WO2023233821A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2023233821A1
WO2023233821A1 PCT/JP2023/014415 JP2023014415W WO2023233821A1 WO 2023233821 A1 WO2023233821 A1 WO 2023233821A1 JP 2023014415 W JP2023014415 W JP 2023014415W WO 2023233821 A1 WO2023233821 A1 WO 2023233821A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
unit
information processing
processing device
moving
Prior art date
Application number
PCT/JP2023/014415
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 鈴木
真 城間
直樹 西田
真理 安田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023233821A1 publication Critical patent/WO2023233821A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present disclosure relates to an information processing device and an information processing method.
  • Patent Document 1 describes a technology that combines a grid image along an uneven shape with an image of a work plane captured by a work machine remotely controlled by an operator, and allows the operator to visually recognize the combined image. Disclosed. According to this, the operator can more easily grasp the sense of distance to the work plane, and therefore can more appropriately remotely control the work machine.
  • a display image is generated in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object.
  • An information processing device is provided that includes an image generation section.
  • the computing device superimposes a grid having a unit grid having a size corresponding to the moving object on an environmental image captured by at least one imaging device mounted on the moving object.
  • An information processing method is provided that includes generating a displayed display image.
  • FIG. 1 is a schematic diagram showing the overall configuration of a remote control system including an information processing device according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing the functional configuration of a mobile object and an information processing device.
  • FIG. 2 is a schematic diagram showing an example of an environment around a moving body. 4 is a schematic diagram illustrating an example of an environmental image captured by an imaging unit mounted on a moving body in the environment illustrated in FIG. 3.
  • FIG. FIG. 2 is a schematic diagram showing an example of a display image generated by an image generation unit from an environmental image.
  • FIG. 2 is a schematic diagram illustrating the size of a unit cell of a grid superimposed on an environmental image.
  • FIG. 3 is a schematic diagram illustrating an example of a coordinate system of a grid superimposed on an environmental image.
  • FIG. 7 is a schematic diagram illustrating another example of a coordinate system of a grid superimposed on an environmental image.
  • FIG. 2 is a schematic diagram showing an example of a grid in which the size of a unit cell is expanded.
  • FIG. 3 is a graph diagram showing the relationship between the moving speed of a moving body and the amount of expansion of a grid.
  • FIG. 2 is a schematic diagram showing an example of a grid in which the size of a unit cell is reduced.
  • FIG. 3 is a graph diagram showing the relationship between the moving speed of a moving body and the amount of reduction of a grid.
  • FIG. 6 is a schematic diagram showing an example of deformation of a unit cell of a grid when a moving body moves diagonally.
  • FIG. 1 is a schematic diagram showing another example of a coordinate system of a grid superimposed on an environmental image.
  • FIG. 2 is a schematic diagram showing an example of a grid in which the size of a unit cell is expanded.
  • FIG. 3 is a graph diagram showing the
  • FIG. 7 is a schematic diagram illustrating a grid and subgrids superimposed on an environmental image in a first modification.
  • FIG. 3 is a graph diagram showing the relationship between the display level of a subgrid and the moving speed of a moving object.
  • FIG. 7 is a schematic diagram illustrating a grid superimposed on an environmental image in a second modification. It is a schematic diagram which shows the display image in the 3rd modification.
  • FIG. 7 is a schematic diagram showing an example of a display image in which a two-dimensional grid is superimposed at a predetermined height position in a three-dimensional space in a fourth modification.
  • FIG. 12 is a schematic diagram showing an example of a display image in which a three-dimensional grid having a rectangular parallelepiped unit grid is superimposed on an environmental image captured by an imaging unit of a moving body in a fourth modification.
  • Configuration example 1.1 Overall configuration 1.2. Configuration of information processing device 2. Operation example 3. Variation 3.1. First modification 3.2. Second modification 3.3. Third modification 3.4. Fourth modification
  • FIG. 1 is a schematic diagram showing the overall configuration of a remote control system including an information processing apparatus according to this embodiment.
  • the remote control system includes a mobile body 20 and an information processing device 10 connected to the mobile body 20 via a network 30.
  • the mobile object 20 is a robot that is remotely controlled by input to the information processing device 10 by the operator 40.
  • the mobile object 20 may be a wheeled, legged, or legged and wheeled robot, or may be a rotary wing or air-levitating drone.
  • the mobile body 20 can, for example, transmit an environmental image captured by an imaging device mounted on the mobile body 20 to the information processing device 10 and receive a remote operation instruction input from the information processing device 10. .
  • the mobile body 20 may be able to move autonomously based on sensing results of the surrounding environment.
  • the information processing device 10 is a terminal device used by the operator 40 to remotely control the mobile body 20.
  • the information processing device 10 may be, for example, a personal computer (PC), a tablet, a smartphone, or the like.
  • the information processing device 10 presents the operator 40 with an environmental image of the surroundings of the mobile body 20 received from the mobile body 20, receives a remote operation instruction from the operator 40 to the mobile body 20, and transmits the received remote operation instruction. It can be transmitted to the mobile body 20.
  • the network 30 is a communication network that connects the mobile object 20 and the information processing device 10 so that they can mutually transmit and receive data.
  • the network 30 may be, for example, the Internet, a satellite communication network, a mobile communication network, a LAN (Local Area Network), or a WAN (Wide Area Network).
  • the information processing device 10 may be connected to the network 30 using wired communication.
  • the mobile body 20 may connect to the network 30 using wireless communication in order to connect to the network 30 at any location of the moving destination.
  • FIG. 2 is a block diagram showing the functional configurations of the mobile object 20 and the information processing device 10.
  • the moving body 20 includes, for example, an imaging section 210, a sensor section 220, a driving section 230, an output section 240, a control section 250, and a communication section 260.
  • the moving body 20 can transmit an environmental image around the moving body 20 captured by the imaging unit 210 to the information processing device 10, and can also receive a remote operation instruction transmitted from the information processing device 10.
  • the imaging unit 210 includes a camera that images the environment around the moving body 20.
  • the imaging unit 210 may include, for example, an RGB camera, a stereo camera, an IR camera, or a thermo camera.
  • the imaging unit 210 may include multiple cameras with different imaging directions, or may include multiple cameras of different types.
  • the sensor unit 220 includes a sensor capable of sensing information about the outside or inside of the moving body 20.
  • the sensor unit 220 includes a sensor that measures the distance to an object in the outside world, such as a ToF (Time of Flight) sensor, LiDAR (Light Detection And Ranging), Radar (Radio Detection And Ranging), or an ultrasonic sensor. May include.
  • the sensor unit 220 may include a sensor that measures information related to the environment, such as the temperature, humidity, illuminance, or atmospheric pressure of the outside world, for example.
  • the sensor unit 220 may include a sensor that measures information regarding the inside of the moving body 20, such as the position, vibration, tilt, speed, or acceleration of the moving body 20.
  • the drive unit 230 is a moving mechanism that can move the moving body 20 to an arbitrary position based on the control by the control unit 250.
  • the drive unit 230 may be a moving mechanism of various types such as a wheel type, a leg type, a leg wheel type, a crawler type, or an air cushion type, and may be a moving mechanism capable of moving in the air such as a rotary wing. Alternatively, it may be a moving mechanism such as a screw that can move on or under water.
  • the output unit 240 outputs various information in the form of images or sounds based on the control of the control unit 250.
  • the output unit 240 may include, for example, a liquid crystal display (LCD) device that outputs various information in the form of images, an OLED (organic light emitting diode) display device, or a lamp that outputs various information in the form of light emission. May include. Further, the output unit 240 may include, for example, a speaker that outputs various information as audio to the surroundings of the moving body 20.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • the control unit 250 controls the overall operation of the moving body 20.
  • the control unit 250 is configured by, for example, hardware such as a CPU (Central Processing Unit), a RAM (Read Only Memory), and a ROM (Read Only Memory), and software including a control program for the mobile body 20.
  • the control unit 250 estimates the self-position of the mobile body 20 based on the sensing result of the sensor unit 220, creates an action plan for the mobile body 20, and drives the drive unit 230 based on the created action plan. good.
  • the communication unit 260 is a communication interface for connecting to the network 30.
  • the communication unit 260 may be, for example, a communication interface that can be connected to the network 30 wirelessly.
  • the communication unit 260 may be a communication interface connectable to the network 30 via another network such as a mobile communication network or a wireless LAN, or a base station.
  • the information processing device 10 includes, for example, a communication section 110, an image generation section 120, a grid modification section 130, and a display section 140.
  • the information processing device 10 receives an environmental image around the moving object 20 from the moving object 20, and also transmits to the moving object 20 a remote operation instruction for the moving object 20 that is input from the operator 40 to the information processing device 10. I can do it.
  • the communication unit 110 is a communication interface for connecting to the network 30.
  • the communication unit 110 may be, for example, a communication interface connectable to the network 30 by wire.
  • the communication unit 110 may be a communication interface connectable to the network 30 via another network such as a wired LAN.
  • the image generation unit 120 superimposes a grid having a unit grid of a size corresponding to the moving object 20 on the environmental image surrounding the moving object 20 received from the moving object 20, thereby presenting the image to the operator 40.
  • the information processing device 10 allows the operator 40 to intuitively grasp the size or movement characteristics of the moving body 20 by using the display image on which the grid is superimposed, so the information processing device 10 allows the operator 40 to operate the moving body 20. Feelings can be grasped more easily.
  • FIG. 3 is a schematic diagram showing an example of the environment around the moving body 20 for explaining the operation of the image generation unit 120.
  • FIG. 4 is a schematic diagram showing an example of an environment image EI captured by the imaging unit 210 mounted on the moving object 20 in the environment shown in FIG.
  • FIG. 5 is a schematic diagram showing an example of a display image VI generated by the image generation unit 120 from the environmental image EI.
  • FIG. 6 is a schematic diagram illustrating the size of a unit cell of the grid Gd superimposed on the environment image EI.
  • FIG. 7A is a schematic diagram illustrating an example of a coordinate system of a grid superimposed on the environmental image EI.
  • FIG. 7B is a schematic diagram illustrating another example of the coordinate system of the grid superimposed on the environmental image EI.
  • the mobile object 20 can transmit the captured environmental image EI to the information processing device 10.
  • the image generation unit 120 of the information processing device 10 superimposes a grid Gd on a plane including the top surface of the table 62, which is the traveling surface of the moving body 20, on the received environmental image EI.
  • the display image VI to be presented to the operator 40 can be generated. According to this, the operator 40 who visually recognized the display image VI can more clearly grasp the running surface of the moving body 20 based on the position of the grid Gd.
  • the image generation unit 120 may superimpose the grid Gd only on the region of the display image VI where the moving object 20 can travel. For example, in the display image VI shown in FIG. 5, the image generation unit 120 may superimpose the grid Gd only on the top surface of the table 62 on which the moving object 20 can travel. According to this, the image generation unit 120 can express more clearly the area in which the mobile object 20 can run in the display image VI.
  • the image generation unit 120 may superimpose the grid Gd so as to cover the obstacle along the surface shape of the obstacle. According to this, the image generation unit 120 can express more clearly the obstacles that exist in the area where the mobile object 20 can travel in the display image VI.
  • the running surface of the moving body 20 can be recognized by analyzing the sensing results by the sensor section 220 of the moving body 20 (particularly the sensing results by the distance measuring sensor).
  • the running surface of the moving body 20 can be recognized by image analysis of the environmental image EI captured by the imaging unit 210 of the moving body 20.
  • the unit cell of the grid Gd superimposed on the environment image EI may have a rectangular shape.
  • the grid Gd may be configured by arranging rectangular unit grids in the front direction of the moving body 20 and in the side direction perpendicular to the front direction.
  • the grid Gd superimposed on the environmental image EI is a rectangular unit grid on the xy plane with the front direction of the moving body 20 as the y direction and the side direction of the moving body 20 as the x direction. may be configured by arranging them in a matrix.
  • the shape of the unit cell of the grid Gd is not limited to the above example.
  • the shape of the unit cell of the grid Gd may be another polygonal shape that can be filled in a plane with a single shape.
  • the shape of the unit cell of the grid Gd may be a triangle, a parallelogram, a rhombus, or a hexagon.
  • the size of the unit cell of the grid Gd is determined for each moving object 20 based on the size, movement characteristics, or use of the moving object 20. According to this, the operator 40 can intuitively grasp the size or movement characteristics of the moving object 20 by the grid Gd superimposed on the display image VI, and therefore can more easily grasp the feeling of operating the moving object 20. can do. Note that information regarding the size, movement characteristics, or usage of the mobile body 20 can be acquired from the mobile body 20 via the communication unit 110, for example.
  • the size of the unit cell of the grid Gd may be determined based on the area occupied by the moving body 20 on the running surface. For example, if the moving body 20 is a wheeled moving body, the size of the unit grid of the grid Gd may be determined based on the total length and width of the moving body 20.
  • the unit grid of the grid Gd may be configured in a rectangular shape whose length is the entire length of the moving body 20 and whose width is the entire width of the moving body 20, and the unit grid of the grid Gd may be configured in a rectangular shape whose length is the entire length of the moving body 20 and whose width is the entire width of the moving body 20, and the unit grid of the grid Gd is more than 100% and 120% or less of the above-mentioned rectangular shape. It may also be configured in a rectangular shape expanded to .
  • the size of the unit cell of the grid Gd may be determined based on the amount of movement of the moving body 20 in one drive. For example, when the moving body 20 is a legged moving body, the size of the unit cell of the grid Gd may be determined based on the width of one walking step of the moving body 20. More specifically, the unit grid of the grid Gd may be configured in a rectangular shape whose length is the width of one walking step of the moving body 20 and whose width is the entire width of the moving body 20, and the above-mentioned rectangular shape is It may be configured in a rectangular shape expanded by more than 120%.
  • the size of the unit cell of the grid Gd may be determined based on the size of an object existing in the usage environment of the moving body 20.
  • the size of the unit cell of the grid Gd is the size of the surgeon's finger (for example, thumb) that is frequently seen on the endoscopic camera.
  • the unit grid of the grid Gd may be configured in a rectangular shape whose length is the size of a human finger (for example, a thumb) and whose width is the entire width of the moving body 20, and the unit cell of the grid Gd may be configured in a rectangular shape whose length is the size of a human finger (for example, a thumb) and whose width is the entire width of the moving body 20, and the unit cell of the grid Gd is more than 100% larger than the above-mentioned rectangular shape. It may be configured in a rectangular shape expanded by 120% or less.
  • the coordinate system of the grid Gd superimposed on the environmental image EI may be fixed in space, or may be moved or rotated in conjunction with the movement of the moving body 20.
  • the coordinate system of the grid Gd superimposed on the environment image EI may be fixed with respect to the space including the running surface.
  • the coordinate system of the grid Gd is fixed in space.
  • the moving body 20 may freely move on the grid Gd in which the direction in which the unit cells are arranged is fixed.
  • the coordinate system of the grid Gd superimposed on the environmental image EI may be fixed with respect to the moving body 20.
  • the coordinate system of the grid Gd rotates in conjunction with the rotation of the moving body 20 so that the unit grid of the grid Gd is always arranged in the front and side directions of the moving body 20. It's okay.
  • the coordinate system of the grid Gd is moved to make the moving direction of the moving object 20 clearer. Preferably, it is fixed relative to the body 20.
  • the grid deformation unit 130 expands or contracts the size of the unit cell of the grid Gd based on the moving speed of the moving body 20. Specifically, the grid deforming unit 130 expands or reduces the size of the unit grid of the grid Gd in the traveling direction of the mobile body 20 based on the moving speed of the mobile body 20. According to this, the information processing device 10 allows the operator 40 to intuitively grasp the moving speed of the moving object 20 by deforming the unit cell of the grid Gd superimposed on the display image VI. Therefore, the information processing device 10 allows the operator 40 to more easily grasp the feeling of operating the moving body 20. Note that information regarding the moving speed of the moving body 20 can be acquired from the moving body 20 via the communication unit 110, for example.
  • FIG. 8A is a schematic diagram showing an example of a grid Gd in which the size of the unit cell is expanded.
  • FIG. 8B is a graph diagram showing the relationship between the moving speed of the moving body 20 and the amount of expansion of the grid Gd.
  • FIG. 9A is a schematic diagram showing an example of a grid Gd in which the size of the unit cell is reduced.
  • FIG. 9B is a graph diagram showing the relationship between the moving speed of the moving body 20 and the amount of reduction of the grid Gd.
  • FIG. 10 is a schematic diagram showing an example of deformation of the unit grid of the grid Gd when the moving body 20 moves diagonally.
  • the grid deforming unit 130 may expand the size d of the unit grid of the grid Gd in the moving direction TD of the moving body 20 in proportion to the moving speed of the moving body 20.
