AP123A - Fungicides - Google Patents
Fungicides Download PDFInfo
- Publication number
- AP123A AP123A APAP/P/1990/000159A AP9000159A AP123A AP 123 A AP123 A AP 123A AP 9000159 A AP9000159 A AP 9000159A AP 123 A AP123 A AP 123A
- Authority
- AP
- ARIPO
- Prior art keywords
- alkyl
- compound
- general formula
- chloro
- oxygen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
- C07D295/18—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
- C07D295/182—Radicals derived from carboxylic acids
- C07D295/192—Radicals derived from carboxylic acids from aromatic carboxylic acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
- A01N37/46—N-acyl derivatives
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/44—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom three- or four-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/10—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
- A01N47/20—N-Aryl derivatives thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/28—Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
- A01N47/30—Derivatives containing the group >N—CO—N aryl or >N—CS—N—aryl
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N53/00—Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/28—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
- C07C237/42—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C259/00—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
- C07C259/04—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
- C07C259/10—Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/26—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
- C07C271/28—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring to a carbon atom of a non-condensed six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C275/00—Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C275/28—Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C275/42—Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/44—Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/51—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/52—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D205/00—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
- C07D205/02—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D205/06—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D205/08—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/02—Systems containing only non-condensed rings with a three-membered ring
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Fungicidal compounds of the formula (i): in which a and b are independently h, fluoro, chloro, bromo, c1-4 alkyl, c1-4 alkoxy or halo(c1-4)alkyl provided that both are not h; d and e are independently h or fluoro; r1 is h, c1-4 alkyl or c1-4 alkoxy; r2 is c1-4 alkyl, c1-4 nalkoxy or optionally substituted phenyl, or r1 and r2 together with the nitrogen atom to which they are attached join to form a morpholine, piperidine, pyrrolidine or azetidine ring which is optionally substituted with c1-4 alkyl; r3 is h; r4 is trichloromethyl, c2-8 alkyl (optionally substituted with halogen, c1-8 alkoxy or r's(o)n in which r' is c1-4 alkyl, c2-4 alkenyl or c2-4 alkynyl and n is 0, 1 or 2), cyclopropyl (optionally substituted with halogen or c1-4 alkyl), c2-8 alkenyl, c2-8 alkynyl, c1-8 alkoxy, mono- or di(c1-4)alkyl- amino or the group, r
Description
This invention relates to novel fungicidal acylaminobenzaraides, to processes for preparing them, to fungicidal compositions containing them and to methods of using them to combat fungi, especially fungal infections of plants.
Acknowledgement is made of UK Application No.
42454/77 from which US Patent No. 42Θ2218, for example, claims priority and of EP-A-0127990. The former describes acylanilides which have antiandrogenic properties and the latter describes aniline derivatives which have fungicidal properties.
According to the present invention there is provided a compound of the formula (I):
(I)
AP000123 in which A and B are independently H, fluoro, chloro, bromo, C^_4 alkyl, C^_4 alkoxy or halo(C^_4) alkyl provided that both are not H; D and E are independently H or
2 fluoro; R is H, alkyl or C^_4 alkoxy; R is alkyl, C^_4 alkoxy or optionally substituted phenyl, or R^ and R^ together with the nitrogen atom to which they are attached join to form a morpholine, piperidine, pyrrolidine or azetidine ring which is optionally 3 4 substituted with C^_4 alkyl; R is H; R is trichloromethyl, (Ζ2_θ alkyl (optionally substituted with halogen, Cj_g alkoxy or R'S(O)n in which R' is C^_4 alkyl, C2_4 alkenyl or C2_4 alkynyl and n is^O, 1 or 2), cyclopropyl (optionally substituted with halogen or C^_4
I J.A
BAD ORIGINAL alkyl), ^2_q alkenyl, C2_g alkynyl, C2_g alkoxy, mono- or di(C, .)- alkylami.no or the group, R0N-C(CN) in which R
4 is Ci_4 alkyl, or R and R together with the group C(O)N to which they are attached join to form an azetidin-2-one ring which is optionally substituted with halogen or C^_4 alkyl; and X and Y are independently oxygen or sulphur.
Alkyl groups and the alkyl moiety of other alkyl-containing groups can be in the form of straight or branched chains. Examples are methyl, ethyl, propyl (n-and iso-propyl), butyl (η-, sec, iso- and t-butyl),
1.1- dimethylpropyl and 1,1-dimethylbutyl. Alkenyl and alkynyl groups can also be in the form of straight or branched chains. Examples are 1,l-dimethylbut-3-enyl and
1.1- dimethylprop-2-ynyl.
Halogen includes fluorine, chlorine and bromine.
Optional substituents of phenyl include: halogen,
C1-4 alkyl (for example, methyl), alkoxy (for example methoxy), C^_4 alkylthio (for example methylthio), trifluoromethyl, trifluoromethoxy, nitro, cyano, C^_4 alkoxycarbonyl, amino and mono- and di (C^_4)alkylamino.
In one aspect the invention provides a compound of formula (I) in which A and B are independently H, fluoro, chloro or bromo provided that both are not H; D and E are
2 both H; R is hydrogen or C,_4 alkyl; R is C^_4 alkyl, Ci_4 alkoxy or phenyl, or R and R^ together with the nitrogen atom to which they are attached join to form a morpholine, piperidine, pyrrolidine or azetidine ring;
is hydrogen; R is Cg_g alkyl (optionally substituted with halogen, methoxy, methylthio or methylsulphonyl), cyclopropyl (optionally substituted with methyl), Cg_g alkenyl, Cg_6 alkynyl, C14 alkoxy or the group CH3ON-C(CN); and X and Y are both oxygen.
In another aspect the invention provides a compound of formula (I) in which A is chloro; B, D and E are all H;
2 R is hydrogen, methyl or ethyl; R is methyl, ethyl or
2 phenyl, or R and R together with the nitrogen atom to
'BAD OWOWNAL which they are attached join to form a morpholine or 3 4 piperidine ring; R is hydrogen; R is alkyl (for example iso-propyl or t-butyl) or cyclopropyl; and X and Y are both oxygen.
In yet another aspect the invention provides a compound of formula (I) in which A is chloro; B, D and E 1 2 are all H; R and R are independently methyl or ethyl (but suitably both methyl or both ethyl) or together with the nitrogen atom to which they are attached join to form 3 4 a morpholine or piperidine ring; R is hydrogen; R is iso-propyl, t-butyl or cyclopropyl; and X and Y are both oxygen.
In yet another aspect the invention provides a compound of the formula (1.1):
APOOO12 3
in which A and B are independently chloro, bromo or methyl or B is H; and Z is fluoro, chloro, bromo, methyl, ethyl or methoxy. Amongst these compounds are to be noted those in which B is H and those in which A and B are both chloro or both methyl. Compounds of particular interest are those in which A is chloro; B is H; and Z has any of the meanings given above; and also those in which A is chloro or bromo; B is H, or A and B are both chloro; and z is methyl.
The invention is illustrated by the compounds listed in Tables I, II and III which follow.
BAD ORIGINAL
TABLE r-l CN
06 \/ % /
I m 2 - 06 o=o n·
o o 4J a a | n· r~ <N n· m o on· oo in as co o oo cn in r-l t—1 Η H IN r-1 r—1 CN 1 1 1 1 1 1 II cn n* o cn cn σι m oo in oo oo o r- oo in rd r-l r-1 r—1 CN r-l I—1 CN |
« | Μ Μ Μ Μ Μ M frU bM MM W MM MM o ο o ο ο I ο o CN IN IN IN m IN IN m m m m m Λ mm XXXXX / \ XX Ο Ο Ο Ο O / \ Ο O |
co « | XXXXX X XX |
rs OG « | m in i m m in X X <N X X XX O CN ·-- U O io u <n i υ X in υ ~ — CN |
r-H « | 1 x — o o CN 1 m in— m m in X X cn X X XX U IN X O O CN ου o 1 |
Compound No. | r-ι cn m n· in o r- 03 |
J
TABLE I (Contd.
a a 4-> Ol a | <N VO r-t PO «-Ι Ό VO VO CO co co (N vo in in m <-t t—t t—1 I—t r—t I—( r-4 r-t 1 1 l l l I 1 1 in in σ> γί co in in in · co r- in in in in (N h Ή r—t r—t r-1 r-4 .—t .H CO »—t |
cc | u o <N ΓΊ — — (J po m cn O 33 X —' <s S3 ro (J O m — ο I X — — 33 po -- U in m u 33 PO X X — u u ι x λ a o u PO — <N (J / \ PPt <SJ x -1 fN — — / \ XX a x ph tn / \ ou υ x ρπ / \ co Γ-t U X L-J x u — u o u |
m | 1 (N X υ XXIX X XXX |
u | popopopo po popopo XXXX X XXX uauu u o a υ • |
pptpoporo po popp»po XXXX X XXX uuuu u uuu | |
Compound No. | * στ o rH <n co in (O tH rH rH r-1 rH rH tH |
X 33 υ u
<0 *—t 3 a u
O *w
Φ x:
4J
Ifl <0
JS o
Ό
C
O di a
o u
« £ z V 0 o 0 dV
BAD ORIGINAL ft
TABLE I (Contd.
o o 4J (X a | CO in in • in · co C^rHrHr'fOCOOVOinr-IOl COCO 1004000-^.-11--040100.-1 in 10 »—1 <—1 r-1 04 <—1 | r-4 I—1 «—I t—1 | r-tr-4 i l i I I in i i i i m ι i 00 Ο O 10 «—1 · Ol in Ό· Ol . O cd 1004000^01100401(--04011010 r—1 r-4 1 04 r-1 CO .-1 .-1 r—1 r-1 Ol «—1 .-4 cH rH »-H |
xy X | u u υ υ 04 04 04 04 CJ CJ — — CJ O — CJ — SC 04 04 co CJ CO 04 CJ CO 04 co CJ — X 04 a: — co χ — x z cj co u cj cj cj CJ co — CJ co CJ 04 co S3 sQ — coco co — S3 co— X — ---^CJ— 3! 04 CJ X O CJ 04 co CO — 04 Ul coco CJ EC —- CJ co— 03335033(0333: — CJX — XWWCJCJ *0 — 00 .-1330 O co co — — O ui 04 — — Ο Ο «Μ X SC XXX « — O O O 04 ι—1 Ul 33 O (0 O — |
co OS | MM MM M4 MM MM Mm MM MM MM ►M MM MM MM |
<N | 04 04 cocococococororococococox χ XXXXXXXXXXXXOO OOOOOUOOOOOO coco ’ 33 33 O O |
r—< PS | 04 CO CO CO CO CO CO CO CO CO CO CO CO CO X XXXXXXXXXXXXXO UOOOOOOOOOOOO CO X o |
Compound NO. | r'CoC'O.-iiNco^TLnvor-'Oooo ι-(ι-4Γ-ίΓΜ<Ν<Ν<ΝίΝΓΜ<Ν<Ν<Ν<ΝΓΠ |
TABLE I (Contd
u o jJ Oi S | m io r-i *3* Γ io in σι co O' co χτ xr r- ao r~~ .-i cm cm co o in ·—1 rM ·—1 «—I r-1 1 «—I ( t I—I i—l 1 1 1 1 -h in , III 1 O'* co in in ο · co in r- <-t cm co r> a» ( χτ cm cm co o m ·—1 r“I fM tM in ,-M r-1 t-M <—I r—I |
os | υ υ υ cm U CM CM υ cm — u o co —- 2 O — CO CO CM CM SB a a υ υ υ co ο—o cm co a a — — υ co co co co co a i — a u υ co co — — Λ u 2 cou^'-ssaa CO CO CO CO CO >— o a CM CM u u υ a a a a a cm co υ a a a — i υ u u o u — a u u u cm a a — — — — <-i υ b, o w a ο υ O CM CO CO u CM co — a a a h b a u υ u o |
co P6 | aaaaaaa aaaaaaa |
CM κ | CM a a u υ CM CM — a co U O a co co coco co co co co co co co o aaaa aaaaaaa χ- u υ u o uuuouuu 1 1 xy co |
H OS | CM CM a a u o co co co coco co co co co co co co ai iaaaa aaaaaaa u uuuu uuuuouu |
Compound No. | r-ι cm co xy in io r~ oo σ> o .-I cm co xr co co co co co co co co co χτ xy xr xy xy |
APO 00123
BAD ORIGINAL
TABLE I (Contd.
mpt (°C) | r-i m oo <n r-i co co ro i-H rH i—4 rd III 1 CO CO rH LO o O co -h co co 1—4 r—1 0 ι-4 Ή |
05 | u <N U — O <N m O <N — ® <N — CO (J O U — m X Z - O U <N (N U co B 33 (J <N <N O <N — — <N B Ο U , m — '—XrC'- m m — U — <N E <N mo — m B B m — cn — l~o BIBB m b OUBOB m Λ Ο <n Ο Ο B O — — O m U B / \ m — » U — r-t Ul — B --1 O *-* B CO <N — r-t OCOtuOU— OB B O O U O |
co « | CN B O BBBBBBB BIBBBS |
<N K | -r- <N<N<N<N<N<N<N CN<N<N<N<NU BBBBBBB BSBBS <N UUUUUUU UUUUU — m m m m m m m m m m m m m BBBBBBB BBBBBB υυυυΌυυ OOUOOO |
os | co co co co co co co co co co ro co ro Μ M MM Μ Μ Μ Μ Μ Μ Μ MN MM M Un Mm Mn Ux Un Mm Un Un Un Mn Mm m ooouuuu uuuuuo |
Compound No. | in γ- co cn o i cm co in r- i? ’T in in in in in in in in |
TABLE I (Contd.
