WO2022209272A1 - Imaging control device, imaging device, imaging control method, and program - Google Patents

Imaging control device, imaging device, imaging control method, and program Download PDF

Info

Publication number
WO2022209272A1
WO2022209272A1 PCT/JP2022/004196 JP2022004196W WO2022209272A1 WO 2022209272 A1 WO2022209272 A1 WO 2022209272A1 JP 2022004196 W JP2022004196 W JP 2022004196W WO 2022209272 A1 WO2022209272 A1 WO 2022209272A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
imaging
tilt
workpiece
imaging device
Prior art date
Application number
PCT/JP2022/004196
Other languages
French (fr)
Japanese (ja)
Inventor
博一 石川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202280024401.3A priority Critical patent/CN117083869A/en
Publication of WO2022209272A1 publication Critical patent/WO2022209272A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to an imaging control device, an imaging device, an imaging control method, and a program.
  • the angle of photographing shifts due to the photograph being taken while the portable information terminal is held by hand, or the characters corresponding to the photographing position.
  • the recognition target cannot be determined from the captured image due to a change in how the recognition target is photographed.
  • an image including a recognition target corresponding to a pre-stored 3D model is captured with a camera, and the tilt angle of the camera with respect to the ground plane is acquired.
  • the 3D model is rotated based on the obtained tilt angle, a group of comparative images is created from the rotated 3D model, and matching between the captured image taken by the camera and the created group of comparative images is detected, and the captured image is captured.
  • a personal digital assistant that determines the tilt of a recognition target relative to a camera.
  • the portable information terminal of Patent Document 1 cuts out an image corresponding to the character area according to the determined inclination of the recognition target, corrects the distortion, and then performs character recognition.
  • the portable information terminal disclosed in Patent Document 1 when the recognition target is predetermined, the influence of the shift in the shooting angle of the recognition target and the camera due to hand-holding and the standing position can be suppressed, and the detection accuracy of the recognition target can be improved. Character recognition can be performed.
  • Patent Document 1 it is necessary to input and store in advance a 3D model corresponding to the captured image including the recognition target, and the captured image of the recognition target that does not correspond to the 3D model is stored in the 3D model. Since the photographed image cannot be corrected due to the inability to detect a match, there is a problem that a clear photographed image of the recognition target cannot be obtained.
  • An object of the present invention is to obtain a clear image of a workpiece by making the optical system of the imaging device parallel to the workpiece without inputting and storing a 3D model in advance when the workpiece is imaged by the imaging device. It is to provide an imaging control device, an imaging device, an imaging control method, and a program that can obtain
  • An imaging control apparatus includes a first acquisition unit that acquires optical system tilt information indicating the tilt of an optical system of an imaging device; 2 an acquisition unit, and a control unit that controls the inclination of the optical system or the workpiece based on the optical system inclination information acquired by the first acquisition unit and the workpiece inclination information acquired by the second acquisition unit; , has
  • An imaging device includes the imaging control device described above and an imaging unit that captures an image of the workpiece.
  • An imaging control method comprises a first obtaining step of obtaining optical system tilt information indicating the tilt of an optical system of an imaging device; a control step of controlling the inclination of the optical system or the work based on the optical system inclination information acquired in the first acquisition step and the work inclination information acquired in the second acquisition step; , has
  • a program according to the present invention provides a computer with a first acquisition step of acquiring optical system tilt information indicating the tilt of an optical system of an imaging device, and acquiring workpiece tilt information indicating the tilt of a workpiece imaged by the imaging device. and a control step of controlling the inclination of the optical system or the work based on the optical system inclination information acquired in the first acquisition step and the work inclination information acquired in the second acquisition step. and let it run.
  • a clear image of the workpiece when an image of a workpiece is captured by an imaging device, a clear image of the workpiece can be obtained by making the optical system of the imaging device and the workpiece parallel without inputting and storing a 3D model in advance. can be obtained.
  • FIG. 1 is a block diagram showing the configuration of an imaging device according to a first embodiment of the present invention
  • FIG. 1 is a schematic diagram of an imaging device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of an optical unit of the imaging device according to the first embodiment of the invention
  • FIG. It is a figure which shows the use condition of the imaging device which concerns on the 1st Embodiment of this invention.
  • FIG. 4 is a flowchart showing imaging control processing according to the first embodiment of the present invention
  • FIG. 9 is a flowchart showing a modification of imaging control processing according to the first embodiment of the present invention
  • FIG. 3 is a block diagram showing the configuration of an imaging device according to a second embodiment of the present invention
  • the imaging device 1000 has an imaging control device 50 , a communication section 60 , an optical unit 100 , a flexible wiring board 1900 and a chassis 2000 .
  • the imaging device 1000 is a camera-equipped mobile terminal such as a smart phone or a tablet terminal.
  • the imaging control device 50 outputs to the communication unit 60 a control signal for controlling driving of the drive mechanism 500 or controlling driving of a later-described fixing base 70 fixing the imaging device 1000 . Details of the configuration of the imaging control device 50 will be described later.
  • the communication unit 60 wirelessly transmits the control signal input from the imaging control device 50 to the fixing base 70 . Also, the communication unit 60 can receive a signal transmitted from the outside of the imaging device 50 .
  • the communication unit 60 performs wireless communication using Ethernet, Bluetooth, WiFi, or the like.
  • the optical unit 100 is an imaging section.
  • the optical unit (imaging unit) may be referred to as a camera.
  • the optical unit 100 operates so as to cancel out the influence of the shake when the image pickup apparatus 1000 is shaken during image pickup. Further, the optical unit 100 determines the tilt of the optical system 1a of the imaging device under the control of the imaging control device 50, and operates so that the optical system 1a of the imaging device has the determined tilt. Details of the configuration of the optical unit 100 will be described later.
  • the flexible wiring board 1900 supplies power to the optical unit 100 and electrically connects the optical unit 100 and the imaging control device 50 .
  • a chassis 2000 is a housing for the imaging device 1000 .
  • the chassis 2000 supports the optical unit 100 and accommodates the imaging control device 50 , the communication section 60 , the optical unit 100 and the flexible wiring board 1900 .
  • the imaging control device 50 includes an optical system tilt detection section 51 , a work tilt detection section 52 and a control section 53 .
