WO2023167157A1 - Computer program, information processing device, and information processing method - Google Patents

Computer program, information processing device, and information processing method Download PDF

Info

Publication number
WO2023167157A1
WO2023167157A1 PCT/JP2023/007187 JP2023007187W WO2023167157A1 WO 2023167157 A1 WO2023167157 A1 WO 2023167157A1 JP 2023007187 W JP2023007187 W JP 2023007187W WO 2023167157 A1 WO2023167157 A1 WO 2023167157A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mri
brain
diagnostic information
magnetic susceptibility
Prior art date
Application number
PCT/JP2023/007187
Other languages
French (fr)
Japanese (ja)
Inventor
大毅 藤林
フェリックス ユリアン ブランデンブルグ
Original Assignee
株式会社Splink
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Splink filed Critical 株式会社Splink
Publication of WO2023167157A1 publication Critical patent/WO2023167157A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a computer program, an information processing device, and an information processing method.
  • AD Alzheimer's disease
  • DLB dementia with Lewy bodies
  • FTLD frontotemporal lobar degeneration
  • MS sexual sclerosis
  • ⁇ -synuclein a protein of unknown function, is expressed in brain neurons, and is believed to be the cause of neurodegenerative diseases such as Parkinson's disease.
  • Patent Literature 1 discloses an apparatus in which a drug that binds to amyloid ⁇ in brain tissue is injected into a subject and a PET image representing the concentration distribution of the drug on a cut plane across the brain is used.
  • the present invention has been made in view of such circumstances, and provides a computer program, an information processing apparatus, and an information processing method that can provide brain diagnostic information using less invasive MRI images without performing a PET examination. for the purpose.
  • the present application includes a plurality of means for solving the above problems.
  • a computer program acquires an MRI image of a subject in a computer and outputs predetermined brain diagnostic information based on the acquired MRI image.
  • a process of specifying, newly generating and displaying the specified brain diagnosis information is executed.
  • brain diagnostic information can be provided by less invasive MRI images.
  • FIG. 10 is a diagram showing a first example of processing of the second learning model;
  • FIG. 10 is a diagram showing a second example of processing of the second learning model;
  • It is a figure which shows an example of the process of a 3rd learning model.
  • FIG. 10 is a diagram showing an example of a processing procedure when using a first learning model;
  • FIG. 10 is a diagram showing an example of a processing procedure when using a second learning model; It is a figure which shows an example of the processing procedure in the case of using a 3rd learning model.
  • FIG. 4 is a diagram showing an example of a processing procedure for calculating the degree of iron accumulation or the degree of amyloid accumulation;
  • FIG. 4 is a diagram showing a first display example of brain diagnosis information;
  • FIG. 10 is a diagram showing a second display example of brain diagnosis information;
  • FIG. 11 is a diagram showing a third display example of brain diagnosis information;
  • FIG. 11 is a diagram showing a fourth display example of brain diagnosis information;
  • FIG. 11 is a diagram showing a fifth display example of brain diagnosis information;
  • FIG. 1 is a diagram showing an example of the configuration of an information processing system according to this embodiment.
  • the information processing system includes an information processing device 50 .
  • An input device 20 and a display device 30 are connected to the information processing device 50 .
  • An MRI apparatus 10 and an image data server 100 are connected to the information processing apparatus 50 via the communication network 1 .
  • the MRI apparatus 10 is an apparatus that can capture a tomographic image using a magnetic resonance phenomenon, and can obtain an MRI image (also referred to as an MR image). By selecting imaging conditions, an MRI image reflecting tissue density, relaxation time (longitudinal relaxation time T1, transverse relaxation time T2), blood flow, amount of hydrogen atoms (proton density), and the like can be obtained. An MRI image can be generated by performing reconstruction processing on an MRI signal containing position information.
  • MRI images are, for example, T1-weighted images, T2-weighted images, T2 * -weighted images, FLAIR (Fluid-Attenuated Inversion Recovery) images, SWI (susceptibility-weighted imaging) images, and PADRE (Phase Difference Enhanced Imaging). ) shall contain images.
  • SWI images can be generated from T2 * -weighted images and are qualitatively susceptibility-enhanced images.
  • the PADRE image uses tissue magnetic information contained in the MRI phase image information, and uses a method of emphasizing the tissue contrast in the brain by emphasizing the phase difference (phase-difference-enhanced imaging method). be.
  • a QSM (Quantitative Susceptibility Mapping) image can be generated by performing a predetermined operation on a T2 * weighted image. It is also possible to generate an R2 * (R2 star) image by performing a predetermined operation on the T2 * weighted image.
  • QSM images and R2* images are also collectively referred to as susceptibility images.
  • the MRI image may include a magnetic susceptibility image.
  • a predetermined arithmetic processing function required for conversion from an MRI image to a magnetic susceptibility image may be provided in the MRI apparatus 10, the information processing apparatus 50, or the image data server 100, or It may be provided in another device (not shown) connected to the communication network 1 .
  • the MRI apparatus 10 is installed, for example, in a medical institution such as a hospital. MRI images obtained by the MRI apparatus 10 are accumulated in the image data server 100 . MRI images are also referred to as MR images.
  • the image data server 100 records MRI images for each patient. For example, for each patient, the imaging date (examination date) when the MRI image was captured, the imaging conditions, the medication history such as the presence or absence of medication at the time of imaging and the number of medications, the name and amount of the therapeutic drug at the time of medication, the patient's medical history, etc. , are recorded in association with the MRI images.
  • QSM is a method of calculating local magnetic susceptibility from MRI phase images, and the QSM imaging method captures 3D-GRE (Gradient Echo) intensity images and phase images with multi-echo. Since the magnetic susceptibility is a physical property value unique to a substance, the magnetic susceptibility can be used to estimate the substance information in the voxel.
  • a QSM image is an image that quantitatively represents magnetic susceptibility. In QSM, paramagnetic substances with high magnetic susceptibility (for example, hemosiderin and deoxyhemoglobin in bleeding) are displayed in white, and diamagnetic substances with low magnetic susceptibility are displayed in black. Is displayed.
  • the display device 30 includes a liquid crystal display panel, an organic EL display panel, or the like, and can display the processing results of the information processing device 50 .
  • the display device 30 can display brain diagnostic information obtained from MRI images.
  • brain diagnostic information means information that may be used by doctors to diagnose the state of the brain. It also includes sensitive information.
  • the input device 20 is an input interface such as a keyboard and a mouse that accepts operations of the information processing device 50 .
  • the input device 20 may be a touch panel, soft keys, hard keys, or the like provided on the display device 30 .
  • a medical practitioner such as a doctor can operate the input device 20 to input information such as a reference region and a region of interest (ROI) for obtaining brain diagnostic information.
  • a medical worker such as a doctor can operate the input device 20 to display the processing result of the information processing device 50 on the display device 30 .
  • the input device 20 and the display device 30 may be incorporated in the information processing device 50 .
  • a client device personal computer or the like
  • the information processing device 50 serving as a server is sent from the client device to the information processing device 50.
  • the medical staff acquires the MRI image from the MRI apparatus 10 into the client apparatus and uploads it to the information processing apparatus 50 .
  • the information processing device 50 may perform processing described later, transmit brain diagnosis information (processing results) to the client device, and display the brain diagnosis information on the client device.
  • FIG. 2 is a diagram showing an example of the configuration of the information processing device 50.
  • the information processing apparatus 50 includes a control unit 51 that controls the entire apparatus, a communication unit 52, a memory 53, an interface unit 54, an image processing unit 55, a display control unit 56, a diagnostic information generation unit 57, a storage unit 58, and a recording medium reading unit.
  • a portion 64 is provided.
  • the storage unit 58 stores a computer program 59, a first learning model 61, a second learning model 62, a third learning model 63, and required information.
  • the image processing unit 55, the display control unit 56, and the diagnostic information generation unit 57 may be configured by hardware, may be realized by software (computer program), or may be implemented by both hardware and software. may be configured with
  • the information processing device 50 may be configured by distributing functions among a plurality of information processing devices.
  • the control unit 51 can be configured with a CPU (Central Processing Unit), MPU (Micro-Processing Unit), GPU (Graphics Processing Unit), or the like.
  • the control unit 51 can execute processing defined by a computer program 59 . That is, the processing by the control unit 51 is also the processing by the computer program 59 .
  • the communication unit 52 includes, for example, a communication module, and has a function of communicating with the MRI apparatus 10 and the image data server 100 via the communication network 1.
  • the communication unit 52 can acquire an MRI image or a magnetic susceptibility image from the MRI apparatus 10 or the image data server 100 .
  • the communication unit 52 can acquire information such as a reference region and a region of interest for obtaining brain diagnosis information.
  • the memory 53 can be composed of semiconductor memory such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and flash memory.
  • the computer program 59 can be developed in the memory 53 and the control unit 51 can execute the computer program 59 .
  • a recording medium M on which the computer program 59 is recorded can be read by a recording medium reading section 64 .
  • the interface unit 54 provides an interface function between the input device 20 and the display device 30.
  • the information processing device 50 (control section 51 ) can exchange data and information with the input device 20 and the display device 30 through the interface section 54 .
  • the storage unit 58 can be composed of, for example, a hard disk or a semiconductor memory.
  • the image processing unit 55 converts the acquired MRI image into a magnetic susceptibility image.
  • the image processing unit 55 standardizes the susceptibility values in the whole brain by standardizing the susceptibility images.
  • the normalization process is a scaling method in which the minimum value of magnetic susceptibility is 0 and the maximum value is 1.
  • x indicates the magnetic susceptibility value before scaling
  • x max indicates the maximum possible value of x
  • x min indicates the minimum possible value of x. This can reduce variations.
  • the display control unit 56 controls information displayed on the display device 30 via the interface unit 54 .
  • the display control unit 56 can cause the display device 30 to display brain diagnosis information (processing results) by the information processing device 50, for example.
  • the diagnostic information generation unit 57 generates brain diagnostic information based on the results of processing by the control unit 51 and the results of processing using the first learning model 61, the second learning model 62, and the third learning model 63. Details of the brain diagnosis information will be described later.
  • the control unit 51 acquires an MRI image or magnetic susceptibility image of a patient (subject), specifies predetermined brain diagnostic information based on the acquired MRI image or magnetic susceptibility image, and displays the specified brain diagnostic information on the display device 30. indicate.
  • brain diagnostic information can be provided by a less invasive MRI image or a magnetic susceptibility image that can be converted from the MRI image without performing a PET examination.
  • QSM image is used as an example of the magnetic susceptibility image
  • the magnetic susceptibility image is not limited to the QSM image.
  • a first specific example of brain diagnostic information is that the first learning model 61 predicts a predicted PET image based on an MRI image or a QSM image, and based on the predicted predicted PET image, amyloid ⁇ , tau protein, ⁇ -synuclein, etc. It specifies brain diagnostic information that indicates the degree of accumulation of aggregates.
  • the second learning model 62 identifies brain diagnostic information indicating the degree of accumulation of aggregates such as amyloid ⁇ , tau protein, or ⁇ -synuclein based on MRI images or QSM images.
  • the third learning model 63 identifies brain diagnostic information such as amyloid ⁇ positive/negative or tau protein positive/negative based on MRI images or QSM images.
  • a fourth example is to specify brain diagnosis information indicating iron concentration and magnetic susceptibility based on MRI images or QSM images. It is said that the function of brain nerve cells is inhibited when there are many fibrous aggregates, and it is said that it leads to cognitive impairment and movement disorder. , the degree or risk of cerebral neurodegeneration can be estimated, and is highly valuable as diagnostic aid information.
  • the fibrillar aggregates in the present invention are mainly composed of amyloid ⁇ , tau, and ⁇ -synuclein, but also aggregates having fibrous aggregate morphology, such as complexes with other intracerebral proteins and aggregations due to heteromolecular species. include.
  • methods for identifying brain diagnostic information will be described in order.
  • FIG. 3 is a diagram showing an example of processing of the first learning model 61.
  • the control unit 51 can read the first learning model 61 from the storage unit 58 and perform the processing shown in FIG. 3 using the read first learning model 61 .
  • the first learning model 61 can be composed of, for example, a neural network (eg, CNN: Convolutional Neural Network), U-net, GAN (Generative Adversarial Network), or a combination thereof.
  • a neural network eg, CNN: Convolutional Neural Network
  • U-net e.g., a neural network
  • GAN Generic Adversarial Network
  • the predicted PET image output by the first learning model 61 is a predicted PET image (predicted image) predicted from an MRI image or a QSM image, not a PET image obtained by a PET examination using a drug, and the invasiveness is low.
  • the predicted PET images output by the first learning model 61 may include an amyloid predicted PET image, a tau predicted PET image, an ⁇ -synuclein aggregate image, and CL (centroid) values.
  • amyloid PET since the PET value differs depending on the PET drug even if the degree of amyloid accumulation is the same, the centroid is standardized by a drug-independent value.
  • the degree of cerebral amyloid accumulation can be expressed as a numerical value from 0 to 100, where 0 is the average of healthy young subjects and 100 is the average of definite AD.
  • the predicted PET image output by the first learning model 61 visualizes the distribution of, for example, amyloid ⁇ , tau protein, or ⁇ -synuclein in the brain, similar to the PET image using a drug.
  • the predicted PET image is the predicted PET image output by the first learning model 61 unless otherwise specified.
  • the first learning model 61 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the first learning model 61 to output the voxel values of the MRI image when the MRI image is input. Next, as a second step, the control unit 51 acquires second training data including a magnetic susceptibility image (or an MRI image may be used) and a predicted PET image corresponding to the magnetic susceptibility image. The second training data may be acquired from the image data server 100 . Based on the acquired second training data, the control unit 51 generates the first learning model 61 so as to output a predicted PET image when a magnetic susceptibility image (or an MRI image) is input.
  • first training data including MRI images and voxel values of the MRI images.
  • the first training data may be acquired from the image data
  • the first learning model 61 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of the predicted PET image can be improved.
  • the control unit 51 acquires the predicted PET image output by the first learning model 61, and based on the acquired predicted PET image, at least one fibrous aggregate (for example, amyloid At least one of ⁇ , tau protein and ⁇ -synuclein) can be identified as brain diagnostic information indicative of the degree of accumulation.
  • at least one fibrous aggregate for example, amyloid At least one of ⁇ , tau protein and ⁇ -synuclein
  • SUVR Standardized Uptake Value Ratio
  • SUVR can be used as an indicator of the degree of accumulation.
  • SUV Standardized Uptake Value
  • Regions of interest include, but are not limited to, diagnostic target regions such as, for example, the frontal lobe, occipital lobe, parietal lobe, posterior cingulate gyrus, and striatum.
  • Reference regions include, for example, but are not limited to, the entire cerebellum, the entire cerebellum plus the brainstem, the cerebellar gray matter, the pons, and the like.
  • SUV of amyloid ⁇ , tau protein, or ⁇ -synuclein is obtained by counting the number of voxels in which the value indicating the brightness of each voxel constituting the region of interest and the reference region (required site) is equal to or higher than a predetermined threshold. be able to.
  • the degree of integration (for example, OO%, etc.) can be calculated from the ratio of the count value to the total number of voxels of the desired site.
  • CL centroid
  • CL centroid
  • FIG. 4 is a diagram showing a first example of processing of the second learning model 62.
  • the control unit 51 can read the second learning model 62 from the storage unit 58 and perform the processing shown in FIG. 4 using the read second learning model 62 .
  • the second learning model 62 can be composed of, for example, a neural network.
  • the second learning model 62 outputs SUVR values (or CL values for MRI or QSM images) for each voxel when input with information about the patient's MRI or QSM images and the reference region.
  • the CL value may be calculated for one image such as an MRI image or a QSM image, and calculated from the SUVR value of each voxel output by the second learning model 62 using a required conversion formula.
  • the control unit 51 identifies the SUVR value (or the CL value for the MRI image or the QSM image) output by the second learning model 62 as brain diagnosis information.
  • FIG. 5 is a diagram showing a second example of processing of the second learning model 62.
  • the second learning model 62 outputs the SUVR value (or the CL value for the MRI image or QSM image) of each voxel in the region of interest when the patient's MRI image or QSM image and information about the reference region and the region of interest are input. do.
  • the CL value may be calculated for one image such as an MRI image or a QSM image, and calculated from the SUVR value of the region of interest output by the second learning model 62 using a required conversion formula.
  • the control unit 51 identifies the SUVR value (or the CL value for the MRI image or the QSM image) output by the second learning model 62 as brain diagnosis information.
  • the second learning model 62 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the second learning model 62 to output the voxel values of the MRI image when the MRI image is input. Next, as a second step, the control unit 51 accumulates a magnetic susceptibility image (or an MRI image) and at least one of fibrous aggregates (for example, at least one of amyloid ⁇ and tau protein). Second training data is obtained that includes brain diagnostic information indicative of the degree of strength.
  • Second training data is obtained that includes brain diagnostic information indicative of the degree of strength.
  • the second training data may be acquired from the image data server 100 .
  • a magnetic susceptibility image or MRI image
  • at least one of fibrous aggregates for example, at least one of amyloid ⁇ and tau protein
  • the second learning model 62 is generated so as to output brain diagnosis information indicating the degree of accumulation.
  • the second learning model 62 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of brain diagnosis information can be improved.
  • FIG. 6 is a diagram showing an example of processing of the third learning model 63.
  • the control unit 51 can read the third learning model 63 from the storage unit 58 and perform the processing shown in FIG. 6 using the read third learning model 63 .
  • the third learning model 63 can be composed of, for example, a neural network.
  • the third learning model 63 detects at least one of amyloid ⁇ positive, amyloid ⁇ negative, tau protein positive, and tau protein negative in the region of interest. Output brain diagnostic information shown.
  • Amyloid ⁇ -positive means that abnormal accumulation of amyloid ⁇ is present, and amyloid ⁇ -negative means that even if amyloid ⁇ accumulation is present, it is not abnormal accumulation.
  • tau protein positive/negative If the information of the region of interest is not input, amyloid ⁇ positive/negative and tau protein positive/negative are predicted from the entire input QSM image or MRI image.
  • the third learning model 63 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the third learning model 63 so that when an MRI image is input, the voxel values of the MRI image are output. Next, as a second step, the control unit 51 generates second training data including a magnetic susceptibility image (or an MRI image) and brain diagnostic information indicating at least one of amyloid ⁇ positive/negative and tau protein positive/negative.