u o 4J Q. e | 111-113 154-155 120 (dec.) 95-96 |
os | u u <n <N U —- m U U <N <Ό X U <N <N X U Urn — m υ — <N —' m m X — <n U CO X X Ο Μ X <n u m sc ec m υ u — x u — <N X U U 1 X — —- (MU <N <*> - U — <N L.U CJ sc x sc sc x CO — (M — ,\ XUUUU U X Ο X f*1 / \ U 1 U 1 X — u m u sc / \ m <n a u u — X >—I U / \ X X U U 1 X U. U U — i-i U U X mm sc x u u |
ro OS | xxxxxx xxxxx |
<N OS | X X X X X X X UUUOUU U <N <Ν <N m CM <N CM (NX —-U m m m m co co i*» m co m m X χ x XXXXXX XXUUU UUUU’UU UU |
1 OS | co co co co co co co co co co co Μ μ Μ Μ Μ M MM Μ Μ M kN M Un |JL| »*4 kL Μ kN kN uuuuuu uuouu |
Compound No. | co <y> o .h m m n· in vo r- oo m m vo vo <o vo m ιο ό \o ό |
APO00123
BAD ORIGINAL .-( IN
05 \ /
Z
TABLE II /
O-U n·
υ o 4J Q. a | 143-144 | 183-185 | 219-222 | 125-130 | 187-188 | 187-189 | 198.7-199.6 | 110-113 | Gum |
ω | X | X | X | X | X | b | X | X | X |
a | X | X | X | X | X | b | X | X | X |
rH | |||||||||
0 | X | X | X | X | u | b | X | X | X |
o | |||||||||
ro | ro | kJ | ro | ||||||
X | X | 0 | b | i-H | Cxj | b | b | b | |
a | u | u | cj | ||||||
u | U | ||||||||
<N | <N | ||||||||
ro | ro | ||||||||
X | X | ||||||||
cj | u | ||||||||
’T | u | u | u | U | u | u | u | X— | |
05 | CO | ro | ro | CO | co | ro | ro | <n | <N |
J—. | s | J—» | J*»s | X | X | ||||
m | co | co | co | ro | ro | ro | υ | υ | |
X | X | X | X | X | X | X | ro | ro | |
u | a | o | υ | u | a | u | X | X | |
« | '—' | u | cj | ||||||
ro | |||||||||
05 | X | X | X | X | X | X | X | X | X |
ra | |||||||||
X | |||||||||
in | co | co | ro | ro | ro | ro | ro | ro | cj |
05 | X | X | X | X | X | X | X | X | ro |
a | cj | o | u | a | a | cj | CJ | X | |
cj | |||||||||
ro | ro | ΓΟ | ro | ro | ro | ro | ro | ro | |
05 | X | X | X | X | X | X | X | X | X |
CJ | cj | u | a | CJ | cj | cj | cj | cj | |
Ό | |||||||||
C | |||||||||
3 | |||||||||
O | »—4 | <N | ro | in | IO | r- | 00 | <M | |
cu | |||||||||
a | |||||||||
0 | |||||||||
u |
TABLE II (Contd.
u a 4J Q. Θ | |||||||||||||||||
Cd | X | X | X | X | X | X | X | X | b | X | X | X | X | X | X | X | X |
Q | X | X | X | X | X | X | X | b | X | Eu | X | X | X | X | X | X | X |
co | rd | rd | rd | rd | rd | rd | |||||||||||
CO | X | b | b | b | rd | b | u | X | X | X | b | o | CJ | a | u | o | u |
u | υ | X | |||||||||||||||
co | CO | CO | CO | ||||||||||||||
X | fiu | rd | X | X | u | rd | rd | rd | Ui | b | rd | rd | rd | rd | rd | rd | |
u | o | υ | u | X | υ | u | o | X | a | o | a | u | u | o | υ | ||
u | |||||||||||||||||
CM | |||||||||||||||||
o | XX | o | |||||||||||||||
o | u | co | CM | ||||||||||||||
CM | CM | υ | X-x | X | X-X | ||||||||||||
TJ· | o | υ | o | u | u | u | υ | o | u | u | o | X-X | CM | CO | u | co | |
06 | co | co | CO | co | co | co | CO | co | co | co | CO | co | co | X-* | X | x^ | X |
*-* | X | —X | X | *-x | *—X | X—X | x—X | X | X | ro | o | CM | o | ||||
co | co | co | co | co | co | co | CO | co | co | co | o | u | X | X | |||
X | X | X | X | X | X | X | X | X | X | X | a | o | o | CM | |||
u | u | a | u | U | u | u | u | o | u | υ | r-l | Ui | •x-x | co | co | X | |
X—* | *—* | -x—’ | X—- | Χχ^ | O | X | Eli | X | X | u | |||||||
u | o | b | |||||||||||||||
co | |||||||||||||||||
06 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CM | ro | co | co | co | ro | co | co | ΓΟ | co | co | co | CO | co | co | co | co | CO |
06 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
u | u | a | o | u | o | <J | υ | o | o | u | a | <J | u | a | u | u | |
rd | ro | co | CO | co | co | co | co | CO | co | co | co | CO | co | co | rO | ro | co |
06 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
o | u | o | a | u | u | u | υ | u | u | o | u | o | u | u | u | o | |
Ό | |||||||||||||||||
C | |||||||||||||||||
3 | |||||||||||||||||
O | o | rd | CM | CO | in | LO | r- | GO | Ch | o | rd | CM | co | in | VO | ||
a | rd | rd | rd | rd | rd | rd | rd | r- | rd | rd | CM | fN | CM | fN | CsJ | <N | <N |
a | |||||||||||||||||
o | |||||||||||||||||
υ |
AP 0 0 0 1 2 3 jgAD ORIGINAL $
TABLE II (Contd.
mpt ( °C) | 188-189 | 184.5-187 | 160-163 | 158-160 | 159-161 | 186-188 | ||||||||||
ω | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
Q | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
rd | ||||||||||||||||
OQ | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | CJ |
co | co | co | co | co | co | ro | ||||||||||
< | u | u | Ul | Ul | Ul | ui | Ul | X | X | X | X | X | X | Ul | X | i-d |
X | X | X | X | X | X | X | υ | υ | u | cj | CJ | CJ | X | υ | CJ | |
cj | CJ | u | CJ | a | ||||||||||||
CM | u | cm | cm | CM | CM | |||||||||||
cj | —* | (Μ υ | u | CJ | Λ | Λ | ||||||||||
CM | ro | X—» | CM | CM | co | CM | co | co | co | |||||||
u | cj | X | co | —*· | u | u | X | X | X | X | ||||||
CM | CM | u | co | CJ | X | co | cm | CM | υ | co | CJ | co | CJ | CJ | CJ | |
«—» | 04 | X | S./ | υ | X | X—» | X—» | OJ | X | ^_x> | X | •S-»’ | ||||
os | co | co | υ | CM | u | co | co | «—» | o | OJ | CJ | X | X | X | ||
X | X | ro | X | CM | X | X | co | X | CJ | CJ | CJ | |||||
cj | a | X | o | υ | X | cm υ | u | X | o | CJ | cm | 1 | 1 | 1 | ||
u | CO | CO | u | X | «^x | ^-x | u | co | co | X | CM | CM | OJ | |||
rd | u | X | X | rd | υ | rd | Ul | XX | X | X | (J | X | X | X | ||
u | X | Cu | υ | u | υ | Eh | o | X | Eh | u | CJ | Cm | CJ | CJ | υ | |
co | ||||||||||||||||
OS | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
OJ | co | co | co | CO | co | CO | co | co | co | co | co | co | co | co | co | CO |
(ts | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
υ | cj | CJ | υ | υ | u | υ | υ | υ | u | cj | CJ | υ | CJ | CJ | CJ | |
rd | co | CO | ro | co | CO | CO | CO | co | CO | co | CO | co | CO | co | co | co |
on | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
a | u | CJ | υ | υ | u | u | u | u | cj | CJ | CJ | a | CJ | a | CJ | |
Ό | ||||||||||||||||
c | ||||||||||||||||
3 | ||||||||||||||||
O | r- | GO | σ> | Ο | rd | 04 | CO | m | io | Γ- | ao | σι | o | r— | OJ | |
a | CM | 04 | OJ | CO | CO | CO | co | co | CO | ro | co | co | CO | ^3* | O' | |
a | ||||||||||||||||
o | ||||||||||||||||
CJ |
TABLE II (Contd.
u | o | CM | o | r- | |||||||||||||
o | in | in | o | XT | |||||||||||||
%_z | t-1 | rH | r-l | o | i-4 | ||||||||||||
1 | 1 | 1 | i-H | 1 | |||||||||||||
Ml | σ | σ | 03 | 1 | XT | ||||||||||||
a, | ’T | ro | TT | r~ | XT | ||||||||||||
a | r—1 | »— | t-4 | σ | r-l | ||||||||||||
ω | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
o | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
co | |||||||||||||||||
r-4 | rH | X | 1—4 | ||||||||||||||
03 | u | u | X | X | CU | a | X | X | ej | Cu | X | X | Cm | X | X | X | X |
CO | CO | co | CO | co | |||||||||||||
< | rH | X | u | X | kl | X | u | X | k» | u | u | X | |||||
u | a | u | X | Cl* | u | X | a | u | Em | X | u | Cu | X | X | X | u | |
u | |||||||||||||||||
u | CM | ||||||||||||||||
CM | —* | ||||||||||||||||
z—» | co | ||||||||||||||||
X | u | ej | a | EJ | X | X | X | co | X | a | ej | ||||||
o | a | a | o | o | o | CM | Ol | <N | CM | o | ej | υ | X | ej | CO | co | |
CM | co | co | co | co | CO | z—X | Z—«. | —* | *—* | CM | CM | CM | ej | x—· | «—M. | —«X | |
06 | -—X | z—% | z—» | Z—X. | CO | co | CO | co | z—x | z-»» | z—> | CM | ro | co | |||
CO | co | co | co | co | co | X | X | X | X | co | co | co | CM | X | X | X | |
X | X | X | X | X | X | u | ej | a | ej | X | X | X | X | υ | a | u | |
a | u | u | υ | u | u | N_Z | •X-Z | x-z | u | u | ej | EJ | ro | x-z | X_Z | ||
x»z | %»z | «-Ζ | Em | Em | Cu | Cu | ««z | «SZ- | Cm | X | |||||||
• | u | ||||||||||||||||
m | |||||||||||||||||
06 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CM | CM | ||||||||||||||||
Z—«X | z—«X | ||||||||||||||||
CM | OJ | CM | OJ | <N | CM | CM | CM | CM | CM | CM | CM | CM | CM | CM | co | co | |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |
CM | o | a | o | a | u | o | u | u | u | o | ej | u | a | a | u | u | υ |
06 | co | ro | co | CO | ΓΟ | co | co | co | co | co | co | ro | co | ro | co | ||
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |
a | (J | a | u | u | u | u | u | o | c_> | ej | u | u | ej | EJ | u | u | |
rM | ro | ro | CO | co | co | co | co | co | co | co | co | co | co | ro | CO | co | co |
06 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
u | u | u | u | u | u | u | u | u | ej | ej | u | o | ej | EJ | a | ej | |
Ό | |||||||||||||||||
C | |||||||||||||||||
3 | |||||||||||||||||
O | co | in | <X> | r* | 03 | σ | o | r- | CM | co | ’«T | in | XO | r- | co | σ | |
Cu | ** | •*T | in | in | in | m | in | in | in | in | in | in | |||||
a | |||||||||||||||||
o | |||||||||||||||||
u |
APOO
BAD ORIGINAL
TABLE II (Contd.
o o 4J Ol a | ο h in ao Η <n in m 00 r-4 i—4 W r4 ι ι ι ι a ι a oo <T> ·* m 3 in 3 o r-t in m O oo O —1 ·Ή «—I rM |
ω | xxxxxxxxx 33 |
Q | xxxxxxxxx x |
03 | r—t XOXXXXXXX X |
m Ulr-IXUlUUlUUlU· U XOOfflfflfflfflfflffl CO | |
xr Oi | o o <n a 0 <N —NN | U 0 m - nj U mo <N γν X mm m — «NX <n — ~ Ο X X x m — O — m m— Ο Ο v Ο X m m x X «Ν'— ^ \/ U X <n X Ο Ο X Ο O X — OXU'- — O mm /\ 0 ~U — Μ,-Ι,-IXX L_X I biGuGuCQOpoo <N |
ro Oi | X 0 XXXXXXXX I |
<N OS | CM <N OJ <N rorOrO(N(N<N<NrO <N MMMMMMMPW M k>L« kM Η* W Μ* «-Μ kJ* HM kJ* uuauouua u ^-*^**—* ro ro ro ro * ro ro MM Μ Μ Μ Μ Μ Μ Μ Μ H4 «&« kJ* U* kJ* kJ* M* kJ* kJ* kJ* kJ* auuuauuuo u |
i—4 PS | rororororororororo ro kw* *T* *T< *T* *Ή *T* *T* *T< *T* k<M W kJ* kJ* M* U* kJ* kJ* *J* kJ* uuuouuuuu u |
Compound | * Or-»<sro<Tinvcr*oo σ> kO\O\O\O\X>kOKOL0V0 LO |
m r-<
a
Ul o
«W
Φ
J5
4J w
m
JC o>
<o o
Ό
C
O
Qi e
o o
« e>o
TABLE III
06 \ / /
x-o
a o JJ Q> a | 164-167 | 120 (dec.) | 154-156 i 1_ |
>· | W | O | w |
X | O | w | w |
w | 2 | 2 | 2 |
o | 2 | 2 | 2 |
(0 | 2 | 2 | 2 |
i-H | r-4 | i-H | |
o | o | o | |
u | u | u | |
co | co | co | |
x—«. | X—* | X—*. | |
co | co | co | |
06 ’ | 2 | 2 | 2 |
U | U | υ | |
CO | co | co | |
05 | 2 | 2 | 2 |
U | U | U | |
co | co | CO | |
06 | 2 | 2 | 2 |
U | U | U | |
Ό | |||
C | |||
5J | |||
0 | |||
ex | rH | <N | CO |
a | |||
o | |||
u |
<\l
O.
<
BAD OR1GINA1- Qp ,
The compounds of the invention can be made, for example, by the methods illustrated in Schemes 1 to 11. 12 4
Throughout these Schemes R , R , R , A, B, D, and E are as defined before.
In Scheme 1, compounds of formula (II) can be prepared by reacting compounds of formula (VI) with an acid chloride R COCl in a suitable organic solvent such as methylene chloride or toluene in the presence of a base such as a tertiary amine (for example triethylamine) or an alkali metal carbonate or hydroxide (for example sodium bicarbonate or sodium hydroxide).
Compounds of formula (VI) can be made by reduction of nitro compounds of formula (V) using standard methods known in the literature such as iron powder in aqueous ethanol.
Amides of formula (V) can be made from compounds of formula (III) by first converting a compound (III) into an acid chloride of formula (IV) by treatment with a standard reagent such as thionyl chloride or oxalyl chloride. The 1 2 acid chloride (IV) is then reacted with an amine (R R NH in a suitable organic solvent (such as methylene chloride or toluene) or in water, in the presence of a base (such as triethylamine or sodium bicarbonate or excess amine R1R2NH).
In Scheme 2, compounds of formula (II) can be prepared from compounds of formula (IX) by reaction with 1 2 an amine R R NH in a suitable organic solvent such as methylene chloride or tetrahydrofuran (THF) in the presence of a base such as triethylamine, sodium 1 2 bicarbonate or excess R R NH.
Scheme 1
AP000123 (II) *f - ____ bad original
Scheme ii
Scheme 3 (II) (IX)
Acid chlorides of formula (IX) may be prepared from carboxylic acids of formula (VIII) by reaction with a standard reagent such as oxalyl chloride in a suitable dry solvent such as THF or methylene chloride and with a catalytic quantity of DMF being added if necessary.
Carboxylic acids of formula (VIII) may be prepared from the appropriately substituted 4-arainobenzoic acid 4 (VII) by reaction with an acid chloride R COCl in water in the presence of at least two equivalents of a base such as an alkali metal carbonate or hydroxide (for example sodium bicarbonate). The substituted 4-aminobenzoic acids (VII) can generally be made by methods described in the literature.