  • the optical system tilt detection unit 51 detects the tilt of the optical system 1a of the imaging device with respect to the reference plane by detecting the tilt of the imaging device 1000 with respect to the reference plane perpendicular to the vertical direction, and optically transmits an electric signal according to the detection result. It is output to the control unit 53 as system tilt information.
  • the optical system tilt detector 51 is preferably a gravity sensor.
  • the optical system tilt detection section 51 is an example of the first acquisition section and the first detection section of the present invention.
  • the work tilt detection unit 52 detects the tilt of the work imaged by the imaging device 1000 with respect to the reference plane, and outputs an electrical signal according to the detection result to the control unit 53 as work tilt information.
  • the workpiece inclination detector 52 is preferably a distance sensor.
  • the workpiece inclination detection unit 52 is an example of the second acquisition unit and the second detection unit of the present invention.
  • the control unit 53 is composed of, for example, one or more processors (CPU, MPU, GPU, etc.).
  • the control unit 53 controls the overall operation of the imaging apparatus 1000 by executing a control program stored in advance in a storage unit (not shown).
  • the control unit 53 controls a driving mechanism 500 of the optical unit 100, which will be described later. energizes the drive mechanism 500 or generates a control signal and outputs it to the communication unit 60 .
  • the control unit 53 controls driving of the drive mechanism 500 so as to cancel out the influence of the external force applied to the imaging device 1000 detected by an acceleration sensor (not shown) as an external force detection unit.
  • the optical unit 100 includes an optical module 10, a fixed body 20, a gimbal mechanism 30, a first frame 41, a second frame 42, and a driving mechanism 500.
  • the optical module 10 is swingably supported within the fixed body 20 by the gimbal mechanism 30 .
  • the optical module 10 receives a magnetic driving force from the drive mechanism 500 to displace the optical system 1a of the imaging device relative to the fixed body 20 .
  • the optical module 10 has an imaging unit 1 and a rectangular box-shaped cover 110 that houses the imaging unit 1 inside.
  • the imaging unit 1 has a function of imaging recognition targets such as characters, and includes an optical system 1a of an imaging device.
  • the optical system 1a of the imaging device is a lens.
  • the cover 110 constitutes the outer peripheral portion of the optical module 10 and has four side portions 11 .
  • the fixed body 20 has a case 200 .
  • the case 200 covers the optical module 10 while exposing the optical system 1a of the imaging device to the outside.
  • the gimbal mechanism 30 supports the optical module 10 so that the optical module 10 can be displaced with respect to the fixed body 20.
  • the gimbal mechanism 30 includes a rectangular frame 25 , a movable frame 32 and a rectangular frame 42 .
  • the rectangular frame 25 is fixed to the case 200 by welding, bonding, or the like.
  • the rectangular frame 25 is positioned on one side +Z in the Z-axis direction with respect to the movable frame 32 and is larger than the movable frame 32 .
  • the rectangular frame 25 includes a plate portion 273 and a receiving portion 280 protruding inward from the plate portion 273 in a hemispherical shape.
  • the movable frame 32 is rectangular when viewed from the Z-axis direction.
  • a projection (not shown) of the movable frame 32 is movably engaged with the receiving portion 280 of the rectangular frame 25 , so that a pair of first corners facing each other when viewed from the Z-axis direction are attached to the fixed body 20 and the rectangular frame 25 . It is swingably supported and swingable around a first axis passing through the pair of first corners when viewed from the Z-axis direction.
  • the movable frame 32 swingably supports the rectangular frame 42 at a pair of second corners other than the pair of first corners when viewed from the Z-axis direction.
  • the rectangular frame 42 is positioned on the other side ⁇ Z in the Z-axis direction with respect to the movable frame 32 and is smaller than the movable frame 32 .
  • the rectangular frame 42 is swingable about a second axis passing through a pair of second corners when viewed from the Z-axis direction.
  • the first frame 41 has a rectangular shape when viewed from the Z-axis direction, and is adhered and fixed to the four side portions 11 .
  • the second frame 42 has a rectangular shape when viewed from the Z-axis direction, and is adhered and fixed to the four side portions 11 with a predetermined spacing from the first frame 41 .
  • the driving mechanism 500 as the first driving mechanism is driven under the control of the imaging control device 50 to generate a magnetic driving force for relatively displacing the optical module 10 with respect to the fixed body 20 by the gimbal mechanism 30, whereby the imaging device determines the inclination of the optical system 1a.
  • a drive mechanism 500 is an optical shake correction mechanism included in the imaging apparatus 1000 .
  • the drive mechanism 500 includes a magnet 520 and an air core coil 560 .
  • Drive mechanism 500 is an example of the first drive mechanism of the present invention.
  • the magnets 520 are provided on the outer surfaces of the four side surfaces 11 of the cover 110 between the first frame 41 and the second frame 42, and are magnetized with different polarities on the outer surface side and the inner surface side.
  • the magnet 520 is divided into two in the direction of the optical axis L, and magnetized so that the magnetic poles located on the side of the air-core coil 560 are different.
  • the air-core coil 560 is provided at a position facing the magnet 520 on the inner surface side of the case 200 .
  • the magnet 520 and the air-core coil 560 are arranged at positions shifted in the Z-axis direction. Located at +Z. Therefore, when the air-core coil 560 is energized, a large moment can be applied to the optical module 10 around the swing center O of the optical module 10 .
  • the configuration of the optical unit 100 of this embodiment is substantially the same as that of the optical unit 100 described in JP-A-2014-6522, for example.
  • FIG. 4 shows a case in which an image of a workpiece W placed on a fixing table 70 is imaged by an imaging device 1000 fixed to the fixing table 70 in an inspection process in a factory, and the image data of the imaged image is used for inspection. exemplified.
  • the fixing table 70 to which the imaging device 1000 is fixed includes a mounting portion 76 which is a member supporting the workpiece W to be imaged by the imaging device 1000, a support 73 provided on the mounting portion 76, An arm 71 as a second drive mechanism, which is driven by a motor (not shown) and is mounted movably in the Z-axis direction and in the direction parallel to the XY plane with respect to a post 73, moves toward or away from each other. and a pair of fixing portions 72 provided on the arm 71 as possible.
  • the imaging device 1000 is sandwiched between the pair of fixing portions 72 of the fixing base 70 with the optical system 1 a of the imaging device facing the mounting portion 76 of the fixing base 70 . is fixed to the arm 71 of the .