  • first training data including MRI images and voxel values of the MRI images.
  • the first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the third learning model 63 so that when an MRI image is input, the voxel values of the MRI image are output.
  • the second training data may be acquired from the image data server 100 . Based on the obtained second training data, when a magnetic susceptibility image (or an MRI image may be used) is input, the control unit 51 generates brain diagnosis information indicating at least one of amyloid ⁇ positive/negative and tau protein positive/negative. A third learning model 63 is generated to output.
  • the third learning model 63 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of brain diagnosis information can be improved.
  • the control unit 51 obtains a QSM image of the patient, and based on the obtained QSM image, identifies brain diagnostic information indicating the degree of iron accumulation compared with that of a healthy subject. According to pathological studies, a course such as amyloid accumulation ⁇ phosphorylated tau accumulation ⁇ inflammation in the brain ⁇ nerve displacement ⁇ disease is observed. Iron accumulation may occur in areas of inflammation in the brain. Brain diagnostic information indicating the degree of iron accumulation enables estimation of amyloid accumulation and evaluation of brain atrophy. Further, when obtaining an MRI image of a patient, the control unit 51 may convert the obtained MRI image into a QSM image and obtain the QSM image. The control unit 51 may also acquire information about the region of interest, and specify brain diagnostic information indicating the degree of iron accumulation or the degree of amyloid accumulation in the region of interest compared with that of a healthy subject. A specific description will be given below.
  • a QSM image of the normal brain of a healthy subject is created.
  • a database of healthy subjects is constructed, and a z-score (brain diagnostic information) for each region of interest of the patient is calculated based on the magnetic susceptibility distribution for each region of interest. That is, the QSM image of the patient is image-processed in units of voxels, which are three-dimensional pixels (VBM: Voxel Based Morphometry).
  • VBM Voxel Based Morphometry
  • the z-score can be calculated as follows. Calculate the average value and standard deviation of the magnetic susceptibility for each voxel from the QSM image of the normal brain of a healthy subject, and calculate the z-score based on the calculated average value and standard deviation and the magnetic susceptibility of the QSM image of the patient. .
  • the z-score indicates an index of how many times the standard deviation of the magnetic susceptibility distribution of a healthy subject's normal brain is apart.
  • the patient's QSM image can be compared with that of a healthy person (normal standard brain) to quantitatively analyze what kind of change occurs in which part.
  • voxels with positive values on the z-score map indicate regions with atrophy compared to normal brains, and larger values can be interpreted as statistically greater divergence. For example, if the z-score is "2", it means that it exceeds twice the standard deviation from the mean value, and it is evaluated that there is a statistically significant difference with a risk of about 5%, and atrophy in the region of interest can be evaluated quantitatively.
  • FIG. 7 is a diagram showing an example of a processing procedure when using the first learning model 61.
  • the control unit 51 acquires an MRI image of a subject (patient) (S11), and receives setting of a region of interest and a reference region (S12).
  • the control unit 51 converts the acquired MRI image into a QSM image (S13), and standardizes the converted QSM image (S14). Note that the process of step S13 is unnecessary when the QSM image is directly acquired.
  • the control unit 51 inputs the standardized QSM image to the first learning model 61 and acquires the predicted PET image output by the first learning model 61 (S15). Based on the obtained predicted PET image, the control unit 51 calculates amyloid ⁇ , SUVR indicating the degree of tau protein accumulation, and CL (centroid) for the QSM image in the region of interest (S16). The control unit 51 outputs the brain diagnosis information (S17) and terminates the process.
  • FIG. 8 is a diagram showing an example of a processing procedure when using the second learning model 62.
  • the control unit 51 acquires an MRI image of a subject (patient) (S21), and receives setting of a region of interest and a reference region (S22).
  • the control unit 51 converts the acquired MRI image into a QSM image (S23), and standardizes the converted QSM image (S24). Note that the process of step S23 is unnecessary when the QSM image is directly acquired.
  • the control unit 51 inputs the set region of interest, the reference region, and the standardized QSM image to the second learning model 62, and the second learning model 62 outputs the amyloid ⁇ in the region of interest, the degree of accumulation of tau protein CL (centroid) for the SUVR and QSM images showing is acquired (S25).
  • the control unit 51 outputs the brain diagnosis information (S26) and terminates the process.
  • FIG. 9 is a diagram showing an example of a processing procedure when using the third learning model 63.
  • the control unit 51 acquires an MRI image of a subject (patient) (S31), and receives setting of a region of interest (S32).
  • the control unit 51 converts the acquired MRI image into a QSM image (S33), and standardizes the converted QSM image (S34). Note that the process of step S33 is unnecessary when the QSM image is directly acquired.
  • the control unit 51 inputs the standardized QSM image to the third learning model 63, and outputs the amyloid ⁇ positive/negative (+/-), tau protein positive/negative (+ /-) is acquired (S35).
  • the control unit 51 outputs the brain diagnosis information (S36) and ends the process.
  • FIG. 10 is a diagram showing an example of a processing procedure for calculating the degree of iron accumulation or the degree of amyloid accumulation.
  • the control unit 51 acquires an MRI image of a subject (patient) (S41), and receives setting of a region of interest and a reference region (S42).
  • the control unit 51 converts the acquired MRI image into a QSM image (S43), and standardizes the converted QSM image (S44). Note that the process of step S43 is unnecessary when the QSM image is directly acquired.
  • the control unit 51 refers to the healthy subject DB and generates a QSM image of the normal brain of the healthy subject group (S45).
  • the control unit 51 calculates a Z-score (z-score) indicating the degree of iron accumulation or amyloid accumulation in the region of interest based on the QSM image of the subject and the QSM image of the healthy subject group.
  • the control unit 51 calculates SUVR indicating the degree of iron accumulation or amyloid accumulation in the region of interest and the centroid (CL) for the QSM image (S47).
  • the control unit 51 outputs the brain diagnosis information (S48) and terminates the process.
  • the control unit 51 may perform all the processes of the first to fourth examples described above and output brain diagnostic information, or may perform required processes of the first to fourth examples. good. For example, only the first example and the fourth example may be performed to output the brain diagnosis information.
  • the diagnostic information generation unit 57 generates brain diagnostic information to be output, and the display control unit 56 performs control processing for displaying the brain diagnostic information on the display device 30 .
  • a display example of brain diagnosis information will be described below.
  • FIG. 11 is a diagram showing a first display example of brain diagnosis information.
  • the diagnosis information screen 210 includes a patient information area 211 that displays patient information, an image area 214 that displays patient images, a numerical area 217 that displays indexes and numerical values of brain diagnosis information, and a similarity area that displays similar scores.
  • a score area 216 and a recommended inspection area 218 displaying recommended inspection items are displayed.
  • a patient information area 211 displays information such as a patient ID (which may include a name) for selecting a patient, date of birth, age, sex, examination date such as MRI examination, medication history, and medical history. .
  • the patient ID may be selectable from among multiple patients. Also, if there are multiple inspection dates, the inspection date may be selectable.
  • the predicted PET image output by the first learning model 61 is displayed in the image area 214.
  • the predicted PET images are displayed in the form of axial, sagittal, and coronal cross-sectional images.
  • the QSM image of the patient may also be displayed in the image area 214 at the same time.
  • the image area 214 can display the input QSM image.
  • Numerical area 217 displays a reference region setting window (in the figure, the entire cerebellum is set) for selecting a reference region, and SUVR values indicating the degree of accumulation of amyloid ⁇ or tau protein for each region of interest. be done.
  • the value of SUVR may use information output by the second learning model 62 or may be calculated based on the predicted PET image output by the first learning model 61 .
  • the centroid (CL) value in the entire image may be displayed, and as a comprehensive judgment, amyloid ⁇ positive/negative (+/-), or tau protein positive/negative (+/-) ) may be displayed.
  • the degree of similarity with the positive image is displayed in the range of 0 to 1 (in the example of the figure, the degree of similarity is displayed as 0.35).
  • the recommended examination area 218 displays examination items that can be recommended for the patient based on the brain diagnosis information.
  • the diagnostic information generation unit 57 may output the recommended inspection items on a rule basis.
  • brain diagnosis information is automatically provided, so it is possible to support the doctor's diagnosis and reduce the burden on the doctor at the time of diagnosis.
  • brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
  • FIG. 12 is a diagram showing a second display example of brain diagnosis information.
  • the diagnostic information screen 220 displays a patient information area 211 that displays patient information, an image area 221 that displays patient images, and a numerical value area 222 that displays indices and numerical values of brain diagnosis information.
  • the patient information area 211 is the same as in the first display example shown in FIG.
  • a predicted PET image output by the first learning model 61 is displayed in the image area 221 . It is possible to select any one of axial section (Axial), sagittal section (Sagittal), and coronal section (Coronal) as the section image to be displayed in the predicted PET image. In the example shown, an axial section (Axial) is selected. In the image area 221, the input QSM image and the predicted PET image are displayed in a comparable manner. As in the case of the first display example, by moving the cursor 215, a desired cross-sectional image can be displayed.
  • the numerical value area 222 includes a reference area setting window for selecting a reference area (in the figure, the entire cerebellum is set), amyloid ⁇ or tau protein for each region of interest.
  • a value of SUVR indicating the degree of accumulation of is displayed.
  • CL values indicating the degree of accumulation of amyloid ⁇ or tau protein are displayed for each region of interest.
  • Numerical area 222 displays the determination result of amyloid ⁇ positive/negative (+/-) or tau protein positive/negative (+/-) output by third learning model 63 .
  • brain diagnosis information is automatically provided, so it is possible to support the doctor's diagnosis and reduce the burden on the doctor at the time of diagnosis.
  • brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
  • FIG. 13 is a diagram showing a third display example of brain diagnosis information.
  • the diagnostic information screen 230 displays a patient information area 211 that displays patient information, an image area 233 that displays patient images, and a numerical value area 234 that displays indexes and numerical values of brain diagnosis information.
  • the patient information area 211 is the same as in the first display example shown in FIG.
  • a desired number of slice images are selected from the cross-sectional images of the input QSM image, and a Z-score (z- A Z-score map is displayed on which the value of the score) is superimposed.
  • a cross-sectional image of the QSM image can be selected to be axial, sagittal, or coronal. In the example shown, an axial section (Axial) is selected.
  • the degree of iron accumulation can be visualized by adding gradation to the QSM image according to the value of the Z score.
  • the Z-score is visualized in the range of 0 to 4. As a result, it is possible to easily determine to what extent iron accumulation occurs in which part of the brain. The degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
  • the value of magnetic susceptibility is displayed for each region of interest in the numerical area 234 .
  • a diagnosis information screen 240 of a fourth display example, which will be described later, is displayed.
  • brain diagnosis information is automatically provided, so that the doctor's diagnosis can be supported, and the burden on the doctor at the time of diagnosis can be reduced.
  • brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
  • FIG. 14 is a diagram showing a fourth display example of brain diagnosis information.
  • the diagnostic information screen 240 displays a patient information area 211 that displays patient information, and a first numerical area 241 and a second numerical area 242 that display indices and numerical values of brain diagnosis information.
  • the patient information area 211 is the same as in the first display example shown in FIG.
  • the first numerical value area 241 displays Z-score values in whole brain gray matter and whole brain white matter, and the status of iron deposition.
  • the Z-score is visualized in the range of 0 to 4.
  • the second numerical value area 242 displays the Z-score values and the status of iron deposition in regions other than whole brain gray matter and whole brain white matter.
  • the frontal lobe, temporal lobe, occipital lobe, and parietal lobe are displayed, but are not limited to these.
  • the degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
  • the Z-score indicating the degree of iron accumulation and the state of iron deposition are displayed for whole brain gray matter, whole brain white matter, and other regions of interest, reducing the burden on doctors at the time of diagnosis. In addition, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
  • FIG. 15 is a diagram showing a fifth display example of brain diagnosis information.
  • the diagnostic information screen 250 displays a patient information area 211 that displays patient information, an image area 253 that displays patient images, and a numerical value area 254 that displays indices and numerical values of brain diagnostic information.
  • the patient information area 211 is the same as in the first display example shown in FIG.
  • the magnetic susceptibility distribution image is displayed in the image area 253.
  • the magnetic susceptibility distribution image can visualize the magnetic susceptibility (iron accumulation) by adding gradation to the QSM image according to the value of the magnetic susceptibility.
  • a cross-sectional image of the QSM image can be selected to be axial, sagittal, or coronal. In the example shown, an axial section (Axial) is selected.
  • a desired cross-sectional image can be displayed. The degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
  • the numerical value area 254 displays the magnetic susceptibility value and the Z score value for each region of interest.
  • brain diagnosis information is automatically provided, so that the doctor's diagnosis can be supported, and the burden on the doctor at the time of diagnosis can be reduced.
  • brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
  • the burden on the patient can be reduced compared to the actual PET examination.
  • the spread of MRI examination is higher than that of PET examination, more patients can be examined.
  • the information processing device 50 collects information other than the MRI image of the subject, such as test results regarding the cognitive ability of the subject (cognitive ability test, cognitive function test results, etc.), and biomarkers (for example, blood test results). , genetic information, etc.), specified brain diagnostic information is specified based on the acquired information, and the specified brain diagnostic information is newly generated and displayed.
  • the computer program of the present embodiment causes a computer to acquire an MRI image of a subject, specify predetermined brain diagnostic information based on the acquired MRI image, and newly generate and display the specified brain diagnostic information. to run.
  • the computer program of the present embodiment acquires a magnetic susceptibility image generated based on the MRI image of the subject to the computer, and outputs a predicted PET image when the magnetic susceptibility image is input.
  • a process of acquiring a predicted PET image by inputting a magnetic susceptibility image and identifying the brain diagnostic information indicating the degree of accumulation of at least one of fibrous aggregates based on the obtained predicted PET image is executed.
  • the computer program of the present embodiment acquires a magnetic susceptibility image generated based on an MRI image of a subject into a computer, and when the magnetic susceptibility image is input, the degree of accumulation of at least one of the fibrous aggregates is shown.
  • the brain diagnostic information is obtained by inputting the acquired magnetic susceptibility image into a second learning model that outputs brain diagnostic information and acquiring the brain diagnostic information indicating the degree of accumulation of at least one of the fibrous aggregates. Identify, take action.
  • the computer program of the present embodiment acquires a magnetic susceptibility image generated based on an MRI image of a subject into a computer, and when the magnetic susceptibility image is input, at least one of amyloid ⁇ positive/negative and tau protein positive/negative By inputting the acquired magnetic susceptibility image into a third learning model that outputs brain diagnostic information indicating the above-mentioned Identify brain diagnostic information and cause processing to be performed.
  • the computer program of the present embodiment causes the computer to acquire a magnetic susceptibility image generated based on the MRI image of the subject, and based on the acquired magnetic susceptibility image, the brain diagnosis indicating the degree of iron accumulation compared with that of a healthy subject. Identify information, cause an action to take place.
  • the computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI image Train the first learning model to output voxel values of, acquire second training data including a magnetic susceptibility image and a predicted PET image, and input a magnetic susceptibility image based on the acquired second training data If so, a process of generating the first learning model to output a predicted PET image is executed.
  • the computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI training the second learning model to output image voxel values to obtain second training data comprising magnetic susceptibility images and brain diagnostic information indicative of the degree of accumulation of at least one of fibrous aggregates; A process of generating the second learning model so as to output brain diagnostic information indicating the degree of accumulation of at least one of fibrous aggregates when a magnetic susceptibility image is input based on the obtained second training data. to run.
  • the computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI training the third learning model to output image voxel values to obtain second training data including magnetic susceptibility images and brain diagnostic information indicative of at least one of amyloid- ⁇ positive/negative and tau protein positive/negative; and, based on the acquired second training data, when a magnetic susceptibility image is input, the third learning model is configured to output brain diagnostic information indicating at least one of amyloid ⁇ positive/negative and tau protein positive/negative. Generate, execute processing.
  • the computer program of the present embodiment acquires information including at least one of a test result on cognition of a subject and biomarkers into a computer, and specifies predetermined brain diagnostic information based on the acquired information. A process of newly generating and displaying brain diagnosis information is executed.
  • the information processing apparatus of this embodiment includes an acquisition unit that acquires an MRI image of a subject, a specification unit that specifies predetermined brain diagnostic information based on the acquired MRI image, and newly generates the specified brain diagnostic information. and a display for displaying.
  • the information processing method of the present embodiment acquires an MRI image of a subject, specifies predetermined brain diagnostic information based on the acquired MRI image, and newly generates and displays the specified brain diagnostic information.
  • This embodiment includes dementia, multiple sclerosis, mild cognitive impairment (MCI), mild cognitive impairment due to Alzheimer's disease (MCI due to AD), prodromal AD, and pre-onset Alzheimer's disease.
  • MCI mild cognitive impairment
  • MCI due to AD mild cognitive impairment due to Alzheimer's disease
  • prodromal AD prodromal AD
  • pre-onset Alzheimer's disease Stage/preclinical AD, Parkinson's disease, insomnia, sleep disorder, cognitive decline, cognitive impairment, amyloid positive/negative disease, movement disorder, motor dysfunction, movement disorder disease, Alzheimer's disease, It can be used to diagnose synucleinopathy, multiple system atrophy, vascular dementia, cerebrovascular disease, dementia with Lewy bodies, other neurodegenerative diseases, and the like.
  • communication network 10 MRI apparatus 20 input device 30 display device 50 information processing device 51 control unit 52 communication unit 53 memory 54 interface unit 55 image processing unit 56 display control unit 57 diagnostic information generation unit 58 storage unit 59 computer program 61 first learning model 62 second learning model 63 third learning model 64 recording medium reading unit 100 image data server