In Scheme 3, compounds of formula (XI) in which R5 and R® are hydrogen, C^_4 alkyl or halogen, are prepared from compounds of formula (X), in which X' is chlorine, bromine or iodine, by treatment with a base such as an alkali metal hydroxide (for example sodium hydroxide) in a two-phase system consisting of an organic solvent, such as methylene chloride, and water, in the presence of a phase-transfer catalyst (for example tetrabutylammonium bromide).
In Scheme 4, intermediates of formula (VIII) can be made by hydrolysis of compounds of formula (XIV) by standard methods in the literature such as treatment with aqueous mineral acid (for example aqueous sulphuric acid), or with aqueous alkali (for example aqueous sodium hydroxide with or without a cosolvent such as ethanol) or by aqueous diazotisation (for example with sodium nitrite in aqueous sulphuric acid). Compounds of formula (XIV) can be made from compounds of formula (XIII) by hydrolysis using standard methods in the literature such as treatment with aqueous mineral acid (for example aqueous sulphuric acid) or aqueous alkali (for example aqueous sodium hydroxide with or without a cosolvent such as ethanol) or by treatment with aqueous alkaline peroxide (for example
BAD ORIGINAL O
AP 0 0 0 1 2 3 aqueous hydrogen peroxide) containing sodium hydroxide with or without a cosolvent such as ethanol). Compounds of formula (XIII) can be made from compounds of formula 4 (XII) by reaction with an acid chloride R COCl in a suitable organic solvent (for example methylene chloride or toluene) in the presence of a base such as a tertiary amine (for example triethylamine) or an alkali metal carbonate or hydroxide (for example sodium bicarbonate or sodium hydroxide).
Scheme 4
(VIII) (XIV)
In Scheme 5, intermediates of general formula (VIII) can be made by hydrolysis of an ester (XVI) where R7 is C| 4 alkyl, with an alkali metal hydroxide (for example sodium hydroxide) in a suitable solvent such as water or ethanol or mixtures thereof. The ester of general formula (XVI) can be made from an aminobenzoic acid ester of
general formula (XV) by several routes. Firstly by 4 reaction with an acid chloride R COCl in a suitable organic solvent (for example methylene chloride or toluene) in the presence of a base such as a tertiary amine (for example triethylamine) or an alkali metal carbonate or hydroxide (for example sodium bicarbonate or sodium hydroxide). Alternatively, when any of the substituents A, B, D and E are strongly electron-withdrawing the amino ester (XV) can be deprotonated with a strong base (for example sodium hydride or lithium diisopropylamide) in an inert organic solvent (for example tetrahydrofuran or dimethoxyethane) and then treated with an acid chloride R COCl. Two equivalents of strong base may be needed for satisfactory yields. Compounds of general formula (XV) can be made from compounds of general formula (VII) by reaction with an alkanol R^OH, where is C^_^ alkyl, in the presence of an acid catalyst (for example concentrated sulphuric acid or hydrogen chloride gas).
Scheme 5
AP 0 0 0 1 2 3
E A E A
(VIII) (XVI)
BAD ORIGINAL
In Scheme 6, compounds of general formula (XVIII)
9 where R and R are independently H, alkyl or 4 haloalkyl, can be made by treatment of compounds of formula (XVII) with a fluoride transfer reagent (for example silver tetrafluoroborate) in a suitable solvent (for example acetonitrile).
Scheme 6
II c
(XVII)
In Scheme 7 compounds of general formula (XX), where R and R are as defined for Scheme 6, can be made from hydroxy compounds of general formula (XIX) by treatment with a fluorinating agent, (for example diethylaminosulphur trifluoride) in a suitable solvent (for example methylene chloride). Compounds of general formula (XX) can also be made by reaction of compounds of general formula (VI) with acid chlorides of general formula (XXXV), in a suitable solvent (such as methylene chloride or ethyl acetate) in the presence of a base (such as triethylamine or potassium carbonate).
Scheme 7
HOCH.
r8 0
I II
C —C 19 R’
N.
I
H
II
C χιχ:
FCH.
R8
I
C '9
R*
(XX)
A
AP 0 0 0 1 2 3
•N
X XR2
R
I
FCH2-C
II •c-ci (VI) (XXXV)
In Scheme 8 compounds of general formula (XXI) and (XXII) can be made by treatment of compounds of general formula (II) with a thionation reagent (for example phosphorus pentasulphide or Lawesson's reagent) in a suitable solvent (for example toluene or acetonitrile). Compounds (XXI) and (XXII) can either be produced together as a mixture, which can be separated by chromatography or
BAD °F»G1NAL^| T crystallisation, or compound (XXI) can be produced alone, and can subsequently be converted to (XXII).
Scheme 8
E A
(XXII)
Scheme 9
(XXVII) (XXVIII)
AP 0 0 0 1 2 3
In Scheme 9 compounds of general formula (XXIV) may
ORIGINAL be made by reaction of isothiocyanates of general formula (XXIII) with organometallic reagents of type R4Li, or R4Mghal, where hal is a halogen such as chlorine or bromine, in a suitable solvent (such as tetrahydrofuran) at a temperature between -78eC and +25®C.
Isothiocyanates of general formula (XXIII) can be made from compounds of general formula (VI) by standard methods, for example by treatment of compounds of general formula (VI) with thiophosgene.
Compounds of general formula (XXIV) can also be made from compounds of general formula (XXV) by standard methods for making amides. For example (XXV) can be converted to an acid chloride of general formula (XXVI) by treatment with chlorination reagents (for example oxalyl chloride or thionyl chloride), and the acid chloride 1 2 (XXVI) can be reacted with an amine R R NH in the presence of a base (for example triethylamine or potassium carbonate). The carboxylic acids of general formula (XXV) can be made from the esters of general formula (XXVII) by hydrolysis using standard methods, (for example sodium hydroxide in methanol). The esters (XXVII) can in turn be made from compounds of general formula (XXVIII) by reaction with a thionation reagent (for example phosphorus pentasulphide or Lawesson's reagent) in a suitable solvent (for example toluene or acetonitrile).
In Scheme 10 compounds of general formula (XXXII), where is C._. alkyl, can be made from compounds of 14 11 general formula (XIX) by reaction with a halide R -hal, where hal is chlorine, bromine or iodine, in the presence of a base such as an alkali metal carbonate or oxide or hydroxide (for example barium oxide) in a suitable solvent (for example methanol). Compounds of general formula (XIX) can be made from compounds of general formula (XXXI) by hydrolysis with an alkali metal hydroxide (for example sodium hydroxide) in a suitable solvent (for example aqueous methanol). Compounds of general formula (XXXI)
Scheme 10 r8 0 1 II
HOCH.,-C — C 2 9 \ r’ OH .10 r8 0
I II —CH0- C — C z 1 9 \
R Cl (XXIX) 1 9 R*
N— R XR2
(XXXI)
R 0 11 i ii rajoch0 —c - c 2 1 9 r’
N
I
H
N (XXXII) can be prepared from compounds of general formula (VI) by reaction with acid chlorides of general formula (XXX) in a suitable solvent (for example methylene chloride1 in the presence of a base (for example triethylamine). Acid chlorides of general formula (XXX) can be made by treatment of hydroxy acids of general formula (XXIX) with acid anhydrides of formula (R^CO^O, followed by an acid chloride generating reagent (for example thionyl chloride or oxalyl chloride).
AP 0 0 0 1 2 3
K4D ORIGiNAL
Scheme 11
(XXXIII)
(II)
In Scheme 11 compounds of formula (II) can be prepared from compounds of formula (XXXIII), where L is a leaving group for example fluorine, chlorine, bromine, iodine, methanesulphonyloxy, p-toluenesulphonyloxy, or trifluoromethanesulphonyloxy, by reaction with a compound 4 of general formula R -CO-NH2 and a base (for example sodium hydride, lithium diisopropylamide, alkali metal alkoxides or alkali metal carbonates). Compounds of formula (II) can also be made from anilines of general formula (VI) as described in Scheme 1. Anilines of general formula (VI) can be made by reaction of compounds of general formula (XXXIII) with ammonia in a suitable solvent (for example ethanol or pyridine).
formula (VI) can also be made from compounds of general formula (XXXIV), where M is azido or hydrazino, by treatment with a reducing agent (for example hydrogen in the presence of a catalyst). Compounds of general formula (XXXIV) can be made from compounds of general formula (XXXIII) by reaction with alkali metal azides (for example sodium azide) or hydrazine, in suitable solvents (for example dimethyl formamide or ethanol).
In a further aspect, the invention provides processes 10 as herein described for preparing the compounds of the invention.
The compounds of the invention are active fungicides and may be used to control one or more of the following pathogens:
Puccinia recondita on wheat, Erysiphe graminis (powdery mildew) on barley, Venturia inaequalis (scab) on apples,
Cercospora arachidicola on peanuts, Plasmopara viticola on vines and Phytophthora infestans on potatoes. In particular, they show notable activity against Plasmopara viticola and Phytophthora infestans as systemic treatments.
The invention therefore provides a method of combating fungi which comprises applying to a plant, to a seed of a plant or to the locus of the plant or seed a fungicidally effective amount of a compound as hereinbefore defined, or a composition containing the same .
The compounds may be used directly for agricultural purposes but are more conveniently formulated into compositions using a carrier or diluent. The invention thus provides fungicidal compositions comprising a compound as hereinbefore defined and an acceptable carrier or diluent therefor.
The compounds can be applied in a number of ways.
AP000123
BAD ORfGJNAL
For example, they can be applied, formulated or unformulated, directly to the foliage of a plant, to seeds or to other medium in which plants are growing or are to be planted, or they can be sprayed on, dusted on or applied as a cream or paste formulation, or they can be applied as a vapour or as slow release granules.
Application can be to any part of the plant including the foliage, stems, branches or roots, or to soil surrounding the roots, or to the seed before it is planted, or to the soil generally, to paddy water or to hydroponic culture systems. The invention compounds may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods.
The term plant as used herein includes seedlings, bushes and trees. Furthermore, the fungicidal method of the invention includes preventative, protectant, prophylactic and eradicant treatments.
The compounds are preferably used for agricultural and horticultural purposes in the form of a composition. The type of composition used in any instance will depend upon the particular purpose envisaged.
The compositions may be in the form of dustable powders or granules comprising the active ingredient (invention compound) and a solid diluent or carrier, for example, fillers such as kaolin, bentonite, kieselguhr, dolomite, calcium carbonate, talc, powdered magnesia, fuller's earth, gypsum, diatomaceous earth and china clay. Such granules can be preformed granules suitable for application to the soil without further treatment. These granules can be made either by impregnating pellets of filler with the active ingredient or by pelleting a mixture of the active ingredient and powdered filler. Compositions for dressing seed may include an agent (for example, a mineral oil) for assisting the adhesion of the composition to the seed; alternatively the active
ingredient can be formulated for seed dressing purposes using an organic solvent (for example, N-methylpyrrolidone, propylene glycol or dimethylformamide). The compositions may also be in the form of wettable powders or water dispersible granules comprising wetting or dispersing agents to facilitate the dispersion in liquids. The powders and granules may also contain fillers and suspending agents.
Emulsifiable concentrates or emulsions may be 10 prepared by dissolving the active ingredient in an organic solvent optionally containing a wetting or emulsifying agent and then adding the mixture to water which may also contain a wetting or emulsifying agent. Suitable organic solvents are aromatic solvents such as alkylbenzenes and alkylnaphthalenes, ketones such as cyclohexanone and methylcyclohexanone, chlorinated hydrocarbons such as chlorobenzene and trichlorethane, and alcohols such as benzyl alcohol, furfuryl alcohol, butanol and glycol ethers.
Suspension concentrates of largely insoluble solids may be prepared by ball or bead milling with a dispersing agent with a suspending agent included to stop the solid settling.
Compositions to be used as sprays may be in the form of aerosols wherein the formulation is held in a container under pressure of a propellant, e.g. fluorotrichloromethane or dichlorodifluoromethane .
The invention compounds can be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating in enclosed spaces a smoke containing the compounds.
Alternatively, the compounds may be used in micro-encapsulated form. They may also be formulated in biodegradable polymeric formulations to obtain a slow, controlled release of the active substance.
By including suitable additives, for example
AP 0 0 o 1 2 3
ORIGINAL £ additives for improving the distribution, adhesive power and resistance to rain on treated surfaces, the different compositions can be better adapted for various utilities. Other additives may be included to improve the biological efficacy of the various formulations. Such additives can be surface active materials to improve the wetting and retention on surfaces treated with the formulation and also the uptake and mobility of the active material, or additionally can include oil based spray additives. For example, certain mineral oil and natural plant oil (such as soya bean and rape seed oil) additives have been found to enhance several-fold foliar protectant activity against, for example, Plasmopara viticola.
The invention compounds can be used as mixtures with fertilisers (e.g. nitrogen-, potassium- or phosphorus-containing fertilisers). Compositions comprising only granules of fertiliser incorporating, for example coated with, the compound are preferred. Such granules suitably contain up to 25% by weight of the compound. The invention therefore also provides a fertiliser composition comprising a fertiliser and the compound of general formula (I) or a salt.or metal complex thereof.
Wettable powders, emulsifiable concentrates and suspension concentrates will normally contain surfactants, e.g. a wetting agent, dispersing agent, emulsifying agent or suspending agent. These agents can be cationic, anionic or non-ionic agents.
Suitable cationic agents are quaternary ammonium compounds, for example, cetyltrimethylammonium bromide. Suitable anionic agents are soaps, salts of aliphatic monoesters of sulphuric acid (for example, sodium lauryl sulphate), and salts of sulphonated aromatic compounds (for example, sodium dodecylbenzenesulphonate, sodium, calcium or ammonium lignosulphonate, butylnaphthalene sulphonate, and a mixture of sodium diisopropyl- and triisopropyl- naphthalene sulphonates).
Suitable non-ionic agents are the condensation products of ethylene oxide with fatty alcohols such as oleyl or cetyl alcohol, or with alkyl phenols such as octyl- or nonylphenol and octylcresol. Other non-ionic agents are the partial esters derived from long chain fatty acids and hexitol anhydrides, the condensation products of the said partial esters with ethylene oxide, and the lecithins. Suitable suspending agents are hydrophilic colloids (for example, polyvinylpyrrolidone and sodium carboxymethylcellulose), and swelling clays such as bentonite or attapulgite.
Compositions for use as aqueous dispersions or emulsions are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being diluted with water before use. These concentrates should preferably be able to withstand storage for prolonged periods and after such storage be capable of dilution with water in order to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. The concentrates may conveniently contain pp to 95%, suitably 10-85%, for example 25-60%, by weight of the active ingredient. After dilution to form aqueous preparations, such preparations may contain varying amounts of the active ingredient depending upon the intended purpose, but an aqueous preparation containing 0.0005% or 0.01% to 10% by weight of active ingredient may be used.