  • the imaging control device 50 of the imaging device 1000 executes imaging control processing, which will be described later, to control driving of the drive mechanism 500 to control the inclination of the imaging device 1000 or to control the tilt of the fixing table 70 .
  • a control signal for controlling the driving of the drive motor (not shown) is wirelessly transmitted to the communication part (not shown) of the fixed base 70 via the communication part 60 .
  • the image pickup control device 50 controls the inclination of the image pickup device 1000 so that the optical system 1a of the image pickup device and the fixed base 70 are within a predetermined angle range with respect to the parallel angle.
  • the predetermined angle range is, for example, ⁇ 6 degrees.
  • the fixing base 70 that has received the control signal from the imaging control device 50 determines the inclination of the arm 71 based on the received control signal, and drives the drive motor to change and adjust the inclination of the arm 71 .
  • the imaging control device 50 controls the inclination of the arm 71 so that the workpiece W on the fixing table 70 and the optical system 1a of the imaging device are parallel to each other within a predetermined angle range.
  • the predetermined angle range is, for example, ⁇ 6 degrees.
  • the placement section 76 which is a member for supporting the workpiece W, may be driven by the second drive mechanism without determining and adjusting the inclination of the arm 71.
  • the imaging device 1000 transmits a control signal for driving the mounting section 76 to the fixed base 70 .
  • the fixing table 70 controls the inclination of the workpiece W by controlling the inclination of the mounting section 76 with respect to the reference plane based on the received control signal.
  • the imaging device 1000 can obtain a clear captured image of the work W set on the placement section 76, and can reliably recognize recognition targets such as character information of the work W from the captured image.
  • the control unit 53 performs normal shake correction processing to control the driving mechanism 500 so as to cancel out the influence of the external force detected by an acceleration sensor (not shown). .
  • an acceleration sensor not shown
  • inspection accuracy can be improved by AI processing or classical rule-based image processing. It is possible to improve the recognition accuracy in various types of recognition such as code recognition such as trademark) or character recognition.
  • the imaging device 1000 does not control the light source itself, but detects a change in the surface of the work W that reflects the light, and detects the change in the surface of the work W and the optics of the imaging device.
  • Imaging control processing An imaging control process according to the first embodiment of the present invention will be described.
  • the imaging control process shown in FIG. 5 is started at the timing when a predetermined menu displayed on the touch panel of the imaging device 1000 is selected.
  • the imaging control device 50 identifies the workpiece W based on the result of detection by the workpiece inclination detection unit 52 or image analysis of the captured image captured by the optical unit 100 . Note that the imaging control device 50 may specify the work W by a user's operation on the imaging device 1000 .
  • the imaging control device 50 detects the inclination of the optical system 1a of the imaging apparatus by the optical system inclination detection section 51, and measures the distance between the imaging apparatus 1000 and the workpiece on the placement section 76 by the work inclination detection section 52. By doing so, the inclination of the work is detected (S1). Specifically, the optical system tilt detector 51 detects tilts relative to the reference plane in each of the X-axis, Y-axis, and Z-axis. In addition, the work tilt detection unit 52 detects the tilt of the work W with respect to the reference plane in each of the X-axis, Y-axis, and Z-axis based on the point cloud data of the distances from the plurality of points of the work W. By detecting the tilt of the work W based on the point cloud data, the detection accuracy of the tilt of the work W can be improved.
  • the control unit 53 of the imaging control device 50 aligns the optical system 1a of the imaging device and the workpiece W on the mounting unit 76 in parallel based on the detected inclination of the optical system 1a of the imaging device and the inclination of the workpiece W.
  • a correction value for this is calculated (S2).
  • the control unit 53 calculates the correction value using the X coordinate, Y coordinate and Z coordinate.
  • the correction value is the amount of deviation of the angle with respect to the angle when the optical system 1a of the imaging device and the workpiece W are parallel.
  • control unit 53 sets the calculated correction value as an initial set value (S3).
  • control unit 53 controls the driving of the drive mechanism 500 based on the initial set values, so that the optical system 1a of the imaging device and the work W are kept parallel to each other, and the gimbal mechanism 30 performs imaging.
  • the tilt of the optical system 1a of the apparatus is controlled (S4).
  • control unit 53 determines whether or not it is a predetermined number of times of processing n (n is a positive integer) (S5).
  • the control unit 53 ends the imaging control process when the predetermined number of times of processing is n (step S5: Yes).
  • the control unit 53 determines whether or not it is the predetermined timing (S6).
  • the predetermined timing is the timing at which the workpieces W are placed on the placement unit 76 when a plurality of works W are sequentially placed on the placement unit 76 at predetermined time intervals, or the predetermined time. is the timing that has passed.
  • control unit 53 repeats the process of step S6.
  • step S7 the control unit 53 increments the number of times of processing n (step S7), and returns to the process of step S1. In this manner, the control unit 53 increments the number of times of processing n each time the processing of step S1 to step S6 is executed.
  • imaging control processing for controlling the tilt of the fixing base 70 that fixes the imaging device 1000 will be described in detail with reference to FIG. With reference to FIG. 6, imaging control processing for controlling the inclination of the mounting portion 76 of the fixing table 70 will be described.
  • step S11 is performed after step S2.
  • the control unit 53 sets the calculated correction value as the reference position at the start of control of the fixing table 70 (S11).
  • control unit 53 transmits a control signal for controlling the driving of the fixing table 70 to the fixing table 70 via the communication unit 60, and moves the workpiece W on the mounting part 76 of the fixing table 70 based on the reference position. and the optical system 1a of the imaging device are controlled to maintain a parallel state (S12). Since the imaging device 1000 is relatively lightweight, an inexpensive motor such as a servomotor can be used as the drive motor for driving the arm 71 .
  • step S12 After the process of step S12, the process proceeds to step S5.
  • the imaging control process shown in FIG. 6 a clearer image of the workpiece W can always be obtained when the workpiece W is repeatedly imaged. Also, the imaging control processing shown in FIG. 6 is effective when the imaging apparatus does not have an optical shake correction mechanism.
  • control unit 53 may execute either one of the imaging control process shown in FIG. 5 and the imaging control process shown in FIG. 6, or may execute both.