Abstract

Provided is a computer program with which it is possible to provide brain diagnosis information using a minimally-invasive MRI image, and without performing a PET scan. Also provided are an information processing device and an information processing method. This computer program causes a computer to execute a process for acquiring an MRI image of a subject, specifying prescribed brain diagnosis information on the basis of the acquired MRI image, and newly generating and displaying the specified brain diagnosis information.

Description

コンピュータプログラム、情報処理装置及び情報処理方法Computer program, information processing device and information processing method
 本発明は、コンピュータプログラム、情報処理装置及び情報処理方法に関する。 The present invention relates to a computer program, an information processing device, and an information processing method.
 近年、高齢化が進み、認知症患者や認知症予備軍(軽度認知障害)の数が増加している。認知症の原因となる4大疾患には、アルツハイマー型認知症(AD)、レビー小体型認知症(DLB)、脳血管性認知症、前頭葉側頭葉変性症(FTLD)があり、その他、多発性硬化症(MS)なども認知症を含む様々な神経症状が現れる。アルツハイマー型認知症の原因は未だ解明されていないが、病状の進行に伴って脳内に特有の病変が見られる。例えば、アルツハイマー型認知症や前頭葉側頭葉変性症では、神経細胞の外側ではアミロイドβによる老人斑の沈着やタウを主とする異常タンパク質の蓄積が知られている。老人斑の沈着は、アルツハイマー型認知症の発症の最も初期段階から生じ、臨床症状が現れるかなり前(例えば、十数年前)から始まることが明らかになっている。また、脳の神経細胞にはαシヌクレインという機能不明のタンパク質が発現し、パーキンソン病をはじめとする神経変性疾患の原因とされている。 In recent years, as the population ages, the number of dementia patients and dementia reserves (mild cognitive impairment) is increasing. The four major diseases that cause dementia include Alzheimer's disease (AD), dementia with Lewy bodies (DLB), cerebrovascular dementia, and frontotemporal lobar degeneration (FTLD). Various neurological symptoms including dementia also appear in sexual sclerosis (MS). Although the cause of Alzheimer's dementia has not yet been elucidated, characteristic lesions are observed in the brain as the disease progresses. For example, in Alzheimer's dementia and frontotemporal lobar degeneration, deposition of senile plaques due to amyloid β and accumulation of abnormal proteins, mainly tau, are known outside of nerve cells. Deposition of senile plaques has been shown to occur from the earliest stages of the onset of Alzheimer's dementia, beginning long before clinical symptoms appear (eg, over a decade ago). In addition, α-synuclein, a protein of unknown function, is expressed in brain neurons, and is believed to be the cause of neurodegenerative diseases such as Parkinson's disease.
 脳の検査には、MRI(Magnetic Resonance Imaging)とPET(Positron Emission Tomography)が使われる。MRIは磁場で信号を検出するので、放射線の被ばくがなく、「かたち」や「大きさ」の計測が可能で、小さな病変部も検出できる。一方、PETは放射性ブドウ糖の取り込みで組織の活動状況を調べることができる。特許文献1には、脳組織内のアミロイドβと結合する薬剤を被検体に注射投与し、脳を横切る裁断面上の薬剤の濃度分布を表すPET画像を用いる装置が開示されている。 MRI (Magnetic Resonance Imaging) and PET (Positron Emission Tomography) are used for brain examination. Since MRI detects signals in a magnetic field, there is no exposure to radiation, and it is possible to measure "shape" and "size" and detect even small lesions. On the other hand, PET can examine tissue activity by taking in radioactive glucose. Patent Literature 1 discloses an apparatus in which a drug that binds to amyloid β in brain tissue is injected into a subject and a PET image representing the concentration distribution of the drug on a cut plane across the brain is used.
国際公開第WO2014/034724号International Publication No. WO2014/034724
 上記のように、MRIとPETの両方で、脳の形と機能を調べることが望ましい。しかし、薬剤を用いたPET画像の撮影は、少量とはいえ放射性物質を体内に摂取する必要があり、被爆するおそれがあり患者にとって侵襲性が高く負担を強いる。また、腎臓病などの特定の疾病を患っている患者には薬剤を投与できない場合もある。さらに、一般的にPET検査の費用は高額であるという問題もある。両方のモダリティを受診するという時間的負担や手間も問題になる。 As mentioned above, it is desirable to examine the shape and function of the brain with both MRI and PET. However, taking a PET image using a drug requires the body to take in a radioactive substance, even if it is in a small amount, and there is a risk of radiation exposure, which is highly invasive and imposes a burden on the patient. Also, it may not be possible to administer drugs to patients suffering from certain diseases, such as kidney disease. Furthermore, there is also the problem that the cost of PET examination is generally high. The time burden and trouble of having to undergo both modalities is also a problem.
 本発明は、斯かる事情に鑑みてなされたものであり、PET検査を行うことなく、侵襲性の低いMRI画像によって脳診断情報を提供できるコンピュータプログラム、情報処理装置、及び情報処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a computer program, an information processing apparatus, and an information processing method that can provide brain diagnostic information using less invasive MRI images without performing a PET examination. for the purpose.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、コンピュータプログラムは、コンピュータに、被験者のMRI画像を取得し、取得したMRI画像に基づいて所定の脳診断情報を特定し、特定した脳診断情報を新たに生成して表示する、処理を実行させる。 The present application includes a plurality of means for solving the above problems. To give one example, a computer program acquires an MRI image of a subject in a computer and outputs predetermined brain diagnostic information based on the acquired MRI image. A process of specifying, newly generating and displaying the specified brain diagnosis information is executed.
 本発明によれば、侵襲性の低いMRI画像によって脳診断情報を提供できる。 According to the present invention, brain diagnostic information can be provided by less invasive MRI images.
本実施形態の情報処理システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the information processing system of this embodiment. 情報処理装置の構成の一例を示す図である。It is a figure which shows an example of a structure of an information processing apparatus. 第1学習モデルの処理の一例を示す図である。It is a figure which shows an example of the process of a 1st learning model. 第2学習モデルの処理の第1例を示す図である。FIG. 10 is a diagram showing a first example of processing of the second learning model; 第2学習モデルの処理の第2例を示す図である。FIG. 10 is a diagram showing a second example of processing of the second learning model; 第3学習モデルの処理の一例を示す図である。It is a figure which shows an example of the process of a 3rd learning model. 第1学習モデルを用いる場合の処理手順の一例を示す図である。FIG. 10 is a diagram showing an example of a processing procedure when using a first learning model; 第2学習モデルを用いる場合の処理手順の一例を示す図である。FIG. 10 is a diagram showing an example of a processing procedure when using a second learning model; 第3学習モデルを用いる場合の処理手順の一例を示す図である。It is a figure which shows an example of the processing procedure in the case of using a 3rd learning model. 鉄蓄積度又はアミロイド蓄積度を算出する場合の処理手順の一例を示す図である。FIG. 4 is a diagram showing an example of a processing procedure for calculating the degree of iron accumulation or the degree of amyloid accumulation; 脳診断情報の第1表示例を示す図である。FIG. 4 is a diagram showing a first display example of brain diagnosis information; 脳診断情報の第2表示例を示す図である。FIG. 10 is a diagram showing a second display example of brain diagnosis information; 脳診断情報の第3表示例を示す図である。FIG. 11 is a diagram showing a third display example of brain diagnosis information; 脳診断情報の第4表示例を示す図である。FIG. 11 is a diagram showing a fourth display example of brain diagnosis information; 脳診断情報の第5表示例を示す図である。FIG. 11 is a diagram showing a fifth display example of brain diagnosis information;
 以下、本発明の実施の形態を図面に基づいて説明する。図1は本実施形態の情報処理システムの構成の一例を示す図である。情報処理システムは、情報処理装置50を備える。情報処理装置50には、入力装置20、及び表示装置30が接続されている。情報処理装置50には、通信ネットワーク1を介してMRI装置10、及び画像データサーバ100が接続されている。 Hereinafter, embodiments of the present invention will be described based on the drawings. FIG. 1 is a diagram showing an example of the configuration of an information processing system according to this embodiment. The information processing system includes an information processing device 50 . An input device 20 and a display device 30 are connected to the information processing device 50 . An MRI apparatus 10 and an image data server 100 are connected to the information processing apparatus 50 via the communication network 1 .
 MRI装置10は、磁気共鳴現象を利用して断層画像を撮像することができる装置であり、MRI画像(MR画像とも称する)を得ることができる。撮像条件を選択することにより、組織の密度、緩和時間(縦緩和時間T1、横緩和時間T2)、血流、水素原子の量(プロトン密度)などを反映したMRI画像が得られる。MRI画像は、位置情報を含むMRI信号に再構成処理を施すことで生成できる。 The MRI apparatus 10 is an apparatus that can capture a tomographic image using a magnetic resonance phenomenon, and can obtain an MRI image (also referred to as an MR image). By selecting imaging conditions, an MRI image reflecting tissue density, relaxation time (longitudinal relaxation time T1, transverse relaxation time T2), blood flow, amount of hydrogen atoms (proton density), and the like can be obtained. An MRI image can be generated by performing reconstruction processing on an MRI signal containing position information.
 本明細書では、MRI画像は、例えば、T1強調画像、T2強調画像、T2強調画像、FLAIR(Fluid-Attenuated Inversion Recovery)画像、SWI(susceptibility-weighted imaging)画像、及びPADRE(Phase Difference Enhanced Imaging)画像を含むものとする。SWI画像は、T2強調画像から作成することができ、磁化率を定性的に強調した画像である。PADRE画像は、MRI位相画像情報の中に含まれる組織の磁性情報を用いるものであり、位相差を強調して脳内の組織コントラストを強調する手法(位相差強調画像化法)を用いるものである。病変や観察対象となる組織を選択的に描出するように位相情報を選択して強調を行うことで、脳内の神経走行を画像化することができ、神経変性疾患などの画像診断が可能になる。QSM(Quantitative Susceptibility Mapping:定量的磁化率マッピング)画像は、T2強調画像に所定の演算を施して生成することができる。また、T2強調画像に所定の演算を施してR2(R2スター)画像を生成することもできる。QSM画像及びR2*画像をまとめて磁化率画像とも称する。なお、広義には、MRI画像に磁化率画像を含めてもよい。MRI画像から磁化率画像への変換に必要な所定の演算処理機能は、MRI装置10に設けてもよく、情報処理装置50に設けてもよく、画像データサーバ100に設けてもよく、あるいは、通信ネットワーク1に接続された、図示しない別の装置に設けてもよい。MRI装置10は、例えば、病院などの医療機関内に設置されている。MRI装置10で得られたMRI画像は、画像データサーバ100に蓄積される。なお、MRI画像はMR画像とも称する。 In this specification, MRI images are, for example, T1-weighted images, T2-weighted images, T2 * -weighted images, FLAIR (Fluid-Attenuated Inversion Recovery) images, SWI (susceptibility-weighted imaging) images, and PADRE (Phase Difference Enhanced Imaging). ) shall contain images. SWI images can be generated from T2 * -weighted images and are qualitatively susceptibility-enhanced images. The PADRE image uses tissue magnetic information contained in the MRI phase image information, and uses a method of emphasizing the tissue contrast in the brain by emphasizing the phase difference (phase-difference-enhanced imaging method). be. By selecting and enhancing phase information so as to selectively depict lesions and tissues to be observed, it is possible to visualize nerves running in the brain, making it possible to diagnose neurodegenerative diseases. Become. A QSM (Quantitative Susceptibility Mapping) image can be generated by performing a predetermined operation on a T2 * weighted image. It is also possible to generate an R2 * (R2 star) image by performing a predetermined operation on the T2 * weighted image. QSM images and R2* images are also collectively referred to as susceptibility images. In a broader sense, the MRI image may include a magnetic susceptibility image. A predetermined arithmetic processing function required for conversion from an MRI image to a magnetic susceptibility image may be provided in the MRI apparatus 10, the information processing apparatus 50, or the image data server 100, or It may be provided in another device (not shown) connected to the communication network 1 . The MRI apparatus 10 is installed, for example, in a medical institution such as a hospital. MRI images obtained by the MRI apparatus 10 are accumulated in the image data server 100 . MRI images are also referred to as MR images.
 画像データサーバ100は、患者毎のMRI画像を記録している。例えば、患者毎に、MRI画像を撮影した撮影日(検査日)、撮影条件、撮影時の投薬の有無又は投薬回数などの投薬歴、投薬時の治療薬の名称や量、患者の病歴などが、MRI画像と関連付けて記録されている。 The image data server 100 records MRI images for each patient. For example, for each patient, the imaging date (examination date) when the MRI image was captured, the imaging conditions, the medication history such as the presence or absence of medication at the time of imaging and the number of medications, the name and amount of the therapeutic drug at the time of medication, the patient's medical history, etc. , are recorded in association with the MRI images.
 QSMは、MRIの位相画像から局所の磁化率を算出する方法であり、QSMの撮像法は、3D-GRE(Gradient Echo)強度画像と位相画像をマルチエコーで撮像する。磁化率は、物質固有の物性値であるので、磁化率からボクセル内の物質情報を推定することができる。QSM画像は、磁化率を定量的に表す画像であり、QSMでは、磁化率の大きい常磁性体(例えば、出血のヘモジデリンやデオキシヘモグロビンなど)は白く表示され、磁化率の小さい反磁性体は黒く表示される。 QSM is a method of calculating local magnetic susceptibility from MRI phase images, and the QSM imaging method captures 3D-GRE (Gradient Echo) intensity images and phase images with multi-echo. Since the magnetic susceptibility is a physical property value unique to a substance, the magnetic susceptibility can be used to estimate the substance information in the voxel. A QSM image is an image that quantitatively represents magnetic susceptibility. In QSM, paramagnetic substances with high magnetic susceptibility (for example, hemosiderin and deoxyhemoglobin in bleeding) are displayed in white, and diamagnetic substances with low magnetic susceptibility are displayed in black. Is displayed.
 表示装置30は、液晶表示パネル、有機EL表示パネル等を備え、情報処理装置50による処理結果を表示することができる。例えば、表示装置30は、MRI画像から得られる脳診断情報を表示できる。ここで、脳診断情報とは、医師が脳の状態を診断するために利用する可能性のある情報を意味し、アミロイドβ等だけではなく、特定の疾患や障害を診断するために利用する可能性のある情報も含む。 The display device 30 includes a liquid crystal display panel, an organic EL display panel, or the like, and can display the processing results of the information processing device 50 . For example, the display device 30 can display brain diagnostic information obtained from MRI images. Here, brain diagnostic information means information that may be used by doctors to diagnose the state of the brain. It also includes sensitive information.
 入力装置20は、情報処理装置50の操作等を受け付けるキーボード、マウス等の入力インタフェースである。入力装置20は、表示装置30に設けられたタッチパネル、ソフトキー、ハードキー等であってもよい。医師などの医療従事者は、入力装置20を操作して、脳診断情報を得るための参照領域及び関心領域(ROI:region of interest)などの情報を入力することができる。また、医師などの医療従事者は、入力装置20を操作して、情報処理装置50による処理結果を表示装置30に表示することができる。なお、入力装置20及び表示装置30は、情報処理装置50内に組み込んでもよい。 The input device 20 is an input interface such as a keyboard and a mouse that accepts operations of the information processing device 50 . The input device 20 may be a touch panel, soft keys, hard keys, or the like provided on the display device 30 . A medical practitioner such as a doctor can operate the input device 20 to input information such as a reference region and a region of interest (ROI) for obtaining brain diagnostic information. Also, a medical worker such as a doctor can operate the input device 20 to display the processing result of the information processing device 50 on the display device 30 . Note that the input device 20 and the display device 30 may be incorporated in the information processing device 50 .