The compositions of this invention may contain other compounds having biological activity, e.g. compounds having similar or complementary fungicidal activity or which possess plant growth regulating, herbicidal or insecticidal activity.
A fungicidal compound which may be present in the composition of the invention may be one which is capable of combating ear diseases of cereals (e.g. wheat) suchas sad ORIGINAL di
APO 00 1 2 3
Septoria, Gibberella and Helminthosporium spp., seed and soil-borne diseases and downy and powdery mildews on grapes and powdery mildew and scab on apple, etc. By including another fungicide, the composition can have a broader spectrum of activity than the compound of general formula (I) alone. Further the other fungicide can have a synergistic effect on the fungicidal activity of the compound of general formula (I). Examples of fungicidal compounds which may be included in the composition of the invention are tetraconazole, (RS)-l-aminopropylphosphonic acid, (RS)-4-(4-chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-l-ylmethyl)butyronitrile, (RS)-4-chloro-N-(cyanot ethoxy)methyl) benzamide, (Z)-N-but-2-enyloxymethyl-2-chloro-2', 6'-diethylacetanilide, 1-(2-cyano-2-methoxyiminoacetyl)-3-ethyl urea,
1-(( 2RS,4RS;2RS,4RS)-4-bromo-2-(2,4-dichlorophenyl) tetrahydrofurfuryl J-1H-1,2,4-triazole, 3-(2,4-dichlorophenyl )-2-(1H-1,2,4-triazol-l-yl)quinazolin-4(3H)-one, 3-chloro-4-( 4-methyl-2-(1H-1,2,4-triazol-l-methyl)-1,3-dioxolan-2-yl)phenyl-4-chlorophenyl ether, 4-brorao-2-cyano-N,N-dimethyl-6-trifluoromethylbenz imidazole-1-sulphonamide,
4-chlorobenzyl N-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-l-yl)thioacetamidate, 5-ethyl-5,8-dihydro-8-oxo( 1,3)-dioxolot 4,5-<j)quinoline-7-carboxylic acid, a-[N-(3-chloro-2,6-xylyl)-2-methoxyacetamidoΙ-γ-butyrolactone, anilazine, BAS 454, benalaxyl, benomyl, biloxazol, binapacryl, bitertanol, blasticidin S, bupirimate, buthiobate, captafol, captan, carbendazim, carboxin, chlorbenzthiazone, chloroneb, chlorothalonil, chlorozolinate, copper containing compounds such as copper oxychloride, copper sulphate and Bordeaux mixture, cycloheximide, cymoxanil, cyproconazole, cyprofurara, di-2-pyridyl disulphide 1,1’-dioxide, dichlofluanid, dichlone, diclobutrazol, diclomezine, dicloran, dimethamorph, dimethirimol, diniconazole, dinocap, ditalimfos, dithianon, dodemorph, dodine, edifenphos,
etaconazole, ethirimol, ethyl (Z)-N-benzyl-N-((methyl (methylthioethylideneamino-oxycarbony1) ami no]thio)-0-alaninate, etridiazole, fenapanil, fenarimol, fenfuram, fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, flutolanil, flutriafol, fluzilazole, folpet, fosetyl-aluminium, fuberidazole, furalaxyl, furconazole-cis, guazatine, hexaconazole, hydroxyisoxazole, imazalil, iprobenfos, iprodione, isoprothiolane, kasugamycin, mancozeb, maneb, roepronil, metalaxyl, methfuroxam, metsulfovax, myclobutani1,
N—(4-methyl-6-prop-l-ynylpyrimidin-2-yl)-aniline, neoasozin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, nuarimol, ofurace, organomercury compounds, oxadixyl, oxycarboxin, penconazole, pencycuron, pefurazoate, phenazin oxide, phthalide, polyoxin D, polyram, probenazole, prochloraz, procymidone, propamocarb, propiconazole, propineb, prothiocarb, pyrazophos, pyrifenox, pyroquilon, pyroxyfur, pyrrolnitrin, quinomethionate, quintozene, streptomycin, sulphur, techlofthalam, tecnazene, tebuconazole, thiabendazole, thiophanate-methyl, thiram, tolclofos-methyl, triacetate salt of 1,1'-iminodi( octamethylene)diguanidine, triadimefon, triadimenol, triazbutyl, tricyclazole, tridemorph, triforine, validamycin A, vinclozolin and zineb. The compounds of general formula (I) can be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases.
Suitable insecticides which may be incorporated in the composition of the invention include buprofezin, carbaryl, carbofuran, carbosulfan, chlorpyrifos, cycloprothrin, demeton-s-methyl, diazinon, dimethoate, ethofenprox, fenitrothion, fenobucarb, fenthion, formothion, isoprocarb, isoxathion, monocrotophas, phenthoate, pirimicarb, propaphos and XMC.
Plant growth regulating compounds are compounds which
AP 0 0 0 1 2 3 ^aboriginal control weeds or seedhead, formation, or selectively control the growth of less desirable plants (e.g. grasses ).
Examples of suitable plant growth regulating compounds for use with the invention compounds are
3,6-dichloropicolinic acid, 1-(4-chlorophenyl)-4,6-dimethyl-2-oxo-l,2-dihydropyridine-3-carboxylic acid, methyl-3,6-dichloroanisate, abscisic acid, asulam, benzoylprop-ethyl, carbetamide, daminozide, difenzoquat, dikegulac, ethephon, fenpentezol, fluoridamid, glyphosate, glyphosine, hydroxybenzonitriles (e.g. bromoxynil), inabenfide, isopyrimol, long chain fatty alcohols and acids, maleic hydrazide, mefluidide, morphactins (e.g. chlorfluoroecol), paclobutrazol, phenoxyacetic acids (e.g.
2,4-D or MCPA), substituted benzoic acid (e.g. triiodobenzoic acid), substituted quaternary ammonium and phosphonium compounds (e.g. chloromequat, chlorphonium or mepiquatchloride), tecnazene, the auxins (e.g. indoleacetic acid, indolebutyric acid, naphthylacetic acid or naphthoxyacetic acid), the cytokinins (e.g. benzimidazole, benzyladenine, benzylaminopurine, diphenylurea or kinetin), the gibberellins (e.g. GA^, GA^ or GA?) and triapenthenol.
The following Examples illustrate the invention.
Throughout the Examples the term 'ether' refers to diethyl ether, magnesium sulphate was used to dry solutions and solutions were concentrated under reduced pressure. Reactions involving water-sensitive intermediates were performed under an atmosphere of nitrogen and solvents were dried before use, where appropriate. Where shown, infrared and NMR data are selective; no attempt is made to list every absorption in all cases. 7 NMR spectra were recorded using CDCl^ / solutions unless otherwise stated. The following
abbreviations are used throughout:
THF - | tetrahydrofuran | s |
DMF - | N,N-dimethyl formamide | d |
NMR - | nuclear magnetic resonance | t |
IR | infrared | m |
m.p. » | melting point | b |
singlet doublet triplet multiplet broad
EXAMPLE 1
This example illustrates the preparation of 2-chloro4-(2',2’-dimethylpropionamido)-N,N-dimethylbenzamide (compound No. 5 of Table 1).
Step 1
The preparation of 2-chloro-4-nitro-N,N-dimethylbenzamide.
2-chloro-4-nitrobenzoic acid (25.Og) was refluxed in thionyl chloride (80g) containing a few drops of DMF, for 3 hours. The excess .thionyl chloride was then evaporated and the crude 2-chloro-4-nitrobenzoyl chloride added dropwise to 40% aqueous dimethylamine (70ml) at 0-5’C.
After strirring for 0.5 hour the yellow crystalline precipitate was filtered, washed with water and dried to give 2-chloro-4-nitro-N,N-dimethylbenzamide, as a pale yellow crystalline solid (24.97g), m.p. 116-117*C.
NMR (CDC13, 90MHz) δ: 2.90(3H,s), 3.20(3H,s), 7.49(lH,d), 8.12(lH,d), 8.27(lH,m). IR (nujol mull): 3100, 1640 cm-1.
AP 0 0 0 1 2 3
BAD ORIGINAL
Step 2
The preparation of 4-amino-2-chloro-N,N-dimethylbenzamide.
Iron powder (pre-reduced with hydrogen, 10.Og) was suspended in ethanol (80ml) and water (10ml) and concentrated hydrochloric acid (4ml) were added with vigorous stirring. 2-Chloro-4-nitro-N,N-dimethylbenzamide (7.50g) was added in small portions over 15 minutes and the mixture then heated to 50-60°C and stirred for 5 hours. The mixture was filtered through Celite and the ethanol evaporated. Water (200ml) and concentrated hydrochloric acid (20ml) were added and the reaction washed with ethyl acetate and then basified to pH8 with sodium bicarbonate and extracted with methylene chloride. The organic extract was dried and evaporated to give 4-amino-2-chloro-N,N-dimethylbenzamide as a grey crystalline solid (5.21g) which was recrystallised from chloroform/ethyl acetate to give off-white crystals (3.46g, m.p. 170-173°C).
NMR (CDC13, 270MHz) is 2.89{3H,s), 3.11(3H,s),
3.87(2H,bs), 6.57(lH,dd), 6.67(lH,s), 7.07(lH,d).
IR (liquid film): 3440-3340, 1640cm
Step 3
The preparation of 2-chloro-4-(2',2'-dimethylprop ionami do )-N,N-dimethylbenzamide.
4-Amino-2-chloro-N,N-dimethylbenzamide (l.Og) and triethylamine (1.21g) were dissolved in metnylene chloride (20ml) and the solution was cooled to 0-5eC.
2,2-Dimethylpropionyl chloride (1.21g) was added dropwise keeping the temperature below 10°C and the resulting orange solution stirred at 0-10°C for 0.5 hour. The organic solution was then washed with aqueous sodium
BAD ORIGINAL Q bicarbonate and then water, dried and evaporated to give an orange solid. This was recrystallised from 3:1 ethyl acetate: chloroform to give 2-chloro-(2',2'dimethylpropionamido)-N,N-dimethylbenzamide as an 5 off-white crystalline solid (1.027g), ra.p. 202-203°C.
NMR (CDC13, 270 MHz) & 1.32(9H,s), 2.86(3H,s), 3.13(3H,s), 7.16(lH,d), 7.34(lH,d), 7.68(lH,s), 7.72(lH,bs). IR (nujol mull): 3340, 1690, 1630 cm-1.
EXAMPLE 2
This example illustrates the preparation of 2-chloro-4-(2'-methylpropionamido)-N,N-diethylbenzamide (compound
No. 1 of Table I).
Step 1
The preparation of 2-chloro-4-(2'-methyl20 propionamido)benzoic acid.
4-Amino-2-chlorobenzoic acid was stirred in water (60ml) and 1,2-dimethoxyethane (25ml) with sodium bicarbonate (5.04g) and the brown suspension cooled to 0-5eC. 2-Methylpropionyl chloride (4.26g) was added dropwise over 10 minutes with vigorous stirring, and the mixture was then stirred at 0-10eC for 2 hours. The mixture was poured into 2M hydrochloric acid and the pale brown precipitate washed with water and filtered and dried to give 2-chloro-4-(2'-methylpropionamido)benzoic acid as a pale brown crystalline solid (6.30g), m.p. 206-209°C.
NMR (dg-DMSO, 270 MHz) 5: 1.05(6H,d), 2.53(lH, septet), 7.51(lH,dd), 7.78(lH,d), 7.86(lH,s), 10.19(lH,s), 14-12 (1H, very bs). IR (nujol mull): 3320, 1705, 1670 cm^.
AP 0 0 0 1 2 3
BAD ORIGINAL
Step 2
The preparation of 2-chloro-4-(2'-methylpropionamido )-benzoyl chloride.
Oxalyl chloride (0.63g) in dry THF (5ml) was added dropwise over 5 minutes to a solution of 2-chloro-4-(2'-methylpropionamido)benzoic acid (l.Og) in dry THF (5ml) at room temperature. After completion of the addition, dry DMF (1 drop) was added causing vigorous effervescence and a slight temperature rise. After stirring for 4 hours and addition of a further drop of DMF, the THF was evaporated to yield 2-chloro-4-(2'-methylpropionamido)benzoyl chloride as a viscous brown gum which was used without further purification. IR (liquid film): 3320, 3260, 3160, 3070, 1780, 1710, 1680, cm’l.
Step 3
The Preparation of 2-chloro-4-(2'-methylpropionamido )-Ν,Ν-diethylbenzamide.
The crude 2-chl<\ro-4-(2'-methylpropionamido)benzoyl chloride from the preceding reaction in dry THF (10ml) was added dropwise with stirring over 10-15 minutes to a solution of diethylamine (1.46g) in dry THF (10ml), at 0-5eC. After stirring at 0-10°C the reaction mixture was stood overnight at room temperature, poured into cold water and extracted with ethyl acetate. This extract was dried and evaporated to give a viscous gum which crystallised slowly and was then recrystallised from ethyl acetate to give 2-chloro-4-{2'-methylpropionamido)-N,N-diethylbenzamide as white crystals (0.507g).
BAD ORIGINAL
NMR (CDC13, 270 MHz) δ: 1.04(3H,t), 1.21(6H,d), 1.26(3H,t), 2.58(1H,septet), 3.15(2H,q), 3.39(lH,bm), 3.74(lH,bm), 7.04(lH,d), 7.30(lH,dd), 7.51(lH,s), 8.58(lH,bs). IR (nujol mull): 3300, 3250, 3165, 1685 cm’l.
EXAMPLE 3
This example illustrates the preparation of 10 1-(3'-chloro-4'-(Ν,Ν-dimethy1carbamoyl)phenyl] — 3,3-dimethylazetidin-2-one (compound No. 11 of Table I).
Step 1
The preparation of 2-chloro-4-(3'-chloro-2',2'-dimethylpropionamido)-N,N-dimethylbenzamide .
3-Chloro-2,2-dimethylpropionyl chloride (1.86g) was added dropwise over 5 minutes to 4-amino-2-chloro-N,Ndimethylbenzamide (2.00g) suspended in dry methylene chloride (40ml) and dry triethylamine (1.21g) with stirring, keeping the temperature below 10’C. After stirring for 1 hour atnd warming to room temperature, methylene chloride (40ml) was added and the solution washed with 2M hydrochloric acid, saturated aqueous sodium bicarbonate and then saturated brine. The solution was then dried and evaporated to yield a sticky yellow solid which was recrystallised from ethyl acetate/chloroform to give 2-chloro-4-(3'-chloro-2',2-dimethylpropionamido) -N,N-dimethylbenzamide, as a white crystalline solid (2.349g) m.p. 179-181°C.
NMR (CDC13, 3.14(3H,s), 7.50(lH,s), 1620 cm-1.
270 MHz) δ: 3.73(2H,s), 8.48(lH,bs)
1.42(6H,s), 7.06(lH,d),
IR (nujol
2.86(3H,s), 7.26(lH,dd), mull): 3310, 1670,
AP 0 0 0 1 2 3
BAD ORIGINAL
Step 2
1-( 3'-chloro-4'-(N,N-dimethylcarbamoyl)phenyl)-3,3-dimethylazetidin-2-one.