  • the imaging apparatus 1000 can tilt the workpiece.
  • a clear image of the work W can be obtained by making the optical system 1a of the imaging device parallel to the work W without inputting and storing a 3D model in advance.
  • a clear captured image can be obtained without using an expensive control system by executing the imaging control process utilizing the gravity sensor and the distance sensor provided in the imaging device. .
  • the imaging control process can be executed by hardware control.
  • the imaging device 1000 is fixed to the fixed base 70 in this embodiment, the imaging device 1000 may be moved by hand or the like without being fixed to the fixed base 70 .
  • an acceleration sensor provided separately from the optical system tilt detection unit 51 and the workpiece tilt detection unit 52 operates to cancel out the influence of the external force detected by the acceleration sensor. If the external force can be detected by the optical system tilt detection unit 51, it may be operated to cancel the influence of the external force detected by the optical system tilt detection unit 51.
  • the imaging device 3000 has a communication section 60 , an imaging control device 80 , an optical unit 100 , a flexible wiring board 1900 and a chassis 2000 .
  • the imaging device 3000 is a camera-equipped mobile terminal such as a smart phone or a tablet terminal.
  • the optical system tilt detection unit 151 and the work tilt detection unit 152 are provided outside the imaging device 3000 .
  • the optical system tilt detection unit 151 is provided near the optical unit 100 of the imaging device 3000
  • the work tilt detection unit 152 is provided near the work placement unit .
  • the optical system tilt detection unit 151 detects the tilt of the optical system 1a of the imaging device with respect to the reference plane by detecting the tilt of the imaging device 3000 with respect to the reference plane perpendicular to the vertical direction, and images the detection result as optical system tilt information. Send to device 3000 .
  • Optical system tilt information transmitted from the optical system tilt detection unit 151 to the imaging device 3000 is acquired by the first acquisition unit 81 of the imaging control device 80 via the communication unit 60 .
  • the work tilt detection unit 152 detects the tilt of the work imaged by the imaging device 3000 with respect to the reference plane, and transmits the detection result to the imaging device 3000 as work tilt information.
  • the work tilt information transmitted from the work tilt detection unit 152 to the imaging device 3000 is acquired by the second acquisition unit 82 of the imaging control device 80 via the communication unit 60 .
  • the imaging control device 80 controls driving of the driving mechanism 500 or outputs a control signal for controlling driving of the workpiece to the communication unit 60 . Details of the configuration of the imaging control device 80 will be described later.
  • the communication unit 60 wirelessly transmits the control signal input from the imaging control device 80 .
  • the optical unit 100 determines the tilt of the optical system 1a of the imaging device under the control of the imaging control device 80, and operates so that the optical system 1a of the imaging device has the determined tilt.
  • the flexible wiring board 1900 supplies power to the optical unit 100 and electrically connects the optical unit 100 and the imaging control device 80 .
  • the imaging control device 80 includes a control section 53, a first acquisition section 81, and a second acquisition section .
  • the control unit 53 controls the overall operation of the imaging device 3000 by executing a control program stored in advance in a storage unit (not shown).
  • the control unit 53 energizes the driving mechanism 500 of the optical unit 100 based on the optical system tilt information input from the first acquisition unit 81 and the work tilt information input from the second acquisition unit 82. Thus, it controls driving of the drive mechanism 500 or generates a control signal and outputs it to the communication unit 60 .
  • the first acquisition unit 81 acquires optical system tilt information from the optical system tilt detection unit 151 and outputs the acquired optical system tilt information to the control unit 53 .
  • the second acquisition section 82 acquires work inclination information from the work inclination detection section 152 and outputs the acquired work inclination information to the control section 53 .
  • the operation of the imaging device 3000 is the same as the operation of the imaging device 1000 described above, so description thereof will be omitted. Also, the imaging control processing in this embodiment is the same processing as in FIG. 5 or 6, so the description thereof will be omitted.
  • the imaging device 3000 can tilt the workpiece.
  • a clear image of the work W can be obtained by making the optical system 1a of the imaging device parallel to the work W without inputting and storing a 3D model in advance.
  • the imaging device 3000 does not need to be provided with the optical system tilt detection unit 151 and the workpiece tilt detection unit 152 .
  • the imaging apparatus 3000 of the present embodiment does not need to be provided with the distance sensor (work tilt detection unit) provided in the imaging apparatus of the first embodiment. Therefore, the manufacturing cost of the imaging device 3000 can be reduced.
  • the imaging device 3000 is fixed to the fixed base 70 in this embodiment, the imaging device 3000 is not limited to being fixed to the fixed base 70, and the imaging device 3000 may be moved by hand or the like.
  • the operation is performed so as to cancel the influence of the external force detected by the acceleration sensor provided separately from the optical system tilt detection unit 151 and the workpiece tilt detection unit 152.
  • the optical system tilt detection unit is not limited to this. If the external force can be detected by the optical system tilt detection unit 51, it may be operated to cancel the influence of the external force detected by the optical system tilt detection unit 51. FIG.
  • the optical system tilt detection unit 151 and the work tilt detection unit 152 are provided outside the imaging device 3000, but only the optical system tilt detection unit 151 or only the work tilt detection unit 152
  • the present embodiment can also be applied when provided outside the imaging device 3000 .
  • the image of the work W placed on the fixed table 70 is imaged. Even if the quality of the conveying device itself is poor, a clear captured image can be obtained by executing the imaging control process and correcting the tilt.
  • the optical system 1a of the imaging device and the workpiece W are controlled to be parallel. A similar effect can be obtained by controlling.
  • the imaging device 1000 and the fixing base 70 are connected by a wireless line, but the imaging device and the fixing base may be connected by a wire. good.
  • Imaging unit 1a Optical system of imaging device 10
  • Optical module 20 Fixed body 25 Rectangular frame 30
  • Gimbal mechanism 32 Movable frame 41
  • Second frame 50 Imaging control device 51
  • Optical system tilt detector 52 Work tilt detector 53
  • Control unit 60 Communication unit 70
  • Fixed Base 71 Arm Fixing Part 73
  • Post 76 Placement Part 80
  • Imaging Control Device 81
  • First Acquisition Part 82
  • Second Acquisition Part 100
  • Optical system tilt detector 152 Work tilt detector 200
  • Case 500 Drive mechanism 520 Magnet 560
  • Imaging device 1900 Flexible wiring board 2000 Chassis 3000 Imaging device

Abstract

An imaging control device characterized by comprising: a first acquisition unit that acquires optical system incline information indicating the incline of an optical system of an imaging device; a second acquisition unit that acquires workpiece incline information indicating the incline of a workpiece to be imaged by the imaging device; and a control unit that controls the incline of the optical system or the incline of the workpiece on the basis of the optical system incline information acquired by the first acquisition unit and the workpiece incline information acquired by the second acquisition unit.