 なお、図示していないが、医師などの医療従事者が使用するクライアント装置(パーソナルコンピュータ等)を通信ネットワーク1に接続し、サーバとしての情報処理装置50に対して、クライアント装置から情報処理装置50にアクセス可能にしておく。医療従事者は、MRI装置10からMRI画像をクライアント装置に取り込み、情報処理装置50に対してアップロードする。情報処理装置50は、後述の処理を行って、脳診断情報(処理結果)をクライアント装置へ送信し、クライアント装置で脳診断情報を表示してもよい。 Although not shown, a client device (personal computer or the like) used by a medical practitioner such as a doctor is connected to the communication network 1, and the information processing device 50 serving as a server is sent from the client device to the information processing device 50. be accessible to The medical staff acquires the MRI image from the MRI apparatus 10 into the client apparatus and uploads it to the information processing apparatus 50 . The information processing device 50 may perform processing described later, transmit brain diagnosis information (processing results) to the client device, and display the brain diagnosis information on the client device.
 図2は情報処理装置50の構成の一例を示す図である。情報処理装置50は、装置全体を制御する制御部51、通信部52、メモリ53、インタフェース部54、画像処理部55、表示制御部56、診断情報生成部57、記憶部58、及び記録媒体読取部64を備える。記憶部58は、コンピュータプログラム59、第1学習モデル61、第2学習モデル62、第3学習モデル63、及び所要の情報を記憶する。 FIG. 2 is a diagram showing an example of the configuration of the information processing device 50. As shown in FIG. The information processing apparatus 50 includes a control unit 51 that controls the entire apparatus, a communication unit 52, a memory 53, an interface unit 54, an image processing unit 55, a display control unit 56, a diagnostic information generation unit 57, a storage unit 58, and a recording medium reading unit. A portion 64 is provided. The storage unit 58 stores a computer program 59, a first learning model 61, a second learning model 62, a third learning model 63, and required information.
 画像処理部55、表示制御部56、及び診断情報生成部57は、ハードウエアで構成してもよく、ソフトウエア(コンピュータプログラム)で実現するようにしてもよく、あるいはハードウエアとソフトウエアの両方で構成してもよい。情報処理装置50は、複数の情報処理装置で機能を分散して構成してもよい。 The image processing unit 55, the display control unit 56, and the diagnostic information generation unit 57 may be configured by hardware, may be realized by software (computer program), or may be implemented by both hardware and software. may be configured with The information processing device 50 may be configured by distributing functions among a plurality of information processing devices.
 制御部51は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)等で構成することができる。制御部51は、コンピュータプログラム59で定められた処理を実行することができる。すなわち、制御部51による処理は、コンピュータプログラム59による処理でもある。 The control unit 51 can be configured with a CPU (Central Processing Unit), MPU (Micro-Processing Unit), GPU (Graphics Processing Unit), or the like. The control unit 51 can execute processing defined by a computer program 59 . That is, the processing by the control unit 51 is also the processing by the computer program 59 .
 通信部52は、例えば、通信モジュールを備え、通信ネットワーク1を介してMRI装置10、及び画像データサーバ100との間の通信機能を有する。通信部52は、MRI装置10又は画像データサーバ100からMRI画像又は磁化率画像を取得できる。通信部52は、脳診断情報を得るための参照領域及び関心領域などの情報を取得できる。 The communication unit 52 includes, for example, a communication module, and has a function of communicating with the MRI apparatus 10 and the image data server 100 via the communication network 1. The communication unit 52 can acquire an MRI image or a magnetic susceptibility image from the MRI apparatus 10 or the image data server 100 . The communication unit 52 can acquire information such as a reference region and a region of interest for obtaining brain diagnosis information.
 メモリ53は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の半導体メモリで構成することができる。コンピュータプログラム59をメモリ53に展開して、制御部51がコンピュータプログラム59を実行することができる。コンピュータプログラム59を記録した記録媒体Mは、記録媒体読取部64によって読み取ることができる。 The memory 53 can be composed of semiconductor memory such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and flash memory. The computer program 59 can be developed in the memory 53 and the control unit 51 can execute the computer program 59 . A recording medium M on which the computer program 59 is recorded can be read by a recording medium reading section 64 .
 インタフェース部54は、入力装置20、及び表示装置30との間のインタフェース機能を提供する。情報処理装置50(制御部51)は、インタフェース部54を通じて、入力装置20、及び表示装置30との間でデータや情報の授受を行うことができる。 The interface unit 54 provides an interface function between the input device 20 and the display device 30. The information processing device 50 (control section 51 ) can exchange data and information with the input device 20 and the display device 30 through the interface section 54 .
 記憶部58は、例えば、ハードディスク又は半導体メモリ等で構成することができる。 The storage unit 58 can be composed of, for example, a hard disk or a semiconductor memory.
 画像処理部55は、通信部52を介してMRI画像を取得した場合、取得したMRI画像を磁化率画像に変換する。画像処理部55は、磁化率画像を標準化することにより全脳における磁化率の値を標準化する。標準化処理は、磁化率の最小値を0とし、最大値を1とするスケーリング法である。スケーリング後の値x′は、x′=(x-xmin )/(xmax -xmin )という式で計算できる。ここで、xはスケーリング前の磁化率の値を示し、xmax はxのとり得る最大値を示し、xmin はxのとり得る最小値を示す。これにより、ばらつきを軽減できる。 When acquiring an MRI image via the communication unit 52, the image processing unit 55 converts the acquired MRI image into a magnetic susceptibility image. The image processing unit 55 standardizes the susceptibility values in the whole brain by standardizing the susceptibility images. The normalization process is a scaling method in which the minimum value of magnetic susceptibility is 0 and the maximum value is 1. The value x' after scaling can be calculated by the formula x'=(x-x min )/(x max -x min ). Here, x indicates the magnetic susceptibility value before scaling, x max indicates the maximum possible value of x, and x min indicates the minimum possible value of x. This can reduce variations.
 表示制御部56は、インタフェース部54を介して、表示装置30で表示する情報を制御する。表示制御部56は、例えば、情報処理装置50による脳診断情報(処理結果)を表示装置30に表示させることができる。 The display control unit 56 controls information displayed on the display device 30 via the interface unit 54 . The display control unit 56 can cause the display device 30 to display brain diagnosis information (processing results) by the information processing device 50, for example.
 診断情報生成部57は、制御部51による処理結果、第1学習モデル61、第2学習モデル62、及び第3学習モデル63を用いた処理結果に基づいて脳診断情報を生成する。脳診断情報の詳細は後述する。 The diagnostic information generation unit 57 generates brain diagnostic information based on the results of processing by the control unit 51 and the results of processing using the first learning model 61, the second learning model 62, and the third learning model 63. Details of the brain diagnosis information will be described later.
 制御部51は、患者(被験者)のMRI画像又は磁化率画像を取得し、取得したMRI画像又は磁化率画像に基づいて所定の脳診断情報を特定し、特定した脳診断情報を表示装置30に表示する。これにより、PET検査を行うことなく、侵襲性の低いMRI画像又はMRI画像から変換できる磁化率画像によって脳診断情報を提供することができる。以下、具体的に説明する。また、磁化率画像の例としてQSM画像を用いて説明するが、磁化率画像はQSM画像に限定されない。 The control unit 51 acquires an MRI image or magnetic susceptibility image of a patient (subject), specifies predetermined brain diagnostic information based on the acquired MRI image or magnetic susceptibility image, and displays the specified brain diagnostic information on the display device 30. indicate. Thereby, brain diagnostic information can be provided by a less invasive MRI image or a magnetic susceptibility image that can be converted from the MRI image without performing a PET examination. A specific description will be given below. In addition, although the QSM image is used as an example of the magnetic susceptibility image, the magnetic susceptibility image is not limited to the QSM image.
 脳診断情報の特定の第1例は、MRI画像又はQSM画像に基づいて第1学習モデル61が予測PET画像を予測し、予測した予測PET画像に基づいてアミロイドβ、タウ蛋白又はαシヌクレインなどの凝集体の集積度を示す脳診断情報を特定するものである。第2例は、MRI画像又はQSM画像に基づいて第2学習モデル62がアミロイドβ、タウ蛋白又はαシヌクレインなどの凝集体の集積度を示す脳診断情報を特定するものである。第3例は、MRI画像又はQSM画像に基づいて第3学習モデル63がアミロイドβポジティブ・ネガティブ又はタウ蛋白ポジティブ・ネガティブなどの脳診断情報を特定するものである。第4例は、MRI画像又はQSM画像に基づいて鉄の集積度や磁化率を示す脳診断情報を特定するものである。線維性凝集体が多いと脳神経細胞の機能が阻害されるとされ、認知障害や運動障害につながると言われていることから、これらの凝集体の存在、形状、大きさなどを計測することによって、脳神経変性の程度又はリスクを推定することができ、診断補助の情報としての価値は高い。本発明における線維性凝集体は、アミロイドβ、タウ、αシヌクレインを主成分とするが、他の脳内タンパク質との複合体やヘテロ分子種による凝集など、線維性凝集体形態をもつ凝集体も含む。以下、脳診断情報の特定方法を順番に説明する。 A first specific example of brain diagnostic information is that the first learning model 61 predicts a predicted PET image based on an MRI image or a QSM image, and based on the predicted predicted PET image, amyloid β, tau protein, α-synuclein, etc. It specifies brain diagnostic information that indicates the degree of accumulation of aggregates. In a second example, the second learning model 62 identifies brain diagnostic information indicating the degree of accumulation of aggregates such as amyloid β, tau protein, or α-synuclein based on MRI images or QSM images. In a third example, the third learning model 63 identifies brain diagnostic information such as amyloid β positive/negative or tau protein positive/negative based on MRI images or QSM images. A fourth example is to specify brain diagnosis information indicating iron concentration and magnetic susceptibility based on MRI images or QSM images. It is said that the function of brain nerve cells is inhibited when there are many fibrous aggregates, and it is said that it leads to cognitive impairment and movement disorder. , the degree or risk of cerebral neurodegeneration can be estimated, and is highly valuable as diagnostic aid information. The fibrillar aggregates in the present invention are mainly composed of amyloid β, tau, and α-synuclein, but also aggregates having fibrous aggregate morphology, such as complexes with other intracerebral proteins and aggregations due to heteromolecular species. include. Hereinafter, methods for identifying brain diagnostic information will be described in order.
(第1例)
 図3は第1学習モデル61の処理の一例を示す図である。制御部51は、記憶部58から第1学習モデル61を読み出し、読み出した第1学習モデル61を用いて、図3に示す処理を行うことができる。第1学習モデル61は、例えば、ニューラルネットワーク(例えば、CNN:Convolutional Neural Network)で構成することができ、U-netやGAN(Generative Adversarial Network)を用いてもよく、これらを組み合わせてもよい。第1学習モデル61は、患者のMRI画像またはQSM画像が入力されると、入力されたMRI画像またはQSM画像に対応する予測PET画像を出力する。
(first example)
FIG. 3 is a diagram showing an example of processing of the first learning model 61. As shown in FIG. The control unit 51 can read the first learning model 61 from the storage unit 58 and perform the processing shown in FIG. 3 using the read first learning model 61 . The first learning model 61 can be composed of, for example, a neural network (eg, CNN: Convolutional Neural Network), U-net, GAN (Generative Adversarial Network), or a combination thereof. When a patient's MRI image or QSM image is input, the first learning model 61 outputs a predicted PET image corresponding to the input MRI image or QSM image.
 第1学習モデル61が出力する予測PET画像は、PET検査よって得られる、薬剤を用いたPET画像ではなく、MRI画像またはQSM画像から予測される予測PET画像(予測画像)であり、侵襲性は低い。第1学習モデル61が出力する予測PET画像は、アミロイド予測PET画像、タウ予測PET画像、αシヌクレイン凝集体画像、CL(センチロイド)値を含めてもよい。センチロイドは、アミロイドPETにおいて、同じアミロイドの蓄積具合でも、PET薬剤によってPET値が異なるので、これを薬剤に依らない値によって標準化したものである。例えば、脳内アミロイドの蓄積の度合いを若年健常者の平均を0とし、確実なADの平均を100として、0から100までの数値で表現することができる。第1学習モデル61が出力する予測PET画像は、薬剤を用いたPET画像と同様に、例えば、脳内のアミロイドβ、タウ蛋白又はαシヌクレインの分布を可視化したものである。本明細書では、予測PET画像は、特に断らない限り、第1学習モデル61が出力する予測PET画像とする。 The predicted PET image output by the first learning model 61 is a predicted PET image (predicted image) predicted from an MRI image or a QSM image, not a PET image obtained by a PET examination using a drug, and the invasiveness is low. The predicted PET images output by the first learning model 61 may include an amyloid predicted PET image, a tau predicted PET image, an α-synuclein aggregate image, and CL (centroid) values. In amyloid PET, since the PET value differs depending on the PET drug even if the degree of amyloid accumulation is the same, the centroid is standardized by a drug-independent value. For example, the degree of cerebral amyloid accumulation can be expressed as a numerical value from 0 to 100, where 0 is the average of healthy young subjects and 100 is the average of definite AD. The predicted PET image output by the first learning model 61 visualizes the distribution of, for example, amyloid β, tau protein, or α-synuclein in the brain, similar to the PET image using a drug. In this specification, the predicted PET image is the predicted PET image output by the first learning model 61 unless otherwise specified.
 第1学習モデル61は、例えば、以下のようにして生成することができる。まず、第1段階として、制御部51は、MRI画像及び当該MRI画像のボクセル値を含む第1訓練データを取得する。第1訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第1訓練データに基づいて、MRI画像を入力した場合、当該MRI画像のボクセル値を出力するように第1学習モデル61を訓練する。次に、第2段階として、制御部51は、磁化率画像(またはMRI画像でもよい)及び当該磁化率画像に対応する予測PET画像を含む第2訓練データを取得する。第2訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第2訓練データに基づいて、磁化率画像(またはMRI画像)を入力した場合、予測PET画像を出力するように第1学習モデル61を生成する。 The first learning model 61 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the first learning model 61 to output the voxel values of the MRI image when the MRI image is input. Next, as a second step, the control unit 51 acquires second training data including a magnetic susceptibility image (or an MRI image may be used) and a predicted PET image corresponding to the magnetic susceptibility image. The second training data may be acquired from the image data server 100 . Based on the acquired second training data, the control unit 51 generates the first learning model 61 so as to output a predicted PET image when a magnetic susceptibility image (or an MRI image) is input.
 上述のように、第1段階において、MRI画像を含む第1訓練データを用いて第1学習モデル61を訓練することにより、第2段階において、少ないデータ量かつ短い時間で第1学習モデル61を学習することが可能となり、また第2訓練データが少なくても予測PET画像の予測精度を向上させることができる。 As described above, in the first stage, by training the first learning model 61 using the first training data including the MRI images, in the second stage, the first learning model 61 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of the predicted PET image can be improved.
 制御部51(診断情報生成部57)は、第1学習モデル61が出力する予測PET画像を取得し、取得した予測PET画像に基づいて、線維性凝集体のうちの少なくとも一つ(例えば、アミロイドβ、タウ蛋白及びαシヌクレインの少なくとも一つ)の蓄積度を示す脳診断情報を特定することができる。 The control unit 51 (diagnostic information generating unit 57) acquires the predicted PET image output by the first learning model 61, and based on the acquired predicted PET image, at least one fibrous aggregate (for example, amyloid At least one of β, tau protein and α-synuclein) can be identified as brain diagnostic information indicative of the degree of accumulation.