  • the grid deforming unit 130 expands the size d of the unit cell of the grid Gd in proportion to the moving speed. You may let them. According to this, the grid deforming unit 130 can make the operator 40 intuitively understand the increase in the moving speed of the moving body 20 by expanding the unit grid of the grid Gd.
  • the grid deforming unit 130 does not extend the size d of the unit cell of the grid Gd, and changes the size, movement characteristics, or application of the moving body 20.
  • the size L determined for each mobile object 20 based on the above may be left unchanged.
  • the grid deforming unit 130 expands the size d of the unit grid of the grid Gd when the moving speed of the moving body 20 is equal to or higher than a threshold value V1 , thereby changing the size of the unit grid of the grid Gd when the moving body 20 moves at a low speed. It is possible to suppress frequent changes in sd.
  • the threshold value V 1 may be set, for example, to a speed at which the moving distance of the moving body 20 per second exceeds the grid size L.
  • the grid deforming unit 130 may reduce the size d of the unit grid of the grid Gd in the traveling direction TD of the moving body 20 in proportion to the moving speed of the moving body 20. good.
  • the grid deforming unit 130 reduces the size d of the unit cell of the grid Gd in proportion to the moving speed. You may let them. According to this, the grid deforming unit 130 can make the operator 40 intuitively understand the increase in the moving speed of the moving object 20 by reducing the unit grid of the grid Gd.
  • the grid deforming unit 130 changes the size, movement characteristics, or application of the moving object 20 without reducing the size d of the unit cell of the grid Gd.
  • the size L determined for each mobile object 20 based on the above may be left unchanged.
  • the grid deformation unit 130 reduces the size d of the unit grid of the grid Gd when the moving body 20 moves at a low speed by reducing the size d of the unit grid of the grid Gd when the moving speed of the moving body 20 is equal to or higher than the threshold value V2. It is possible to suppress frequent changes in sd.
  • the threshold value V 2 may be set, for example, to a speed at which the moving distance of the moving object 20 per second exceeds the grid size L.
  • the grid deforming section 130 may expand or contract the unit grids of the grid Gd in the diagonal direction.
  • the grid deforming section 130 may be expanded or reduced, respectively.
  • the display unit 140 is a display device that displays the display image VI generated by the image generation unit 120.
  • the operator 40 can visually recognize, via the display unit 140, the display image VI in which the environmental image EI around the moving object 20 and the grid Gd are superimposed. According to this, the operator 40 can recognize information regarding the size or movement characteristics of the moving body 20 from the grid Gd included in the display image VI, and therefore can more easily grasp the feeling of operating the moving body 20. I can do it.
  • the display unit 140 may be a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Diode) display, a hologram, or a projector.
  • FIG. 11 is a flowchart showing the flow of operations of the information processing device 10 according to this embodiment.
  • the information processing device 10 first connects to the mobile object 20 to be remotely controlled via the network 30 (S101). Next, the information processing device 10 acquires information for determining the size of the grid Gd from the mobile object 20 via the network 30 (S102). Subsequently, the information processing device 10 acquires the environmental image EI captured by the imaging unit 210 of the mobile object 20 via the network 30 (S103).
  • the information processing device 10 causes the image generation unit 120 to superimpose a grid Gd having a unit grid having a size corresponding to the moving object 20 on the environmental image EI (S104).
  • the size of the unit grid of the grid Gd is set for each moving body 20 based on the size, movement characteristics, or use of the moving body 20.
  • the environment image EI on which the grid Gd is superimposed is displayed on the display unit 140 as a display image VI, so that it is visually recognized by the operator 40.
  • the information processing device 10 obtains the moving speed of the mobile object 20 via the network 30 (S105).
  • the information processing device 10 determines whether the connection with the mobile object 20 has been released (S106).
  • the information processing device 10 causes the grid modification unit 130 to expand or contract the size of the unit grid of the grid Gd based on the moving speed of the moving body 20. After that, the operation flow of the information processing device 10 returns to step S104, and the information processing device 10 uses the image generation unit 120 to superimpose the grid Gd whose unit grid size has been expanded or reduced on the environmental image EI. (S104). The information processing device 10 repeatedly performs the operations from step S104 to step S107 until the connection with the mobile object 20 is released.
  • the information processing device 10 determines whether to connect to another mobile body 20 (S108). When connecting to another mobile body 20 (S108/Yes), the operation flow of the information processing device 10 returns to step S101, and the information processing device 10 executes connection to the mobile body 20 to be remotely controlled (S101). . When not connected to another mobile body 20 (S108/No), the information processing device 10 ends its operation.
  • the information processing device 10 superimposes the grid Gd having a unit grid of a size corresponding to the moving object 20 on the environmental image EI, and also superimposes the grid Gd in units of grid Gd based on the moving speed of the moving object 20.
  • the size of the grid can be expanded or contracted. Therefore, the operator 40 who visually recognizes the display image VI can intuitively grasp the size or movement characteristics of the moving object 20, and therefore can remotely control the moving object 20 more smoothly.
  • FIG. 12 is a schematic diagram illustrating the grid Gd and subgrid Sd superimposed on the environment image EI in the first modification.
  • FIG. 13 is a graph diagram showing the relationship between the display level ⁇ of the sub-grid Sd and the moving speed of the moving body 20.
  • the image generation unit 120 may further superimpose a sub-grid Sd in addition to the grid Gd on the environmental image EI captured by the imaging unit 210 of the moving body 20.
  • the sub-grid Sd is an auxiliary grid having a unit cell that is a fraction of the size of the unit cell of the grid Gd.
  • the sub-grid Sd allows the operator 40 to grasp the amount of movement of the moving body 20 in more detail by dividing the unit grid of the grid Gd into smaller pieces.
  • the image generation unit 120 generates a grid Gd whose unit grid is a rectangular shape whose length is the full length of the moving body 20 and whose width is the full width of the moving body 20, and a unit grid whose size is 1/2 of the grid Gd. may be superimposed on the environment image EI.
  • the sub-grid Sd may be expressed by lines that are different from the grid Gd in at least one of line type, color, or width.
  • the sub-grid Sd may be composed of broken lines or dotted lines.
  • the sub-grid Sd may be expressed by the same lines as the grid Gd.
  • the display level of the sub-grid Sd may be changed based on the moving speed of the moving body 20.
  • the display level ⁇ of the sub-grid Sd may be controlled so that the higher the moving speed of the moving object 20 is, the lower the display level ⁇ is, and the sub-grid Sd is not displayed at a threshold value V3 or higher.
  • the sub-grid Sd may be controlled so that its transparency increases as the moving speed of the moving body 20 increases, and becomes transparent at a threshold value V3 or higher.
  • the image generation unit 120 displays the sub-grid Sd on the display image VI when the moving object 20 is moving at a low speed less than the threshold V3 , and when the moving object 20 is moving at a high speed equal to or higher than the threshold V3 . It is possible to control the sub-grid Sd so that it is not displayed when the user is moving. Therefore, when the moving object 20 is moving at a low speed, the image generation unit 120 displays the sub-grid Sd with a smaller unit grid size, thereby allowing the operator 40 to remotely operate the moving object 20 using the sub-grid Sd as a guide. be able to.
  • the image generation unit 120 can suppress the visibility of the display image VI from decreasing by not displaying the sub-grid Sd when the moving object 20 is moving at high speed. That is, the information processing device 10 can discretely change the grid width displayed on the display image VI by controlling display or non-display of the sub-grid Sd based on the moving speed of the moving object 20. Therefore, the information processing device 10 allows the operator 40 to view the display image VI including a grid having a unit grid of a size suitable for the moving speed of the moving object 20.
  • the grid transformation unit 130 may choose not to expand or contract the size of the unit grid of the grid Gd. .
  • the size of the unit cell of grid Gd expands or contracts
  • the size of the unit cell of sub-grid Sd also expands or contracts as the size of the unit cell of grid Gd expands or contracts. Therefore, if both the grid Gd and the sub-grid Sd superimposed on the environmental image EI are deformed, the visibility of the display image VI may be reduced.
  • the grid deformation unit 130 may choose not to expand or contract the size of the unit grid of the grid Gd and the sub-grid Sd, depending on the content of the display image VI.
  • the second modification is a modification in which the expression of the grid Gd superimposed on the environment image EI is controlled based on the position of the moving object 20 and the like.
  • FIG. 14 is a schematic diagram illustrating the grid Gd superimposed on the environmental image EI in the second modification.
  • the image generation unit 120 may color the unit grid FL in which the moving object 20 is present among the unit grids of the grid Gd.
  • the color given to the unit cell FL is expressed as hatching.
  • a blind spot may occur in the environmental image EI captured by the imaging unit 210.
  • the vicinity of the drive unit 230 of the moving body 20 that is, the vicinity of the feet
  • the image generation unit 120 can clarify the position of the moving body 20 in the display image VI by coloring the unit grid FL in which the moving body 20 exists. Therefore, the operator 40 can more accurately grasp the sense of distance between the moving object 20 and the object in the display image VI.
  • the image generation unit 120 can also similarly color unit cells near the unit cell FL where the moving body 20 exists.
  • the color given to the neighboring unit grids may become darker as the unit grids are closer to the unit grid FL where the moving body 20 is present. According to this, even if the blind spot in the display image VI is large, the image generation unit 120 can clarify the position of the moving object 20 in the display image VI.
  • the image generation unit 120 may apply an effect such as highlighting or hatching to the unit grid FL in which the moving object 20 exists instead of the color. Even in such a case, the image generation unit 120 can similarly clarify the position of the moving body 20 within the display image VI.
  • the image generation unit 120 may change the line width of the grid Gd according to the position of the moving object 20. Specifically, the image generation unit 120 may make the line width of the grid Gd thinner in proportion to the distance from the moving object 20. According to this, the image generation unit 120 can improve the visibility of the grid Gd in the display image VI, and can make it easier to understand the sense of distance in the display image VI by the line width of the grid Gd.
  • the image generation unit 120 may change the line width of the grid Gd in the traveling direction of the moving body 20, and may change the line width of the grid Gd in the traveling direction of the moving body 20 as well as in the direction perpendicular to the traveling direction of the moving body 20. You may change the line width.
  • the image generation unit 120 may adjust the color tone or brightness of the lines of the grid Gd based on the surrounding environment of the moving body 20 (for example, the color of the running surface). Specifically, the image generation unit 120 adjusts the color or brightness of the lines of the grid Gd so that the color or brightness has a higher contrast with the color or brightness of the surrounding environment of the moving object 20. Good too. According to this, the image generation unit 120 can further improve the visibility of the grid Gd in the display image VI.
  • the color or brightness of the surrounding environment of the moving object 20 may be determined by, for example, the average value of the color or brightness of each pixel of the environment image EI, or the average value of the color or brightness of each pixel of the running surface of the moving object 20. An average value may be used.
  • the image generation unit 120 may adjust the brightness of the lines of the grid Gd to be higher. As another example, when the average value of the brightness of the surrounding environment of the moving body 20 is high, the image generation unit 120 may adjust the brightness of the lines of the grid Gd to be lower. As another example, the image generation unit 120 may adjust the color tone of the lines of the grid Gd so that the color tone is complementary to the average color tone of the surrounding environment of the moving body 20.
  • FIG. 15 is a schematic diagram showing a display image VI in the third modification.
  • the image generation unit 120 may generate a display image VIA including each of the environmental images EI1 and EI2 captured by the plurality of imaging units 210.
  • the image generation unit 120 has a unit grid of the same size in the imaged space and the same size for each of the environmental images EI1 and EI2 captured by the plurality of imaging units 210.
  • the grids Gd of the coordinate system can be superimposed on each other.
  • the environmental images EI1 and EI2 captured by the plurality of imaging units 210 may have different viewpoints or scales. Therefore, the image generation unit 120 deforms the grid Gd fixed on the imaged space according to the scale and superimposes it on each of the environmental images EI1 and EI2, thereby changing the position and position of each of the environmental images EI1 and EI2. This makes it easier to understand the relationship between scales.
  • the image generation unit 120 when an environmental image EI1 that captures the front of the moving body 20 and an environmental image EI2 that captures the feet of the moving body 20 are captured, the image generation unit 120 generates the environmental image EI1. , EI2, the grid Gd may be superimposed on the running surface of each moving body 20. According to this, the image generation unit 120 generates the display image VIA in which the positional relationship and scale relationship between the environmental image EI1 and the environmental image EI2 are easier to understand from the size and arrangement of the unit cells of the grid Gd. be able to.
  • the image generation unit 120 when a low-resolution environmental image and a high-resolution environmental image obtained by enlarging a part of the low-resolution environmental image are captured, the image generation unit 120 generates a unit of the same size for each of the environmental images. Grids Gd having a grid and having the same coordinate system may be superimposed. According to this, the image generation unit 120 can more easily understand the consistency, continuity, and correspondence between the low-resolution environmental image and the high-resolution environmental image from the size and arrangement of the unit cells of the grid Gd. It is possible to generate a display image that looks like this.
  • the fourth modification is a modification in which the grid Gd is expanded from a two-dimensional plane to a three-dimensional space.
  • FIG. 16 is a schematic diagram showing an example of a display image VIB in which a two-dimensional grid is superimposed at a predetermined height position in a three-dimensional space.
  • the image generation unit 120 superimposes the grid Gd at an arbitrary height of the environmental image (in FIG. 16, the height of the face of the person 61), not limited to the running surface of the moving object 20.
  • a display image VIB may also be generated. In such a case, the image generation unit 120 can generate a display image VIB that makes it easier to understand the sense of distance to an object that is located at a high position away from the running surface of the moving body 20.
  • the image generation unit 120 may superimpose the grid Gd at the flight height of the moving object 20 on an environmental image captured by the flying moving object 20 such as a drone. According to this, the image generation unit 120 can support the operator 40 to remotely control the flyable mobile object 20 such as a drone.
  • the image generation unit 120 may superimpose the grid Gd on the environmental image captured by the moving body 20 equipped with the manipulator at a height where the end effector of the manipulator is present. According to this, the image generation unit 120 can support the operator 40 to remotely control the manipulator mounted on the moving body 20.
  • FIG. 17 is a schematic diagram showing an example of a display image VIC in which a three-dimensional grid having a rectangular parallelepiped unit grid is superimposed on an environmental image captured by the imaging unit 210 of the moving body 20.
  • the image generation unit 120 generates a unit grid of a rectangular parallelepiped in the front direction of the mobile body 20, in the side direction perpendicular to the front direction, and Three-dimensional grids arranged in the height direction of the moving body 20 may be superimposed.
  • the size of the unit grid in the front direction of the movable body 20 and in the side direction perpendicular to the front direction may be set based on the total length and width of the movable body 20.
  • the size of the unit grid in the height direction of the moving body 20 may be set based on the height of the moving body 20.
  • the image generation unit 120 when the operator 40 remotely controls the moving body 20, the image generation unit 120 generates the display image VIC that allows the operator 40 to determine whether or not the moving body 20 can pass in the height direction. be able to.
  • the remotely controlled moving object 20 is a flying moving object such as a drone
  • the moving object 20 is also movable in the height direction. Therefore, it is desirable that the image generation unit 120 generates a display image VIC in which a three-dimensional grid is superimposed on an environmental image.
  • the environmental image EI and the grid Gd drawn based on the self-position of the mobile object 20 are displayed in synchronization with good timing.
  • the grid Gd drawn based on the self-position There is a possibility that the environmental image EI and the environmental image EI may not be synchronized.
  • the information processing device 10 may adjust the difference between each delay amount using a fixed value.
  • the information processing device 10 acquires the calculation time of the self-position of the mobile object 20 and the imaging time of the environmental image EI. It's okay. According to this, the information processing device 10 can grasp the absolute delay amount of the self-position of the mobile object 20 and the absolute delay amount of the environmental image EI from these times. Therefore, the information processing device 10 is able to synchronize the environmental image EI and the grid Gd drawn based on the self-position of the moving body 20 by adjusting the timing to the one with the larger amount of delay.
  • the information processing device 10 adjusts the color tone or thickness of the lines constituting the grid Gd so that it blends in with the environmental image EI. may be adjusted. This is because in the environment image EI with a low resolution, the display of the superimposed grid Gd is emphasized, which may make it difficult to recognize the environment image EI itself. Furthermore, when the running surface is configured in a checkered pattern using tiles or the like, the grid Gd and the checkered pattern of the tiles coexist, which may make it difficult to distinguish and visually recognize the two. In such a case, the information processing device 10 may detect a grid pattern on the running surface and superimpose the grid Gd on the environmental image EI so that the grid pattern and the grid Gd overlap.
