 (en) * 1975-01-24 1976-07-29 Merck Patent Gmbh DIPHENYL ETHER DERIVATIVES AND METHOD FOR THEIR PRODUCTION
GB1570982A (en) * 1976-03-05 1980-07-09 Shell Int Research Substituted benzyl ethers and thioethers
US4397864A (en) * 1980-05-02 1983-08-09 Mitsuitoatsu Chemicals Inc. 2-Arylpropyl ether or thioether derivatives and insecticidal and acaricidal agents containing said derivatives
JPS5764632A (en) * 1980-10-09 1982-04-19 Mitsui Toatsu Chem Inc Novel 2-arylethyl ether derivative and thioether derivative, their production and insecticide and acaricide
SE461790B (en) * 1982-10-19 1990-03-26 Mitsui Toatsu Chemicals PROCEDURE FOR THE PREPARATION OF 3-PHENOXYBENZYL-2- (4-ALCOXYPHENYL) -2-METHYL PROPYLETRES
GB8311678D0 (en) * 1983-04-28 1983-06-02 Ici Plc Phenol derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1579839A (en) * 1977-04-16 1980-11-26 Lafon Labor Chlorophenoxybenzene derivatives
DE3317908A1 (en) * 1982-05-18 1983-12-22 Mitsui Toatsu Chemicals, Inc., Tokyo NEW AROMATIC ALKAN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND SUCH A DERIVATIVE INSECTICIDE AND ACARICIDAL AGENT CONTAINING ACTIVE SUBSTANCE
EP0125204A1 (en) * 1983-04-12 1984-11-14 Ciba-Geigy Ag 3-Phenoxybenzyl (2-phenyl-2,2-alkylene-ethyl) ethers, process for their preparation and their use as pesticides
JPS59225135A (en) * 1983-06-06 1984-12-18 Sumitomo Chem Co Ltd Ether derivative, its preparation, and insecticide and acaricide comprising it as active ingredient

Also Published As

Publication number Publication date
AU6259386A (en) 1987-03-26
PT83413A (en) 1986-10-01
US4705900A (en) 1987-11-10
ES2001980A6 (en) 1988-07-01
CN86106692A (en) 1987-03-18
CN1016336B (en) 1992-04-22
HUT41593A (en) 1987-05-28
DE3670837D1 (en) 1990-06-07
ATE53831T1 (en) 1990-06-15
ZA866660B (en) 1987-05-27
BR8604472A (en) 1987-05-19
IL79983A (en) 1992-05-25
GB2180838B (en) 1989-09-06
JPS6272642A (en) 1987-04-03
GB8523464D0 (en) 1985-10-30
OA08414A (en) 1988-06-30
GR862392B (en) 1986-11-18
NZ217451A (en) 1989-10-27
IL79983A0 (en) 1986-12-31
HU202054B (en) 1991-02-28
MY100142A (en) 1990-01-18
AP8600043A0 (en) 1986-08-01
EP0220810A1 (en) 1987-05-06
PT83413B (en) 1989-05-12
GB2180838A (en) 1987-04-08
GB8620645D0 (en) 1986-10-01
EP0220810B1 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
EP0211561B1 (en) Insecticidal ethers
EP0273549B1 (en) Insecticidal thioethers and derivatives thereof
US4791139A (en) Diphenyl ether derivatives and their use as insecticides
US4904677A (en) Certain phenoxy- or benzyl substituted pyridylmethyloxy-alkenes having insecticidal properties
US4937388A (en) Insecticidal ethers
US5132469A (en) Fluorobenzyl esters
AP28A (en) Insecticidal alkenes.
US4788348A (en) Insecticidal alkenes
US5026727A (en) Insecticidal compounds
US5093362A (en) Insecticidal compounds
EP0276558B1 (en) Insecticidal ethers
US4902814A (en) Fluorobenzyl esters
US4891450A (en) Process for intermediates for insecticidal compounds
US4792563A (en) Insecticidal ethers
US5091416A (en) Insecticidal compounds
US5225607A (en) Insecticidal ethers
GB2205096A (en) Insecticidal ethers
EP0298590B1 (en) Halogenated esters
GB2204582A (en) Insecticidal ethers
GB2219582A (en) Insecticidal 2-cyclyl-3, 3-difluoropropyl ethers
GB2219290A (en) Insecticidal fluoroalkyl-benzene and -pyridine derivatives
GB2233650A (en) Insecticidal ether
JPS62164643A (en) Alkene compound, manufacture and insecticidal composition