A solution of sodium hydroxide (4.00g) and tetrabutylammonium bromide (0.10g) in water (10ml) was added to a suspension of 2-chloro-4-(3'-chloro-2'2'dimethylpropionamido)-N,N-dimethylbenzamide (l.OOg) in methylene chloride (10ml) and the two-phase system stirred at room temperature for 1 hour. Water (10ml) and methylene chloride (10ml) were then added and the whole methylene chloride layer washed with brine, dried and evaporated to give a pale yellow solid. This was recrystallised from ethyl acetate/hexane to give
1- (3'-chloro-4'-(N,N-dimethylearbamoyl) phenyl]-3,3-dimethylazetidin-2-one as a white crystalline solid (0.516g), m.p. 122-123’C.
NMR (CDC13, 270 MHz ) δ: 1.42(6H,s), 2.87(3H,s),
3.13(3H,s), 3.46(2H,s), 7.27(2H,t), 7.39(lH,s). IR (nujol mull): 3600-3100, 1740, 1625 cm1.
•
EXAMPLE 4
This example illustrate the preparation of
2- methoxy-4-(2',2'-dimethylpropionamido)-N,N-dimethylbenzamide (compound No. 1 of Table II).
Step 1
The preparation of methyl 2-methoxy-4-(2',2'-dimethylpropionamido )-benzoate .
Methyl 2-methoxy-4-aminobenzoate (3.03g) and triethylamine (1.83g) were stirred at 0-5°C in dry methylene chloride (50ml). To this solution was added dropwise 2,2-dimethylpropionyl chloride (6.07g) in dry
BAD a methylene chloride (10ml). After completion of the addition the mixture was stirred overnight at room temperature, and poured into dilute hydrochloric acid.
The organic layer was separated and washed with dilute aqueous sodium bicarbonate and then water, and dried and evaporated to give an oil which crystallised. After heating with hexane the product was filtered as a white solid (3.61g).
NMR (CDC13, 270 MHz) δ: 1.33(9H,s), 3.86(3H,S),
3.94(3H,s), 6.79(lH,dd), 7.45(lH,s), 7.79(lH,d),
7.82(lH,d).
Step 2
The preparation of 2-methoxy-4-(2'^'-dime thylpropionamido) -benzoic acid.
Methyl 2-methoxy-4-(2',2'-dimethylpropionamido)-benzoate (2.98g) was stirred at room temperature with potassium hydroxide (0.725g) in methanol (50ml) for 3 hours, and then refluxed for 8 hours, and then poured into water. The mixture was extracted with ethyl acetate, and then acidified with hydrochloric acid. This acidified fraction was extracted with ethyl acetate and the extract was dried and evaporated to give the product as a solid (1.24g).
NMR (CDC13, 270 MHz) S: 1.36(9H,s), 4.10(3H,s), 6.78(lH,dd), 8.10(2H,m), 10.61(lH,s).
Step 3
The preparation of 2-methoxy-4-(2·,2'-dimethylpropionamido )-benzoyl chloride.
To 2-methoxy-4-(2', 2'-dimethylpropionamido)- benzoic acid (1.04g) stirred in dry ether (25ml) was added
BAD ORIGINAL
AP000123 dropwise oxalyl chloride (1.4g) in dry ether (5ml) at room temperature, with a trace of DMF. After completion of the addition the mixture was stirred for 4 hours, and stood overnight. Some methylene chloride was added and the mixture evaporated to give the acid chloride as a yellow solid (1.12g).
Step 4
Preparation of 2-methoxy-4-(2·,2'-dime thy lpropionamido )-N,N-dimethylbenzamide.
2-Methoxy-4-(2',2'-dimethylpropionamido)-benzoyl chloride (1.12g) in dry THF (10ml) was added dropwise over 30 minutes to a stirred solution of dimethylamine (1.17g of a 40% aqueous solution) in THF (15ml) at 0-5eC. After completion of the addition the solution was stirred for 1 hour at 5-10°C, stood at room temperature overnight, poured into water, and extracted with ethyl acetate. The extract was dried and evaporated to give the product as a yellow solid (0.889g), m.p. 143-144°C.
NMR (CDClj, 270 MHz) .6: 1.33(9H,s), 2.85(3H,s),
3.11(3H,s), 6.75(lH,dd), 7.15(lH,d), 7.48(lH,s),
7.65(lH,d).
EXAMPLE 5
This example illustrates the preparation of
2-tri fluoromethyl-4-(2',2'-dimethylpropionamido)-N,N-dimethylbenzamide (compound No. 7 of Table II).
Step 1
The preparation of 2-trifluoromethyl-4-(2·,2'-dimethylpropionamido )-benzonitrile.
2,2-Dimethylpropionyl chloride {3.79g) in dry bad owalNM-
methylene chloride (5ml) was added slowly dropwise to
4-cyano-3-trifluoromethylaniline (3.02g) and triethylamine (3.34g) in dry methylene chloride (50ml) at 0-5’C. After completion of the addition the mixture was stirred at room temperature for 1.5 hours, and then poured into dilute hydrochloric acid. The organic fraction was washed with dilute aqueous sodium bicarbonate, and water, and then dried and evaporated to give an orange solid. This was recrystallised to give the product as a yellow powder.
NMR (CDClj, 270 MHz) S: 1.35(9H,s), 7.61(lH,s),
7.78(lH,d), 7.93(lH,dd), 8.03(lH,d).
Step 2
The preparation of 2-trifluoromethyl-4-(2·,2'-dime thy lpropionamido )-benzamide.
Hydrogen peroxide (85ml of a 30% aqueous solution) and sodium hydroxide (8.5 ml of a 20% aqueous solution were added to 2-trifluoromethyl-4-(2',2'-dimethyl20 propionamido)-benzonitrile (5.03g) in ethanol (140ml), and the reaction mixture was stirred for 5 days at room temperature, during xhich time further ethanol (100ml) was added. The reaction was then warmed at 50eC for 24 hours, and was poured into water and extracted with ethyl acetate. The organic layer was then dried and evaporated to yield an oil which was flash chromatographed on silica to give the desired product (2.89g).
NMR (CDCl3, 270 MHz) δ: 1.35(9H,s), 5.80{2H,bs),
7.54(lH,s), 7.59(lH,d), 7.82(lH,dd), 7.90(lH,d).
Step 3
The preparation of 2-trifluoromethyl-4-(2',2'-di35 methylpropionamido)-benzoic acid.
Concentrated hydrochloric acid (15ral) was added to 'BAD ORIGINAL
AP 0 0 0 1 2 3
2-1 ri fluoromethyl-4-(2 ' , 2 '-dimethylpropionamido)-benzamide (2.35g) in glacial acetic acid (35ml) at -5-0°C. A solution of sodium nitrite (1.807g) in water (10ml) was then added dropwise to the mixture and then was stirred for 1 hour at -5-0°C. After warming to room temperature the reaction was stirred for 24 hours, and was poured into water and extracted with methylene chloride. The methylene chloride fraction was washed with dilute aqueous sodium hydroxide, and the alkaline layer was acidified with dilute hydrochloric acid. The acidified layer was extracted with methylene chloride, and the organic layer was dried and evaporated to give the desired acid as a white solid, (0.926g).
NMR (CDC13, 270 MHz) δ: 1.20(9H,s), 7.79(lH,d),
8.02(lH,dd), 8.19(lH,d), 9.69(lH,s).
Step 4
The preparation of 2-trifluoromethyl-4-(2'^'-dime thy lpropionamido )-N,N-dimethylbenzamide.
Oxalyl chloride (0.64g) in dry ether (7ml) was added «
dropwise with stirring to 2-trifluoromethyl-4-(2', 2'-dime thylpropionamido)-benzoic acid (0.926g) in dry ether (40ml) at room temperature. A drop of DMF was added during the addition. After two hours further oxalyl chloride (0.257g) was added and the reaction stirred for a further two hours. The organic solution was then decanted from a precipitate, and evaporated to yield
2-tri fluoromethyl-4-(2',2'-dimethylpropionamido)-benzoyl chloride as a liquid (1.136g), which was used without purification.
The acid chloride (1.136g) in dry THF (10ml) was added dropwise with stirring over 30 minutes to dimethylamine (l.Og of a 40% aqueous solution) in THF (15ml) at 0-5’C. The reaction was allowed to warm to room
3ADORIG'NAL J temperature and stood for 2½ days, and then poured into water, and extracted with ethyl acetate. The ethyl acetate fraction was washed with aqueous sodium bicarbonate, followed by dilute hydrochloric acid and then water. After being dried, the organic solution was evaporated to give 2-trifluoromethyl-4-{2',2'-dimethylpropionamido)-N,N-dimethylbenzamide, as a white solid (0.576g), m.p. 198.7-199.6eC.
NMR (CDC13, 270 MHz) δ: 1.35(9H,s), 2.80(3H,s),
3.12(3H,s), 7.22(lH,d), 7.72(lH,s), 7.75(lH,dd),
7.85(lH,d).
EXAMPLE 6
This example illustrates the preparation of
2,3,5,6-tetrafluoro-4-(2', 2 '-dimethylpropionamido)-N,N-dimethylbenzamide (compound No. 6 of Table II).
Step 1
The preparation pf methyl 2,3, 5,6-tetrafluoro-4-( 2',2'-dimethylpropionamido)-benzoate.
Methyl 2,3,5,6-tetrafluoro-4-aminobenzoate (1.887g) in dry THF (5ml) was added to a suspension of sodium hydride (0.764g of a 55% dispersion in oil) in dry THF (70ml) stirred at room temperature. After completion of the effervescence, 2,2-dimethylpropionyl chloride (1.127g) in dry THF (5ml), was slowly added dropwise with cooling.
The reaction was stirred at 10eC for 1 hour and then poured into water, and extracted with ethyl acetate. The ethyl acetate fraction was washed with dilute hydrochloric acid and dilute aqueous sodium bicarbonate, dried and evaporated to give the product as a white solid, (2.44g).
AP000123
BAD ORIGINAL
NMR (CDCl3, 270 MHz) δ: 1.36(9H,s), 3.97(3H,s),
7.05(lH,s).
Step 2
The preparation of 2,3,5,6-tetrafluoro-4-(2',2'-dime thy lpropionamido )-benzoic acid.
Methyl 2,3,5,6-tetrafluoro-4-(2',2'-dimethylpropionamido)-benzoate (1.83g), was stirred overnight with potassium hydroxide (0.669g dissolved in the minimum quantity of water) in dimethoxyethane (DME) (60ml), and was then poured into water. The mixture was extracted with ethyl acetate. The aqueous phase was acidified and extracted with ethyl acetate, and this ethyl acetate extract was dried and evaporated to give the acid as a pale yellow solid (1.538g).
NMR (CDC13, 270 MHz) 6: 1.19(9H,s), 9.65(lH,s).
Step 3
The preparation ,of 2,3,5,6-tetrafluoro-4-(2',2'-dimethylpropionamido)-N,N-dimethylbenzamide .
Oxalyl chloride (l.OOg, in dry ether (5ml) was added dropwise, with stirring to 2,3,5,6-tetrafluoro-4-( 2 ' , 2 '-dimethylpropionamido)-benzoic acid (1.47g) in dry ether (35ml), to which a drop of DMF had been added. After stirring for 2 hours at room temperature, the ether solution was decanted from insoluble material and evaporated to give the acid chloride as an oil (1.494g), which was used without purification.
The acid chloride (1.494g) in dry THF (10ml) was slowly added dropwise over 30 minutes to dimethylamine (1.363g) in THF (10ml) at 0-5°C. After stirring at 10°C for 1.5 hours the reaction mixture was poured into water, and extracted with ethyl acetate. The extract was washed bad originm- S with aqueous sodium bicarbonate, and then dilute hydrochloric acid, dried and evaporated to give the product as a white powdery solid (1.279g), m.p. 187-189°C.
NMR (CDC13, 270 MHz) δ: 1.35(9H,s), 2.97(3H,s),
3.17(3H,s), 7.82(lH,s).
EXAMPLE 7
This example illustrates the preparation of
2-chior0-4-(2'-fluoro-2’-methylpropionamido)-N,N-dimethylbenzamide (compound No 38 of Table I).
Silver tetrafluoroborate (0.60g) in acetonitrile (5ml) was added to 2-chloro-4-(2'-bromo-2’-methylpropionamido )-Ν,Ν-dimethylbenzamide (1.065g) in acetonitrile (150ml) and the reaction mixture stirred under nitrogen, protected from light, for 6.5 hours.
Ethyl acetate was added and the solution was filtered through celite and evaporated. The residue was dissolved inn ethyl acetate again and filtered through celite and evaporated. The residue was purified by HPLC (eluent methylene chloride: acetonitrile, 2:1) to give the product as a white crystalline solid (0.319g), m.p. 125-128°C.
NMR (CDC13, 270 MHz) δ: 1.67(6H,d), 2.87(3H,s),
3.13(3H,s), 7.27(lH,d), 7.45(lH,dd), 7.80(lH,d),
8.18(lH,d).
AP000123
EXAMPLE 8
This Example illustrates the preparation of 2-chloro-4-(3'-fluoro-2',2'-dimethylpropionamido)-N,N-dimethylbenzamide (compound 42 of Table I).
BAD original
Step 1
The preparation of 2-chloro-4-(3'-acetoxy-2',2'-dime thylpropionamido)-N,N-dime thylbenzamide.
3-Acetoxy-2,2-dimethylpropionyl chloride (7.84g) was added to a stirred solution of 4-amino-2-chloro-N,N-dimethylbenzamide (5.88g) and triethylamine (5.99g) in dry methylene chloride (15ml) at 0-5°C. After stirring for 30 minutes the reaction mixture was washed with dilute aqueous sodium bicarbonate, dilute sodium hydroxide, dilute hydrochloric acid, and then water. The organic layer was dried and evaporated to give an orange solid, which was triturated with hexane to give the desired product (9.08g), m.p. 117-120°C.
NMR (CDCl3, 270 MHz) δ: 1.33(6H,s), 2.10(3H,s),
2.86(3H,s), 3.13(3H,s), 4.20(2H,s), 7.11(lH,d),
7.29(lH,dd), 7.60(lH,d), 8.21(lH,s).
IR (nujol mull) : 1740, 1680, 1630 cm
Step 2
The preparation of 2-chloro-4-(3'-hydroxy-2',2'-dimethylpropionamido)-N,N-dimethylbenzamide.
2-Chlor0-4-(3'-acetoxy-2',2'-dimethylpropionamido) -N,N-dimethylbenzamide (8.14g) was stirred in methanol (100ml) containing potassium hydroxide (2.68g) at room temperature for 2 hours. The methanol was evaporated and the residue extracted with ethyl acetate. The ethyl acetate was dried and evaporated to give the desired product, (5.03g), m.p. 137-139°C.