  • the information processing device 10 when it is required to remotely control the mobile object 20 with higher precision, the information processing device 10 notifies the operator 40 of some information when the mobile object 20 crosses the lines forming the grid Gd. Good too. Specifically, the information processing device 10 may add momentary vertical shaking to the display image VI when the moving object 20 crosses the lines forming the grid Gd. Furthermore, when the moving object 20 crosses over the lines forming the grid Gd, the information processing device 10 may output a sound that makes it sound like the moving body 20 has crossed the line that makes up the grid Gd, and may output vibrations that make it sound like the moving body 20 has gone over the seam. You can also output it to a sheet.
  • the information processing device 10 adds the sub-grid Sd only to the area of the environmental image EI where the pitch of the uneven shapes on the running surface is large. It may be superimposed on Further, the information processing device 10 may supplementarily superimpose an additional sub-grid whose unit grid size is smaller than the sub-grid Sd on the area of the environmental image EI. Furthermore, the information processing device 10 may choose not to superimpose the grid Gd on a partial area of the environmental image EI in order to indicate that the mobile object 20 cannot travel in the partial area.
  • the information processing device 10 may choose to hide the grid Gd under specific conditions in order to prevent the environmental image EI from becoming difficult to view due to the superimposition of the grid Gd.
  • the information processing device 10 may select to hide the grid Gd until the moving body 20 resumes movement, if a predetermined time has passed after the moving body 20 stops moving.
  • the information processing device 10 may decide not to hide the grid Gd when it is determined that the operator 40 is proficient in remote control of the moving body 20 because there are few sudden accelerations and decelerations of the moving body 20. You may choose.
  • the information processing device 10 may choose to hide the grid Gd until the operator 40 inputs a request to display the grid Gd.
  • the communication quality of the network 30 is unstable and it is difficult to superimpose the environmental image EI and the grid Gd in consideration of delay, the information processing device 10 may hide the grid Gd. You may choose to do so.
  • the technology according to the present disclosure is applicable not only to the moving object 20 but also to wearable devices such as a powered suit or a power assist suit in which the operator 40's feeling of operation or size changes before and after wearing the device.
  • (1) comprising an image generation unit that generates a display image in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object; Information processing device.
  • (2) The size of the unit grid of the grid is determined based on the area occupied by the moving body on the running surface, the movement step width of the moving body, or the size of a predetermined object existing in the usage environment of the moving body.
  • the information processing device according to any one of (1) to (6), further comprising a grid deformation unit that expands or contracts the size of the unit grid of the grid based on the moving speed of the moving body.
  • a grid deformation unit that expands or contracts the size of the unit grid of the grid based on the moving speed of the moving body.
  • the grid deforming section expands or reduces the size of the unit grid of the grid in the traveling direction of the moving body in proportion to the moving speed of the moving body. .
  • the grid deformation unit expands or contracts the size of the unit grid of the grid when the moving speed of the moving body is equal to or higher than a threshold value.
  • the image generation unit further superimposes a sub-grid having a unit cell having a size a fraction of the unit cell of the grid on the environmental image, according to any one of (1) to (9) above.
  • (11) The information processing device according to (10), wherein the sub-grid is expressed by lines that are different from the grid in at least one of line type, color, or width.
  • (12) The information processing according to (10) or (11), wherein the image generation unit increases the transparency of the sub-grid based on the moving speed of the moving object when the moving speed of the moving object is equal to or higher than a threshold value.
  • Device (13) The information processing device according to any one of (1) to (12), wherein the image generation unit changes the color of the unit grid in which the moving object is present.
  • the information processing device changes the line width of the grid depending on the position of the moving object.
  • the grid is a three-dimensional grid in which the unit grids of rectangular parallelepipeds are arranged in the front direction of the movable body, in the side direction perpendicular to the front direction, and in the height direction of the movable body, 14) The information processing device according to any one of item 14).
  • the image generation unit generates the display images in which the grid having the unit grid having the same coordinate system and the same size is superimposed on the environmental images captured by the different imaging devices, respectively.
  • the information processing device according to any one of (1) to (16).
  • Information processing device 20 Mobile object 30 Network 40 Operator 110 Communication unit 120 Image generation unit 130 Grid transformation unit 140 Display unit 210 Imaging unit 220 Sensor unit 230 Drive unit 240 Output unit 250 Control unit 260 Communication unit EI Environmental image VI Display image Gd Grid Sd Subgrid

Abstract

[Problem] To cause an operator to intuitively get a feel for operating a mobile body that is present in an unknown environment. [Solution] This information processing device comprises an image generation unit which generates a display image which superposes a grid, which has a unit grid of a size corresponding to the mobile body, on environment images captured by one or greater number of image-capturing devices mounted on the mobile body.

Description

情報処理装置、及び情報処理方法Information processing device and information processing method
 本開示は、情報処理装置、及び情報処理方法に関する。 The present disclosure relates to an information processing device and an information processing method.
 近年、ロボットなどの移動体において、遠隔地に存在する移動体をオペレータに遠隔操作させる技術が開発されている。例えば、オペレータは、移動体に搭載された撮像装置にて撮像された移動体の主観視点画像を視認することで、移動体を遠隔操作することができる。 In recent years, technology has been developed that allows an operator to remotely control a mobile object such as a robot in a remote location. For example, an operator can remotely control a moving object by viewing a subjective viewpoint image of the moving object captured by an imaging device mounted on the moving object.
 また、オペレータが視認する移動体の主観視点画像に様々なガイドを重畳させることで、オペレータの遠隔操作を補助する技術が検討されている。 In addition, technologies are being considered to assist the operator in remote operation by superimposing various guides on the subjective viewpoint image of the moving object that the operator visually recognizes.
 例えば、下記の特許文献1には、オペレータによって遠隔操作される作業機械にて撮像された作業平面の画像に凹凸形状に沿った格子画像を合成し、合成後の画像をオペレータに視認させる技術が開示されている。これによれば、オペレータは、作業平面に対する距離感をより容易に把握することができるため、作業機械をより適切に遠隔操作することができる。 For example, Patent Document 1 below describes a technology that combines a grid image along an uneven shape with an image of a work plane captured by a work machine remotely controlled by an operator, and allows the operator to visually recognize the combined image. Disclosed. According to this, the operator can more easily grasp the sense of distance to the work plane, and therefore can more appropriately remotely control the work machine.
特開2016-160741号公報Japanese Patent Application Publication No. 2016-160741
 一方で、移動体を遠隔操作するオペレータは、移動体の主観視点画像から移動体の大きさ又は移動特性を把握することが難しいため、移動体の操作感覚を把握するまでに時間が掛かることがある。このような場合、オペレータは、移動体の操作感覚を把握するまでの間、移動体の移動性能を十分に活用して移動体を遠隔操作することが困難となってしまう。特に、オペレータが様々な大きさ又は移動特性の移動体を遠隔操作する場合、移動体の各々の操作感覚に瞬時に適応することはより困難となる。 On the other hand, it is difficult for an operator who remotely controls a moving object to understand the size or movement characteristics of the moving object from a subjective viewpoint image of the moving object, so it may take time to understand the feeling of operating the moving object. be. In such a case, it becomes difficult for the operator to fully utilize the movement performance of the moving object to remotely control the moving object until the operator understands the feeling of operating the moving object. In particular, when an operator remotely controls moving objects of various sizes or movement characteristics, it becomes more difficult to instantaneously adapt to the operating sensation of each moving object.
 そこで、未知環境に存在する移動体の操作感覚をオペレータにより直感的に把握させることが可能な技術が求められていた。 Therefore, there is a need for technology that allows operators to intuitively grasp the feeling of operating a moving object in an unknown environment.
 本開示によれば、移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成する画像生成部を備える、情報処理装置が提供される。 According to the present disclosure, a display image is generated in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object. An information processing device is provided that includes an image generation section.
 また、本開示によれば、演算装置によって、移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成することを含む、情報処理方法が提供される。 Further, according to the present disclosure, the computing device superimposes a grid having a unit grid having a size corresponding to the moving object on an environmental image captured by at least one imaging device mounted on the moving object. An information processing method is provided that includes generating a displayed display image.
本開示の一実施形態に係る情報処理装置を含む遠隔操作システムの全体構成を示す模式図である。1 is a schematic diagram showing the overall configuration of a remote control system including an information processing device according to an embodiment of the present disclosure. 移動体及び情報処理装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a mobile object and an information processing device. 移動体の周囲の環境の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of an environment around a moving body. 図3に示す環境において、移動体に搭載された撮像部が撮像する環境画像の一例を示す模式図である。4 is a schematic diagram illustrating an example of an environmental image captured by an imaging unit mounted on a moving body in the environment illustrated in FIG. 3. FIG. 環境画像から画像生成部が生成する表示画像の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a display image generated by an image generation unit from an environmental image. 環境画像に重畳されるグリッドの単位格子の大きさを説明する模式図である。FIG. 2 is a schematic diagram illustrating the size of a unit cell of a grid superimposed on an environmental image. 環境画像に重畳されるグリッドの座標系の一例を説明する模式図である。FIG. 3 is a schematic diagram illustrating an example of a coordinate system of a grid superimposed on an environmental image. 環境画像に重畳されるグリッドの座標系の他の例を説明する模式図である。FIG. 7 is a schematic diagram illustrating another example of a coordinate system of a grid superimposed on an environmental image. 単位格子の大きさを伸長させたグリッドの一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a grid in which the size of a unit cell is expanded. 移動体の移動速度と、グリッドの伸長量との関係を示すグラフ図である。FIG. 3 is a graph diagram showing the relationship between the moving speed of a moving body and the amount of expansion of a grid. 単位格子の大きさを縮小させたグリッドの一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a grid in which the size of a unit cell is reduced. 移動体の移動速度と、グリッドの縮小量との関係を示すグラフ図である。FIG. 3 is a graph diagram showing the relationship between the moving speed of a moving body and the amount of reduction of a grid. 移動体が斜め移動する場合のグリッドの単位格子の変形の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of deformation of a unit cell of a grid when a moving body moves diagonally. 同実施形態に係る情報処理装置の動作の流れを示すフローチャート図である。FIG. 3 is a flowchart showing the flow of operations of the information processing device according to the embodiment. 第1の変形例において、環境画像に重畳されるグリッド、及びサブグリッドを説明する模式図である。FIG. 7 is a schematic diagram illustrating a grid and subgrids superimposed on an environmental image in a first modification. 移動体の移動速度に対するサブグリッドの表示レベルの関係を示すグラフ図である。FIG. 3 is a graph diagram showing the relationship between the display level of a subgrid and the moving speed of a moving object. 第2の変形例において、環境画像に重畳されるグリッドを説明する模式図である。FIG. 7 is a schematic diagram illustrating a grid superimposed on an environmental image in a second modification. 第3の変形例における表示画像を示す模式図である。It is a schematic diagram which shows the display image in the 3rd modification. 第4の変形例において、二次元グリッドを三次元空間内の所定の高さ位置に重畳した表示画像の一例を示す模式図である。FIG. 7 is a schematic diagram showing an example of a display image in which a two-dimensional grid is superimposed at a predetermined height position in a three-dimensional space in a fourth modification. 第4の変形例において、移動体の撮像部で撮像された環境画像に直方体の単位格子を有する三次元グリッドを重畳した表示画像の一例を示す模式図である。FIG. 12 is a schematic diagram showing an example of a display image in which a three-dimensional grid having a rectangular parallelepiped unit grid is superimposed on an environmental image captured by an imaging unit of a moving body in a fourth modification.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.
 なお、説明は以下の順序で行うものとする。
 1.構成例
  1.1.全体構成
  1.2.情報処理装置の構成
 2.動作例
 3.変形例
  3.1.第1の変形例
  3.2.第2の変形例
  3.3.第3の変形例
  3.4.第4の変形例
Note that the explanation will be given in the following order.
1. Configuration example 1.1. Overall configuration 1.2. Configuration of information processing device 2. Operation example 3. Variation 3.1. First modification 3.2. Second modification 3.3. Third modification 3.4. Fourth modification
 <1.構成例>
 (1.1.全体構成)
 まず、図1を参照して、本開示の一実施形態に係る情報処理装置を含む遠隔操作システムの全体構成について説明する。図1は、本実施形態に係る情報処理装置を含む遠隔操作システムの全体構成を示す模式図である。
<1. Configuration example>
(1.1. Overall composition)
First, with reference to FIG. 1, the overall configuration of a remote control system including an information processing apparatus according to an embodiment of the present disclosure will be described. FIG. 1 is a schematic diagram showing the overall configuration of a remote control system including an information processing apparatus according to this embodiment.
 図1に示すように、遠隔操作システムは、移動体20と、ネットワーク30を介して移動体20に接続された情報処理装置10とを含む。 As shown in FIG. 1, the remote control system includes a mobile body 20 and an information processing device 10 connected to the mobile body 20 via a network 30.
 移動体20は、オペレータ40による情報処理装置10への入力によって遠隔操作されるロボットである。移動体20は、車輪式、脚式、又は脚車輪式のロボットであってもよく、回転翼式又は空気浮揚式のドローンであってもよい。移動体20は、例えば、移動体20に搭載された撮像装置にて撮像された環境画像を情報処理装置10に送信すると共に、情報処理装置10から入力された遠隔操作指示を受信することができる。なお、移動体20は、周囲の環境のセンシング結果に基づいて自律的に移動可能であってもよい。 The mobile object 20 is a robot that is remotely controlled by input to the information processing device 10 by the operator 40. The mobile object 20 may be a wheeled, legged, or legged and wheeled robot, or may be a rotary wing or air-levitating drone. The mobile body 20 can, for example, transmit an environmental image captured by an imaging device mounted on the mobile body 20 to the information processing device 10 and receive a remote operation instruction input from the information processing device 10. . Note that the mobile body 20 may be able to move autonomously based on sensing results of the surrounding environment.
 情報処理装置10は、オペレータ40が移動体20を遠隔操作する際に使用する端末装置である。情報処理装置10は、例えば、パーソナルコンピュータ(Personal Computer: PC)、タブレット、又はスマートフォンなどであってもよい。情報処理装置10は、例えば、移動体20から受信した移動体20の周囲の環境画像をオペレータ40に提示すると共に、オペレータ40から移動体20への遠隔操作指示を受け付け、受け付けた遠隔操作指示を移動体20に送信することができる。 The information processing device 10 is a terminal device used by the operator 40 to remotely control the mobile body 20. The information processing device 10 may be, for example, a personal computer (PC), a tablet, a smartphone, or the like. For example, the information processing device 10 presents the operator 40 with an environmental image of the surroundings of the mobile body 20 received from the mobile body 20, receives a remote operation instruction from the operator 40 to the mobile body 20, and transmits the received remote operation instruction. It can be transmitted to the mobile body 20.
 ネットワーク30は、移動体20と、情報処理装置10とを相互にデータ送受信可能に接続する通信網である。ネットワーク30は、例えば、インターネット、衛星通信網、移動体通信網、LAN(Local Area Network)、又はWAN(Wide Area Network)などであってもよい。例えば、情報処理装置10は、有線通信を用いてネットワーク30に接続してもよい。一方、移動体20は、移動先の任意の位置でネットワーク30と接続するために、無線通信を用いてネットワーク30に接続してもよい。 The network 30 is a communication network that connects the mobile object 20 and the information processing device 10 so that they can mutually transmit and receive data. The network 30 may be, for example, the Internet, a satellite communication network, a mobile communication network, a LAN (Local Area Network), or a WAN (Wide Area Network). For example, the information processing device 10 may be connected to the network 30 using wired communication. On the other hand, the mobile body 20 may connect to the network 30 using wireless communication in order to connect to the network 30 at any location of the moving destination.
 (1.2.情報処理装置の構成)
 次に、図2を参照して、移動体20及び情報処理装置10の構成について説明する。図2は、移動体20及び情報処理装置10の機能構成を示すブロック図である。
(1.2. Configuration of information processing device)
Next, with reference to FIG. 2, the configurations of the mobile object 20 and the information processing device 10 will be described. FIG. 2 is a block diagram showing the functional configurations of the mobile object 20 and the information processing device 10.
 (移動体20)
 図2に示すように、移動体20は、例えば、撮像部210と、センサ部220と、駆動部230と、出力部240と、制御部250と、通信部260とを備える。移動体20は、撮像部210にて撮像された移動体20の周囲の環境画像を情報処理装置10に送信すると共に、情報処理装置10から送信された遠隔操作指示を受信することができる。
(Mobile object 20)
As shown in FIG. 2, the moving body 20 includes, for example, an imaging section 210, a sensor section 220, a driving section 230, an output section 240, a control section 250, and a communication section 260. The moving body 20 can transmit an environmental image around the moving body 20 captured by the imaging unit 210 to the information processing device 10, and can also receive a remote operation instruction transmitted from the information processing device 10.