 蓄積度を表す指標として、SUVR(Standardized Uptake Value Ratio)を用いることができる。SUVRは、SUVR=関心領域におけるSUV/参照領域におけるSUV という式で算出できる。SUV(Standardized Uptake Value)は、SUV=PET値/投薬放射能量/体重 という式で表すことができる。関心領域は、例えば、前頭葉、後頭葉、頭頂葉、後部帯状回、線条体などの診断対象領域を含むが、これらに限定されない。参照領域は、例えば、小脳全体、小脳全体と脳幹、小脳灰白質、橋などを含むが、これらに限定されない。アミロイドβ、タウ蛋白又はαシヌクレインのSUVは、例えば、関心領域及び参照領域(所要部位)それぞれを構成する各ボクセルの輝度を示す値が所定の閾値以上であるボクセルの数をカウントすることにより求めることができる。所要部位の総ボクセル数に対するカウント値の比率により集積度(例えば、OO%等)が算出できる。 SUVR (Standardized Uptake Value Ratio) can be used as an indicator of the degree of accumulation. SUVR can be calculated by the formula SUVR=SUV in region of interest/SUV in reference region. SUV (Standardized Uptake Value) can be expressed by the formula SUV=PET value/medicated radioactivity/body weight. Regions of interest include, but are not limited to, diagnostic target regions such as, for example, the frontal lobe, occipital lobe, parietal lobe, posterior cingulate gyrus, and striatum. Reference regions include, for example, but are not limited to, the entire cerebellum, the entire cerebellum plus the brainstem, the cerebellar gray matter, the pons, and the like. SUV of amyloid β, tau protein, or α-synuclein, for example, is obtained by counting the number of voxels in which the value indicating the brightness of each voxel constituting the region of interest and the reference region (required site) is equal to or higher than a predetermined threshold. be able to. The degree of integration (for example, OO%, etc.) can be calculated from the ratio of the count value to the total number of voxels of the desired site.
 また、蓄積度を表す指標として、CL(センチロイド)を用いてもよい。CLは、SUVRに基づいて画像単位で算出できる。ただし、患者(被験者)に与える薬剤に対応させて、適宜の変換式を用いてCL値を算出する必要がある。 In addition, CL (centroid) may be used as an index representing the degree of accumulation. CL can be calculated for each image based on SUVR. However, it is necessary to calculate the CL value using an appropriate conversion formula corresponding to the drug given to the patient (subject).
(第2例)
 図4は第2学習モデル62の処理の第1例を示す図である。制御部51は、記憶部58から第2学習モデル62を読み出し、読み出した第2学習モデル62を用いて、図4に示す処理を行うことができる。第2学習モデル62は、例えば、ニューラルネットワークで構成することができる。第2学習モデル62は、患者のMRI画像またはQSM画像、及び参照領域に関する情報が入力されると、各ボクセルのSUVR値(またはMRI画像またはQSM画像に対するCL値)を出力する。なお、CL値は、MRI画像またはQSM画像など1枚の画像に対して算出され、第2学習モデル62が出力する各ボクセルのSUVR値から所要の変換式を用いて算出してもよい。制御部51は、第2学習モデル62が出力するSUVR値(またはMRI画像またはQSM画像に対するCL値)を脳診断情報として特定する。
(Second example)
FIG. 4 is a diagram showing a first example of processing of the second learning model 62. As shown in FIG. The control unit 51 can read the second learning model 62 from the storage unit 58 and perform the processing shown in FIG. 4 using the read second learning model 62 . The second learning model 62 can be composed of, for example, a neural network. The second learning model 62 outputs SUVR values (or CL values for MRI or QSM images) for each voxel when input with information about the patient's MRI or QSM images and the reference region. The CL value may be calculated for one image such as an MRI image or a QSM image, and calculated from the SUVR value of each voxel output by the second learning model 62 using a required conversion formula. The control unit 51 identifies the SUVR value (or the CL value for the MRI image or the QSM image) output by the second learning model 62 as brain diagnosis information.
 図5は第2学習モデル62の処理の第2例を示す図である。第2学習モデル62は、患者のMRI画像またはQSM画像、並びに参照領域及び関心領域に関する情報が入力されると、関心領域における各ボクセルのSUVR値(またはMRI画像またはQSM画像に対するCL値)を出力する。なお、CL値は、MRI画像またはQSM画像など1枚の画像に対して算出され、第2学習モデル62が出力する、関心領域のSUVR値から所要の変換式を用いて算出してもよい。制御部51は、第2学習モデル62が出力するSUVR値(またはMRI画像またはQSM画像に対するCL値)を脳診断情報として特定する。 FIG. 5 is a diagram showing a second example of processing of the second learning model 62. FIG. The second learning model 62 outputs the SUVR value (or the CL value for the MRI image or QSM image) of each voxel in the region of interest when the patient's MRI image or QSM image and information about the reference region and the region of interest are input. do. The CL value may be calculated for one image such as an MRI image or a QSM image, and calculated from the SUVR value of the region of interest output by the second learning model 62 using a required conversion formula. The control unit 51 identifies the SUVR value (or the CL value for the MRI image or the QSM image) output by the second learning model 62 as brain diagnosis information.
 第2学習モデル62は、第1学習モデル61と同様に、例えば、以下のようにして生成することができる。まず、第1段階として、制御部51は、MRI画像及び当該MRI画像のボクセル値を含む第1訓練データを取得する。第1訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第1訓練データに基づいて、MRI画像を入力した場合、当該MRI画像のボクセル値を出力するように第2学習モデル62を訓練する。次に、第2段階として、制御部51は、磁化率画像(またはMRI画像でもよい)、並びに線維性凝集体のうちの少なくとも一つ(例えば、アミロイドβ及びタウ蛋白の少なくとも一つ)の蓄積度を示す脳診断情報を含む第2訓練データを取得する。第2訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第2訓練データに基づいて、磁化率画像(またはMRI画像)を入力した場合、線維性凝集体のうちの少なくとも一つ(例えば、アミロイドβ及びタウ蛋白の少なくとも一つ)の蓄積度を示す脳診断情報を出力するように第2学習モデル62を生成する。 Similarly to the first learning model 61, the second learning model 62 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the second learning model 62 to output the voxel values of the MRI image when the MRI image is input. Next, as a second step, the control unit 51 accumulates a magnetic susceptibility image (or an MRI image) and at least one of fibrous aggregates (for example, at least one of amyloid β and tau protein). Second training data is obtained that includes brain diagnostic information indicative of the degree of strength. The second training data may be acquired from the image data server 100 . When a magnetic susceptibility image (or MRI image) is input to the control unit 51 based on the acquired second training data, at least one of fibrous aggregates (for example, at least one of amyloid β and tau protein ), the second learning model 62 is generated so as to output brain diagnosis information indicating the degree of accumulation.
 上述のように、第1段階において、MRI画像を含む第1訓練データを用いて第2学習モデル62を訓練することにより、第2段階において、少ないデータ量かつ短い時間で第2学習モデル62を学習することが可能となり、また第2訓練データが少なくても脳診断情報の予測精度を向上させることができる。 As described above, in the first stage, by training the second learning model 62 using the first training data including the MRI images, in the second stage, the second learning model 62 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of brain diagnosis information can be improved.
(第3例)
 図6は第3学習モデル63の処理の一例を示す図である。制御部51は、記憶部58から第3学習モデル63を読み出し、読み出した第3学習モデル63を用いて、図6に示す処理を行うことができる。第3学習モデル63は、例えば、ニューラルネットワークで構成することができる。第3学習モデル63は、患者のMRI画像またはQSM画像、及び関心領域に関する情報が入力されると、関心領域において、アミロイドβポジティブ、アミロイドβネガティブ、タウ蛋白ポジティブ、及びタウ蛋白ネガティブの少なくとも一方を示す脳診断情報を出力する。アミロイドβポジティブとは、アミロイドβの異常集積が存在するという意味であり、アミロイドβネガティブとは、アミロイドβの集積が存在しているとしても異常集積ではないという意味である。タウ蛋白ポジティブ・ネガティブも同様である。なお、関心領域の情報が入力されない場合には、アミロイドβポジティブ・ネガティブ、タウ蛋白ポジティブ・ネガティブは、入力されたQSM画像またはMRI画像全体で予測される。
(Third example)
FIG. 6 is a diagram showing an example of processing of the third learning model 63. As shown in FIG. The control unit 51 can read the third learning model 63 from the storage unit 58 and perform the processing shown in FIG. 6 using the read third learning model 63 . The third learning model 63 can be composed of, for example, a neural network. When the patient's MRI image or QSM image and information about the region of interest are input, the third learning model 63 detects at least one of amyloid β positive, amyloid β negative, tau protein positive, and tau protein negative in the region of interest. Output brain diagnostic information shown. Amyloid β-positive means that abnormal accumulation of amyloid β is present, and amyloid β-negative means that even if amyloid β accumulation is present, it is not abnormal accumulation. The same is true for tau protein positive/negative. If the information of the region of interest is not input, amyloid β positive/negative and tau protein positive/negative are predicted from the entire input QSM image or MRI image.
 第3学習モデル63は、第1学習モデル61と同様に、例えば、以下のようにして生成することができる。まず、第1段階として、制御部51は、MRI画像及び当該MRI画像のボクセル値を含む第1訓練データを取得する。第1訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第1訓練データに基づいて、MRI画像を入力した場合、当該MRI画像のボクセル値を出力するように第3学習モデル63を訓練する。次に、第2段階として、制御部51は、磁化率画像(またはMRI画像でもよい)、並びにアミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を含む第2訓練データを取得する。第2訓練データは、画像データサーバ100から取得すればよい。制御部51は、取得した第2訓練データに基づいて、磁化率画像(またはMRI画像でもよい)を入力した場合、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を出力するように第3学習モデル63を生成する。 Similarly to the first learning model 61, the third learning model 63 can be generated, for example, as follows. First, as a first step, the control unit 51 acquires first training data including MRI images and voxel values of the MRI images. The first training data may be acquired from the image data server 100 . Based on the acquired first training data, the control unit 51 trains the third learning model 63 so that when an MRI image is input, the voxel values of the MRI image are output. Next, as a second step, the control unit 51 generates second training data including a magnetic susceptibility image (or an MRI image) and brain diagnostic information indicating at least one of amyloid β positive/negative and tau protein positive/negative. to get The second training data may be acquired from the image data server 100 . Based on the obtained second training data, when a magnetic susceptibility image (or an MRI image may be used) is input, the control unit 51 generates brain diagnosis information indicating at least one of amyloid β positive/negative and tau protein positive/negative. A third learning model 63 is generated to output.
 上述のように、第1段階において、MRI画像を含む第1訓練データを用いて第3学習モデル63を訓練することにより、第2段階において、少ないデータ量かつ短い時間で第3学習モデル63を学習することが可能となり、また第2訓練データが少なくても脳診断情報の予測精度を向上させることができる。 As described above, in the first stage, by training the third learning model 63 using the first training data including the MRI images, in the second stage, the third learning model 63 can be trained in a small amount of data and in a short time. Learning is possible, and even if the second training data is small, the prediction accuracy of brain diagnosis information can be improved.
(第4例)
 制御部51は、患者のQSM画像を取得し、取得したQSM画像に基づいて、健常者と対比した鉄蓄積度を示す脳診断情報を特定する。病理的な研究によれば、アミロイド蓄積→リン酸化タウ蓄積→脳内の炎症→神経変位→疾患、のような経過が見られる。脳内の炎症部に鉄蓄積が発生する場合がある。鉄蓄積度を示す脳診断情報により、アミロイド蓄積の推定や脳の萎縮を評価することができる。また、制御部51は、患者のMRI画像を取得した場合、取得したMRI画像をQSM画像に変換して取得してもよい。また、制御部51は、関心領域に関する情報も併せて取得し、関心領域における、健常者と対比した鉄蓄積度またはアミロイド蓄積度を示す脳診断情報を特定してもよい。以下、具体的に説明する。
(Fourth example)
The control unit 51 obtains a QSM image of the patient, and based on the obtained QSM image, identifies brain diagnostic information indicating the degree of iron accumulation compared with that of a healthy subject. According to pathological studies, a course such as amyloid accumulation→phosphorylated tau accumulation→inflammation in the brain→nerve displacement→disease is observed. Iron accumulation may occur in areas of inflammation in the brain. Brain diagnostic information indicating the degree of iron accumulation enables estimation of amyloid accumulation and evaluation of brain atrophy. Further, when obtaining an MRI image of a patient, the control unit 51 may convert the obtained MRI image into a QSM image and obtain the QSM image. The control unit 51 may also acquire information about the region of interest, and specify brain diagnostic information indicating the degree of iron accumulation or the degree of amyloid accumulation in the region of interest compared with that of a healthy subject. A specific description will be given below.
 まず、事前に、健常者のデータを収集しておき、健常者データにおける磁化率分布のデータベースを作成しておく。そして、健常者の標準脳のQSM画像を作成する。健常者のDBを構築し、関心領域毎の磁化率の分布をもとに患者の関心領域毎のz-score(脳診断情報)を算出する。すなわち、患者のQSM画像を3次元の画素であるボクセルを単位に画像処理する(VBM:Voxel Based Morphometry)。典型的な統計的処理は、z-scoreマップを生成することである。 First, collect data from healthy subjects in advance and create a database of magnetic susceptibility distribution in the data from healthy subjects. Then, a QSM image of the normal brain of a healthy subject is created. A database of healthy subjects is constructed, and a z-score (brain diagnostic information) for each region of interest of the patient is calculated based on the magnetic susceptibility distribution for each region of interest. That is, the QSM image of the patient is image-processed in units of voxels, which are three-dimensional pixels (VBM: Voxel Based Morphometry). A typical statistical process is to generate a z-score map.
 z-scoreは、以下のようにして算出できる。健常者の標準脳のQSM画像から、ボクセル毎に磁化率の平均値と標準偏差を算出し、算出した平均値と標準偏差、及び患者のQSM画像の磁化率に基づいてz-scoreを算出する。z-scoreは、
  z-score=(M(x,y,z)-I(x,y,z))/SD(x,y,z)
という式で算出できる。Mは健常者の磁化率の平均値、SDは健常者の磁化率の標準偏差を表し、Iは患者の磁化率を表す。z-scoreは、健常者の標準脳の磁化率分布の標準偏差の何倍離れているかの指標を示す。z-scoreマップを用いることによって、患者のQSM画像が健常者(正常標準脳)と比較して、どの部位でどのような変化が起きているかを定量的に分析することができる。例えば、z-scoreマップが正の値になるボクセルは正常標準脳と比較して萎縮がある領域を示し、さらに値が大きいほど統計的に乖離が大きいと解釈することができる。例えば、z-scoreが「2」であれば平均値から標準偏差の2倍を超えたものということになり約5%の危険率で統計学的有意差があると評価され、関心領域における萎縮の評価を定量的に行うことができる。
The z-score can be calculated as follows. Calculate the average value and standard deviation of the magnetic susceptibility for each voxel from the QSM image of the normal brain of a healthy subject, and calculate the z-score based on the calculated average value and standard deviation and the magnetic susceptibility of the QSM image of the patient. . The z-score is
z-score = (M (x, y, z) - I (x, y, z)) / SD (x, y, z)
It can be calculated by the formula M is the average value of magnetic susceptibility of healthy subjects, SD is the standard deviation of magnetic susceptibility of healthy subjects, and I is the magnetic susceptibility of patients. The z-score indicates an index of how many times the standard deviation of the magnetic susceptibility distribution of a healthy subject's normal brain is apart. By using the z-score map, the patient's QSM image can be compared with that of a healthy person (normal standard brain) to quantitatively analyze what kind of change occurs in which part. For example, voxels with positive values on the z-score map indicate regions with atrophy compared to normal brains, and larger values can be interpreted as statistically greater divergence. For example, if the z-score is "2", it means that it exceeds twice the standard deviation from the mean value, and it is evaluated that there is a statistically significant difference with a risk of about 5%, and atrophy in the region of interest can be evaluated quantitatively.
 次に、情報処理装置50の処理について説明する。 Next, the processing of the information processing device 50 will be described.
 図7は第1学習モデル61を用いる場合の処理手順の一例を示す図である。以下では、便宜上、処理の主体を制御部51として説明する。制御部51は、被験者(患者)のMRI画像を取得し(S11)、関心領域及び参照領域の設定を受け付ける(S12)。制御部51は、取得したMRI画像をQSM画像に変換し(S13)、変換したQSM画像を標準化する(S14)。なお、QSM画像を直接取得する場合には、ステップS13の処理は不要である。 FIG. 7 is a diagram showing an example of a processing procedure when using the first learning model 61. FIG. In the following description, for the sake of convenience, the main body of processing is assumed to be the control unit 51 . The control unit 51 acquires an MRI image of a subject (patient) (S11), and receives setting of a region of interest and a reference region (S12). The control unit 51 converts the acquired MRI image into a QSM image (S13), and standardizes the converted QSM image (S14). Note that the process of step S13 is unnecessary when the QSM image is directly acquired.