Description

撮像制御装置、撮像装置、撮像制御方法及びプログラムIMAGING CONTROL DEVICE, IMAGING DEVICE, IMAGING CONTROL METHOD AND PROGRAM
 本発明は、撮像制御装置、撮像装置、撮像制御方法及びプログラムに関する。 The present invention relates to an imaging control device, an imaging device, an imaging control method, and a program.
 従来、携帯情報端末に備えられているカメラを用いて被写体(認識対象)を撮影する場合に、携帯情報端末を手によって把持して撮影することによる撮影角度のずれ、又は撮影位置に応じた文字等の認識対象の写り方の変化により、撮影画像から認識対象を判断することができない場合があった。 Conventionally, when a subject (recognition target) is photographed using a camera provided in a portable information terminal, the angle of photographing shifts due to the photograph being taken while the portable information terminal is held by hand, or the characters corresponding to the photographing position. In some cases, the recognition target cannot be determined from the captured image due to a change in how the recognition target is photographed.
 これに対して、日本国公開公報特開2012-22474号公報では、予め記憶している3Dモデルに対応した認識対象を含む画像をカメラで撮影すると共にカメラの地平面に対する傾き角度を取得し、取得した傾き角度に基づいて3Dモデルを回転させ、回転させた3Dモデルから比較画像群を作成し、カメラで撮影した撮影画像と作成した比較画像群との一致検出を行って、撮影画像に写った認識対象のカメラに対する傾きを決定する携帯情報端末を開示している。そして、特許文献1の携帯情報端末は、決定した認識対象の傾きに応じて文字領域に対応する画像を切り出して歪みを補正した後に文字認識を行う。特許文献1の携帯情報端末によれば、認識対象が予め定まっている場合に、手持ちによる認識対象とカメラの撮影角のずれや立ち位置による影響を抑え、認識対象の検出精度を向上させ適切な文字認識を行うことができる。 On the other hand, in Japanese Patent Application Laid-Open No. 2012-22474, an image including a recognition target corresponding to a pre-stored 3D model is captured with a camera, and the tilt angle of the camera with respect to the ground plane is acquired. The 3D model is rotated based on the obtained tilt angle, a group of comparative images is created from the rotated 3D model, and matching between the captured image taken by the camera and the created group of comparative images is detected, and the captured image is captured. Disclosed is a personal digital assistant that determines the tilt of a recognition target relative to a camera. Then, the portable information terminal of Patent Document 1 cuts out an image corresponding to the character area according to the determined inclination of the recognition target, corrects the distortion, and then performs character recognition. According to the portable information terminal disclosed in Patent Document 1, when the recognition target is predetermined, the influence of the shift in the shooting angle of the recognition target and the camera due to hand-holding and the standing position can be suppressed, and the detection accuracy of the recognition target can be improved. Character recognition can be performed.
日本国公開公報:特開2012-22474号公報Japanese publication: JP 2012-22474
 しかしながら、特許文献1においては、認識対象を含む撮影画像に対応する3Dモデルを予め入力して記憶させておく必要があると共に、3Dモデルに対応していない認識対象の撮影画像については3Dモデルにおいて一致するものを検出することができないことにより、撮影画像を補正することができないため、認識対象の鮮明な撮影画像を得ることができないという課題を有する。 However, in Patent Document 1, it is necessary to input and store in advance a 3D model corresponding to the captured image including the recognition target, and the captured image of the recognition target that does not correspond to the 3D model is stored in the 3D model. Since the photographed image cannot be corrected due to the inability to detect a match, there is a problem that a clear photographed image of the recognition target cannot be obtained.
 本発明の目的は、撮像装置によりワークを撮像する際に、3Dモデルを予め入力して記憶させておくことなく、撮像装置の光学系とワークとを平行にすることにより、ワークの鮮明な画像を得ることができる撮像制御装置、撮像装置、撮像制御方法及びプログラムを提供することである。 An object of the present invention is to obtain a clear image of a workpiece by making the optical system of the imaging device parallel to the workpiece without inputting and storing a 3D model in advance when the workpiece is imaged by the imaging device. It is to provide an imaging control device, an imaging device, an imaging control method, and a program that can obtain
 本発明に係る撮像制御装置は、撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得部と、前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得部と、前記第1取得部により取得した前記光学系傾き情報と前記第2取得部により取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御部と、を有する。 An imaging control apparatus according to the present invention includes a first acquisition unit that acquires optical system tilt information indicating the tilt of an optical system of an imaging device; 2 an acquisition unit, and a control unit that controls the inclination of the optical system or the workpiece based on the optical system inclination information acquired by the first acquisition unit and the workpiece inclination information acquired by the second acquisition unit; , has
 本発明に係る撮像装置は、上記の撮像制御装置と、前記ワークを撮像する撮像部と、を有する。 An imaging device according to the present invention includes the imaging control device described above and an imaging unit that captures an image of the workpiece.
 本発明に係る撮像制御方法は、撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得ステップと、前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得ステップと、前記第1取得ステップにより取得した前記光学系傾き情報と前記第2取得ステップにより取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御ステップと、を有する。 An imaging control method according to the present invention comprises a first obtaining step of obtaining optical system tilt information indicating the tilt of an optical system of an imaging device; a control step of controlling the inclination of the optical system or the work based on the optical system inclination information acquired in the first acquisition step and the work inclination information acquired in the second acquisition step; , has
 本発明に係るプログラムは、コンピュータに、撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得ステップと、前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得ステップと、前記第1取得ステップにより取得した前記光学系傾き情報と前記第2取得ステップにより取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御ステップと、を実行させる。 A program according to the present invention provides a computer with a first acquisition step of acquiring optical system tilt information indicating the tilt of an optical system of an imaging device, and acquiring workpiece tilt information indicating the tilt of a workpiece imaged by the imaging device. and a control step of controlling the inclination of the optical system or the work based on the optical system inclination information acquired in the first acquisition step and the work inclination information acquired in the second acquisition step. and let it run.