 撮像部210は、移動体20の周囲の環境を撮像するカメラを含む。撮像部210は、例えば、RGBカメラ、ステレオカメラ、IRカメラ、又はサーモカメラを含んでもよい。撮像部210は、撮像方向が異なる複数のカメラを含んでもよく、種類の異なる複数のカメラを含んでもよい。 The imaging unit 210 includes a camera that images the environment around the moving body 20. The imaging unit 210 may include, for example, an RGB camera, a stereo camera, an IR camera, or a thermo camera. The imaging unit 210 may include multiple cameras with different imaging directions, or may include multiple cameras of different types.
 センサ部220は、移動体20の外部又は内部に関する情報をセンシング可能なセンサを含む。センサ部220は、例えば、ToF(Time of Flight)センサ、LiDAR(Light Detection And Ranging)、Radar(Radio Detecting And Ranging)、又は超音波センサなどの外界に存在するオブジェクトまでの距離を測定するセンサを含んでもよい。また、センサ部220は、例えば、外界の温度、湿度、照度、又は気圧などの環境に関する情報を測定するセンサを含んでもよい。さらに、センサ部220は、移動体20の位置、振動、傾き、速度、又は加速度などの移動体20の内部に関する情報を測定するセンサを含んでもよい。 The sensor unit 220 includes a sensor capable of sensing information about the outside or inside of the moving body 20. The sensor unit 220 includes a sensor that measures the distance to an object in the outside world, such as a ToF (Time of Flight) sensor, LiDAR (Light Detection And Ranging), Radar (Radio Detection And Ranging), or an ultrasonic sensor. May include. Further, the sensor unit 220 may include a sensor that measures information related to the environment, such as the temperature, humidity, illuminance, or atmospheric pressure of the outside world, for example. Furthermore, the sensor unit 220 may include a sensor that measures information regarding the inside of the moving body 20, such as the position, vibration, tilt, speed, or acceleration of the moving body 20.
 駆動部230は、制御部250による制御に基づいて、移動体20を任意の位置に移動させることが可能な移動機構である。駆動部230は、例えば、車輪式、脚式、脚車輪式、クローラ式、又はエアクッション式などの種々の方式の移動機構であってもよく、回転翼などの空中を移動可能な移動機構であってもよく、スクリューなどの水上又は水中を移動可能な移動機構であってもよい。 The drive unit 230 is a moving mechanism that can move the moving body 20 to an arbitrary position based on the control by the control unit 250. The drive unit 230 may be a moving mechanism of various types such as a wheel type, a leg type, a leg wheel type, a crawler type, or an air cushion type, and may be a moving mechanism capable of moving in the air such as a rotary wing. Alternatively, it may be a moving mechanism such as a screw that can move on or under water.
 出力部240は、制御部250の制御に基づいて、種々の情報を画像又は音声にて出力する。出力部240は、例えば、種々の情報を画像にて出力する液晶ディスプレイ(Liquid Crystal Display: LCD)装置、OLED(Organic Light Emitting Diode)ディスプレイ装置、又は種々の情報を発光にて出力するランプなどを含んでもよい。また、出力部240は、例えば、種々の情報を音声にて移動体20の周囲に出力するスピーカを含んでもよい。 The output unit 240 outputs various information in the form of images or sounds based on the control of the control unit 250. The output unit 240 may include, for example, a liquid crystal display (LCD) device that outputs various information in the form of images, an OLED (organic light emitting diode) display device, or a lamp that outputs various information in the form of light emission. May include. Further, the output unit 240 may include, for example, a speaker that outputs various information as audio to the surroundings of the moving body 20.
 制御部250は、移動体20の動作全般を制御する。制御部250は、例えば、CPU(Central Processing Unit)、RAM(Read Only Memory)、及びROM(Read Only Memory)などのハードウェアと、移動体20の制御プログラムを含むソフトウェアとによって構成される。制御部250は、センサ部220のセンシング結果に基づいて移動体20の自己位置を推定すると共に、移動体20の行動計画を作成し、作成した行動計画に基づいて駆動部230を駆動させてもよい。 The control unit 250 controls the overall operation of the moving body 20. The control unit 250 is configured by, for example, hardware such as a CPU (Central Processing Unit), a RAM (Read Only Memory), and a ROM (Read Only Memory), and software including a control program for the mobile body 20. The control unit 250 estimates the self-position of the mobile body 20 based on the sensing result of the sensor unit 220, creates an action plan for the mobile body 20, and drives the drive unit 230 based on the created action plan. good.
 通信部260は、ネットワーク30に接続するための通信インターフェースである。通信部260は、例えば、ネットワーク30に無線で接続可能な通信インターフェースであってもよい。通信部260は、移動体通信網又は無線LANなどの他のネットワーク、又は基地局を介してネットワーク30に接続可能な通信インターフェースであってもよい。 The communication unit 260 is a communication interface for connecting to the network 30. The communication unit 260 may be, for example, a communication interface that can be connected to the network 30 wirelessly. The communication unit 260 may be a communication interface connectable to the network 30 via another network such as a mobile communication network or a wireless LAN, or a base station.
 (情報処理装置10)
 情報処理装置10は、例えば、通信部110と、画像生成部120と、グリッド変形部130と、表示部140とを備える。情報処理装置10は、移動体20の周囲の環境画像を移動体20から受信すると共に、オペレータ40から情報処理装置10に入力された移動体20への遠隔操作指示を移動体20に送信することができる。
(Information processing device 10)
The information processing device 10 includes, for example, a communication section 110, an image generation section 120, a grid modification section 130, and a display section 140. The information processing device 10 receives an environmental image around the moving object 20 from the moving object 20, and also transmits to the moving object 20 a remote operation instruction for the moving object 20 that is input from the operator 40 to the information processing device 10. I can do it.
 通信部110は、ネットワーク30に接続するための通信インターフェースである。通信部110は、例えば、ネットワーク30に有線で接続可能な通信インターフェースであってもよい。通信部110は、有線LANなどの他のネットワークを介してネットワーク30に接続可能な通信インターフェースであってもよい。 The communication unit 110 is a communication interface for connecting to the network 30. The communication unit 110 may be, for example, a communication interface connectable to the network 30 by wire. The communication unit 110 may be a communication interface connectable to the network 30 via another network such as a wired LAN.
 画像生成部120は、移動体20から受信した移動体20の周囲の環境画像に対して、移動体20に応じた大きさの単位格子を有するグリッドを重畳することで、オペレータ40に提示される表示画像を生成する。具体的には、画像生成部120は、移動体20の大きさ、移動特性、又は用途に基づく大きさの単位格子を有するグリッドを移動体20の周囲の環境画像に重畳することで、表示画像を生成する。これによれば、情報処理装置10は、グリッドが重畳された表示画像によってオペレータ40に移動体20の大きさ又は移動特性を直感的に把握させることができるため、オペレータ40に移動体20の操作感覚をより容易に把握させることができる。 The image generation unit 120 superimposes a grid having a unit grid of a size corresponding to the moving object 20 on the environmental image surrounding the moving object 20 received from the moving object 20, thereby presenting the image to the operator 40. Generate display images. Specifically, the image generation unit 120 creates a display image by superimposing a grid having a unit grid with a size based on the size, movement characteristics, or purpose of the moving object 20 on the environmental image around the moving object 20. generate. According to this, the information processing device 10 allows the operator 40 to intuitively grasp the size or movement characteristics of the moving body 20 by using the display image on which the grid is superimposed, so the information processing device 10 allows the operator 40 to operate the moving body 20. Feelings can be grasped more easily.
 ここで、画像生成部120の動作について、図3~図7Bを参照してより詳細に説明する。図3は、画像生成部120の動作の説明のための移動体20の周囲の環境の一例を示す模式図である。図4は、図3に示す環境において、移動体20に搭載された撮像部210が撮像する環境画像EIの一例を示す模式図である。図5は、環境画像EIから画像生成部120が生成する表示画像VIの一例を示す模式図である。図6は、環境画像EIに重畳されるグリッドGdの単位格子の大きさを説明する模式図である。図7Aは、環境画像EIに重畳されるグリッドの座標系の一例を説明する模式図である。図7Bは、環境画像EIに重畳されるグリッドの座標系の他の例を説明する模式図である。 Here, the operation of the image generation unit 120 will be explained in more detail with reference to FIGS. 3 to 7B. FIG. 3 is a schematic diagram showing an example of the environment around the moving body 20 for explaining the operation of the image generation unit 120. FIG. 4 is a schematic diagram showing an example of an environment image EI captured by the imaging unit 210 mounted on the moving object 20 in the environment shown in FIG. FIG. 5 is a schematic diagram showing an example of a display image VI generated by the image generation unit 120 from the environmental image EI. FIG. 6 is a schematic diagram illustrating the size of a unit cell of the grid Gd superimposed on the environment image EI. FIG. 7A is a schematic diagram illustrating an example of a coordinate system of a grid superimposed on the environmental image EI. FIG. 7B is a schematic diagram illustrating another example of the coordinate system of the grid superimposed on the environmental image EI.
 例えば、図3に示すように、移動体20がテーブル62の上に載置されており、テーブル62の先に人物61が座っている環境を想定する。このような場合、移動体20に搭載される撮像部210にて撮像される環境画像EIには、図4に示すように、テーブル62の天板、及び人物61が映っている。移動体20は、撮像された環境画像EIを情報処理装置10に送信することができる。 For example, as shown in FIG. 3, assume an environment in which the moving body 20 is placed on a table 62 and a person 61 is sitting in front of the table 62. In such a case, the top of the table 62 and the person 61 are captured in the environmental image EI captured by the imaging unit 210 mounted on the moving body 20, as shown in FIG. The mobile object 20 can transmit the captured environmental image EI to the information processing device 10.
 情報処理装置10の画像生成部120は、図5に示すように、受信した環境画像EIに対して、移動体20の走行面であるテーブル62の天板上面を含む平面にグリッドGdを重畳することで、オペレータ40に提示される表示画像VIを生成することができる。これによれば、表示画像VIを視認したオペレータ40は、グリッドGdの位置によって移動体20の走行面をより明確に把握することができる。 As shown in FIG. 5, the image generation unit 120 of the information processing device 10 superimposes a grid Gd on a plane including the top surface of the table 62, which is the traveling surface of the moving body 20, on the received environmental image EI. By doing so, the display image VI to be presented to the operator 40 can be generated. According to this, the operator 40 who visually recognized the display image VI can more clearly grasp the running surface of the moving body 20 based on the position of the grid Gd.
 また、画像生成部120は、表示画像VIのうち移動体20が走行可能な領域にのみにグリッドGdを重畳してもよい。例えば、画像生成部120は、図5に示す表示画像VIでは、移動体20が走行可能なテーブル62の天板上面にのみグリッドGdを重畳してもよい。これによれば、画像生成部120は、表示画像VIにて移動体20が走行可能な領域をより明確に表現することができる。 Furthermore, the image generation unit 120 may superimpose the grid Gd only on the region of the display image VI where the moving object 20 can travel. For example, in the display image VI shown in FIG. 5, the image generation unit 120 may superimpose the grid Gd only on the top surface of the table 62 on which the moving object 20 can travel. According to this, the image generation unit 120 can express more clearly the area in which the mobile object 20 can run in the display image VI.
 さらに、画像生成部120は、移動体20が走行可能な領域に障害物が存在する場合、障害物の表面形状に沿って障害物を覆うようにグリッドGdを重畳してもよい。これによれば、画像生成部120は、表示画像VIにて移動体20が走行可能な領域に存在する障害物をより明確に表現することができる。 Furthermore, if an obstacle exists in the area where the moving body 20 can travel, the image generation unit 120 may superimpose the grid Gd so as to cover the obstacle along the surface shape of the obstacle. According to this, the image generation unit 120 can express more clearly the obstacles that exist in the area where the mobile object 20 can travel in the display image VI.
 なお、移動体20の走行面は、移動体20のセンサ部220によるセンシング結果(特に、測距センサによるセンシング結果)を解析することで認識され得る。または、移動体20の走行面は、移動体20の撮像部210にて撮像された環境画像EIを画像解析することで認識され得る。 Note that the running surface of the moving body 20 can be recognized by analyzing the sensing results by the sensor section 220 of the moving body 20 (particularly the sensing results by the distance measuring sensor). Alternatively, the running surface of the moving body 20 can be recognized by image analysis of the environmental image EI captured by the imaging unit 210 of the moving body 20.
 環境画像EIに重畳されるグリッドGdの単位格子は、矩形形状であってもよい。グリッドGdは、矩形形状の単位格子を移動体20の正面方向、及び正面方向と直交する側面方向にそれぞれ配列することで構成されてもよい。例えば、図6に示すように、環境画像EIに重畳されるグリッドGdは、移動体20の正面方向をy方向とし、移動体20の側面方向をx方向とするxy平面に矩形形状の単位格子を行列状に配列することで構成されてもよい。 The unit cell of the grid Gd superimposed on the environment image EI may have a rectangular shape. The grid Gd may be configured by arranging rectangular unit grids in the front direction of the moving body 20 and in the side direction perpendicular to the front direction. For example, as shown in FIG. 6, the grid Gd superimposed on the environmental image EI is a rectangular unit grid on the xy plane with the front direction of the moving body 20 as the y direction and the side direction of the moving body 20 as the x direction. may be configured by arranging them in a matrix.
 ただし、グリッドGdの単位格子の形状は、上記例示に限定されない。グリッドGdの単位格子の形状は、単一形状にて平面充填が可能な他の多角形形状であってもよい。例えば、グリッドGdの単位格子の形状は、三角形、平行四辺形、菱形、又は六角形であってもよい。 However, the shape of the unit cell of the grid Gd is not limited to the above example. The shape of the unit cell of the grid Gd may be another polygonal shape that can be filled in a plane with a single shape. For example, the shape of the unit cell of the grid Gd may be a triangle, a parallelogram, a rhombus, or a hexagon.
 グリッドGdの単位格子の大きさは、移動体20の大きさ、移動特性、又は用途に基づいて移動体20ごとに決定される。これによれば、オペレータ40は、表示画像VIに重畳されたグリッドGdによって移動体20の大きさ又は移動特性を直感的に把握することができるため、移動体20の操作感覚をより容易に把握することができる。なお、移動体20の大きさ、移動特性、又は用途に関する情報は、例えば、通信部110を介して、移動体20から取得することが可能である。 The size of the unit cell of the grid Gd is determined for each moving object 20 based on the size, movement characteristics, or use of the moving object 20. According to this, the operator 40 can intuitively grasp the size or movement characteristics of the moving object 20 by the grid Gd superimposed on the display image VI, and therefore can more easily grasp the feeling of operating the moving object 20. can do. Note that information regarding the size, movement characteristics, or usage of the mobile body 20 can be acquired from the mobile body 20 via the communication unit 110, for example.
 一例として、グリッドGdの単位格子の大きさは、移動体20の走行面上の占有面積に基づいて決定されてもよい。例えば、移動体20が車輪式の移動体である場合、グリッドGdの単位格子の大きさは、移動体20の全長及び全幅に基づいて決定されてもよい。グリッドGdの単位格子は、より詳細には、移動体20の全長を長さとし、移動体20の全幅を幅とする矩形形状で構成されてもよく、前述した矩形形状を100%超120%以下に拡大した矩形形状で構成されてもよい。 As an example, the size of the unit cell of the grid Gd may be determined based on the area occupied by the moving body 20 on the running surface. For example, if the moving body 20 is a wheeled moving body, the size of the unit grid of the grid Gd may be determined based on the total length and width of the moving body 20. More specifically, the unit grid of the grid Gd may be configured in a rectangular shape whose length is the entire length of the moving body 20 and whose width is the entire width of the moving body 20, and the unit grid of the grid Gd may be configured in a rectangular shape whose length is the entire length of the moving body 20 and whose width is the entire width of the moving body 20, and the unit grid of the grid Gd is more than 100% and 120% or less of the above-mentioned rectangular shape. It may also be configured in a rectangular shape expanded to .
 他の例として、グリッドGdの単位格子の大きさは、移動体20の1回の駆動での移動量に基づいて決定されてもよい。例えば、移動体20が脚式の移動体である場合、グリッドGdの単位格子の大きさは、移動体20の1回の歩行ステップ幅に基づいて決定されてもよい。より詳細には、グリッドGdの単位格子は、移動体20の1回の歩行ステップ幅を長さとし、移動体20の全幅を幅とする矩形形状で構成されてもよく、前述した矩形形状を100%超120%以下に拡大した矩形形状で構成されてもよい。 As another example, the size of the unit cell of the grid Gd may be determined based on the amount of movement of the moving body 20 in one drive. For example, when the moving body 20 is a legged moving body, the size of the unit cell of the grid Gd may be determined based on the width of one walking step of the moving body 20. More specifically, the unit grid of the grid Gd may be configured in a rectangular shape whose length is the width of one walking step of the moving body 20 and whose width is the entire width of the moving body 20, and the above-mentioned rectangular shape is It may be configured in a rectangular shape expanded by more than 120%.