 制御部51は、標準化したQSM画像を第1学習モデル61に入力して、第1学習モデル61が出力する予測PET画像を取得する(S15)。制御部51は、取得した予測PET画像に基づいて、関心領域における、アミロイドβ、タウ蛋白の蓄積度を示すSUVR、QSM画像に対するCL(センチロイド)を算出する(S16)。制御部51は、脳診断情報を出力し(S17)、処理を終了する。 The control unit 51 inputs the standardized QSM image to the first learning model 61 and acquires the predicted PET image output by the first learning model 61 (S15). Based on the obtained predicted PET image, the control unit 51 calculates amyloid β, SUVR indicating the degree of tau protein accumulation, and CL (centroid) for the QSM image in the region of interest (S16). The control unit 51 outputs the brain diagnosis information (S17) and terminates the process.
 図8は第2学習モデル62を用いる場合の処理手順の一例を示す図である。制御部51は、被験者(患者)のMRI画像を取得し(S21)、関心領域及び参照領域の設定を受け付ける(S22)。制御部51は、取得したMRI画像をQSM画像に変換し(S23)、変換したQSM画像を標準化する(S24)。なお、QSM画像を直接取得する場合には、ステップS23の処理は不要である。 FIG. 8 is a diagram showing an example of a processing procedure when using the second learning model 62. FIG. The control unit 51 acquires an MRI image of a subject (patient) (S21), and receives setting of a region of interest and a reference region (S22). The control unit 51 converts the acquired MRI image into a QSM image (S23), and standardizes the converted QSM image (S24). Note that the process of step S23 is unnecessary when the QSM image is directly acquired.
 制御部51は、設定された関心領域、参照領域、及び標準化したQSM画像を第2学習モデル62に入力して、第2学習モデル62が出力する、関心領域におけるアミロイドβ、タウ蛋白の蓄積度を示すSUVR、QSM画像に対するCL(センチロイド)を取得する(S25)。制御部51は、脳診断情報を出力し(S26)、処理を終了する。 The control unit 51 inputs the set region of interest, the reference region, and the standardized QSM image to the second learning model 62, and the second learning model 62 outputs the amyloid β in the region of interest, the degree of accumulation of tau protein CL (centroid) for the SUVR and QSM images showing is acquired (S25). The control unit 51 outputs the brain diagnosis information (S26) and terminates the process.
 図9は第3学習モデル63を用いる場合の処理手順の一例を示す図である。制御部51は、被験者(患者)のMRI画像を取得し(S31)、関心領域の設定を受け付ける(S32)。制御部51は、取得したMRI画像をQSM画像に変換し(S33)、変換したQSM画像を標準化する(S34)。なお、QSM画像を直接取得する場合には、ステップS33の処理は不要である。 FIG. 9 is a diagram showing an example of a processing procedure when using the third learning model 63. FIG. The control unit 51 acquires an MRI image of a subject (patient) (S31), and receives setting of a region of interest (S32). The control unit 51 converts the acquired MRI image into a QSM image (S33), and standardizes the converted QSM image (S34). Note that the process of step S33 is unnecessary when the QSM image is directly acquired.
 制御部51は、標準化したQSM画像を第3学習モデル63に入力して、第3学習モデル63が出力する、関心領域におけるアミロイドβポジティブ・ネガティブ(+/-)、タウ蛋白ポジティブ・ネガティブ(+/-)を取得する(S35)。制御部51は、脳診断情報を出力し(S36)、処理を終了する。 The control unit 51 inputs the standardized QSM image to the third learning model 63, and outputs the amyloid β positive/negative (+/-), tau protein positive/negative (+ /-) is acquired (S35). The control unit 51 outputs the brain diagnosis information (S36) and ends the process.
 図10は鉄蓄積度又はアミロイド蓄積度を算出する場合の処理手順の一例を示す図である。制御部51は、被験者(患者)のMRI画像を取得し(S41)、関心領域、参照領域の設定を受け付ける(S42)。制御部51は、取得したMRI画像をQSM画像に変換し(S43)、変換したQSM画像を標準化する(S44)。なお、QSM画像を直接取得する場合には、ステップS43の処理は不要である。 FIG. 10 is a diagram showing an example of a processing procedure for calculating the degree of iron accumulation or the degree of amyloid accumulation. The control unit 51 acquires an MRI image of a subject (patient) (S41), and receives setting of a region of interest and a reference region (S42). The control unit 51 converts the acquired MRI image into a QSM image (S43), and standardizes the converted QSM image (S44). Note that the process of step S43 is unnecessary when the QSM image is directly acquired.
 制御部51は、健常者DBを参照して健常者群の標準脳のQSM画像を生成する(S45)。制御部51は、被験者のQSM画像及び健常者群のQSM画像に基づいて、関心領域における鉄蓄積度又はアミロイド蓄積度を示すZスコア(z-score)を算出する。制御部51は、被験者のQSM画像に基づいて、関心領域における鉄蓄積度又はアミロイド蓄積度を示すSUVR、QSM画像に対するセンチロイド(CL)を算出する(S47)。制御部51は、脳診断情報を出力し(S48)、処理を終了する。 The control unit 51 refers to the healthy subject DB and generates a QSM image of the normal brain of the healthy subject group (S45). The control unit 51 calculates a Z-score (z-score) indicating the degree of iron accumulation or amyloid accumulation in the region of interest based on the QSM image of the subject and the QSM image of the healthy subject group. Based on the QSM image of the subject, the control unit 51 calculates SUVR indicating the degree of iron accumulation or amyloid accumulation in the region of interest and the centroid (CL) for the QSM image (S47). The control unit 51 outputs the brain diagnosis information (S48) and terminates the process.
 制御部51は、前述の第1例から第4例までの処理を全て行なって脳診断情報を出力してもよく、あるいは、第1例から第4例のうちの所要の処理を行ってもよい。例えば、第1例と第4例だけを行って脳診断情報を出力してもよい。 The control unit 51 may perform all the processes of the first to fourth examples described above and output brain diagnostic information, or may perform required processes of the first to fourth examples. good. For example, only the first example and the fourth example may be performed to output the brain diagnosis information.
 診断情報生成部57は、出力する脳診断情報を生成し、表示制御部56は、脳診断情報を表示装置30に表示するための制御処理を行う。以下、脳診断情報の表示例について説明する。 The diagnostic information generation unit 57 generates brain diagnostic information to be output, and the display control unit 56 performs control processing for displaying the brain diagnostic information on the display device 30 . A display example of brain diagnosis information will be described below.
 図11は脳診断情報の第1表示例を示す図である。診断情報画面210には、患者の情報を表示する患者情報領域211、患者の画像を表示する画像領域214、脳診断情報のうちの指標や数値を表示する数値領域217、類似スコアを表示する類似スコア領域216、推奨する検査項目を表示する推奨検査領域218が表示される。 FIG. 11 is a diagram showing a first display example of brain diagnosis information. The diagnosis information screen 210 includes a patient information area 211 that displays patient information, an image area 214 that displays patient images, a numerical area 217 that displays indexes and numerical values of brain diagnosis information, and a similarity area that displays similar scores. A score area 216 and a recommended inspection area 218 displaying recommended inspection items are displayed.
 患者情報領域211には、患者を選定するための患者ID(氏名を含めてもよい)、生年月日、年齢、性別、MRI検査などの検査日、投薬歴、病歴などの情報が表示される。患者IDは、複数の患者の中から選択できるようにしてもよい。また、検査日が複数ある場合、検査日を選択できるようにしてもよい。 A patient information area 211 displays information such as a patient ID (which may include a name) for selecting a patient, date of birth, age, sex, examination date such as MRI examination, medication history, and medical history. . The patient ID may be selectable from among multiple patients. Also, if there are multiple inspection dates, the inspection date may be selectable.
 「予測画像」タブ212を選択することにより、画像領域214には、第1学習モデル61が出力する予測PET画像が表示される。予測PET画像は、断面画像を、アキシャル断面(Axial)、サジタル断面(Sagittal)、及びコロナル断面(Coronal)それぞれの形式で表示される。また、各断面画像の下側(横側でもよい)には、複数の断層画像のうち、どのスライス画像を表示させるかを指定する横バーとカーソル215が表示され、カーソル215を移動させることにより、所望の断面画像を表示できる。なお、画像領域214に、患者のQSM画像を同時に表示してもよい。「入力画像」タブ213を選択することにより、画像領域214には、入力されたQSM画像を表示できる。 By selecting the "predicted image" tab 212, the predicted PET image output by the first learning model 61 is displayed in the image area 214. The predicted PET images are displayed in the form of axial, sagittal, and coronal cross-sectional images. In addition, a horizontal bar and a cursor 215 for designating which slice image to display among the plurality of tomographic images are displayed below each cross-sectional image (or on the horizontal side), and by moving the cursor 215 , the desired cross-sectional image can be displayed. Note that the QSM image of the patient may also be displayed in the image area 214 at the same time. By selecting the "input image" tab 213, the image area 214 can display the input QSM image.
 数値領域217には、参照領域を選定するための参照領域設定ウィンドウ(図では、小脳全体が設定されている)、関心領域毎に、アミロイドβ又はタウ蛋白の蓄積度を示すSUVRの値が表示される。なお、SUVRの値は、第2学習モデル62が出力する情報を用いてもよく、第1学習モデル61が出力する予測PET画像に基づいて算出してもよい。また、図に示すように、画像全体でのセンチロイド(CL)値を表示してもよく、総合判定として、アミロイドβポジティブ・ネガティブ(+/-)、あるいはタウ蛋白ポジティブ・ネガティブ(+/-)を表示してもよい。 Numerical area 217 displays a reference region setting window (in the figure, the entire cerebellum is set) for selecting a reference region, and SUVR values indicating the degree of accumulation of amyloid β or tau protein for each region of interest. be done. The value of SUVR may use information output by the second learning model 62 or may be calculated based on the predicted PET image output by the first learning model 61 . In addition, as shown in the figure, the centroid (CL) value in the entire image may be displayed, and as a comprehensive judgment, amyloid β positive/negative (+/-), or tau protein positive/negative (+/-) ) may be displayed.
 類似スコア領域216には、陽性画像との類似度が、0から1の範囲で表示される(図の例では、類似度が0.35であることが表示されている)。推奨検査領域218には、脳診断情報に基づいて、患者に対して推奨できる検査項目が表示される。推奨検査項目は、例えば、診断情報生成部57が、ルールベースで出力するようにすればよい。 In the similarity score area 216, the degree of similarity with the positive image is displayed in the range of 0 to 1 (in the example of the figure, the degree of similarity is displayed as 0.35). The recommended examination area 218 displays examination items that can be recommended for the patient based on the brain diagnosis information. For example, the diagnostic information generation unit 57 may output the recommended inspection items on a rule basis.
 これにより、医師はQSM画像を観測して自ら判断する際に、自動的に脳診断情報が提供されるので、医師の診断を支援することができ、診断時における医師の負担を軽減できる。また、自動的に脳診断情報が提供されるので、医師個人の経験による診断のばらつきを軽減できる。 As a result, when the doctor observes the QSM image and makes his own judgment, brain diagnosis information is automatically provided, so it is possible to support the doctor's diagnosis and reduce the burden on the doctor at the time of diagnosis. In addition, since brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
 図12は脳診断情報の第2表示例を示す図である。診断情報画面220には、患者の情報を表示する患者情報領域211、患者の画像を表示する画像領域221、脳診断情報のうちの指標や数値を表示する数値領域222が表示される。患者情報領域211は、図11に示す第1表示例の場合と同様である。 FIG. 12 is a diagram showing a second display example of brain diagnosis information. The diagnostic information screen 220 displays a patient information area 211 that displays patient information, an image area 221 that displays patient images, and a numerical value area 222 that displays indices and numerical values of brain diagnosis information. The patient information area 211 is the same as in the first display example shown in FIG.
 画像領域221には、第1学習モデル61が出力する予測PET画像が表示される。予測PET画像の表示する断面画像を、アキシャル断面(Axial)、サジタル断面(Sagittal)、及びコロナル断面(Coronal)のいずれにするかを選択できる。図の例では、アキシャル断面(Axial)が選択されている。画像領域221には、入力されたQSM画像と予測された予測PET画像とが、対比可能に表示されている。第1表示例の場合と同様に、カーソル215を移動させることにより、所望の断面画像を表示できる。 A predicted PET image output by the first learning model 61 is displayed in the image area 221 . It is possible to select any one of axial section (Axial), sagittal section (Sagittal), and coronal section (Coronal) as the section image to be displayed in the predicted PET image. In the example shown, an axial section (Axial) is selected. In the image area 221, the input QSM image and the predicted PET image are displayed in a comparable manner. As in the case of the first display example, by moving the cursor 215, a desired cross-sectional image can be displayed.
 数値領域222には、第1表示例の場合と同様に、参照領域を選定するための参照領域設定ウィンドウ(図では、小脳全体が設定されている)、関心領域毎に、アミロイドβ又はタウ蛋白の蓄積度を示すSUVRの値が表示される。また、関心領域毎に、アミロイドβ又はタウ蛋白の蓄積度を示すCLの値が表示される。数値領域222には、第3学習モデル63が出力する、アミロイドβポジティブ・ネガティブ(+/-)、あるいはタウ蛋白ポジティブ・ネガティブ(+/-)の判定結果が表示される。 As in the first display example, the numerical value area 222 includes a reference area setting window for selecting a reference area (in the figure, the entire cerebellum is set), amyloid β or tau protein for each region of interest. A value of SUVR indicating the degree of accumulation of is displayed. In addition, CL values indicating the degree of accumulation of amyloid β or tau protein are displayed for each region of interest. Numerical area 222 displays the determination result of amyloid β positive/negative (+/-) or tau protein positive/negative (+/-) output by third learning model 63 .
 これにより、医師はQSM画像を観測して自ら判断する際に、自動的に脳診断情報が提供されるので、医師の診断を支援することができ、診断時における医師の負担を軽減できる。また、自動的に脳診断情報が提供されるので、医師個人の経験による診断のばらつきを軽減できる。 As a result, when the doctor observes the QSM image and makes his own judgment, brain diagnosis information is automatically provided, so it is possible to support the doctor's diagnosis and reduce the burden on the doctor at the time of diagnosis. In addition, since brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
 図13は脳診断情報の第3表示例を示す図である。診断情報画面230には、患者の情報を表示する患者情報領域211、患者の画像を表示する画像領域233、脳診断情報のうちの指標や数値を表示する数値領域234が表示される。患者情報領域211は、図11に示す第1表示例の場合と同様である。 FIG. 13 is a diagram showing a third display example of brain diagnosis information. The diagnostic information screen 230 displays a patient information area 211 that displays patient information, an image area 233 that displays patient images, and a numerical value area 234 that displays indexes and numerical values of brain diagnosis information. The patient information area 211 is the same as in the first display example shown in FIG.
 「スライス」タブ231を選択することにより、画像領域233には、入力されたQSM画像の断面画像から所要数のスライス画像が選定され、各スライス画像上で鉄蓄積度を示すZスコア(z-score)の値が重畳されたZスコアマップが表示される。QSM画像の断面画像を、アキシャル断面(Axial)、サジタル断面(Sagittal)、及びコロナル断面(Coronal)のいずれにするかを選択できる。図の例では、アキシャル断面(Axial)が選択されている。また、Zスコアの値に応じて、QSM画像に対してグラデーションを付すことにより、鉄蓄積度を可視化できる。図の例では、Zスコアを0から4の範囲で可視化している。これにより、脳のどの部位に、どの程度の鉄蓄積が発生しているかを容易に判断できる。なお、鉄蓄積度からアミロイド蓄積度を推定して表示してもよい。 By selecting the "slice" tab 231, in the image area 233, a desired number of slice images are selected from the cross-sectional images of the input QSM image, and a Z-score (z- A Z-score map is displayed on which the value of the score) is superimposed. A cross-sectional image of the QSM image can be selected to be axial, sagittal, or coronal. In the example shown, an axial section (Axial) is selected. In addition, the degree of iron accumulation can be visualized by adding gradation to the QSM image according to the value of the Z score. In the example of the figure, the Z-score is visualized in the range of 0 to 4. As a result, it is possible to easily determine to what extent iron accumulation occurs in which part of the brain. The degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