 本発明によれば、撮像装置によりワークを撮像する際に、3Dモデルを予め入力して記憶させておくことなく、撮像装置の光学系とワークとを平行にすることにより、ワークの鮮明な画像を得ることができる。 According to the present invention, when an image of a workpiece is captured by an imaging device, a clear image of the workpiece can be obtained by making the optical system of the imaging device and the workpiece parallel without inputting and storing a 3D model in advance. can be obtained.
本発明の第1の実施形態に係る撮像装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an imaging device according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る撮像装置の模式図である。1 is a schematic diagram of an imaging device according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態に係る撮像装置の光学ユニットの断面図である。2 is a cross-sectional view of an optical unit of the imaging device according to the first embodiment of the invention; FIG. 本発明の第1の実施形態に係る撮像装置の使用状態を示す図である。It is a figure which shows the use condition of the imaging device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る撮像制御処理を示すフロー図である。FIG. 4 is a flowchart showing imaging control processing according to the first embodiment of the present invention; 本発明の第1の実施形態に係る撮像制御処理の変形例を示すフロー図である。FIG. 9 is a flowchart showing a modification of imaging control processing according to the first embodiment of the present invention; 本発明の第2の実施形態に係る撮像装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of an imaging device according to a second embodiment of the present invention; FIG.
 以下、図面を参照しながら、本発明の例示的な実施形態に係る撮像制御装置、撮像装置、撮像制御方法及びプログラムついて説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数等を、実際の構造における縮尺および数等と異ならせる場合がある。 An imaging control device, an imaging device, an imaging control method, and a program according to exemplary embodiments of the present invention will be described below with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Also, in the drawings below, the scale, number, etc. of each structure may be different from the scale, number, etc. of the actual structure in order to make each configuration easier to understand.
 (第1の実施形態)
 <撮像装置の構成>
 本発明の実施形態に係る撮像装置1000の構成について、図1及び図2を参照しながら、詳細に説明する。
(First embodiment)
<Structure of Imaging Device>
A configuration of an imaging apparatus 1000 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG.
 撮像装置1000は、撮像制御装置50と、通信部60と、光学ユニット100と、フレキシブル配線基板1900と、シャーシ2000と、を有している。撮像装置1000は、スマートフォン又はタブレット端末等のカメラ付き携帯端末である。 The imaging device 1000 has an imaging control device 50 , a communication section 60 , an optical unit 100 , a flexible wiring board 1900 and a chassis 2000 . The imaging device 1000 is a camera-equipped mobile terminal such as a smart phone or a tablet terminal.
 撮像制御装置50は、駆動機構500の駆動を制御し、又は撮像装置1000を固定している後述の固定台70の駆動を制御する制御信号を通信部60に出力する。なお、撮像制御装置50の構成の詳細については後述する。 The imaging control device 50 outputs to the communication unit 60 a control signal for controlling driving of the drive mechanism 500 or controlling driving of a later-described fixing base 70 fixing the imaging device 1000 . Details of the configuration of the imaging control device 50 will be described later.
 通信部60は、撮像制御装置50より入力された制御信号を固定台70に無線送信する。また、通信部60は撮像装置50の外部から送信されてくる信号を受信することができる。通信部60は、Ethernet、Bluetooth又はWiFi等により無線通信を行う。 The communication unit 60 wirelessly transmits the control signal input from the imaging control device 50 to the fixing base 70 . Also, the communication unit 60 can receive a signal transmitted from the outside of the imaging device 50 . The communication unit 60 performs wireless communication using Ethernet, Bluetooth, WiFi, or the like.
 光学ユニット100は、撮像部である。尚、本明細書では、光学ユニット(撮像部)をカメラと称する場合がある。光学ユニット100は、撮像時に撮像装置1000に手振れ等の振れが発生した際に、振れによる影響を打ち消すように動作する。また、光学ユニット100は、撮像制御装置50の制御により、撮像装置の光学系1aの傾きを決定し、撮像装置の光学系1aが決定した傾きになるように動作する。なお、光学ユニット100の構成の詳細については後述する。 The optical unit 100 is an imaging section. Incidentally, in this specification, the optical unit (imaging unit) may be referred to as a camera. The optical unit 100 operates so as to cancel out the influence of the shake when the image pickup apparatus 1000 is shaken during image pickup. Further, the optical unit 100 determines the tilt of the optical system 1a of the imaging device under the control of the imaging control device 50, and operates so that the optical system 1a of the imaging device has the determined tilt. Details of the configuration of the optical unit 100 will be described later.
 フレキシブル配線基板1900は、光学ユニット100への給電を行うと共に、光学ユニット100と撮像制御装置50とを電気的に接続している。 The flexible wiring board 1900 supplies power to the optical unit 100 and electrically connects the optical unit 100 and the imaging control device 50 .
 シャーシ2000は、撮像装置1000の筐体である。シャーシ2000は、光学ユニット100を支持していると共に、撮像制御装置50、通信部60、光学ユニット100及びフレキシブル配線基板1900を収容している。 A chassis 2000 is a housing for the imaging device 1000 . The chassis 2000 supports the optical unit 100 and accommodates the imaging control device 50 , the communication section 60 , the optical unit 100 and the flexible wiring board 1900 .
 <撮像制御装置の構成>
 本発明の第1の実施形態に係る撮像制御装置50の構成について、図1を参照しながら、詳細に説明する。
<Configuration of imaging control device>
The configuration of the imaging control device 50 according to the first embodiment of the present invention will be described in detail with reference to FIG.
 撮像制御装置50は、光学系傾き検出部51と、ワーク傾き検出部52と、制御部53と、を備えている。 The imaging control device 50 includes an optical system tilt detection section 51 , a work tilt detection section 52 and a control section 53 .