 他の例として、グリッドGdの単位格子の大きさは、移動体20の使用環境に存在するオブジェクトの大きさに基づいて決定されてもよい。例えば、移動体20が手術中に遠隔操作される内視鏡カメラである場合、グリッドGdの単位格子の大きさは、内視鏡カメラに頻繁に映る術者の指(例えば、親指)の大きさに基づいて決定されてもよい。例えば、グリッドGdの単位格子は、人間の指(例えば、親指)の大きさを長さとし、移動体20の全幅を幅とする矩形形状で構成されてもよく、前述した矩形形状を100%超120%以下に拡大した矩形形状で構成されてもよい。 As another example, the size of the unit cell of the grid Gd may be determined based on the size of an object existing in the usage environment of the moving body 20. For example, when the moving body 20 is an endoscopic camera that is remotely controlled during surgery, the size of the unit cell of the grid Gd is the size of the surgeon's finger (for example, thumb) that is frequently seen on the endoscopic camera. It may be determined based on the For example, the unit grid of the grid Gd may be configured in a rectangular shape whose length is the size of a human finger (for example, a thumb) and whose width is the entire width of the moving body 20, and the unit cell of the grid Gd may be configured in a rectangular shape whose length is the size of a human finger (for example, a thumb) and whose width is the entire width of the moving body 20, and the unit cell of the grid Gd is more than 100% larger than the above-mentioned rectangular shape. It may be configured in a rectangular shape expanded by 120% or less.
 環境画像EIに重畳されるグリッドGdの座標系は、空間に固定されていてもよく、移動体20の移動に連動して移動又は回転されてもよい。 The coordinate system of the grid Gd superimposed on the environmental image EI may be fixed in space, or may be moved or rotated in conjunction with the movement of the moving body 20.
 一例として、環境画像EIに重畳されるグリッドGdの座標系は、走行面を含む空間に対して固定されていてもよい。例えば、図7Aに示すように、グリッドGdの座標系は、空間に対して固定される。移動体20は、単位格子の配列方向が固定されたグリッドGd上を自由に移動してもよい。 As an example, the coordinate system of the grid Gd superimposed on the environment image EI may be fixed with respect to the space including the running surface. For example, as shown in FIG. 7A, the coordinate system of the grid Gd is fixed in space. The moving body 20 may freely move on the grid Gd in which the direction in which the unit cells are arranged is fixed.
 他の例として、環境画像EIに重畳されるグリッドGdの座標系は、移動体20に対して固定されていてもよい。例えば、図7Bに示すように、グリッドGdの座標系は、移動体20の旋回に連動して、常に移動体20の正面方向及び側面方向にグリッドGdの単位格子が配列されるように回転してもよい。特に、目的地が指定されており、移動体20が目的地に遠隔操作移動ではなく自律移動する場合には、グリッドGdの座標系は、移動体20の進行方向をより明確にするために移動体20に対して固定されることが望ましい。 As another example, the coordinate system of the grid Gd superimposed on the environmental image EI may be fixed with respect to the moving body 20. For example, as shown in FIG. 7B, the coordinate system of the grid Gd rotates in conjunction with the rotation of the moving body 20 so that the unit grid of the grid Gd is always arranged in the front and side directions of the moving body 20. It's okay. In particular, when a destination is specified and the moving object 20 moves to the destination autonomously rather than by remote control, the coordinate system of the grid Gd is moved to make the moving direction of the moving object 20 clearer. Preferably, it is fixed relative to the body 20.
 グリッド変形部130は、移動体20の移動速度に基づいて、グリッドGdの単位格子の大きさを伸縮させる。具体的には、グリッド変形部130は、移動体20の移動速度に基づいて、移動体20の進行方向にグリッドGdの単位格子の大きさを伸長又は縮小させる。これによれば、情報処理装置10は、表示画像VIに重畳されたグリッドGdの単位格子の変形によって、オペレータ40に移動体20の移動速度を直感的に把握させることができる。よって、情報処理装置10は、オペレータ40に移動体20の操作感覚をより容易に把握させることができる。なお、移動体20の移動速度に関する情報は、例えば、通信部110を介して、移動体20から取得することが可能である。 The grid deformation unit 130 expands or contracts the size of the unit cell of the grid Gd based on the moving speed of the moving body 20. Specifically, the grid deforming unit 130 expands or reduces the size of the unit grid of the grid Gd in the traveling direction of the mobile body 20 based on the moving speed of the mobile body 20. According to this, the information processing device 10 allows the operator 40 to intuitively grasp the moving speed of the moving object 20 by deforming the unit cell of the grid Gd superimposed on the display image VI. Therefore, the information processing device 10 allows the operator 40 to more easily grasp the feeling of operating the moving body 20. Note that information regarding the moving speed of the moving body 20 can be acquired from the moving body 20 via the communication unit 110, for example.
 ここで、グリッド変形部130の動作について、図8A~図10を参照してより詳細に説明する。図8Aは、単位格子の大きさを伸長させたグリッドGdの一例を示す模式図である。図8Bは、移動体20の移動速度と、グリッドGdの伸長量との関係を示すグラフ図である。図9Aは、単位格子の大きさを縮小させたグリッドGdの一例を示す模式図である。図9Bは、移動体20の移動速度と、グリッドGdの縮小量との関係を示すグラフ図である。図10は、移動体20が斜め移動する場合のグリッドGdの単位格子の変形の一例を示す模式図である。 Here, the operation of the grid deforming section 130 will be explained in more detail with reference to FIGS. 8A to 10. FIG. 8A is a schematic diagram showing an example of a grid Gd in which the size of the unit cell is expanded. FIG. 8B is a graph diagram showing the relationship between the moving speed of the moving body 20 and the amount of expansion of the grid Gd. FIG. 9A is a schematic diagram showing an example of a grid Gd in which the size of the unit cell is reduced. FIG. 9B is a graph diagram showing the relationship between the moving speed of the moving body 20 and the amount of reduction of the grid Gd. FIG. 10 is a schematic diagram showing an example of deformation of the unit grid of the grid Gd when the moving body 20 moves diagonally.
 一例として、図8Aに示すように、グリッド変形部130は、移動体20の進行方向TDにおけるグリッドGdの単位格子の大きさdを移動体20の移動速度に比例して伸長させてもよい。例えば、図8Bのグラフに示されるように、グリッド変形部130は、移動体20の移動速度が閾値V以上である場合、グリッドGdの単位格子の大きさdを移動速度に比例して伸長させてもよい。これによれば、グリッド変形部130は、グリッドGdの単位格子の伸長によって移動体20の移動速度の上昇をオペレータ40に直感的に把握させることができる。 As an example, as shown in FIG. 8A, the grid deforming unit 130 may expand the size d of the unit grid of the grid Gd in the moving direction TD of the moving body 20 in proportion to the moving speed of the moving body 20. For example, as shown in the graph of FIG. 8B, when the moving speed of the moving object 20 is equal to or higher than the threshold value V1 , the grid deforming unit 130 expands the size d of the unit cell of the grid Gd in proportion to the moving speed. You may let them. According to this, the grid deforming unit 130 can make the operator 40 intuitively understand the increase in the moving speed of the moving body 20 by expanding the unit grid of the grid Gd.
 また、移動体20の移動速度が閾値V未満である場合、グリッド変形部130は、グリッドGdの単位格子の大きさdを伸長させずに、移動体20の大きさ、移動特性、又は用途に基づいて移動体20ごとに決定された大きさLのままとしてもよい。グリッド変形部130は、移動体20の移動速度が閾値V以上である場合にグリッドGdの単位格子の大きさdを伸長させることで、移動体20の低速移動時にグリッドGdの単位格子の大きさdが頻繁に変化してしまうことを抑制することができる。閾値Vは、例えば、移動体20の1秒当たりの移動距離がグリッドの大きさLを超える速度に設定されてもよい。 Further, when the moving speed of the moving body 20 is less than the threshold value V1 , the grid deforming unit 130 does not extend the size d of the unit cell of the grid Gd, and changes the size, movement characteristics, or application of the moving body 20. The size L determined for each mobile object 20 based on the above may be left unchanged. The grid deforming unit 130 expands the size d of the unit grid of the grid Gd when the moving speed of the moving body 20 is equal to or higher than a threshold value V1 , thereby changing the size of the unit grid of the grid Gd when the moving body 20 moves at a low speed. It is possible to suppress frequent changes in sd. The threshold value V 1 may be set, for example, to a speed at which the moving distance of the moving body 20 per second exceeds the grid size L.
 他の例として、図9Aに示すように、グリッド変形部130は、移動体20の進行方向TDにおけるグリッドGdの単位格子の大きさdを移動体20の移動速度に比例して縮小させてもよい。例えば、図9Bのグラフに示されるように、グリッド変形部130は、移動体20の移動速度が閾値V以上である場合、グリッドGdの単位格子の大きさdを移動速度に比例して縮小させてもよい。これによれば、グリッド変形部130は、グリッドGdの単位格子の縮小によって移動体20の移動速度の上昇をオペレータ40に直感的に把握させることができる。 As another example, as shown in FIG. 9A, the grid deforming unit 130 may reduce the size d of the unit grid of the grid Gd in the traveling direction TD of the moving body 20 in proportion to the moving speed of the moving body 20. good. For example, as shown in the graph of FIG. 9B, when the moving speed of the moving body 20 is equal to or higher than the threshold value V2 , the grid deforming unit 130 reduces the size d of the unit cell of the grid Gd in proportion to the moving speed. You may let them. According to this, the grid deforming unit 130 can make the operator 40 intuitively understand the increase in the moving speed of the moving object 20 by reducing the unit grid of the grid Gd.
 また、移動体20の移動速度が閾値V未満である場合、グリッド変形部130は、グリッドGdの単位格子の大きさdを縮小させずに、移動体20の大きさ、移動特性、又は用途に基づいて移動体20ごとに決定された大きさLのままとしてもよい。グリッド変形部130は、移動体20の移動速度が閾値V以上である場合にグリッドGdの単位格子の大きさdを縮小させることで、移動体20の低速移動時にグリッドGdの単位格子の大きさdが頻繁に変化してしまうことを抑制することができる。閾値Vは、例えば、移動体20の1秒当たりの移動距離がグリッドの大きさLを超える速度に設定されてもよい。 Further, when the moving speed of the moving object 20 is less than the threshold value V2 , the grid deforming unit 130 changes the size, movement characteristics, or application of the moving object 20 without reducing the size d of the unit cell of the grid Gd. The size L determined for each mobile object 20 based on the above may be left unchanged. The grid deformation unit 130 reduces the size d of the unit grid of the grid Gd when the moving body 20 moves at a low speed by reducing the size d of the unit grid of the grid Gd when the moving speed of the moving body 20 is equal to or higher than the threshold value V2. It is possible to suppress frequent changes in sd. The threshold value V 2 may be set, for example, to a speed at which the moving distance of the moving object 20 per second exceeds the grid size L.
 また、移動体20がグリッドGdの単位格子の配列方向と交差する斜め方向に移動する場合、グリッド変形部130は、グリッドGdの単位格子を該斜め方向に拡大又は縮小させてもよい。例えば、図10に示すように、移動体20の進行方向TDがグリッドGdの単位格子の配列方向であるy方向及びx方向の各々と交差する斜め方向である場合、グリッド変形部130は、グリッドGdの単位格子のy方向の大きさd、及びグリッドGdの単位格子のx方向の大きさdをそれぞれ伸長又は縮小させてもよい。 Further, when the moving body 20 moves in a diagonal direction that intersects the arrangement direction of the unit grids of the grid Gd, the grid deforming section 130 may expand or contract the unit grids of the grid Gd in the diagonal direction. For example, as shown in FIG. 10, when the moving direction TD of the moving body 20 is an oblique direction that intersects each of the y direction and the x direction, which are the arrangement directions of the unit cells of the grid Gd, the grid deforming section 130 The size d y of the unit cell of grid Gd in the y direction and the size d x of the unit cell of grid Gd in the x direction may be expanded or reduced, respectively.
 表示部140は、画像生成部120にて生成された表示画像VIを表示する表示装置である。オペレータ40は、表示部140を介して、移動体20の周囲の環境画像EIと、グリッドGdとが重畳された表示画像VIを視認することができる。これによれば、オペレータ40は、表示画像VIに含まれるグリッドGdから移動体20の大きさ又は移動特性に関する情報を認識することができるため、移動体20の操作感覚をより容易に把握することができる。表示部140は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、OLED(Organic Light Emitting Diode)ディスプレイ、ホログラム、若しくはプロジェクタなどの表示装置であってもよい。 The display unit 140 is a display device that displays the display image VI generated by the image generation unit 120. The operator 40 can visually recognize, via the display unit 140, the display image VI in which the environmental image EI around the moving object 20 and the grid Gd are superimposed. According to this, the operator 40 can recognize information regarding the size or movement characteristics of the moving body 20 from the grid Gd included in the display image VI, and therefore can more easily grasp the feeling of operating the moving body 20. I can do it. The display unit 140 may be a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Diode) display, a hologram, or a projector.
 <2.動作例>
 続いて、図11を参照して、本実施形態に係る情報処理装置10の動作例について説明する。図11は、本実施形態に係る情報処理装置10の動作の流れを示すフローチャート図である。
<2. Operation example>
Next, an example of the operation of the information processing device 10 according to this embodiment will be described with reference to FIG. 11. FIG. 11 is a flowchart showing the flow of operations of the information processing device 10 according to this embodiment.
 図11に示すように、まず、情報処理装置10は、ネットワーク30を介して、遠隔操作する移動体20に接続する(S101)。次に、情報処理装置10は、ネットワーク30を介して、グリッドGdの大きさを決定するための情報を移動体20から取得する(S102)。続いて、情報処理装置10は、ネットワーク30を介して、移動体20の撮像部210で撮像された環境画像EIを取得する(S103)。 As shown in FIG. 11, the information processing device 10 first connects to the mobile object 20 to be remotely controlled via the network 30 (S101). Next, the information processing device 10 acquires information for determining the size of the grid Gd from the mobile object 20 via the network 30 (S102). Subsequently, the information processing device 10 acquires the environmental image EI captured by the imaging unit 210 of the mobile object 20 via the network 30 (S103).
 次に、情報処理装置10は、画像生成部120にて、環境画像EIに対して移動体20に応じた大きさの単位格子を有するグリッドGdを重畳する(S104)。グリッドGdの単位格子の大きさは、上述したように、移動体20の大きさ、移動特性、又は用途に基づいて移動体20ごとに設定された大きさである。グリッドGdが重畳された環境画像EIは、表示画像VIとして表示部140で表示されることで、オペレータ40に視認される。 Next, the information processing device 10 causes the image generation unit 120 to superimpose a grid Gd having a unit grid having a size corresponding to the moving object 20 on the environmental image EI (S104). As described above, the size of the unit grid of the grid Gd is set for each moving body 20 based on the size, movement characteristics, or use of the moving body 20. The environment image EI on which the grid Gd is superimposed is displayed on the display unit 140 as a display image VI, so that it is visually recognized by the operator 40.
 さらに、情報処理装置10は、ネットワーク30を介して、移動体20の移動速度を取得する(S105)。ここで、情報処理装置10は、移動体20との接続が解除されたか否かを判断する(S106)。 Further, the information processing device 10 obtains the moving speed of the mobile object 20 via the network 30 (S105). Here, the information processing device 10 determines whether the connection with the mobile object 20 has been released (S106).
 接続が解除されない場合(S106/No)、情報処理装置10は、グリッド変形部130にて、移動体20の移動速度に基づいてグリッドGdの単位格子の大きさを伸長又は縮小させる。その後、情報処理装置10の動作フローは、ステップS104に戻り、情報処理装置10は、画像生成部120にて、環境画像EIに対して単位格子の大きさを伸長又は縮小されたグリッドGdを重畳する(S104)。情報処理装置10は、移動体20との接続が解除されるまで、ステップS104~ステップS107の動作を繰り返し実行する。 If the connection is not released (S106/No), the information processing device 10 causes the grid modification unit 130 to expand or contract the size of the unit grid of the grid Gd based on the moving speed of the moving body 20. After that, the operation flow of the information processing device 10 returns to step S104, and the information processing device 10 uses the image generation unit 120 to superimpose the grid Gd whose unit grid size has been expanded or reduced on the environmental image EI. (S104). The information processing device 10 repeatedly performs the operations from step S104 to step S107 until the connection with the mobile object 20 is released.