 数値領域234には、関心領域毎に、磁化率の値が表示されている。「結果概要」タブ232を選択することにより、後述の第4表示例の診断情報画面240が表示される。 The value of magnetic susceptibility is displayed for each region of interest in the numerical area 234 . By selecting the "result overview" tab 232, a diagnosis information screen 240 of a fourth display example, which will be described later, is displayed.
 上述のように、医師はQSM画像を観測して自ら判断する際に、自動的に脳診断情報が提供されるので、医師の診断を支援することができ、診断時における医師の負担を軽減できる。また、自動的に脳診断情報が提供されるので、医師個人の経験による診断のばらつきを軽減できる。 As described above, when the doctor observes the QSM image and makes a judgment by himself/herself, brain diagnosis information is automatically provided, so that the doctor's diagnosis can be supported, and the burden on the doctor at the time of diagnosis can be reduced. . In addition, since brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
 図14は脳診断情報の第4表示例を示す図である。診断情報画面240には、患者の情報を表示する患者情報領域211、脳診断情報のうちの指標や数値を表示する第1数値領域241及び第2数値領域242が表示される。患者情報領域211は、図11に示す第1表示例の場合と同様である。 FIG. 14 is a diagram showing a fourth display example of brain diagnosis information. The diagnostic information screen 240 displays a patient information area 211 that displays patient information, and a first numerical area 241 and a second numerical area 242 that display indices and numerical values of brain diagnosis information. The patient information area 211 is the same as in the first display example shown in FIG.
 第1数値領域241には、全脳灰白質及び全脳白質におけるZスコアの値、及び鉄の沈着に関する状況が表示される。図の例では、Zスコアを0から4の範囲で可視化している。また、第2数値領域242には、全脳灰白質及び全脳白質以外のその他の部位におけるZスコアの値、及び鉄の沈着に関する状況が表示される。図の例では、前頭葉、側頭葉、後頭葉、頭頂葉が表示されているが、これらに限定されない。なお、鉄蓄積度からアミロイド蓄積度を推定して表示してもよい。 The first numerical value area 241 displays Z-score values in whole brain gray matter and whole brain white matter, and the status of iron deposition. In the example of the figure, the Z-score is visualized in the range of 0 to 4. In addition, the second numerical value area 242 displays the Z-score values and the status of iron deposition in regions other than whole brain gray matter and whole brain white matter. In the example shown, the frontal lobe, temporal lobe, occipital lobe, and parietal lobe are displayed, but are not limited to these. The degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
 上述のように、全脳灰白質、全脳白質、及びその他の関心領域について、鉄蓄積度を示すZスコアと、鉄沈着の状況が表示されるので、診断時における医師の負担を軽減できる。また、医師個人の経験による診断のばらつきを軽減できる。 As described above, the Z-score indicating the degree of iron accumulation and the state of iron deposition are displayed for whole brain gray matter, whole brain white matter, and other regions of interest, reducing the burden on doctors at the time of diagnosis. In addition, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
 図15は脳診断情報の第5表示例を示す図である。診断情報画面250には、患者の情報を表示する患者情報領域211、患者の画像を表示する画像領域253、脳診断情報のうちの指標や数値を表示する数値領域254が表示される。患者情報領域211は、図11に示す第1表示例の場合と同様である。 FIG. 15 is a diagram showing a fifth display example of brain diagnosis information. The diagnostic information screen 250 displays a patient information area 211 that displays patient information, an image area 253 that displays patient images, and a numerical value area 254 that displays indices and numerical values of brain diagnostic information. The patient information area 211 is the same as in the first display example shown in FIG.
 「磁化率分布画像」タグ251を選択することにより、画像領域253には、磁化率分布画像が表示される。磁化率分布画像は、磁化率の値に応じて、QSM画像に対してグラデーションを付すことにより、磁化率(鉄蓄積度)を可視化できる。QSM画像の断面画像を、アキシャル断面(Axial)、サジタル断面(Sagittal)、及びコロナル断面(Coronal)のいずれにするかを選択できる。図の例では、アキシャル断面(Axial)が選択されている。第1表示例の場合と同様に、カーソル215を移動させることにより、所望の断面画像を表示できる。なお、鉄蓄積度からアミロイド蓄積度を推定して表示してもよい。 By selecting the "magnetic susceptibility distribution image" tag 251, the magnetic susceptibility distribution image is displayed in the image area 253. The magnetic susceptibility distribution image can visualize the magnetic susceptibility (iron accumulation) by adding gradation to the QSM image according to the value of the magnetic susceptibility. A cross-sectional image of the QSM image can be selected to be axial, sagittal, or coronal. In the example shown, an axial section (Axial) is selected. As in the case of the first display example, by moving the cursor 215, a desired cross-sectional image can be displayed. The degree of amyloid accumulation may be estimated from the degree of iron accumulation and displayed.
 数値領域254には、関心領域毎に、磁化率の値、Zスコアの値が表示される。 The numerical value area 254 displays the magnetic susceptibility value and the Z score value for each region of interest.
 上述のように、医師はQSM画像を観測して自ら判断する際に、自動的に脳診断情報が提供されるので、医師の診断を支援することができ、診断時における医師の負担を軽減できる。また、自動的に脳診断情報が提供されるので、医師個人の経験による診断のばらつきを軽減できる。 As described above, when the doctor observes the QSM image and makes a judgment by himself/herself, brain diagnosis information is automatically provided, so that the doctor's diagnosis can be supported, and the burden on the doctor at the time of diagnosis can be reduced. . In addition, since brain diagnosis information is automatically provided, it is possible to reduce variations in diagnosis due to the experience of individual doctors.
 本実施形態によれば、侵襲性の低いMRI画像を使用するため、実際にPET検査を行う場合に比べて、患者への負担を軽減できる。また、PET検査の普及に比べてMRI検査の普及は高いので、より多くの患者への検診が可能となる。 According to this embodiment, since less invasive MRI images are used, the burden on the patient can be reduced compared to the actual PET examination. In addition, since the spread of MRI examination is higher than that of PET examination, more patients can be examined.
 本実施形態において、情報処理装置50は、被験者のMRI画像以外の情報、例えば、被験者の認知力に関するテスト結果(認知力テスト、認知機能テストの結果等)、及びバイオマーカ(例えば、血液検査結果、遺伝子情報等)の少なくとも一つを含む情報を取得し、取得した情報に基づいて所定の脳診断情報を特定し、特定した脳診断情報を新たに生成して表示してもよい。 In the present embodiment, the information processing device 50 collects information other than the MRI image of the subject, such as test results regarding the cognitive ability of the subject (cognitive ability test, cognitive function test results, etc.), and biomarkers (for example, blood test results). , genetic information, etc.), specified brain diagnostic information is specified based on the acquired information, and the specified brain diagnostic information is newly generated and displayed.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者のMRI画像を取得し、取得したMRI画像に基づいて所定の脳診断情報を特定し、特定した脳診断情報を新たに生成して表示する、処理を実行させる。 The computer program of the present embodiment causes a computer to acquire an MRI image of a subject, specify predetermined brain diagnostic information based on the acquired MRI image, and newly generate and display the specified brain diagnostic information. to run.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者のMRI画像に基づいて生成された磁化率画像を取得し、磁化率画像を入力した場合、予測PET画像を出力する第1学習モデルに、取得した磁化率画像を入力して予測PET画像を取得し、取得した予測PET画像に基づいて、線維性凝集体のうちの少なくとも一つの蓄積度を示す前記脳診断情報を特定する、処理を実行させる。 The computer program of the present embodiment acquires a magnetic susceptibility image generated based on the MRI image of the subject to the computer, and outputs a predicted PET image when the magnetic susceptibility image is input. A process of acquiring a predicted PET image by inputting a magnetic susceptibility image and identifying the brain diagnostic information indicating the degree of accumulation of at least one of fibrous aggregates based on the obtained predicted PET image is executed.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者のMRI画像に基づいて生成された磁化率画像を取得し、磁化率画像を入力した場合、線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を出力する第2学習モデルに、取得した磁化率画像を入力して、線維性凝集体のうちの少なくとも一つの蓄積度を示す前記脳診断情報を取得することにより前記脳診断情報を特定する、処理を実行させる。 The computer program of the present embodiment acquires a magnetic susceptibility image generated based on an MRI image of a subject into a computer, and when the magnetic susceptibility image is input, the degree of accumulation of at least one of the fibrous aggregates is shown. The brain diagnostic information is obtained by inputting the acquired magnetic susceptibility image into a second learning model that outputs brain diagnostic information and acquiring the brain diagnostic information indicating the degree of accumulation of at least one of the fibrous aggregates. Identify, take action.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者のMRI画像に基づいて生成された磁化率画像を取得し、磁化率画像を入力した場合、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を出力する第3学習モデルに、取得した磁化率画像を入力して、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す前記脳診断情報を取得することにより前記脳診断情報を特定する、処理を実行させる。 The computer program of the present embodiment acquires a magnetic susceptibility image generated based on an MRI image of a subject into a computer, and when the magnetic susceptibility image is input, at least one of amyloid β positive/negative and tau protein positive/negative By inputting the acquired magnetic susceptibility image into a third learning model that outputs brain diagnostic information indicating the above-mentioned Identify brain diagnostic information and cause processing to be performed.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者のMRI画像に基づいて生成された磁化率画像を取得し、取得した磁化率画像に基づいて、健常者と対比した鉄蓄積度を示す前記脳診断情報を特定する、処理を実行させる。 The computer program of the present embodiment causes the computer to acquire a magnetic susceptibility image generated based on the MRI image of the subject, and based on the acquired magnetic susceptibility image, the brain diagnosis indicating the degree of iron accumulation compared with that of a healthy subject. Identify information, cause an action to take place.
 本実施形態のコンピュータプログラムは、コンピュータに、MRI画像及び前記MRI画像のボクセル値を含む第1訓練データを取得し、取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第1学習モデルを訓練し、磁化率画像及び予測PET画像を含む第2訓練データを取得し、取得した第2訓練データに基づいて、磁化率画像を入力した場合、予測PET画像を出力するように前記第1学習モデルを生成する、処理を実行させる。 The computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI image Train the first learning model to output voxel values of, acquire second training data including a magnetic susceptibility image and a predicted PET image, and input a magnetic susceptibility image based on the acquired second training data If so, a process of generating the first learning model to output a predicted PET image is executed.
 本実施形態のコンピュータプログラムは、コンピュータに、MRI画像、及び前記MRI画像のボクセル値を含む第1訓練データを取得し、取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第2学習モデルを訓練し、磁化率画像、並びに線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を含む第2訓練データを取得し、取得した第2訓練データに基づいて、磁化率画像を入力した場合、線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を出力するように前記第2学習モデルを生成する、処理を実行させる。 The computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI training the second learning model to output image voxel values to obtain second training data comprising magnetic susceptibility images and brain diagnostic information indicative of the degree of accumulation of at least one of fibrous aggregates; A process of generating the second learning model so as to output brain diagnostic information indicating the degree of accumulation of at least one of fibrous aggregates when a magnetic susceptibility image is input based on the obtained second training data. to run.
 本実施形態のコンピュータプログラムは、コンピュータに、MRI画像、及び前記MRI画像のボクセル値を含む第1訓練データを取得し、取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第3学習モデルを訓練し、磁化率画像、並びにアミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を含む第2訓練データを取得し、取得した第2訓練データに基づいて、磁化率画像を入力した場合、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を出力するように前記第3学習モデルを生成する、処理を実行させる。 The computer program of the present embodiment acquires first training data including an MRI image and voxel values of the MRI image in a computer, and based on the acquired first training data, when an MRI image is input, the MRI training the third learning model to output image voxel values to obtain second training data including magnetic susceptibility images and brain diagnostic information indicative of at least one of amyloid-β positive/negative and tau protein positive/negative; and, based on the acquired second training data, when a magnetic susceptibility image is input, the third learning model is configured to output brain diagnostic information indicating at least one of amyloid β positive/negative and tau protein positive/negative. Generate, execute processing.
 本実施形態のコンピュータプログラムは、コンピュータに、被験者の認知力に関するテスト結果、及びバイオマーカの少なくとも一つを含む情報を取得し、取得した情報に基づいて所定の脳診断情報を特定し、特定した脳診断情報を新たに生成して表示する、処理を実行させる。 The computer program of the present embodiment acquires information including at least one of a test result on cognition of a subject and biomarkers into a computer, and specifies predetermined brain diagnostic information based on the acquired information. A process of newly generating and displaying brain diagnosis information is executed.
 本実施形態の情報処理装置は、被験者のMRI画像を取得する取得部と、取得したMRI画像に基づいて所定の脳診断情報を特定する特定部と、特定した脳診断情報を新たに生成して表示する表示部とを備える。 The information processing apparatus of this embodiment includes an acquisition unit that acquires an MRI image of a subject, a specification unit that specifies predetermined brain diagnostic information based on the acquired MRI image, and newly generates the specified brain diagnostic information. and a display for displaying.
 本実施形態の情報処理方法は、被験者のMRI画像を取得し、取得したMRI画像に基づいて所定の脳診断情報を特定し、特定した脳診断情報を新たに生成して表示する。 The information processing method of the present embodiment acquires an MRI image of a subject, specifies predetermined brain diagnostic information based on the acquired MRI image, and newly generates and displays the specified brain diagnostic information.
 本実施形態は、認知症、多発性硬化症、軽度認知障害(MCI:Mild cognitive impairment)、アルツハイマー病による軽度認知障害(MCIdue to AD)、前駆期アルツハイマー病(prodromal AD)、アルツハイマー病の発症前段階/プレクリニカルAD(preclinical AD)、パーキンソン病、不眠症、睡眠障害、認知機能の低下、認知機能障害、アミロイド陽性/陰性に係る疾患、運動障害、運動機能障害、運動障害疾患、アルツハイマー病、シヌクレイノパチー、多系統萎縮症、血管性認知症、脳血管障害、レビー小体型認知症、その他の神経変性疾患などの診断に用いることができる。 This embodiment includes dementia, multiple sclerosis, mild cognitive impairment (MCI), mild cognitive impairment due to Alzheimer's disease (MCI due to AD), prodromal AD, and pre-onset Alzheimer's disease. Stage/preclinical AD, Parkinson's disease, insomnia, sleep disorder, cognitive decline, cognitive impairment, amyloid positive/negative disease, movement disorder, motor dysfunction, movement disorder disease, Alzheimer's disease, It can be used to diagnose synucleinopathy, multiple system atrophy, vascular dementia, cerebrovascular disease, dementia with Lewy bodies, other neurodegenerative diseases, and the like.
 1 通信ネットワーク
 10 MRI装置
 20 入力装置
 30 表示装置
 50 情報処理装置
 51 制御部
 52 通信部
 53 メモリ
 54 インタフェース部
 55 画像処理部
 56 表示制御部
 57 診断情報生成部
 58 記憶部
 59 コンピュータプログラム
 61 第1学習モデル
 62 第2学習モデル
 63 第3学習モデル
 64 記録媒体読取部
 100 画像データサーバ
 