 光学系傾き検出部51は、鉛直方向と直交する基準面に対する撮像装置1000の傾きを検出することにより撮像装置の光学系1aの基準面に対する傾きを検出し、検出結果に応じた電気信号を光学系傾き情報として制御部53に出力する。光学系傾き検出部51は、重力センサであることが好ましい。光学系傾き検出部51は、本発明の第1取得部及び第1検出部の一例である。 The optical system tilt detection unit 51 detects the tilt of the optical system 1a of the imaging device with respect to the reference plane by detecting the tilt of the imaging device 1000 with respect to the reference plane perpendicular to the vertical direction, and optically transmits an electric signal according to the detection result. It is output to the control unit 53 as system tilt information. The optical system tilt detector 51 is preferably a gravity sensor. The optical system tilt detection section 51 is an example of the first acquisition section and the first detection section of the present invention.
 ワーク傾き検出部52は、撮像装置1000により撮像されるワークの基準面に対する傾きを検出し、検出結果に応じた電気信号をワーク傾き情報として制御部53に出力する。ワーク傾き検出部52は、距離センサであることが好ましい。ワーク傾き検出部52は本発明の第2取得部及び第2検出部の一例である。 The work tilt detection unit 52 detects the tilt of the work imaged by the imaging device 1000 with respect to the reference plane, and outputs an electrical signal according to the detection result to the control unit 53 as work tilt information. The workpiece inclination detector 52 is preferably a distance sensor. The workpiece inclination detection unit 52 is an example of the second acquisition unit and the second detection unit of the present invention.
 制御部53は、例えば、1つまたは複数のプロセッサ(CPU、MPU、GPUなど)からなる。制御部53は、図示しない記憶部に予め記憶されている制御プログラムを実行することにより撮像装置1000全体の動作を制御する。制御部53は、光学系傾き検出部51より入力された光学系傾き情報と、ワーク傾き検出部52より入力されたワーク傾き情報と、に基づいて、光学ユニット100の後述の駆動機構500に対して通電することによって駆動機構500の駆動を制御し、又は制御信号を生成して通信部60に出力する。制御部53は、外力検出部としての図示しない加速度センサにより検出される撮像装置1000に加わる外力の影響を打ち消すように駆動機構500の駆動を制御する。 The control unit 53 is composed of, for example, one or more processors (CPU, MPU, GPU, etc.). The control unit 53 controls the overall operation of the imaging apparatus 1000 by executing a control program stored in advance in a storage unit (not shown). Based on the optical system tilt information input from the optical system tilt detection unit 51 and the work tilt information input from the work tilt detection unit 52, the control unit 53 controls a driving mechanism 500 of the optical unit 100, which will be described later. energizes the drive mechanism 500 or generates a control signal and outputs it to the communication unit 60 . The control unit 53 controls driving of the drive mechanism 500 so as to cancel out the influence of the external force applied to the imaging device 1000 detected by an acceleration sensor (not shown) as an external force detection unit.
 <光学ユニットの構成>
 本発明の第1の実施形態に係る撮像装置1000の光学ユニット100の構成について、図3を参照しながら、詳細に説明する。
<Configuration of optical unit>
The configuration of the optical unit 100 of the imaging device 1000 according to the first embodiment of the invention will be described in detail with reference to FIG.
 光学ユニット100は、光学モジュール10と、固定体20と、ジンバル機構30と、第1枠41と、第2枠42と、駆動機構500と、を備えている。 The optical unit 100 includes an optical module 10, a fixed body 20, a gimbal mechanism 30, a first frame 41, a second frame 42, and a driving mechanism 500.
 光学モジュール10は、ジンバル機構30により固定体20内で揺動可能に支持されている。光学モジュール10は、駆動機構500より磁気駆動力を受けることにより、撮像装置の光学系1aを固定体20に対して相対変位させる。光学モジュール10は、撮像ユニット1と、撮像ユニット1を内側に収容する角形箱状のカバー110と、を有している。 The optical module 10 is swingably supported within the fixed body 20 by the gimbal mechanism 30 . The optical module 10 receives a magnetic driving force from the drive mechanism 500 to displace the optical system 1a of the imaging device relative to the fixed body 20 . The optical module 10 has an imaging unit 1 and a rectangular box-shaped cover 110 that houses the imaging unit 1 inside.
 撮像ユニット1は、文字等の認識対象を撮像するための機能を有しており、撮像装置の光学系1aを備えている。撮像装置の光学系1aは、レンズである。 The imaging unit 1 has a function of imaging recognition targets such as characters, and includes an optical system 1a of an imaging device. The optical system 1a of the imaging device is a lens.
 カバー110は、光学モジュール10の外周部分を構成しており、4つの側面部11を備えている。 The cover 110 constitutes the outer peripheral portion of the optical module 10 and has four side portions 11 .
 固定体20は、ケース200を備えている。 The fixed body 20 has a case 200 .
 ケース200は、撮像装置の光学系1aを外部に露出させた状態で光学モジュール10の周りを覆っている。 The case 200 covers the optical module 10 while exposing the optical system 1a of the imaging device to the outside.
 ジンバル機構30は、光学モジュール10が固定体20に対して変位できるように、光学モジュール10を支持している。ジンバル機構30は、矩形枠25と、可動枠32と、矩形枠42と、を備えている。 The gimbal mechanism 30 supports the optical module 10 so that the optical module 10 can be displaced with respect to the fixed body 20. The gimbal mechanism 30 includes a rectangular frame 25 , a movable frame 32 and a rectangular frame 42 .
 矩形枠25は、ケース200に溶接又は接着等により固定されている。矩形枠25は、可動枠32に対してZ軸方向の一方側+Zに位置し、可動枠32より大きい。矩形枠25は、板部273と、板部273より内方に半球状に突出する受け部280と、を備えている。 The rectangular frame 25 is fixed to the case 200 by welding, bonding, or the like. The rectangular frame 25 is positioned on one side +Z in the Z-axis direction with respect to the movable frame 32 and is larger than the movable frame 32 . The rectangular frame 25 includes a plate portion 273 and a receiving portion 280 protruding inward from the plate portion 273 in a hemispherical shape.