NMR (CDC13, 270 MHz) 6: 1.17(6H,s), 2.89(3H,s; 3.15(3H,s), 3.56(3H,d), 5.12(lH,t), 7.17(lH,d; 7.30(lH,dd), 7.69(lH,d), 9.49(lH,s).
bad
ORIGINAL £
Step 3
The preparation of 2-chloro-4-(3'-fluoro-2',2'5 -dimethylpropionamido)-N,N-dimethylbenzamide .
2-Chloro-4-(3'-hydroxy-2',2'-dimethylpropionamido)-N,N-dimethylbenzamide (1.008g) in dry methylene chloride (40ml), was added dropwise over 3 hours to a solution of diethylaminosulphur trifluoride (DAST) (0.68g) in dry methylene chloride (20ml) at -70°C. After S hour, a further amount of DAST (0.128g) was added and the solution stirred at -70°C for % hour, and then warmed to room temperature overnight. The reaction mixture was washed with water, dried and evaporated to give a foam. This was triturated with hexane to give the desired product as a pale orange powder (0.269g), m.p. 152-4’C.
NMR (CDC13, 270 MHz) δ: 1.32(6H,d), 2.86(3H,s),
3.12(3H,s), 4.48(2H,d), 7.23(lH,d), 7.39(lH,dd),
7.75(lH,d), 7.77(1H,S).
EXAMPLE 9
This Example illustrates the preparation of
2-chloro-4-(3'-methoxy-2',2'-dimethylpropionamido )-N,Nj-dimethylbenzamide, (compound 40 of Table I).
Barium oxide (2.608g) and barium hydroxide (0.540g) were added to a solution of 2-chloro-4-(3'-hydroxy-2',2'-dimethylpropionamido)-N,N-dimethylbenzamide (O.SlOg) in
DMF (20ml) at 0eC. After stirring at 0°C for 15 minutes methyl iodide (3.64g) was added dropwise. After allowing to warm to room temperature over 2 hours methylene chloride was added to the reaction and then the mixture was filtered through celite. The organic fraction was dried and evaporated to give a mobile liquid which was purified by HPLC (eluent: ethyl acetate) to give the
APO 00 12 3
BAD ORIGINAL desired product as a solid (O.lOlg), m.p. 101-103°C.
NMR (CDC13, 270 MHz) δ: 1.24(6H,S), 2.86(3H,s),
3.12(3H,s), 3.43(2H,s), 3.51(3H,s), 7.21(lH,d),
7.39(lH,dd), 7.75(lH,d), 9.05(lH,s).
EXAMPLE 10
This Example illustrates the preparation of 2-chloro-4-(2’,2'-dimethy1-thiopropionamido)-N,N-dimethy1-thiobenzamide and 2-chloro-4-(2',2'-dimethylpropionamido)-N,N-dimethyl-thiobenzamide (compounds 3 and 1 respectively, of Table III).
2-Chloro-4-( 2', 2'-dimethylpropionamido)-N,N-dimethylbenzamide (l.OOg) was suspended in dry toluene (10ml) and Lawesson's reagent (0.73g) was added in small portions over 5 minutes, at room temperature. The suspension was refluxed for 1 hour, giving a clear solution, and the toluene was then evaporated to give a viscous gum, which was chromatographed on silica gel (eluent : methylene chloride) to give the two products:
1. 2-chloro-4-(2',2'-dimethyl-thiopropionamido)-N,N-dimethyl-thiobenzamide (0.104g), m.p. 154-156eC.
NMR (CDC13, 270 MHz) S: 1.47(9H,s), 3.14(3H,s),
3.60(3H,s), 7.29(lH,d), 7.52(lH,dd), 7.82(1H,S),
8.85(lH,bs).
2. 2-chlor0-4-(2',2'-dimethylpropionamido)-N,N-dimethyl-thiobenzamide (0.475g), m.p. 164-167°C.
NMR (CDC13, 270 MHz) S: 1.31(9H,s), 3.11(3H,s),
3.58(3H,s), 7.25(lH,d), 7.33(lH,dd), 7.38(lH,bs),
7.74(lH,s).
θλ00Β>6^ jL
EXAMPLE 11
This Example illustrates the preparation of
2-chloro-4-(2',2'-dimethyl-thiopropionamido)-N,N-dimethylbenzamide (compound 2 of Table 3).
Step 1
The preparation of 3-chloro-4-N,N-dimethylcarbamoylphenyl isothiocyanate.
Thiophosgene (1.15g) was added dropwise over 3 minutes to sodium bicarbonate (1.68g) suspended and stirred in water at room temperature. 4-Amino-2-chloro-Ν,Ν-dimethylbenzamide (l.OOg) was then added portionwise over 20 minutes, keeping the temperature at 20-25’C.
After a further 15 minutes the brown suspension was extracted with methylene chloride, and the organic layer dried and evaporated to give the desired product as an orange-yellow solid (1.18g), which was used without further purification.
NMR (CDC13, 270 MHz) £; 2.86(3H,s), 3.13(3H,s),
7.17(lH,dd), 7.26(lH,s), 7.28(lH,d).
IR. (nujol mull) : 2140-2080(bs), 1630 cm/
Step 2
The preparation of 2-chloro-4-(2',2'-dimethyl-thiopropionamido )-N,N-dimethylbenzamide .
Tertiary-butyl lithium (3.2ml of a 1.7M solution in pentane) was added over 20 minutes to a stirred solution of 3-chloro-4-N,N-dimethylcarbamoylphenyl isothiocyanate (1.17g) in THF under nitrogen at -70’C. After stirring for 20 minutes at the same temperature water was carefully added followed by concentrated hydrochloric acid. The
BAD ORIGINAL 0.
mixture was extracted with methylene chloride, which was then dried and evaporated to give a sticky brown solid (1.23g). This was purified by HPLC (eluent : ethyl acetate) to give a yellow gum (0.099g). Trituration with ether/toluene gave the desired product as a yellow solid, m.p. 120°C (dec . ) .
NMR (CDC13, 270 MHz) i: 1.66(9H,s), 2.88(3H,s),
3.14(3H,s), 7.25(lH,d), 7.45(lH,dd), 7.64(lH,d),
8.82(lH,bs).
EXAMPLE 12
This Example illustrates the preparation of 2-chloro-4-(2',2'-dimethylpent-4'-ynamido)-N,N-dimethy1benzamide (compound 66 of Table I).
Step 1
The preparation of ethyl 2,2-dimethylpent-4-ynoate.
Lithium diisopropylamide (13.7ml of a 1.5M solution of the mono-THF complex in cyclohexane) was added dropwise over 20 minutes to a .stirred solution of ethyl isobutyrate (2.38g) in dry THE (10ml) under nitrogen keeping the temperature below -60°C. After 1 hour propargyl bromide (2.45g) in dry THE (5ml) was added dropwise, keeping the temperature below -60°C. The reaction was allowed to warm to room temperature over 2 hours and was then poured into water and extracted with ethyl acetate. The ethyl acetate fraction was dried and evaporated to give an orange-brown liquid, which was distilled (Kugelrohr, 115eC/60mm) to give the desired product (1.39g).
NMR (CDC13, 270 MHz) δ: 1.19(3H,t), 1.21{6H,s),
1.93(lH,t), 2.38(2H,d), 4.08(2H,q).
Step 2
The preparation of 2,2-dimethylpent-4-ynoic acid.
Ethyl 2,2-dimethylpent-4-ynoate (1.39g) was stirred 5 with potassium hydroxide (1.07g) in methanol (20ml) for 7½ hours at 40°C, and then stood overnight. The reaction was poured into water, and washed with ethyl acetate. The aqueous layer was acidified and extracted with ethyl acetate. This layer was then dried and evaporated to give the desired acid as a liquid (1.05g).
NMR (CDC13, 270 MHz) 5: 1.32(68,s), 2.04(lH,t),
2.47(2H,d).
IR (liquid film) : 3300, 3000-2500, 1720 cm1.
Step *
The preparation of 2-chloro-4-(2',2'-dimethyl-pent-420 -ynamido)-N,N-dimethylbenzamide.
2,2-Dimethylpent-4-ynoic acid was stirred in dry ether (15ml) at roomttemperature while oxalyl chloride (1.53g) in dry ether (5ml) was added dropwise with stirring. After completion of the addition the mixture was stirred for S hour.
The mixture was decanted and the ether evaporated to give the acid chloride (0.417g) as a pale liquid which was used without further purification.
To a stirred solution in methylene chloride of 30 4-amino-2-chloro-N,N-dimethylbenzamide (0.524g) and triethylamine (0.534g) was added 2,2-dimethylpent-4-ynoic carboxylic acid chloride (0.417g) at 0-5°C. After stirring for IS hours, the reaction mixture was washed with dilute hydrochloric acid, aqueous sodium bicarbonate and water. The methylene chloride solution was dried and evaporated to give a foam which crystallised to give the
AP 0 0 0 1 2 3
BAD ORIGINAL desired product as a pale 154-5°C.
NMR (CDC13, 270 MHz) 6: 1 2.52(2H,d), 2.87(3H,s), 3 7.33(lH,dd), 7.64(lH,d).
orange solid (0.606g), m.p
40(6H,s), 2.17(lH,t), 13(3H,s), 7.05(lH,d),
The following are examples of compositions suitable for agricultural and horticultural purposes which can be formulated from the compounds of the invention. Such compositions form another aspect of the invention. Percentages are by weight.
EXAMPLE 13
An emulsifiable concentrate is made up by mixing and stirring the ingredients until all are dissolved.
Compound No. 1 of Table I 10% Benzyl alcohol 30% Calcium dodecylbenzenesulphonate 5% Nonylphenolethoxylate (13 mole ethylene oxide) 10% Alkyl benzenes 45%
EXAMPLE 14
The active ingredient is dissolved in methylene dichloride and the resultant liquid sprayed on to the granules of attapulgite clay. The solvent is then allowed to evaporate to produce a granular composition.
Compound No. 2 of Table I Attapulgite granules
5%
95%
EXAMPLE 15
A composition suitable for use as a-seed dressing is prepared by grinding and mixing the three ingredients.
Compound No. 3 of Table I 50%
Mineral oil 2%
China clay 48%
EXAMPLE 16
A dustable powder is prepared by grinding and mixing the active ingredient with talc.
Compound No. 4 of Table I 5%
Talc 95%
EXAMPLE 17
A suspension concentrate is prepared by ball milling the ingredients to form an aqueous suspension of the ground mixture with water.
Compound No. 5 of Table I 40%
Sodium 1ignosulphonate 10%
Bentonite clay 1%
Water 49%
This formulation can be used as a spray by diluting into water or applied directly to seed.
EXAMPLE 18
A wettable powder formulation is made by mixing together and grinding the ingredients until all are thoroughly mixed.
BAD ORIGINAL
AP 0 0 0 1 2 3
Compound No. 6 of Table I | 25% |
Sodium lauryl sulphate | 2% |
Sodium 1ignosulphonate | 5% |
Silica | 25% |
China clay | 43% |
EXAMPLE 19
The compounds were tested against a variety of foliar fungal diseases of plants. The technique employed was as follows.
The plants were grown in John Innes Potting Compost (No. 1 or 2) in 4cm diameter minipots. The test compounds were formulated either by bead milling with aqueous Dispersol T or as a solution in acetone or acetone/ethanol which was diluted to the required concentration immediately before use. For the foliage diseases, the formulations (100 ppm active ingredient) were sprayed onto the foliage and applied to the roots of the plants in the soil. The sprays were applied to maximum retention and the root drenches to a final concentration equivalent to approximately 40 ppm a.i. in dry soil. Tween 20, to give a final concentration of 0.05%, was added when the sprays were applied to cereals.
For most of the tests the compound was applied to the soil (roots) and to the foliage (by spraying) one or two days before the plant was inoculated with the disease. An exception was the test on Erysiphe graminis in which the plants were inoculated 24 hours before treatment. Foliar pathogens were applied by spray as spore suspensions onto the leaves of test plants. After inoculation, the plants were put into an appropriate environment to allow infection to proceed and then incubated until the disease was ready for assessment. The period between inoculation
BAD ORIGINAL Q and assessment varied from four to fourteen days according to the disease and environment.
The disease control was recorded by the following grading :
no disease
- trace-5% of disease on untreated plants 2 - 6-25% of disease on untreated plants 1 26-59% of disease on untreated plants
- 60-100% of disease untreated plants
The results are shown in Tables IV, V and VI.
APO0012 J BAD ORIGINAL
TABLE IV
Phytophthora | Infestans | ( Tomatoes) | CO | n· | N· | CO | N | fN | o | N | N· | N | ||
«j | ||||||||||||||
u | ||||||||||||||
|Q | n) | |||||||||||||
CM | U) | |||||||||||||
O | o | 4) | ||||||||||||
a | u | C | N· | n· | o | n· | N | N | co | CO | Ν» | Ν’ | Ν' | Ν’ |
ω | •H | H | ||||||||||||
<0 | 4J | > | ||||||||||||
rH | •w | |||||||||||||
CM | > | |||||||||||||
<0 | ||||||||||||||
r—1 | ||||||||||||||
10 | o | |||||||||||||
Ul | u | |||||||||||||
o | Ή | |||||||||||||
cm | Ό | Jj | ||||||||||||
V) | •H | 3 | o | o | o | 1 | CN | o | o | N | «—1 | o | o | O |
O | x: | C | ||||||||||||
u | υ | <0 | ||||||||||||
Ul | m | V | ||||||||||||
0) | u | CM | ||||||||||||
υ | ||||||||||||||
ω | ||||||||||||||
•H | ||||||||||||||
nJ | r-H | *-» | ||||||||||||
•H | <0 | VJ | ||||||||||||
U | 3 | <U | ||||||||||||
3 | O' | r-4 | ||||||||||||
4J | υ | CM | o | t—1 | o | N· | N· | •v | 1 | N | o | o | PO | o |
c | Ifl | CM | ||||||||||||
V | C | < | ||||||||||||
> | w | |||||||||||||
<u | w | _ | « | |||||||||||
Λ | «Η | >1 | ||||||||||||
CM | c | <U | ||||||||||||
♦H | •K | rH | ||||||||||||
<0 | a | Ul | o | o | o | i-4 | O | CN | N | O | o | o | o | o |
>1 | <0 | fl | ||||||||||||
u | u | 0Q | ||||||||||||
bl | o | |||||||||||||
«J | ||||||||||||||
rtJ | 4J | —* | ||||||||||||
•H | •H | Jj | ||||||||||||
c | -a | Ifl | ||||||||||||
•H | c | 4> | ||||||||||||
υ | o | JZ | <N | <N | o | CO | N | CO | CO | <N | o | o | o | o |
o | υ | £ | ||||||||||||
3 | υ | |||||||||||||
CM | « | |||||||||||||
T3 | 1-1 | |||||||||||||
C | ||||||||||||||
3 | • | Φ | ||||||||||||
O | o | r—1 | r—I | fN | co | lO | IO | Γ- | co | σι | o | 1“1 | <N | |
CM | z | .o | «-Μ | 1—1 | r—1 | |||||||||
a | (0 | |||||||||||||
o | Eh | |||||||||||||
o |
s'
TABLE IV (Contd.