1 communication network 10 MRI apparatus 20 input device 30 display device 50 information processing device 51 control unit 52 communication unit 53 memory 54 interface unit 55 image processing unit 56 display control unit 57 diagnostic information generation unit 58 storage unit 59 computer program 61 first learning model 62 second learning model 63 third learning model 64 recording medium reading unit 100 image data server

Claims (11)

  1.  コンピュータに、
     被験者のMRI画像を取得し、
     取得したMRI画像に基づいて所定の脳診断情報を特定し、
     特定した脳診断情報を新たに生成して表示する、
     処理を実行させるコンピュータプログラム。
    to the computer,
    Acquiring an MRI image of the subject,
    Identifying predetermined brain diagnostic information based on the acquired MRI image,
    newly generate and display the identified brain diagnostic information;
    A computer program that causes a process to be performed.
  2.  コンピュータに、
     被験者のMRI画像に基づいて生成された磁化率画像を取得し、
     磁化率画像を入力した場合、予測PET画像を出力する第1学習モデルに、取得した磁化率画像を入力して予測PET画像を取得し、
     取得した予測PET画像に基づいて、線維性凝集体のうちの少なくとも一つの蓄積度を示す前記脳診断情報を特定する、
     処理を実行させる請求項1に記載のコンピュータプログラム。
    to the computer,
    obtaining a magnetic susceptibility image generated based on the MRI image of the subject;
    When a magnetic susceptibility image is input, the obtained magnetic susceptibility image is input to the first learning model that outputs a predicted PET image to obtain a predicted PET image,
    identifying the brain diagnostic information indicative of the degree of accumulation of at least one of fibrous aggregates based on the acquired predicted PET image;
    2. The computer program according to claim 1, causing a process to be executed.
  3.  コンピュータに、
     被験者のMRI画像に基づいて生成された磁化率画像を取得し、
     磁化率画像を入力した場合、線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を出力する第2学習モデルに、取得した磁化率画像を入力して、線維性凝集体のうちの少なくとも一つの蓄積度を示す前記脳診断情報を取得することにより前記脳診断情報を特定する、
     処理を実行させる請求項1に記載のコンピュータプログラム。
    to the computer,
    obtaining a magnetic susceptibility image generated based on the MRI image of the subject;
    When a magnetic susceptibility image is input, the obtained magnetic susceptibility image is input to a second learning model that outputs brain diagnostic information indicating the degree of accumulation of at least one of the fibrous aggregates, identifying the brain diagnostic information by acquiring the brain diagnostic information indicating the degree of accumulation of at least one of
    2. The computer program according to claim 1, causing a process to be executed.
  4.  コンピュータに、
     被験者のMRI画像に基づいて生成された磁化率画像を取得し、
     磁化率画像を入力した場合、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を出力する第3学習モデルに、取得した磁化率画像を入力して、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す前記脳診断情報を取得することにより前記脳診断情報を特定する、
     処理を実行させる請求項1に記載のコンピュータプログラム。
    to the computer,
    obtaining a magnetic susceptibility image generated based on the MRI image of the subject;
    When a magnetic susceptibility image is input, the acquired magnetic susceptibility image is input to a third learning model that outputs brain diagnostic information indicating at least one of amyloid β positive/negative and tau protein positive/negative, and amyloid β positive/negative. identifying the brain diagnostic information by obtaining the brain diagnostic information indicating at least one of negative and tau protein positive/negative;
    2. The computer program according to claim 1, causing a process to be executed.
  5.  コンピュータに、
     被験者のMRI画像に基づいて生成された磁化率画像を取得し、
     取得した磁化率画像に基づいて、健常者と対比した鉄蓄積度を示す前記脳診断情報を特定する、
     処理を実行させる請求項1から請求項4のいずれか一項に記載のコンピュータプログラム。
    to the computer,
    obtaining a magnetic susceptibility image generated based on the MRI image of the subject;
    Identifying the brain diagnostic information indicating the degree of iron accumulation compared with that of a healthy subject based on the acquired magnetic susceptibility image;
    5. The computer program according to any one of claims 1 to 4, causing a process to be executed.
  6.  コンピュータに、
     MRI画像及び前記MRI画像のボクセル値を含む第1訓練データを取得し、
     取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第1学習モデルを訓練し、
     磁化率画像及び予測PET画像を含む第2訓練データを取得し、
     取得した第2訓練データに基づいて、磁化率画像を入力した場合、予測PET画像を出力するように前記第1学習モデルを生成する、
     処理を実行させる請求項2に記載のコンピュータプログラム。
    to the computer,
    obtaining first training data comprising MRI images and voxel values of the MRI images;
    training the first learning model to output voxel values of the MRI image when an MRI image is input based on the acquired first training data;
    obtaining second training data comprising susceptibility images and predicted PET images;
    generating the first learning model so as to output a predicted PET image when a magnetic susceptibility image is input based on the acquired second training data;
    3. The computer program according to claim 2, causing a process to be executed.
  7.  コンピュータに、
     MRI画像、及び前記MRI画像のボクセル値を含む第1訓練データを取得し、
     取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第2学習モデルを訓練し、
     磁化率画像、並びに線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を含む第2訓練データを取得し、
     取得した第2訓練データに基づいて、磁化率画像を入力した場合、線維性凝集体のうちの少なくとも一つの蓄積度を示す脳診断情報を出力するように前記第2学習モデルを生成する、
     処理を実行させる請求項3に記載のコンピュータプログラム。
    to the computer,
    obtaining first training data including MRI images and voxel values of the MRI images;
    training the second learning model to output voxel values of the MRI image when an MRI image is input based on the acquired first training data;
    obtaining second training data comprising magnetic susceptibility images and brain diagnostic information indicative of the degree of accumulation of at least one of fibrous aggregates;
    generating the second learning model so as to output brain diagnostic information indicating the degree of accumulation of at least one of the fibrous aggregates when a magnetic susceptibility image is input based on the acquired second training data;
    4. The computer program according to claim 3, causing a process to be executed.
  8.  コンピュータに、
     MRI画像、及び前記MRI画像のボクセル値を含む第1訓練データを取得し、
     取得した第1訓練データに基づいて、MRI画像を入力した場合、前記MRI画像のボクセル値を出力するように前記第3学習モデルを訓練し、
     磁化率画像、並びにアミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を含む第2訓練データを取得し、
     取得した第2訓練データに基づいて、磁化率画像を入力した場合、アミロイドβポジティブ・ネガティブ及びタウ蛋白ポジティブ・ネガティブの少なくとも一方を示す脳診断情報を出力するように前記第3学習モデルを生成する、
     処理を実行させる請求項4に記載のコンピュータプログラム。
    to the computer,
    obtaining first training data including MRI images and voxel values of the MRI images;
    training the third learning model to output voxel values of the MRI image when an MRI image is input based on the acquired first training data;
    Obtaining second training data comprising magnetic susceptibility images and brain diagnostic information indicative of at least one of amyloid β positive/negative and tau protein positive/negative;
    Based on the obtained second training data, the third learning model is generated so as to output brain diagnostic information indicating at least one of amyloid β positive/negative and tau protein positive/negative when a magnetic susceptibility image is input. ,
    5. The computer program according to claim 4, causing a process to be executed.
  9.  コンピュータに、
     被験者の認知力に関するテスト結果、及びバイオマーカの少なくとも一つを含む情報を取得し、
     取得した情報に基づいて所定の脳診断情報を特定し、
     特定した脳診断情報を新たに生成して表示する、
     処理を実行させる請求項1から請求項4のいずれか一項に記載のコンピュータプログラム。
    to the computer,
    Obtaining information including at least one biomarker and a test result regarding the cognitive ability of the subject;
    identifying predetermined brain diagnostic information based on the acquired information;
    newly generate and display the identified brain diagnostic information;
    5. The computer program according to any one of claims 1 to 4, causing a process to be executed.
  10.  被験者のMRI画像を取得する取得部と、
     取得したMRI画像に基づいて所定の脳診断情報を特定する特定部と、
     特定した脳診断情報を新たに生成して表示する表示部と
     を備える、
     情報処理装置。
    an acquisition unit that acquires an MRI image of a subject;
    an identification unit that identifies predetermined brain diagnostic information based on the acquired MRI image;
    a display unit that newly generates and displays the identified brain diagnostic information,
    Information processing equipment.
  11.  被験者のMRI画像を取得し、
     取得したMRI画像に基づいて所定の脳診断情報を特定し、
     特定した脳診断情報を新たに生成して表示する、
     情報処理方法。
     
    Acquiring an MRI image of the subject,
    Identifying predetermined brain diagnostic information based on the acquired MRI image,
    newly generate and display the identified brain diagnostic information;
    Information processing methods.
PCT/JP2023/007187 2022-03-01 2023-02-28 Computer program, information processing device, and information processing method WO2023167157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-031215 2022-03-01
JP2022031215 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023167157A1 true WO2023167157A1 (en) 2023-09-07

Family

ID=87883675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007187 WO2023167157A1 (en) 2022-03-01 2023-02-28 Computer program, information processing device, and information processing method

Country Status (1)

Country Link
WO (1) WO2023167157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176082A1 (en) * 2017-03-28 2018-10-04 Crc For Mental Health Ltd Predicting progression of cognitive deterioration
WO2020054803A1 (en) * 2018-09-12 2020-03-19 株式会社Splink Diagnosis assistance system and method
WO2021221008A1 (en) * 2020-04-28 2021-11-04 株式会社Splink System, control method, and program
WO2022034691A1 (en) * 2020-08-14 2022-02-17 株式会社Splink Computer program, information processing device, information processing method, trained model generation method, and correlation image output device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018176082A1 (en) * 2017-03-28 2018-10-04 Crc For Mental Health Ltd Predicting progression of cognitive deterioration
WO2020054803A1 (en) * 2018-09-12 2020-03-19 株式会社Splink Diagnosis assistance system and method
WO2021221008A1 (en) * 2020-04-28 2021-11-04 株式会社Splink System, control method, and program
WO2022034691A1 (en) * 2020-08-14 2022-02-17 株式会社Splink Computer program, information processing device, information processing method, trained model generation method, and correlation image output device

Similar Documents

Publication Publication Date Title
JP6722845B2 (en) Discriminating apparatus, depressive symptom discriminating method, depressive symptom level determining method, depressive patient stratification method, depressive symptom therapeutic effect determining method, and brain activity training apparatus
Sperling et al. Amyloid deposition is associated with impaired default network function in older persons without dementia
JP5641531B1 (en) Brain activity training apparatus and brain activity training system
Koch et al. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease
EP1595205B1 (en) Tissue disorder imaging analysis
Amorim et al. Poor sleep quality associates with decreased functional and structural brain connectivity in normative aging: a MRI multimodal approach
Li et al. Altered resting state connectivity in right side frontoparietal network in primary insomnia patients
CN105163659A (en) Brain activity analysis device, brain activity analysis method, and biomarker device
Coppieters et al. Differences in white matter structure and cortical thickness between patients with traumatic and idiopathic chronic neck pain: Associations with cognition and pain modulation?
Kuceyeski et al. The generation and validation of white matter connectivity importance maps
US11978208B2 (en) Trained model, learning method, learning program, medical information acquisition device, medical information acquisition method, and medical information acquisition program
US20170238879A1 (en) Method of Analyzing the Brain Activity of a Subject
Moretti Electroencephalography-driven approach to prodromal Alzheimer’s disease diagnosis: from biomarker integration to network-level comprehension
Graff et al. Regional cerebral blood flow changes in healthy ageing and alzheimer’s disease: A narrative review
WO2022054711A1 (en) Computer program, information processing device, terminal device, information processing method, learned model generation method, and image output device
Zhu et al. Cortical atrophy is associated with cognitive impairment in Parkinson’s disease: A combined analysis of cortical thickness and functional connectivity
JP7114347B2 (en) Tomographic image prediction device and tomographic image prediction method
Wong et al. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms
Cadotte et al. What has been learned from magnetic resonance imaging examination of the injured human spinal cord: a Canadian perspective
Hernandez-Cortés et al. Brain morphometry in adult: volumetric visualization as a tool in image processing
Singh et al. Amygdala volumetry in patients with temporal lobe epilepsy and normal magnetic resonance imaging
WO2023167157A1 (en) Computer program, information processing device, and information processing method
Levinson et al. A structural connectivity atlas of limbic brainstem nuclei
WO2023074509A1 (en) Computer program, information processing device, and information processing method
Torres Simón Caracterización del funcionamiento cerebral, su estructura y la cognición asociados al daño cerebrovascular en el envejecimiento

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763415

Country of ref document: EP

Kind code of ref document: A1