 一方、接続が解除された場合(S106/Yes)、情報処理装置10は、別の移動体20に接続するか否かを判断する(S108)。別の移動体20に接続する場合(S108/Yes)、情報処理装置10の動作フローは、ステップS101に戻り、情報処理装置10は、遠隔操作する移動体20への接続を実行する(S101)。別の移動体20に接続しない場合(S108/No)、情報処理装置10は、動作を終了する。 On the other hand, if the connection is canceled (S106/Yes), the information processing device 10 determines whether to connect to another mobile body 20 (S108). When connecting to another mobile body 20 (S108/Yes), the operation flow of the information processing device 10 returns to step S101, and the information processing device 10 executes connection to the mobile body 20 to be remotely controlled (S101). . When not connected to another mobile body 20 (S108/No), the information processing device 10 ends its operation.
 以上の動作によれば、情報処理装置10は、移動体20に応じた大きさの単位格子を有するグリッドGdを環境画像EIに重畳すると共に、移動体20の移動速度に基づいてグリッドGdの単位格子の大きさを伸縮させることができる。したがって、表示画像VIを視認したオペレータ40は、移動体20の大きさ又は移動特性を直感的に把握することができるため、移動体20をより円滑に遠隔操作することが可能である。 According to the above operation, the information processing device 10 superimposes the grid Gd having a unit grid of a size corresponding to the moving object 20 on the environmental image EI, and also superimposes the grid Gd in units of grid Gd based on the moving speed of the moving object 20. The size of the grid can be expanded or contracted. Therefore, the operator 40 who visually recognizes the display image VI can intuitively grasp the size or movement characteristics of the moving object 20, and therefore can remotely control the moving object 20 more smoothly.
 <3.変形例>
 (3.1.第1の変形例)
 次に、図12及び図13を参照して、本実施形態に係る情報処理装置10の第1の変形例について説明する。図12は、第1の変形例において、環境画像EIに重畳されるグリッドGd、及びサブグリッドSdを説明する模式図である。図13は、移動体20の移動速度に対するサブグリッドSdの表示レベルβの関係を示すグラフ図である。
<3. Modified example>
(3.1. First modification)
Next, a first modification of the information processing device 10 according to the present embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a schematic diagram illustrating the grid Gd and subgrid Sd superimposed on the environment image EI in the first modification. FIG. 13 is a graph diagram showing the relationship between the display level β of the sub-grid Sd and the moving speed of the moving body 20.
 図12に示すように、画像生成部120は、移動体20の撮像部210で撮像された環境画像EIに対して、グリッドGdに加えてサブグリッドSdをさらに重畳してもよい。サブグリッドSdは、グリッドGdの単位格子の分数倍の大きさの単位格子を有する補助的なグリッドである。サブグリッドSdは、グリッドGdの単位格子をより細かく分割することで、オペレータ40に移動体20の移動量をより詳細に把握させることができる。例えば、画像生成部120は、移動体20の全長を長さとし、移動体20の全幅を幅とする矩形形状を単位格子とするグリッドGdと、グリッドGdの1/2倍の大きさの単位格子を有するサブグリッドSdとを環境画像EIに重畳してもよい。 As shown in FIG. 12, the image generation unit 120 may further superimpose a sub-grid Sd in addition to the grid Gd on the environmental image EI captured by the imaging unit 210 of the moving body 20. The sub-grid Sd is an auxiliary grid having a unit cell that is a fraction of the size of the unit cell of the grid Gd. The sub-grid Sd allows the operator 40 to grasp the amount of movement of the moving body 20 in more detail by dividing the unit grid of the grid Gd into smaller pieces. For example, the image generation unit 120 generates a grid Gd whose unit grid is a rectangular shape whose length is the full length of the moving body 20 and whose width is the full width of the moving body 20, and a unit grid whose size is 1/2 of the grid Gd. may be superimposed on the environment image EI.
 サブグリッドSdは、グリッドGdと線種、色、又は幅の少なくとも1つ以上が異なる線で表現されてもよい。例えば、グリッドGdが実線で構成される場合、サブグリッドSdは、破線又は点線で構成されてもよい。ただし、サブグリッドSdは、グリッドGdと同じ線で表現されてよいことは言うまでもない。 The sub-grid Sd may be expressed by lines that are different from the grid Gd in at least one of line type, color, or width. For example, when the grid Gd is composed of solid lines, the sub-grid Sd may be composed of broken lines or dotted lines. However, it goes without saying that the sub-grid Sd may be expressed by the same lines as the grid Gd.
 また、サブグリッドSdは、移動体20の移動速度に基づいて表示レベルが変更されてもよい。例えば、図13に示すように、サブグリッドSdは、移動体20の移動速度が上昇するほど表示レベルβが低下すると共に、閾値V以上では表示されないように表示レベルβが制御されてもよい。換言すると、サブグリッドSdは、移動体20の移動速度が上昇するほど透明度が上昇し、閾値V以上では透明となるように制御されてもよい。 Further, the display level of the sub-grid Sd may be changed based on the moving speed of the moving body 20. For example, as shown in FIG. 13, the display level β of the sub-grid Sd may be controlled so that the higher the moving speed of the moving object 20 is, the lower the display level β is, and the sub-grid Sd is not displayed at a threshold value V3 or higher. . In other words, the sub-grid Sd may be controlled so that its transparency increases as the moving speed of the moving body 20 increases, and becomes transparent at a threshold value V3 or higher.
 これによれば、画像生成部120は、移動体20が閾値V未満の低速で移動している場合に表示画像VIにサブグリッドSdが表示され、移動体20が閾値V以上の高速で移動している場合にサブグリッドSdが表示されないように制御することができる。したがって、画像生成部120は、移動体20が低速の場合には単位格子の大きさがより小さいサブグリッドSdを表示させることで、オペレータ40にサブグリッドSdを目安として移動体20を遠隔操作させることができる。一方で、画像生成部120は、移動体20が高速の場合にはサブグリッドSdを表示させないことで、表示画像VIの視認性が低下することを抑制することができる。すなわち、情報処理装置10は、移動体20の移動速度に基づいてサブグリッドSdの表示又は非表示を制御することで、表示画像VIに表示されるグリッド幅を離散的に変更することができる。よって、情報処理装置10は、移動体20の移動速度に適した大きさの単位格子を有するグリッドを含む表示画像VIをオペレータ40に視認させることが可能である。 According to this, the image generation unit 120 displays the sub-grid Sd on the display image VI when the moving object 20 is moving at a low speed less than the threshold V3 , and when the moving object 20 is moving at a high speed equal to or higher than the threshold V3 . It is possible to control the sub-grid Sd so that it is not displayed when the user is moving. Therefore, when the moving object 20 is moving at a low speed, the image generation unit 120 displays the sub-grid Sd with a smaller unit grid size, thereby allowing the operator 40 to remotely operate the moving object 20 using the sub-grid Sd as a guide. be able to. On the other hand, the image generation unit 120 can suppress the visibility of the display image VI from decreasing by not displaying the sub-grid Sd when the moving object 20 is moving at high speed. That is, the information processing device 10 can discretely change the grid width displayed on the display image VI by controlling display or non-display of the sub-grid Sd based on the moving speed of the moving object 20. Therefore, the information processing device 10 allows the operator 40 to view the display image VI including a grid having a unit grid of a size suitable for the moving speed of the moving object 20.
 なお、画像生成部120が環境画像EIに対してグリッドGd及びサブグリッドSdの両方を重畳する場合、グリッド変形部130は、グリッドGdの単位格子の大きさを伸縮させないことを選択してもよい。例えば、グリッドGdの単位格子の大きさが伸縮する場合、グリッドGdの単位格子の大きさの伸縮に伴ってサブグリッドSdの単位格子の大きさも伸縮することになる。したがって、環境画像EIに重畳されるグリッドGd及びサブグリッドSdの両方が変形する場合、表示画像VIの視認性が低下する可能性がある。上記事情を考慮すれば、グリッド変形部130は、表示画像VIの内容によっては、グリッドGd及びサブグリッドSdの単位格子の大きさを伸縮させないことを選択してもよい。 Note that when the image generation unit 120 superimposes both the grid Gd and the sub-grid Sd on the environment image EI, the grid transformation unit 130 may choose not to expand or contract the size of the unit grid of the grid Gd. . For example, when the size of the unit cell of grid Gd expands or contracts, the size of the unit cell of sub-grid Sd also expands or contracts as the size of the unit cell of grid Gd expands or contracts. Therefore, if both the grid Gd and the sub-grid Sd superimposed on the environmental image EI are deformed, the visibility of the display image VI may be reduced. Considering the above circumstances, the grid deformation unit 130 may choose not to expand or contract the size of the unit grid of the grid Gd and the sub-grid Sd, depending on the content of the display image VI.
 (3.2.第2の変形例)
 続いて、本実施形態に係る情報処理装置10の第2の変形例について説明する。第2の変形例は、環境画像EIに重畳されるグリッドGdの表現が移動体20の位置等に基づいて制御される変形例である。
(3.2. Second modification)
Next, a second modification of the information processing device 10 according to the present embodiment will be described. The second modification is a modification in which the expression of the grid Gd superimposed on the environment image EI is controlled based on the position of the moving object 20 and the like.
 図14は、第2の変形例において、環境画像EIに重畳されるグリッドGdを説明する模式図である。図14に示すように、画像生成部120は、グリッドGdの単位格子のうち、移動体20が存在する単位格子FLに色彩を付与してもよい。なお、図14では、単位格子FLに付与された色彩はハッチングとして表現した。 FIG. 14 is a schematic diagram illustrating the grid Gd superimposed on the environmental image EI in the second modification. As shown in FIG. 14, the image generation unit 120 may color the unit grid FL in which the moving object 20 is present among the unit grids of the grid Gd. In addition, in FIG. 14, the color given to the unit cell FL is expressed as hatching.
 例えば、移動体20の撮像部210の取り付け位置によっては、撮像部210にて撮像された環境画像EIに死角が発生することがあり得る。特に、移動体20の駆動部230近傍(すなわち、足元近傍)が死角となる場合、オペレータ40は、移動体20と表示画像VI内のオブジェクトとの距離感を正確に把握することが困難となる。このような場合であっても、画像生成部120は、移動体20が存在する単位格子FLに色彩を付与することで、表示画像VI内における移動体20の位置を明確にすることができる。したがって、オペレータ40は、移動体20と表示画像VI内のオブジェクトとの距離感をより正確に把握することが可能となる。 For example, depending on the mounting position of the imaging unit 210 of the moving body 20, a blind spot may occur in the environmental image EI captured by the imaging unit 210. In particular, when the vicinity of the drive unit 230 of the moving body 20 (that is, the vicinity of the feet) becomes a blind spot, it becomes difficult for the operator 40 to accurately grasp the sense of distance between the moving body 20 and the object in the display image VI. . Even in such a case, the image generation unit 120 can clarify the position of the moving body 20 in the display image VI by coloring the unit grid FL in which the moving body 20 exists. Therefore, the operator 40 can more accurately grasp the sense of distance between the moving object 20 and the object in the display image VI.
 上記に加えて、画像生成部120は、移動体20が存在する単位格子FLの近傍の単位格子にも同様に色彩を付与することも可能である。近傍の単位格子に付与される色彩は、移動体20が存在する単位格子FLに近い単位格子ほど色味が濃くなってもよい。これによれば、画像生成部120は、表示画像VIにおける死角が大きい場合であっても、表示画像VI内における移動体20の位置を明確にすることが可能である。 In addition to the above, the image generation unit 120 can also similarly color unit cells near the unit cell FL where the moving body 20 exists. The color given to the neighboring unit grids may become darker as the unit grids are closer to the unit grid FL where the moving body 20 is present. According to this, even if the blind spot in the display image VI is large, the image generation unit 120 can clarify the position of the moving object 20 in the display image VI.
 なお、画像生成部120は、移動体20が存在する単位格子FLに色彩に替えてハイライト又はハッチングなどのエフェクトを付与してもよい。このような場合でも、画像生成部120は、同様に表示画像VI内における移動体20の位置を明確にすることが可能である。 Note that the image generation unit 120 may apply an effect such as highlighting or hatching to the unit grid FL in which the moving object 20 exists instead of the color. Even in such a case, the image generation unit 120 can similarly clarify the position of the moving body 20 within the display image VI.
 また、画像生成部120は、移動体20の位置に応じてグリッドGdの線幅を変更してもよい。具体的には、画像生成部120は、移動体20からの距離に比例してグリッドGdの線幅を細くしてもよい。これによれば、画像生成部120は、表示画像VIにおけるグリッドGdの視認性を高めると共に、グリッドGdの線幅によって表示画像VIにおける距離感をより把握しやすくすることができる。なお、画像生成部120は、移動体20の進行方向においてグリッドGdの線幅を変更してもよく、移動体20の進行方向に加えて移動体20に進行方向と直交する方向でもグリッドGdの線幅を変更してもよい。 Furthermore, the image generation unit 120 may change the line width of the grid Gd according to the position of the moving object 20. Specifically, the image generation unit 120 may make the line width of the grid Gd thinner in proportion to the distance from the moving object 20. According to this, the image generation unit 120 can improve the visibility of the grid Gd in the display image VI, and can make it easier to understand the sense of distance in the display image VI by the line width of the grid Gd. Note that the image generation unit 120 may change the line width of the grid Gd in the traveling direction of the moving body 20, and may change the line width of the grid Gd in the traveling direction of the moving body 20 as well as in the direction perpendicular to the traveling direction of the moving body 20. You may change the line width.
 さらに、画像生成部120は、移動体20の周囲環境(例えば、走行面の色)に基づいてグリッドGdの線の色味又は明度を調整してもよい。具体的には、画像生成部120は、移動体20の周囲環境の色味又は明度とのコントラストがより高い色味又は明度となるように、グリッドGdの線の色味又は明度を調整してもよい。これによれば、画像生成部120は、表示画像VIにおけるグリッドGdの視認性をより高めることができる。移動体20の周囲環境の色味又は明度は、例えば、環境画像EIの各画素の色味又は明度の平均値を用いてもよく、移動体20の走行面の各画素の色味又は明度の平均値を用いてもよい。 Furthermore, the image generation unit 120 may adjust the color tone or brightness of the lines of the grid Gd based on the surrounding environment of the moving body 20 (for example, the color of the running surface). Specifically, the image generation unit 120 adjusts the color or brightness of the lines of the grid Gd so that the color or brightness has a higher contrast with the color or brightness of the surrounding environment of the moving object 20. Good too. According to this, the image generation unit 120 can further improve the visibility of the grid Gd in the display image VI. The color or brightness of the surrounding environment of the moving object 20 may be determined by, for example, the average value of the color or brightness of each pixel of the environment image EI, or the average value of the color or brightness of each pixel of the running surface of the moving object 20. An average value may be used.
 一例として、画像生成部120は、移動体20の周囲環境の明度の平均値が低い場合、グリッドGdの線の明度をより高めるように調整してもよい。他の例として、画像生成部120は、移動体20の周囲環境の明度の平均値が高い場合、グリッドGdの線の明度をより低めるように調整してもよい。他の例として、画像生成部120は、移動体20の周囲環境の平均的な色味の補色となるようにグリッドGdの線の色味を調整してもよい。 As an example, if the average value of the brightness of the surrounding environment of the moving object 20 is low, the image generation unit 120 may adjust the brightness of the lines of the grid Gd to be higher. As another example, when the average value of the brightness of the surrounding environment of the moving body 20 is high, the image generation unit 120 may adjust the brightness of the lines of the grid Gd to be lower. As another example, the image generation unit 120 may adjust the color tone of the lines of the grid Gd so that the color tone is complementary to the average color tone of the surrounding environment of the moving body 20.
 (3.3.第3の変形例)
 続いて、図15を参照して、本実施形態に係る情報処理装置10の第3の変形例について説明する。図15は、第3の変形例における表示画像VIを示す模式図である。
(3.3. Third modification)
Next, a third modification of the information processing device 10 according to the present embodiment will be described with reference to FIG. 15. FIG. 15 is a schematic diagram showing a display image VI in the third modification.
 図15に示すように、画像生成部120は、複数の撮像部210で撮像された環境画像EI1、EI2の各々を含む表示画像VIAを生成してもよい。このような場合、画像生成部120は、複数の撮像部210で撮像された環境画像EI1、EI2の各々に対して、撮像された空間上で同一の大きさの単位格子を有し、かつ同一座標系のグリッドGdをそれぞれ重畳することができる。 As shown in FIG. 15, the image generation unit 120 may generate a display image VIA including each of the environmental images EI1 and EI2 captured by the plurality of imaging units 210. In such a case, the image generation unit 120 has a unit grid of the same size in the imaged space and the same size for each of the environmental images EI1 and EI2 captured by the plurality of imaging units 210. The grids Gd of the coordinate system can be superimposed on each other.