Phytophthora | Infestans | (Tomatoes) 1 | ^y | ^y | *y | ^y | *y | cn | !N | *y | ||||
<o | ||||||||||||||
ui | ||||||||||||||
<0 | <0 | —- | ||||||||||||
On | «—4 | <Λ | ||||||||||||
o | o | φ | ||||||||||||
a | Q | C | ^y | ^y | ^y | *y | *y | *y | ^y | ^y | ^y | o | «y | |
10 | •r-l | •Η | ||||||||||||
1« | 4-> | > | ||||||||||||
r—1 | •H | |||||||||||||
On | > | |||||||||||||
<0 | ||||||||||||||
r-| | ||||||||||||||
<0 | o | |||||||||||||
Ul | υ | |||||||||||||
o | «Η | |||||||||||||
On | Ό | 4J | ||||||||||||
<0 | •Η | 3 | I | o | r—1 | o | CN | o | o | o | o | o | o | 1 |
o | χ; | G | ||||||||||||
u | ο | <0 | ||||||||||||
Ul | <0 | Φ | ||||||||||||
<u | ut | Ον | ||||||||||||
U | < | |||||||||||||
(0 | ||||||||||||||
•r4 | ||||||||||||||
io | rH | |||||||||||||
<0 | <Λ | |||||||||||||
Ul | 3 | φ | ||||||||||||
3 | σ’ | Η | ||||||||||||
4J | φ | Ον | 1 | 1 | 1 | o | ^y | o | o | o | C4 | o | o | cn |
C | <0 | Ον | ||||||||||||
<u | G | < | ||||||||||||
> | 1-4 | |||||||||||||
V | (0 | « | ||||||||||||
JS | •Η | >1 | ||||||||||||
o. | G | φ | ||||||||||||
•w | Ή | ι—4 | ||||||||||||
(Λ | a | Ul | r-4 | o | o | o | o | 04 | CN | o | o | o | o | r-l |
>1 | 0 | <0 | ||||||||||||
Ul | Ul | <0 | ||||||||||||
ω | ο | |||||||||||||
<0 | ||||||||||||||
<0 | 4J | —* | ||||||||||||
•w | •Η | JJ | ||||||||||||
G | Ό | to | ||||||||||||
‘H | C | φ | ||||||||||||
o | Ο | JS | ^y | CO | o | o | o | O | o | o | o | CN | *y | |
υ | υ | 5 | ||||||||||||
3 | φ | |||||||||||||
On | U | |||||||||||||
Ό | HI | |||||||||||||
C | ||||||||||||||
3 | • | Φ | ||||||||||||
O | ο | r-l | CO | xr | in | Γ* | co | Oi | o | r-4 | 04 | m | *y | |
On | ζ | XI | r—1 | 1—4 | r-l | 1—4 | r-l | r-4 | 1—4 | cq | 04 | <N | C4 | <N |
a | <0 | |||||||||||||
o | Eh | |||||||||||||
u |
K>
C\1
Q.
<
- ~r £
BAD ORIGINAL
TABLE IV (Contd.
Phytophthora Infestans ( Tomatoes ) | ΓΟηΟΟΟ’^’Τ^Τ’Τ'ΤχΓΓΟΟΟ |
Plasmopara Viticola (Vines) | |
Cercospora Arachidicola (Peanut) | ΟΓΟΓΜΓΟΟΓΜΟΟΟΓΟΓΟΟΟ |
Venturia Inaequalis (Apples) | ΧΓΟΟΟ'ίΟΟΓΜ'ΤΟ'ΤΟ’Τ |
Erysiphe Graminis (Barley) | • rHOOOOOOOr-IOOrOO |
Puccinia Recondita (Wheat) | OOOOm<NO«-l<NOOOO |
Compound No. (Table I) | ιηνοΓ-οοσιο.-ίΓΜΓΟχτιηνοί^ fMCM CMCMCMCOrOrOrOrOPOPOrO |
TABLE IV (Contd.
Phytophthora | Infestans | (Tomatoes ) | M· | co | ro | co | |
<0 | |||||||
u | |||||||
(0 | <0 | — | |||||
a | rH | (A | |||||
o | o | Φ | |||||
a | u | C | co | co | co | ||
(/) | •H | •H | |||||
<0 | 4J | > | |||||
rM | •H | ||||||
CM | > | ||||||
<0 | |||||||
c*H | |||||||
rtj | o | ||||||
M | υ | ||||||
o | •pH | ||||||
ex | Ό | 4J | |||||
(A | •H | P | 1 | 1 | 1 | o | co |
o | ja | c | |||||
u | o | (0 | |||||
u | (0 | Φ | |||||
Φ | u | IX | |||||
u | |||||||
«Λ | |||||||
Ή | |||||||
(0 | rH | ||||||
•H | <0 | (A | |||||
V-l | P | V | |||||
P | tr | rH | |||||
P | φ | ex | o | ΓΊ | o | o | 1 |
c | <0 | ex | |||||
0) | c | < | |||||
> | M | ||||||
Φ | (A | • | |||||
SZ | •H | >1 | |||||
£X | c | Φ | |||||
H | •H | r4 | |||||
in | a | U | o | O | o | © | CM |
>t | 10 | (0 | |||||
u | u | m | |||||
u | 0 | ||||||
(0 | |||||||
<0 | 4J | —* | |||||
•H | •rH | P | |||||
c | Ό | nj | |||||
• H | C | Φ | |||||
o | o | -C | o | o | o | o | CO |
o | u | ||||||
P | Φ | ||||||
IX | as | ||||||
Ό | M | ||||||
c | |||||||
P | « | Φ | |||||
o | o | r—( | 00 | o | U5 | I— | co |
ex | 2 | X) | co | TJ· | LO | VO | © |
a | io | ||||||
o | E-< | ||||||
u |
AP 0 0 0 1 2 3
BAD ORIGINAL
TABLE
ί Phytophthora | Infestans | ( Tomatoes) | ΤΤ | m | ο | |||||
<0 | ||||||||||
u | ||||||||||
<0 | <0 | |||||||||
Οι | rH | (A | ||||||||
Ο | ο | φ | ||||||||
a | υ | C | ο | 1 | ΓΠ | β· | ||||
(Λ | •Η | •Η | ||||||||
(0 | +J | > | ||||||||
r-4 | Ή | |||||||||
0U | > | |||||||||
<0 | ||||||||||
γ—4 | ||||||||||
η) | ο | |||||||||
kJ | υ | |||||||||
ο | •Η | |||||||||
α. | Ό | 4J | ||||||||
V) | •Η | 3 | ο | ο | ο | ο | 1 | (Ν | 1 | |
ο | JC | C | ||||||||
υ | υ | <0 | ||||||||
kJ | <α | Φ | ||||||||
φ | kJ | CU | ||||||||
U | < | «Μ» | ||||||||
ω | ||||||||||
•Η | ||||||||||
<0 | r-M | —*· | ||||||||
•Η | <0 | (Λ | ||||||||
kJ | 3 | Φ | ||||||||
3 | Ο* | γ—4 | ||||||||
4J | « | CU | ο | ο | ο | ο | ο | Ο | ο | |
3 | <0 | α. | ||||||||
V | C | C | ||||||||
> | Μ | |||||||||
V | ω | • | ||||||||
JC | •Η | |||||||||
ο, | C | φ | ||||||||
•W | •Η | rH | ||||||||
«η | a | kJ | ο | τ-Η | ο | ο | 1 | Ο | ο | |
>1 | « | (0 | ||||||||
kJ | kJ | CO | ||||||||
ω | ο | |||||||||
/0 | ||||||||||
« | U | |||||||||
•r4 | •Η | +1 | ||||||||
C | Ό | <0 | ||||||||
rJ | C | φ | ||||||||
ο | Ο | Λ | ο | Ο | ο | ο | ο | Ο | ο | |
ο | υ | |||||||||
3 | φ | —· | ||||||||
η, | ||||||||||
H | ||||||||||
Ό | W | |||||||||
C | ||||||||||
3 | • | φ | ||||||||
Ο | ο | rd | τ—1 | ΓΜ | m | ιη | V0 | Γ- | ||
£Χ | 2 | J3 | ||||||||
a | <β | |||||||||
ο | Et | |||||||||
ο |
TABLE VI
Phytophthora | Infestans | (Tomatoes) | o | o |
Ul | ||||
(0 | *3 | |||
a | (0 | |||
o | o | Φ | ||
S | υ | c | ||
ΙΛ | •H | Ή | ||
(0 | U | > | ||
rH | X—* | |||
CL. | > | |||
Ifl | ||||
10 | o | |||
Ul | υ | |||
o | «W | —k | ||
Qi | Ό | U | ||
V) | •H | 3 | 1 | | |
o | Λ | C | ||
o | O | <0 | ||
Ul | AS | 4» | ||
a> | Ul | CM | ||
u | *** | |||
(A | ||||
•H | ||||
<0 | r-1 | |||
•H | io | (fl | ||
Ul | 3 | « | ||
3 | O' | r-4 | ||
4J | Φ | Qi | 1 | 1 |
c | <0 | Qi | ||
<D | c | < | ||
> | M | |||
Φ | (A | |||
x: | •H | >, | ||
a. | c | <u | ||
•H | H | |||
V) | a | Ui | o | n |
>1 | io | <0 | ||
Ul | u | to | ||
ω | 0 | |||
(0 | ||||
η» | 4J | |||
•H | •H | 4J | ||
c | τ> | (0 | ||
•H | c | 4) | ||
o | o | x | <N | (N |
υ | o | |||
3 | 0) | »—· | ||
a. | Oi | |||
Ό | HI | |||
c | ||||
3 | • | Φ | ||
O | o | i-H | t—1 | m |
Qi | 2 | JO | ||
S | (0 | |||
o | E-i | |||
a |
ο
$ | (T. σ\ r-4 |
X | >1 |
P* | a |
1—1 | ε < |
i-H | « a |
in | > 2 |
m | X < |
2 a | |
ou | ·“> |
CM | 2 -a· |
BAD ORIGINAL
A compound of | the formula (I): | ||
X | E A | ||
r4/CXv | |||
— c | |||
>3 / | \ 1 | ||
R / | N-Ra | (I) | |
\2 RZ | |||
Claims (3)
-
A compound of the formula (I): X E A r4/CXv — c >3 / \ 1 R / N-Ra (I) \2 RZ in which A and B are independently H, fluoro, chloro, bromo, C14 alkyl, C^_4 alkoxy or halo(C14)alkyl provided that both are not H; D and E are independently H or fluoro; is H, C^_4 alkyl orC^_4 alkoxy; R2 is C^_4 alkyl, C^_4 alkoxy or optionally substituted phenyl, or R1 and R2 together with the nitrogen atom to which they are attached join to form a morpholine, piperidine, pyrrolidine or azetidine ring which is optionally substituted with 3 4C^_4 alkyl; R is H; R is trichloromethyl, C3_g alkyl (optionally substituted with halogen, C^_g alkoxy or R'S(O)n in which R' is C|_4 alkyl, C3_4 alkenyl or alkynyl and n is 0, 1 or 2), cyclopropyl (optionally substituted with halogen orC^_4 alkyl), C3_g alkenyl, C3_g alkynyl, C3_g alkoxy, mono- or di (C,_.)alkylamino or the group, RON=C(CN) 1 q 3 4 in which R” is C^_4 alkyl, or R and R together with the group C(O)N to which they are attached join to form an azetidin-2-one ring which is optionally substituted with halogen or C^_4 alkyl; and X and Y are independently oxygen or sulphur.A compound according to claim 1 in which A and B are independently H, fluoro, chloro or bromo provided that both are not H; D and E are both H; R1 is hydrogen or Cj. alkyl; R is alkyl, ci_4 alkoxy or phenyl, or R and R^ together with the nitrogen atom to which they are attached join to form a morpholine, piperidine, pyrrolidine or azetidine 3 45 ring; R is hydrogen; R is C3_g alkyl (optionally substituted with halogen, methoxy, methylthio or methylsulphonyl), cyclopropyl (optionally substituted with methyl), C3_g alkenyl, C3_g alkynyl, C.^ alkoxy or the group CH3ON»C(CN); and X and Y are both10 oxygen.3. A compound according to claim 1 in which A is chloro;B, D and E are all H; R^ is hydrogen, methyl or - 2 12 ethyl; R is methyl, ethyl or phenyl, or R and R15 together with the nitrogen atom to which they are attached join to form a morpholine or piperidine 3 4 ring; R is hydrogen; R is C3_4 alkyl or cyclopropyl; and X and Y are both oxygen.20 4. A compound according to claim 1 in which A is chloro;1 2B, D and E are all H; R and R are independently methyl or ethyl or together with the nitrogen atom to which they are attached join to form a morpholine or 3 4 piperidine ring; R is hydrogen; R is iso-propyl,25 t-butyl or cyclopropyl; and X and Y are both oxygen.APO0012 3 in which A and B are independently chloro, bromo or methyl or B is H; and Z is fluoro, chloro, bromo,BAD ORIGINAL d methyl, ethyl or methoxy.A compound according to claim 5 in which B is H or A and B are both chloro or both methyl.A compound according to claim 5 in which A is chloro or bromo; B is H, or A and B are both chloro; and Z is methyl.A process for preparing a compound according to claim 1,a) when X and Y are both oxygen and R2 is Hi) by reacting a compound of general formula // /XR2 (VI) with an acid chloride R COCI in organic solvent in the presence a suitable of a base;ii) by reacting a compound of general formula (IX)1 2 with an amine R R NH in a suitable organic solvent in the presence of a base or excess R1R2NH; orb) iii) by reacting a compound of general formula (XXXIII):(XXXIII) with a compound of general formula R -CO-NH. and a base;when X and Y are both oxygen and R^ and R^ together with the group C(O)N form a ring of the formula 05 11 R\ xc\C N6/ \ / R CH2i) by treating a compound of general formula (X):AP 0 0 0 1 2 3RA (X) XR2 with a base in a two-phase system consisting of an organic solvent and water in the presence of a phase-transfer catalyst;when X and Y are both oxygen, R1 is H and R^ is athe group RF—C — /9 |3AD ORIGINALi) by treating a compound of general formula (XVII):
0 E A :8 £ \ / \ C N 19 1 Ra H \ / /R1 (XVII) D 'b XR2 wi th a fluoride transfer reagent in a suitable solvent;d) when X and Y are both oxygen, R8 is H and is gthe group RFCH,—-uC <9i) by treating a compound of general formula(XIX): E A R° 0 / A .° 1 K // (XIX) HOCH--C C —N-C x)— C R 2 '9 ' \ / R . H \— D —/ N \ x 2 B R with a fluorinating agent in a suitable solvent; or ii) by reacting a compound of general formula (VI ' :with an acid chloride of general formula (XXXV):R® 0 ι |IFCH,C — C —Cl 9 r’ (XXXV) in a suitable solvent in the presence of a base,e) when X is oxygen or sulphur, Y is sulphur and R2 is H,i) by treating a compound of general formula (II) :/ XR2 (II) with a thionation reagent in a suitable solvent to form either a compound of general formula (I) in which X is oxygen, Y is sulphur and R^ is hydrogen or a mixture of a compound of general formula (I) in which X is oxygen, Y is sulphur and R2 is hydrogen and a compound of general formula (I) in which X and Y are both sulphur and R^ is hydrogen;f) when X is sulphur, Y is oxygen and R^ is H,i) by reacting an isothiocyanate of general formula (XXIII):AP 0 0 0 1 2 3BAD ORIGINAL (XXIII) with an organometallic reagent It Li or R^Mghal in a suitable solvent at a temperature between -78®C and +25®C; or ii) by reacting an acid chloride (XXVI):Cl (XXVI)1 2 with an amine R R NH in the presence of a base; or - 3 4q) when X and Y are both oxygen, R is H and R is θthe group R11 1 RaaOCH,-C2 '9 R’i) by reacting a compound of general formula (XIX):HOCH.,8R1V (XIX) with a halide R-hal in the presence of a base in a suitable solvent;12 4 wherein A, B, D, E, R , R and R (except where otherwise stated) have the meanings given in claim 1,5 6 8 9R and R are H, C, . alkyl or halogen, R and R areH, Ci_4 alkyl or C14 haloalkyl, R is Cj._4 alkyl,X' is chlorine, bromine or iodine, hal is halogen and L is a leaving group.9. A fungicidal composition comprising a fungicidally effective amount of a compound according to claim 1 and a fungicidally acceptable carrier or diluent therefor.10. A method of combating fungi which comprises applying to plants, to the seeds of plants or to the locus of
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB898902323A GB8902323D0 (en) | 1989-02-02 | 1989-02-02 | Fungicides |
GB898923366A GB8923366D0 (en) | 1989-10-17 | 1989-10-17 | Fungicides |
Publications (2)
Publication Number | Publication Date |
---|---|
AP9000159A0 AP9000159A0 (en) | 1990-01-31 |
AP123A true AP123A (en) | 1991-03-03 |
Family
ID=26294905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
APAP/P/1990/000159A AP123A (en) | 1989-02-02 | 1990-01-22 | Fungicides |
Country Status (23)
Country | Link |
---|---|
US (2) | US4999381A (en) |
EP (1) | EP0381330B1 (en) |
JP (1) | JP2688530B2 (en) |
KR (1) | KR0145295B1 (en) |
CN (1) | CN1024004C (en) |
AP (1) | AP123A (en) |
AR (1) | AR246734A1 (en) |
AU (1) | AU617238B2 (en) |
BR (1) | BR9000477A (en) |
CA (1) | CA2008291A1 (en) |
DE (1) | DE69005466T2 (en) |
EG (1) | EG19119A (en) |
ES (1) | ES2062320T3 (en) |
GB (1) | GB9002370D0 (en) |
HU (1) | HU206191B (en) |
IE (1) | IE62559B1 (en) |
IL (1) | IL93076A (en) |
LV (1) | LV10084B (en) |
MY (1) | MY106000A (en) |
NZ (1) | NZ232127A (en) |
PL (2) | PL163155B1 (en) |
PT (1) | PT93030B (en) |
SK (1) | SK278842B6 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE62559B1 (en) * | 1989-02-02 | 1995-02-08 | Ici Plc | Fungicides |
EP0468681B1 (en) * | 1990-07-27 | 1995-05-24 | Zeneca Limited | Alfa-fluorocarboxylic acid derivatives as intermediates for the preparation of fungicides |
GB9016582D0 (en) * | 1990-07-27 | 1990-09-12 | Ici Plc | Fungicides |
GB9016581D0 (en) * | 1990-07-27 | 1990-09-12 | Ici Plc | Fungicides |
GB9016578D0 (en) * | 1990-07-27 | 1990-09-12 | Ici Plc | Fungicides |
GB9016580D0 (en) * | 1990-07-27 | 1990-09-12 | Ici Plc | Fungicides |
US5639949A (en) * | 1990-08-20 | 1997-06-17 | Ciba-Geigy Corporation | Genes for the synthesis of antipathogenic substances |
US5662898A (en) * | 1990-08-20 | 1997-09-02 | Ciba-Geigy Corporation | Genes for the synthesis of antipathogenic substances |
CA2119155C (en) * | 1991-10-18 | 1999-06-15 | Dennis Paul Phillion | Fungicides for the control of take-all disease of plants |
AU1160492A (en) * | 1992-01-13 | 1993-08-03 | Imperial Chemical Industries Plc | Fungicides |
TR27569A (en) * | 1992-01-24 | 1995-06-13 | Ici Plc | New fungicidal acylaminobenzamides, their preparation processes and their use in combating fungal infections in plants. |
WO1994000422A2 (en) * | 1992-06-26 | 1994-01-06 | Zeneca Limited | 4-acylaminobenzamides and their use as fungicides |
GB9213568D0 (en) * | 1992-06-26 | 1992-08-12 | Ici Plc | Fungicides |
TR28604A (en) * | 1992-06-26 | 1996-11-04 | Zeneca Ltd | Fungucid acylaminobenzenes. |
HRP921338B1 (en) * | 1992-10-02 | 2002-04-30 | Monsanto Co | Fungicides for the control of take-all disease of plants |
DE4342026A1 (en) * | 1993-12-09 | 1995-06-14 | Basf Ag | Acylamino-benzamides and fungicidal compositions containing them |
US5482974A (en) * | 1994-03-08 | 1996-01-09 | Monsanto Company | Selected fungicides for the control of take-all disease of plants |
US6117670A (en) * | 1994-06-08 | 2000-09-12 | Novartis Finance Corporation | Pyrrolnitrin biosynthesis genes and uses thereof |
US5486621A (en) * | 1994-12-15 | 1996-01-23 | Monsanto Company | Fungicides for the control of take-all disease of plants |
US5643965A (en) * | 1995-04-03 | 1997-07-01 | Centaur Pharmaceuticals, Inc. | Aminobenzamide compounds for the treatment of neurodegenerative disorders |
US5658953A (en) * | 1995-04-03 | 1997-08-19 | Centaur Pharmaceuticals, Inc. | Pharmaceutical compositions of acetamidobenzamide compounds for neurodegenerative disorders |
US5955506A (en) * | 1996-04-03 | 1999-09-21 | Centaur Pharmaceuticals, Inc. | Benzamides for neurodegenerative disorder treatment |
GB9622926D0 (en) * | 1996-11-04 | 1997-01-08 | Zeneca Ltd | Chemical process |
US6444849B1 (en) | 1997-06-25 | 2002-09-03 | Mitsubishi Chemical Corporation | Amide derivatives |
UA70327C2 (en) | 1998-06-08 | 2004-10-15 | Баєр Акціенгезельшафт | Method of combating phytopathogenic diseases on crop plants and a fungicidal composition |
US6333432B1 (en) * | 1999-05-04 | 2001-12-25 | Gina M. Fitzpatrick | Fungicidal compositions and methods, and compounds and methods for the preparation thereof |
DK1200393T3 (en) | 1999-08-13 | 2004-04-13 | Monsanto Technology Llc | Oxymamides and hydrazonamides that have fungicidal activity |
FR2812633A1 (en) * | 2000-08-04 | 2002-02-08 | Aventis Cropscience Sa | PHENYL (THIO) UREA AND PHENYL (THIO) CARBAMATE FUNGICIDES DERIVATIVES |
EP2079739A2 (en) * | 2006-10-04 | 2009-07-22 | Pfizer Products Inc. | Pyrido[4,3-d]pyrimidin-4(3h)-one derivatives as calcium receptor antagonists |
RU2650110C2 (en) * | 2012-10-15 | 2018-04-09 | Альбемарл Корпорейшн | Processes for synthesis of 2-amino-4,6-dimethoxybenzamide and other benzamide compounds |
CN109206335B (en) * | 2017-06-29 | 2020-10-30 | 沈阳中化农药化工研发有限公司 | Process for preparing ortho-trifluoromethylanilines and intermediates thereof |
ES2906980T3 (en) * | 2017-09-13 | 2022-04-21 | Syngenta Participations Ag | Microbiocidal quinoline (thio)carboxamide derivatives |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3455987A (en) * | 1966-06-17 | 1969-07-15 | Abbott Lab | P-hydroxylaminobenzoylaminoacetonitriles and preparation thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE621404A (en) * | 1961-08-16 | 1962-12-03 | Cassella Farbwerke Mainkur Ag | Novel substituted acylanthranilic acid anilides and their preparation |
DE1168918B (en) * | 1961-08-16 | 1964-04-30 | Cassella Farbwerke Mainkur Ag | Process for the preparation of acylanthranilic acid anilides |
CH507652A (en) * | 1968-03-29 | 1971-05-31 | Agripat Sa | Ureido-benzamides |
BE758433A (en) * | 1969-10-13 | 1971-05-04 | Ciba Geigy | N-O-FLUOROPHENYLUREES, THEIR PREPARATION AND THEIR USE AS PESTICIDES. |
US4060638A (en) * | 1975-05-27 | 1977-11-29 | Sandoz, Inc. | Anthranilic acid amides |
EP0002309B1 (en) * | 1977-10-12 | 1982-12-01 | Imperial Chemical Industries Plc | Acylanilides, process for their manufacture and pharmaceutical and veterinary compositions containing them |
US4485105A (en) * | 1978-10-12 | 1984-11-27 | American Cyanamid Company | Method of treating hyperlipidemia with 4-(monoalkylamino)benzoic acid amides |
JPS5780351A (en) * | 1980-11-06 | 1982-05-19 | Hodogaya Chem Co Ltd | Benzamide derivative and herbicide containing the same |
JPS5867657A (en) * | 1981-10-15 | 1983-04-22 | Chugai Pharmaceut Co Ltd | Benzamide derivative |
US4623662A (en) * | 1985-05-23 | 1986-11-18 | American Cyanamid Company | Antiatherosclerotic ureas and thioureas |
DE3373810D1 (en) * | 1982-07-27 | 1987-10-29 | Sumitomo Chemical Co | FUNGICIDAL ANILIDES |
GB8315495D0 (en) * | 1983-06-06 | 1983-07-13 | Sumitomo Chemical Co | Fungicidal aniline derivatives |
US4555525A (en) * | 1984-08-31 | 1985-11-26 | Administrators Of The Tulane Educational Fund | Use of desethyl-N-acetylprocainamide (NAPADE) as an inotropic agent |
US4826841A (en) * | 1985-04-05 | 1989-05-02 | Eli Lilly And Company | Alkanoyl anilides as pesticides |
IL78394A (en) * | 1985-04-05 | 1989-12-15 | Lilly Co Eli | Fluoroalkanoyl anilides,process for their preparation,insecticidal,arachnicidal,fungicidal and herbicidal compositions comprising them |
DE3822448A1 (en) * | 1988-07-02 | 1990-03-01 | Bayer Ag | Ureidobenzoic acid derivatives |
IE62559B1 (en) * | 1989-02-02 | 1995-02-08 | Ici Plc | Fungicides |
-
1990
- 1990-01-12 IE IE14590A patent/IE62559B1/en not_active IP Right Cessation
- 1990-01-16 NZ NZ232127A patent/NZ232127A/en unknown
- 1990-01-17 ES ES90300457T patent/ES2062320T3/en not_active Expired - Lifetime
- 1990-01-17 SK SK236-90A patent/SK278842B6/en unknown
- 1990-01-17 DE DE90300457T patent/DE69005466T2/en not_active Expired - Fee Related
- 1990-01-17 EP EP90300457A patent/EP0381330B1/en not_active Expired - Lifetime
- 1990-01-17 IL IL9307690A patent/IL93076A/en not_active IP Right Cessation
- 1990-01-22 CA CA002008291A patent/CA2008291A1/en not_active Abandoned
- 1990-01-22 HU HU90221A patent/HU206191B/en not_active IP Right Cessation
- 1990-01-22 AP APAP/P/1990/000159A patent/AP123A/en active
- 1990-01-23 MY MYPI90000119A patent/MY106000A/en unknown
- 1990-01-24 AR AR90316000A patent/AR246734A1/en active
- 1990-01-26 AU AU48871/90A patent/AU617238B2/en not_active Ceased
- 1990-01-30 PL PL90283525A patent/PL163155B1/en unknown
- 1990-01-30 EG EG4590A patent/EG19119A/en active
- 1990-01-30 PL PL90285553A patent/PL163362B1/en unknown
- 1990-02-01 PT PT93030A patent/PT93030B/en not_active IP Right Cessation
- 1990-02-02 CN CN90100999A patent/CN1024004C/en not_active Expired - Fee Related
- 1990-02-02 US US07/473,677 patent/US4999381A/en not_active Expired - Fee Related
- 1990-02-02 BR BR909000477A patent/BR9000477A/en not_active Application Discontinuation
- 1990-02-02 GB GB909002370A patent/GB9002370D0/en active Pending
- 1990-02-02 KR KR1019900001264A patent/KR0145295B1/en not_active IP Right Cessation
- 1990-02-02 JP JP2022308A patent/JP2688530B2/en not_active Expired - Lifetime
- 1990-12-31 US US07/635,993 patent/US5280044A/en not_active Expired - Fee Related
-
1992
- 1992-12-24 LV LVP-92-487A patent/LV10084B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3455987A (en) * | 1966-06-17 | 1969-07-15 | Abbott Lab | P-hydroxylaminobenzoylaminoacetonitriles and preparation thereof |
Non-Patent Citations (1)
Title |
---|
CHEMICAL ABSTRACT, 105, 1986, 97176J * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AP123A (en) | Fungicides | |
EP0254426A2 (en) | Fungicides | |
EP0506149A2 (en) | Fungicides | |
EP0468684B1 (en) | Propenoic acid derivatives, process for their preparation and their use as fungicides | |
EP0393861B1 (en) | Fungicides | |
US4994495A (en) | Fungicides | |
EP0436348B1 (en) | Pyridyl cyclopropane derivatives with fungicidal activity | |
EP0405782A1 (en) | Fungicides | |
EP0273572A2 (en) | Pyrrole derivatives and their use in agriculture | |
US5334722A (en) | Fungicides | |
US4895974A (en) | Fungicides | |
US5122529A (en) | Pyridyl cyclopropane carboxamidine fungicides | |
AU634667B2 (en) | Fungicides | |
EP0470711B1 (en) | Fungicides | |
EP0468682A1 (en) | Fungicidal acylaminbezamides, their production and use | |
GB2246352A (en) | Fungicidal acylaminobenzene sulphonamides | |
WO1993014063A1 (en) | Fungicides | |
IE920064A1 (en) | Fungicides | |
EP0422848A1 (en) | Fungicides |