 複数の撮像部210で撮像された環境画像EI1、EI2は、視点又は縮尺が互いに異なることがあり得る。そこで、画像生成部120は、撮像された空間上に固定されたグリッドGdを縮尺に応じて変形して環境画像EI1、EI2の各々に重畳することで、環境画像EI1、EI2の各々の位置及び縮尺の関係を把握しやすくすることができる。 The environmental images EI1 and EI2 captured by the plurality of imaging units 210 may have different viewpoints or scales. Therefore, the image generation unit 120 deforms the grid Gd fixed on the imaged space according to the scale and superimposes it on each of the environmental images EI1 and EI2, thereby changing the position and position of each of the environmental images EI1 and EI2. This makes it easier to understand the relationship between scales.
 例えば、図15に示すように、移動体20の正面を撮像した環境画像EI1と、移動体20の足元を撮像した環境画像EI2とが撮像されている場合、画像生成部120は、環境画像EI1、EI2の各々の移動体20の走行面にグリッドGdを重畳してもよい。これによれば、画像生成部120は、グリッドGdの単位格子の大きさ及び配置から環境画像EI1と、環境画像EI2との位置関係及び縮尺関係がより把握しやすくなった表示画像VIAを生成することができる。 For example, as shown in FIG. 15, when an environmental image EI1 that captures the front of the moving body 20 and an environmental image EI2 that captures the feet of the moving body 20 are captured, the image generation unit 120 generates the environmental image EI1. , EI2, the grid Gd may be superimposed on the running surface of each moving body 20. According to this, the image generation unit 120 generates the display image VIA in which the positional relationship and scale relationship between the environmental image EI1 and the environmental image EI2 are easier to understand from the size and arrangement of the unit cells of the grid Gd. be able to.
 または、低解像度の環境画像と、低解像度の環境画像の一部を拡大した高解像度の環境画像とが撮像されている場合、画像生成部120は、環境画像の各々に同一の大きさの単位格子を有し、かつ同一座標系のグリッドGdを重畳してもよい。これによれば、画像生成部120は、グリッドGdの単位格子の大きさ及び配置から低解像度の環境画像と、高解像度の環境画像との整合性、連続性、及び対応関係がより把握しやすくなった表示画像を生成することができる。 Alternatively, when a low-resolution environmental image and a high-resolution environmental image obtained by enlarging a part of the low-resolution environmental image are captured, the image generation unit 120 generates a unit of the same size for each of the environmental images. Grids Gd having a grid and having the same coordinate system may be superimposed. According to this, the image generation unit 120 can more easily understand the consistency, continuity, and correspondence between the low-resolution environmental image and the high-resolution environmental image from the size and arrangement of the unit cells of the grid Gd. It is possible to generate a display image that looks like this.
 (3.4.第4の変形例)
 次に、図16及び図17を参照して、本実施形態に係る情報処理装置10の第4の変形例について説明する。第4の変形例は、グリッドGdを二次元平面から三次元空間に拡張した変形例である。
(3.4. Fourth modification)
Next, a fourth modification of the information processing device 10 according to the present embodiment will be described with reference to FIGS. 16 and 17. The fourth modification is a modification in which the grid Gd is expanded from a two-dimensional plane to a three-dimensional space.
 図16は、二次元グリッドを三次元空間内の所定の高さ位置に重畳した表示画像VIBの一例を示す模式図である。図16に示すように、画像生成部120は、移動体20の走行面に限定されず、環境画像の任意の高さ(図16では、人物61の顔の高さ)にグリッドGdを重畳した表示画像VIBを生成してもよい。このような場合、画像生成部120は、移動体20の走行面から離れた高い位置に存在するオブジェクトとの距離感をより把握しやすい表示画像VIBを生成することができる。 FIG. 16 is a schematic diagram showing an example of a display image VIB in which a two-dimensional grid is superimposed at a predetermined height position in a three-dimensional space. As shown in FIG. 16, the image generation unit 120 superimposes the grid Gd at an arbitrary height of the environmental image (in FIG. 16, the height of the face of the person 61), not limited to the running surface of the moving object 20. A display image VIB may also be generated. In such a case, the image generation unit 120 can generate a display image VIB that makes it easier to understand the sense of distance to an object that is located at a high position away from the running surface of the moving body 20.
 一例として、画像生成部120は、ドローンなどの飛行可能な移動体20にて撮像された環境画像に対して、移動体20の飛行高さにグリッドGdを重畳してもよい。これによれば、画像生成部120は、ドローンなどの飛行可能な移動体20をオペレータ40が遠隔操作することを支援することができる。 As an example, the image generation unit 120 may superimpose the grid Gd at the flight height of the moving object 20 on an environmental image captured by the flying moving object 20 such as a drone. According to this, the image generation unit 120 can support the operator 40 to remotely control the flyable mobile object 20 such as a drone.
 他の例として、画像生成部120は、マニピュレータを搭載した移動体20にて撮像された環境画像に対して、マニピュレータのエンドエフェクタが存在する高さにグリッドGdを重畳してもよい。これによれば、画像生成部120は、移動体20に搭載されたマニピュレータをオペレータ40が遠隔操作することを支援することができる。 As another example, the image generation unit 120 may superimpose the grid Gd on the environmental image captured by the moving body 20 equipped with the manipulator at a height where the end effector of the manipulator is present. According to this, the image generation unit 120 can support the operator 40 to remotely control the manipulator mounted on the moving body 20.
 図17は、移動体20の撮像部210で撮像された環境画像に直方体の単位格子を有する三次元グリッドを重畳した表示画像VICの一例を示す模式図である。 FIG. 17 is a schematic diagram showing an example of a display image VIC in which a three-dimensional grid having a rectangular parallelepiped unit grid is superimposed on an environmental image captured by the imaging unit 210 of the moving body 20.
 図17に示すように、画像生成部120は、移動体20の撮像部210で撮像された環境画像に対して、直方体の単位格子を移動体20の正面方向、正面方向と直交する側面方向、移動体20の高さ方向にそれぞれ配列した三次元グリッドを重畳してもよい。例えば、移動体20の正面方向、正面方向と直交する側面方向の単位格子の大きさは、移動体20の全長及び全幅に基づいて設定されてもよい。また、移動体20の高さ方向の単位格子の大きさは、移動体20の高さに基づいて設定されてもよい。 As shown in FIG. 17, the image generation unit 120 generates a unit grid of a rectangular parallelepiped in the front direction of the mobile body 20, in the side direction perpendicular to the front direction, and Three-dimensional grids arranged in the height direction of the moving body 20 may be superimposed. For example, the size of the unit grid in the front direction of the movable body 20 and in the side direction perpendicular to the front direction may be set based on the total length and width of the movable body 20. Further, the size of the unit grid in the height direction of the moving body 20 may be set based on the height of the moving body 20.
 これによれば、画像生成部120は、オペレータ40が移動体20を遠隔操作する場合に、移動体20が高さ方向に通行可能か否かをオペレータ40が判断可能な表示画像VICを生成することができる。特に、遠隔操作される移動体20がドローンなどの飛行可能な移動体である場合、移動体20は高さ方向にも移動可能である。そのため、画像生成部120は、環境画像に三次元グリッドを重畳した表示画像VICを生成することが望ましい。 According to this, when the operator 40 remotely controls the moving body 20, the image generation unit 120 generates the display image VIC that allows the operator 40 to determine whether or not the moving body 20 can pass in the height direction. be able to. In particular, when the remotely controlled moving object 20 is a flying moving object such as a drone, the moving object 20 is also movable in the height direction. Therefore, it is desirable that the image generation unit 120 generates a display image VIC in which a three-dimensional grid is superimposed on an environmental image.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims, and It is understood that these also naturally fall within the technical scope of the present disclosure.
 例えば、オペレータ40に提示される表示画像VIでは、環境画像EIと、移動体20の自己位置に基づいて描画されるグリッドGdとは、タイミング良く同期して表示されることが重要である。しかしながら、移動体20の自己位置を取得する際の遅延量と、撮像部210にて撮像された環境画像EIの転送時の遅延量とが一致しない場合、自己位置に基づいて描画されるグリッドGdと、環境画像EIとが同期しない可能性があり得る。 For example, in the display image VI presented to the operator 40, it is important that the environmental image EI and the grid Gd drawn based on the self-position of the mobile object 20 are displayed in synchronization with good timing. However, if the amount of delay when acquiring the self-position of the moving body 20 and the amount of delay when transmitting the environmental image EI captured by the imaging unit 210 do not match, the grid Gd drawn based on the self-position There is a possibility that the environmental image EI and the environmental image EI may not be synchronized.
 ネットワーク30が安定しており、各々の遅延量が一定値とみなせる場合、情報処理装置10は、固定値にて各々の遅延量の差を調整してもよい。一方で、環境画像EIの転送などに時間が掛かり、遅延量が不安定な場合、情報処理装置10は、移動体20の自己位置の算出時刻、及び環境画像EIの撮像時刻を併せて取得してもよい。これによれば、情報処理装置10は、これらの時刻から移動体20の自己位置の絶対的な遅延量、及び環境画像EIの絶対的な遅延量を把握することができる。したがって、情報処理装置10は、遅延量が大きい方にタイミングを合わせて、環境画像EIと、移動体20の自己位置に基づいて描画されるグリッドGdとを同期させることが可能である。 If the network 30 is stable and each delay amount can be regarded as a constant value, the information processing device 10 may adjust the difference between each delay amount using a fixed value. On the other hand, if it takes time to transfer the environmental image EI and the amount of delay is unstable, the information processing device 10 acquires the calculation time of the self-position of the mobile object 20 and the imaging time of the environmental image EI. It's okay. According to this, the information processing device 10 can grasp the absolute delay amount of the self-position of the mobile object 20 and the absolute delay amount of the environmental image EI from these times. Therefore, the information processing device 10 is able to synchronize the environmental image EI and the grid Gd drawn based on the self-position of the moving body 20 by adjusting the timing to the one with the larger amount of delay.
 例えば、画像転送の際のネットワーク30の通信品質が低く、環境画像EIの解像度が低い場合、情報処理装置10は、環境画像EIに馴染むようにグリッドGdを構成する線の色味又は太さなどを調整してもよい。これは、解像度が低い環境画像EIでは、重畳されるグリッドGdの表示が強調されてしまうことで、環境画像EI自体を認識しにくくなる可能性があるためである。また、走行面がタイルなどによって格子模様に構成される場合、グリッドGdとタイルの格子模様とが混在することで、両者が区別して視認しにくくなる場合がある。このような場合、情報処理装置10は、走行面の格子模様を検出することで、格子模様とグリッドGdとが重なるように環境画像EIにグリッドGdを重畳してもよい。 For example, when the communication quality of the network 30 during image transfer is low and the resolution of the environmental image EI is low, the information processing device 10 adjusts the color tone or thickness of the lines constituting the grid Gd so that it blends in with the environmental image EI. may be adjusted. This is because in the environment image EI with a low resolution, the display of the superimposed grid Gd is emphasized, which may make it difficult to recognize the environment image EI itself. Furthermore, when the running surface is configured in a checkered pattern using tiles or the like, the grid Gd and the checkered pattern of the tiles coexist, which may make it difficult to distinguish and visually recognize the two. In such a case, the information processing device 10 may detect a grid pattern on the running surface and superimpose the grid Gd on the environmental image EI so that the grid pattern and the grid Gd overlap.
 例えば、移動体20をより高精度に遠隔操作することが求められる場合には、情報処理装置10は、移動体20がグリッドGdを構成する線を乗り越える際に何らかの情報をオペレータ40に通知してもよい。具体的には、情報処理装置10は、移動体20がグリッドGdを構成する線を乗り越える際に、表示画像VIに瞬間的な上下の揺れを付加してもよい。また、情報処理装置10は、移動体20がグリッドGdを構成する線を乗り越える際に、継ぎ目を乗り越えたような音声を出力してもよく、継ぎ目を乗り越えたような振動をオペレータ40のコントローラ又はシートに出力してもよい。 For example, when it is required to remotely control the mobile object 20 with higher precision, the information processing device 10 notifies the operator 40 of some information when the mobile object 20 crosses the lines forming the grid Gd. Good too. Specifically, the information processing device 10 may add momentary vertical shaking to the display image VI when the moving object 20 crosses the lines forming the grid Gd. Furthermore, when the moving object 20 crosses over the lines forming the grid Gd, the information processing device 10 may output a sound that makes it sound like the moving body 20 has crossed the line that makes up the grid Gd, and may output vibrations that make it sound like the moving body 20 has gone over the seam. You can also output it to a sheet.
 例えば、走行面の凹凸形状のピッチがグリッドGdの単位格子のピッチよりも粗い場合、情報処理装置10は、環境画像EIの走行面の凹凸形状のピッチが大きい領域のみにサブグリッドSdを補助的に重畳してもよい。また、情報処理装置10は、環境画像EIの該領域にサブグリッドSdよりも単位格子の大きさが小さい追加サブグリッドを補助的に重畳してもよい。さらに、情報処理装置10は、環境画像EIの一部領域が移動体20にとって走行不可である旨を示すために、該一部部域にグリッドGdを重畳しないことを選択してもよい。 For example, when the pitch of the uneven shapes on the running surface is coarser than the pitch of the unit grid of the grid Gd, the information processing device 10 adds the sub-grid Sd only to the area of the environmental image EI where the pitch of the uneven shapes on the running surface is large. It may be superimposed on Further, the information processing device 10 may supplementarily superimpose an additional sub-grid whose unit grid size is smaller than the sub-grid Sd on the area of the environmental image EI. Furthermore, the information processing device 10 may choose not to superimpose the grid Gd on a partial area of the environmental image EI in order to indicate that the mobile object 20 cannot travel in the partial area.
 例えば、情報処理装置10は、グリッドGdを重畳することで環境画像EIが視認しにくくなることを抑制するために、特定条件下ではグリッドGdを非表示にすることを選択してもよい。一例として、情報処理装置10は、移動体20が移動を停止した後、所定時間が経過した場合、移動体20が移動を再開するまでグリッドGdを非表示にすることを選択してもよい。他の例として、情報処理装置10は、移動体20の急な加減速が少なくオペレータ40が移動体20の遠隔操作に習熟していると判断される場合、グリッドGdを非表示にすることを選択してもよい。他の例として、情報処理装置10は、オペレータ40がグリッドGdの表示を要求する入力を行うまでの間、グリッドGdを非表示にすることを選択してもよい。他の例として、情報処理装置10は、ネットワーク30の通信品質が不安定であり、遅延を考慮して環境画像EIとグリッドGdとを重畳することが困難である場合、グリッドGdを非表示にすることを選択してもよい。 For example, the information processing device 10 may choose to hide the grid Gd under specific conditions in order to prevent the environmental image EI from becoming difficult to view due to the superimposition of the grid Gd. As an example, the information processing device 10 may select to hide the grid Gd until the moving body 20 resumes movement, if a predetermined time has passed after the moving body 20 stops moving. As another example, the information processing device 10 may decide not to hide the grid Gd when it is determined that the operator 40 is proficient in remote control of the moving body 20 because there are few sudden accelerations and decelerations of the moving body 20. You may choose. As another example, the information processing device 10 may choose to hide the grid Gd until the operator 40 inputs a request to display the grid Gd. As another example, if the communication quality of the network 30 is unstable and it is difficult to superimpose the environmental image EI and the grid Gd in consideration of delay, the information processing device 10 may hide the grid Gd. You may choose to do so.
 なお、本開示に係る技術は、移動体20だけでなく、パワードスーツ又はパワーアシストスーツなどの装着の前後でオペレータ40の操作感又はサイズ感が変わる装着型装置についても適用可能である。 Note that the technology according to the present disclosure is applicable not only to the moving object 20 but also to wearable devices such as a powered suit or a power assist suit in which the operator 40's feeling of operation or size changes before and after wearing the device.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely explanatory or illustrative, and are not limiting. In other words, the technology according to the present disclosure can have other effects that are obvious to those skilled in the art from the description of this specification, in addition to or in place of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成する画像生成部を備える、情報処理装置。
(2)
 前記グリッドの前記単位格子の大きさは、前記移動体の走行面上の占有面積、前記移動体の移動ステップ幅、又は前記移動体の使用環境に存在する所定のオブジェクトの大きさに基づいて決定される、前記(1)に記載の情報処理装置。
(3)
 前記グリッドは、矩形形状の前記単位格子を前記移動体の正面方向、及び前記正面方向と直交する側面方向にそれぞれ配列した二次元グリッドである、前記(1)又は(2)に記載の情報処理装置。
(4)
 前記画像生成部は、前記環境画像における前記移動体の走行面に前記グリッドを重畳する、前記(1)~(3)のいずれか一項に記載の情報処理装置。
(5)
 前記画像生成部は、前記走行面のうち前記移動体が移動可能な領域に前記グリッドを重畳する、前記(4)に記載の情報処理装置。
(6)
 前記グリッドの座標系は、前記走行面に対して固定される、前記(4)に記載の情報処理装置。
(7)
 前記移動体の移動速度に基づいて前記グリッドの前記単位格子の大きさを伸縮させるグリッド変形部をさらに備える、前記(1)~(6)のいずれか一項に記載の情報処理装置。
(8)
 前記グリッド変形部は、前記移動体の前記移動速度に比例して、前記移動体の進行方向に前記グリッドの前記単位格子の大きさを伸長又は縮小させる、前記(7)に記載の情報処理装置。
(9)
 前記グリッド変形部は、前記移動体の前記移動速度が閾値以上である場合、前記グリッドの前記単位格子の大きさを伸縮させる、前記(7)又は(8)に記載の情報処理装置。
(10)
 前記画像生成部は、さらに、前記グリッドの前記単位格子の分数倍の大きさの単位格子を有するサブグリッドを前記環境画像に重畳する、前記(1)~(9)のいずれか一項に記載の情報処理装置。
(11)
 前記サブグリッドは、前記グリッドと線種、色、又は幅の少なくとも1以上が異なる線で表現される、前記(10)に記載の情報処理装置。
(12)
 前記画像生成部は、前記移動体の移動速度が閾値以上である場合、前記移動体の移動速度に基づいて前記サブグリッドの透明度を上昇させる、前記(10)又は(11)に記載の情報処理装置。
(13)
 前記画像生成部は、前記移動体が存在する前記単位格子の色を変更する、前記(1)~(12)のいずれか一項に記載の情報処理装置。
(14)
 前記画像生成部は、前記移動体の位置に応じて前記グリッドの線幅を変更する、前記(1)~(13)のいずれか一項に記載の情報処理装置。
(15)
 前記グリッドは、直方体の前記単位格子を前記移動体の正面方向、前記正面方向と直交する側面方向、及び前記移動体の高さ方向にそれぞれ配列した三次元グリッドである、前記(1)~(14)のいずれか一項に記載の情報処理装置。
(16)
 前記グリッドの前記単位格子の高さ方向の大きさは、前記移動体の高さに基づいて決定される、前記(15)に記載の情報処理装置。
(17)
 前記画像生成部は、互いに異なる前記撮像装置で撮像された前記環境画像に対して、同一座標系かつ同一の大きさの前記単位格子を有する前記グリッドを重畳した前記表示画像をそれぞれ生成する、前記(1)~(16)のいずれか一項に記載の情報処理装置。
(18)
 前記移動体は、前記表示画像を視認したユーザに遠隔操作される、前記(1)~(17)のいずれか一項に記載の情報処理装置。
(19)
 演算装置によって、移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成すること
を含む、情報処理方法。
Note that the following configurations also belong to the technical scope of the present disclosure.
(1)
comprising an image generation unit that generates a display image in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object; Information processing device.
(2)
The size of the unit grid of the grid is determined based on the area occupied by the moving body on the running surface, the movement step width of the moving body, or the size of a predetermined object existing in the usage environment of the moving body. The information processing device according to (1) above.
(3)
The information processing according to (1) or (2), wherein the grid is a two-dimensional grid in which the rectangular unit grids are arranged in a front direction of the moving body and in a side direction perpendicular to the front direction. Device.
(4)
The information processing device according to any one of (1) to (3), wherein the image generation unit superimposes the grid on a running surface of the moving object in the environmental image.
(5)
The information processing device according to (4), wherein the image generation unit superimposes the grid on a region of the running surface in which the moving body can move.
(6)
The information processing device according to (4), wherein the coordinate system of the grid is fixed with respect to the running surface.
(7)
The information processing device according to any one of (1) to (6), further comprising a grid deformation unit that expands or contracts the size of the unit grid of the grid based on the moving speed of the moving body.
(8)
The information processing device according to (7), wherein the grid deforming section expands or reduces the size of the unit grid of the grid in the traveling direction of the moving body in proportion to the moving speed of the moving body. .
(9)
The information processing device according to (7) or (8), wherein the grid deformation unit expands or contracts the size of the unit grid of the grid when the moving speed of the moving body is equal to or higher than a threshold value.
(10)
The image generation unit further superimposes a sub-grid having a unit cell having a size a fraction of the unit cell of the grid on the environmental image, according to any one of (1) to (9) above. The information processing device described.
(11)
The information processing device according to (10), wherein the sub-grid is expressed by lines that are different from the grid in at least one of line type, color, or width.
(12)
The information processing according to (10) or (11), wherein the image generation unit increases the transparency of the sub-grid based on the moving speed of the moving object when the moving speed of the moving object is equal to or higher than a threshold value. Device.
(13)
The information processing device according to any one of (1) to (12), wherein the image generation unit changes the color of the unit grid in which the moving object is present.
(14)
The information processing device according to any one of (1) to (13), wherein the image generation unit changes the line width of the grid depending on the position of the moving object.
(15)
The grid is a three-dimensional grid in which the unit grids of rectangular parallelepipeds are arranged in the front direction of the movable body, in the side direction perpendicular to the front direction, and in the height direction of the movable body, 14) The information processing device according to any one of item 14).
(16)
The information processing device according to (15), wherein the size in the height direction of the unit cell of the grid is determined based on the height of the moving object.
(17)
The image generation unit generates the display images in which the grid having the unit grid having the same coordinate system and the same size is superimposed on the environmental images captured by the different imaging devices, respectively. The information processing device according to any one of (1) to (16).
(18)
The information processing device according to any one of (1) to (17), wherein the mobile object is remotely operated by a user who views the displayed image.
(19)
Generating a display image in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object, by the arithmetic device. including information processing methods.
 10   情報処理装置
 20   移動体
 30   ネットワーク
 40   オペレータ
 110  通信部
 120  画像生成部
 130  グリッド変形部
 140  表示部
 210  撮像部
 220  センサ部
 230  駆動部
 240  出力部
 250  制御部
 260  通信部
 EI   環境画像
 VI   表示画像
 Gd   グリッド
 Sd   サブグリッド
10 Information processing device 20 Mobile object 30 Network 40 Operator 110 Communication unit 120 Image generation unit 130 Grid transformation unit 140 Display unit 210 Imaging unit 220 Sensor unit 230 Drive unit 240 Output unit 250 Control unit 260 Communication unit EI Environmental image VI Display image Gd Grid Sd Subgrid

Claims (19)

  1.  移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成する画像生成部を備える、情報処理装置。 comprising an image generation unit that generates a display image in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object; Information processing device.
  2.  前記グリッドの前記単位格子の大きさは、前記移動体の走行面上の占有面積、前記移動体の移動ステップ幅、又は前記移動体の使用環境に存在する所定のオブジェクトの大きさに基づいて決定される、請求項1に記載の情報処理装置。 The size of the unit grid of the grid is determined based on the area occupied by the moving body on the running surface, the movement step width of the moving body, or the size of a predetermined object existing in the usage environment of the moving body. The information processing device according to claim 1.
  3.  前記グリッドは、矩形形状の前記単位格子を前記移動体の正面方向、及び前記正面方向と直交する側面方向にそれぞれ配列した二次元グリッドである、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the grid is a two-dimensional grid in which the rectangular unit grids are arranged in a front direction of the moving body and in a side direction perpendicular to the front direction.
  4.  前記画像生成部は、前記環境画像における前記移動体の走行面に前記グリッドを重畳する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the image generation unit superimposes the grid on a running surface of the moving body in the environmental image.
  5.  前記画像生成部は、前記走行面のうち前記移動体が移動可能な領域に前記グリッドを重畳する、請求項4に記載の情報処理装置。 The information processing device according to claim 4, wherein the image generation unit superimposes the grid on a region of the running surface in which the mobile object can move.
  6.  前記グリッドの座標系は、前記走行面に対して固定される、請求項4に記載の情報処理装置。 The information processing device according to claim 4, wherein the coordinate system of the grid is fixed with respect to the running surface.
  7.  前記移動体の移動速度に基づいて前記グリッドの前記単位格子の大きさを伸縮させるグリッド変形部をさらに備える、請求項1に記載の情報処理装置。 The information processing device according to claim 1, further comprising a grid deformation unit that expands or contracts the size of the unit grid of the grid based on the moving speed of the moving body.
  8.  前記グリッド変形部は、前記移動体の前記移動速度に比例して、前記移動体の進行方向に前記グリッドの前記単位格子の大きさを伸長又は縮小させる、請求項7に記載の情報処理装置。 The information processing device according to claim 7, wherein the grid deforming section expands or reduces the size of the unit grid of the grid in the traveling direction of the moving body in proportion to the moving speed of the moving body.
  9.  前記グリッド変形部は、前記移動体の前記移動速度が閾値以上である場合、前記グリッドの前記単位格子の大きさを伸縮させる、請求項7に記載の情報処理装置。 The information processing device according to claim 7, wherein the grid deformation unit expands or contracts the size of the unit grid of the grid when the moving speed of the moving object is equal to or higher than a threshold value.
  10.  前記画像生成部は、さらに、前記グリッドの前記単位格子の分数倍の大きさの単位格子を有するサブグリッドを前記環境画像に重畳する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the image generation unit further superimposes a sub-grid having a unit cell having a size a fraction of the unit cell of the grid on the environmental image.
  11.  前記サブグリッドは、前記グリッドと線種、色、又は幅の少なくとも1以上が異なる線で表現される、請求項10に記載の情報処理装置。 The information processing device according to claim 10, wherein the sub-grid is represented by lines that differ from the grid in at least one of line type, color, or width.
  12.  前記画像生成部は、前記移動体の移動速度が閾値以上である場合、前記移動体の移動速度に基づいて前記サブグリッドの透明度を上昇させる、請求項10に記載の情報処理装置。 The information processing device according to claim 10, wherein the image generation unit increases the transparency of the sub-grid based on the moving speed of the moving object when the moving speed of the moving object is equal to or higher than a threshold value.
  13.  前記画像生成部は、前記移動体が存在する前記単位格子の色を変更する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the image generation unit changes the color of the unit grid in which the moving object exists.
  14.  前記画像生成部は、前記移動体の位置に応じて前記グリッドの線幅を変更する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the image generation unit changes the line width of the grid according to the position of the moving body.
  15.  前記グリッドは、直方体の前記単位格子を前記移動体の正面方向、前記正面方向と直交する側面方向、及び前記移動体の高さ方向にそれぞれ配列した三次元グリッドである、請求項1に記載の情報処理装置。 The grid is a three-dimensional grid in which the unit grids of rectangular parallelepipeds are arranged in the front direction of the moving body, in the side direction perpendicular to the front direction, and in the height direction of the moving body, respectively. Information processing device.
  16.  前記グリッドの前記単位格子の高さ方向の大きさは、前記移動体の高さに基づいて決定される、請求項15に記載の情報処理装置。 The information processing device according to claim 15, wherein the size in the height direction of the unit grid of the grid is determined based on the height of the moving object.
  17.  前記画像生成部は、互いに異なる前記撮像装置で撮像された前記環境画像に対して、同一座標系かつ同一の大きさの前記単位格子を有する前記グリッドを重畳した前記表示画像をそれぞれ生成する、請求項1に記載の情報処理装置。 The image generating unit generates the display images in which the grid having the unit grid having the same coordinate system and the same size is superimposed on the environmental images captured by the different imaging devices, respectively. The information processing device according to item 1.
  18.  前記移動体は、前記表示画像を視認したユーザに遠隔操作される、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the mobile object is remotely operated by a user who visually recognizes the display image.
  19.  演算装置によって、移動体に搭載された少なくとも1以上の撮像装置で撮像された環境画像に対して、前記移動体に応じた大きさの単位格子を有するグリッドを重畳した表示画像を生成すること
    を含む、情報処理方法。
    Generating a display image in which a grid having a unit grid having a size corresponding to the moving object is superimposed on an environmental image captured by at least one imaging device mounted on the moving object, by the arithmetic device. including information processing methods.
PCT/JP2023/014415 2022-06-02 2023-04-07 Information processing device and information processing method WO2023233821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090302 2022-06-02
JP2022090302 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023233821A1 true WO2023233821A1 (en) 2023-12-07

Family

ID=89026183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014415 WO2023233821A1 (en) 2022-06-02 2023-04-07 Information processing device and information processing method

Country Status (1)

Country Link
WO (1) WO2023233821A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687964A1 (en) * 1994-06-14 1995-12-20 ZELTRON S.p.A. Programmable remote control system for a vehicle
JP2003532218A (en) * 2000-05-01 2003-10-28 アイロボット コーポレーション Method and system for remotely controlling a mobile robot
JP2009226978A (en) * 2008-03-19 2009-10-08 Mazda Motor Corp Vehicular circumference monitoring device
JP2011022703A (en) * 2009-07-14 2011-02-03 Oki Electric Industry Co Ltd Display control apparatus and display control method
JP2011123807A (en) * 2009-12-14 2011-06-23 Dainippon Printing Co Ltd Annotation display system, method and server device
JP2015071369A (en) * 2013-10-03 2015-04-16 矢崎総業株式会社 Display device for vehicle
JP2019074458A (en) * 2017-10-18 2019-05-16 株式会社東芝 Information processor, learned model, method for processing information, and program
JP2020008962A (en) * 2018-07-03 2020-01-16 パナソニックIpマネジメント株式会社 Movable body control system, movable body system, movable body control method, and program
US20200141755A1 (en) * 2017-05-24 2020-05-07 SZ DJI Technology Co., Ltd. Navigation processing method, apparatus, and control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687964A1 (en) * 1994-06-14 1995-12-20 ZELTRON S.p.A. Programmable remote control system for a vehicle
JP2003532218A (en) * 2000-05-01 2003-10-28 アイロボット コーポレーション Method and system for remotely controlling a mobile robot
JP2009226978A (en) * 2008-03-19 2009-10-08 Mazda Motor Corp Vehicular circumference monitoring device
JP2011022703A (en) * 2009-07-14 2011-02-03 Oki Electric Industry Co Ltd Display control apparatus and display control method
JP2011123807A (en) * 2009-12-14 2011-06-23 Dainippon Printing Co Ltd Annotation display system, method and server device
JP2015071369A (en) * 2013-10-03 2015-04-16 矢崎総業株式会社 Display device for vehicle
US20200141755A1 (en) * 2017-05-24 2020-05-07 SZ DJI Technology Co., Ltd. Navigation processing method, apparatus, and control device
JP2019074458A (en) * 2017-10-18 2019-05-16 株式会社東芝 Information processor, learned model, method for processing information, and program
JP2020008962A (en) * 2018-07-03 2020-01-16 パナソニックIpマネジメント株式会社 Movable body control system, movable body system, movable body control method, and program

Similar Documents

Publication Publication Date Title
US10629107B2 (en) Information processing apparatus and image generation method
CA3016539C (en) Image processing method, display device, and inspection system
JP4850984B2 (en) Action space presentation device, action space presentation method, and program
US20150097777A1 (en) 3D Motion Interface Systems and Methods
EP3248176A1 (en) Mixed reality system
WO2022166264A1 (en) Simulation training system, method and apparatus for work machine, and electronic device
CN112639685B (en) Display device sharing and interaction in Simulated Reality (SR)
KR20150000783A (en) Display method and apparatus with multi-screens
US20190371072A1 (en) Static occluder
TWI759670B (en) Object tracking system and object tracking method
EP3196734B1 (en) Control device, control method, and program
EP3797931A1 (en) Remote control system, information processing method, and program
CN102929510A (en) Control device and method for controlling screen by using same
WO2023233821A1 (en) Information processing device and information processing method
CN113677412B (en) Information processing device, information processing method, and program
WO2017155005A1 (en) Image processing method, display device, and inspection system
JP2005277900A (en) Three-dimensional video device
WO2022004130A1 (en) Information processing device, information processing method, and storage medium
US11610343B2 (en) Video display control apparatus, method, and non-transitory computer readable medium
JP7300436B2 (en) Information processing device, system, information processing method and information processing program
JP6307706B2 (en) Projection device
KR101975556B1 (en) Apparatus of controlling observation view of robot
US8307295B2 (en) Method for controlling a computer generated or physical character based on visual focus
JP6441426B1 (en) Character video display system
CN105313129A (en) Video-based robot walking motion control method and video-based robot walking motion control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815583

Country of ref document: EP

Kind code of ref document: A1