 可動枠32は、Z軸方向から見て矩形である。可動枠32は、図示しない突部が矩形枠25の受け部280に移動自在に係合することにより、Z軸方向から見て対向する一対の第1角部が固定体20及び矩形枠25に揺動可能に支持されて、Z軸方向から見て一対の第1角部を通る第1軸線周りに揺動可能になっている。可動枠32は、Z軸方向から見て一対の第1角部以外の一対の第2角部が矩形枠42を揺動可能に支持している。 The movable frame 32 is rectangular when viewed from the Z-axis direction. A projection (not shown) of the movable frame 32 is movably engaged with the receiving portion 280 of the rectangular frame 25 , so that a pair of first corners facing each other when viewed from the Z-axis direction are attached to the fixed body 20 and the rectangular frame 25 . It is swingably supported and swingable around a first axis passing through the pair of first corners when viewed from the Z-axis direction. The movable frame 32 swingably supports the rectangular frame 42 at a pair of second corners other than the pair of first corners when viewed from the Z-axis direction.
 矩形枠42は、可動枠32に対してZ軸方向の他方側-Zに位置し、可動枠32より小さい。矩形枠42は、Z軸方向から見て一対の第2角部を通る第2軸線周りに揺動可能になっている。 The rectangular frame 42 is positioned on the other side −Z in the Z-axis direction with respect to the movable frame 32 and is smaller than the movable frame 32 . The rectangular frame 42 is swingable about a second axis passing through a pair of second corners when viewed from the Z-axis direction.
 第1枠41は、Z軸方向から見て矩形であり、4つの側面部11に接着されて固定されている。 The first frame 41 has a rectangular shape when viewed from the Z-axis direction, and is adhered and fixed to the four side portions 11 .
 第2枠42は、Z軸方向から見て矩形であり、第1枠41に対して所定の間隔を設けて4つの側面部11に接着されて固定されている。 The second frame 42 has a rectangular shape when viewed from the Z-axis direction, and is adhered and fixed to the four side portions 11 with a predetermined spacing from the first frame 41 .
 第1駆動機構としての駆動機構500は、撮像制御装置50の制御により駆動して、ジンバル機構30により光学モジュール10を固定体20に対して相対変位させる磁気駆動力を発生させることにより、撮像装置の光学系1aの傾きを決定する。駆動機構500は、撮像装置1000が備えている光学振れ補正機構である。駆動機構500は、磁石520と、空芯コイル560と、を備えている。駆動機構500は、本発明の第1駆動機構の一例である。 The driving mechanism 500 as the first driving mechanism is driven under the control of the imaging control device 50 to generate a magnetic driving force for relatively displacing the optical module 10 with respect to the fixed body 20 by the gimbal mechanism 30, whereby the imaging device determines the inclination of the optical system 1a. A drive mechanism 500 is an optical shake correction mechanism included in the imaging apparatus 1000 . The drive mechanism 500 includes a magnet 520 and an air core coil 560 . Drive mechanism 500 is an example of the first drive mechanism of the present invention.
 磁石520は、第1枠41と第2枠42との間においてカバー110の4つの側面部11の外面に各々設けられており、外面側と内面側とが異なる極に着磁されている。磁石520は、光軸L方向に2つに分割されており、空芯コイル560の側に位置する磁極が異なるように着磁されている。 The magnets 520 are provided on the outer surfaces of the four side surfaces 11 of the cover 110 between the first frame 41 and the second frame 42, and are magnetized with different polarities on the outer surface side and the inner surface side. The magnet 520 is divided into two in the direction of the optical axis L, and magnetized so that the magnetic poles located on the side of the air-core coil 560 are different.
 空芯コイル560は、ケース200の内面側において磁石520と対向する位置に設けられている。 The air-core coil 560 is provided at a position facing the magnet 520 on the inner surface side of the case 200 .
 磁石520と空芯コイル560とは、Z軸方向にずれた位置に配置されており、磁石520のZ軸方向の中心は、空芯コイル560のZ軸方向の中心よりZ軸方向の一方側+Zに位置する。このため、空芯コイル560に通電した際、光学モジュール10に対して、光学モジュール10の揺動中心O周りに大きなモーメントを作用させることができる。 The magnet 520 and the air-core coil 560 are arranged at positions shifted in the Z-axis direction. Located at +Z. Therefore, when the air-core coil 560 is energized, a large moment can be applied to the optical module 10 around the swing center O of the optical module 10 .
 なお、本実施形態の光学ユニット100の構成は、例えば特開2014-6522号公報に記載されている光学ユニット100と略同一構成である。 The configuration of the optical unit 100 of this embodiment is substantially the same as that of the optical unit 100 described in JP-A-2014-6522, for example.
 <撮像装置の動作>
 本発明の実施形態に係る撮像装置1000の動作について、図4を参照しながら、詳細に説明する。
<Operation of Imaging Device>
Operations of the imaging device 1000 according to the embodiment of the present invention will be described in detail with reference to FIG.
 図4は、工場における検査工程において、固定台70に載置されたワークWを固定台70に固定された撮像装置1000により撮像し、撮像した画像の画像データを利用して検査を行う場合を例示している。 FIG. 4 shows a case in which an image of a workpiece W placed on a fixing table 70 is imaged by an imaging device 1000 fixed to the fixing table 70 in an inspection process in a factory, and the image data of the imaged image is used for inspection. exemplified.
 ここで、撮像装置1000が固定される固定台70は、撮像装置1000によって撮像されるワークWを支持している部材である載置部76と、載置部76に設けられた支柱73と、図示しないモータによって駆動されて支柱73に対してZ軸方向及びX-Y平面と平行な方向に移動自在に装着されている第2駆動機構としてのアーム71と、互いに近接又は離隔する方向に移動可能にアーム71に設けられている一対の固定部72と、を有している。 Here, the fixing table 70 to which the imaging device 1000 is fixed includes a mounting portion 76 which is a member supporting the workpiece W to be imaged by the imaging device 1000, a support 73 provided on the mounting portion 76, An arm 71 as a second drive mechanism, which is driven by a motor (not shown) and is mounted movably in the Z-axis direction and in the direction parallel to the XY plane with respect to a post 73, moves toward or away from each other. and a pair of fixing portions 72 provided on the arm 71 as possible.
 まず、撮像装置の光学系1aを固定台70の載置部76と対向させた状態で、撮像装置1000を固定台70の一対の固定部72によって挟持させることにより、撮像装置1000を固定台70のアーム71に固定する。 First, the imaging device 1000 is sandwiched between the pair of fixing portions 72 of the fixing base 70 with the optical system 1 a of the imaging device facing the mounting portion 76 of the fixing base 70 . is fixed to the arm 71 of the .
 次に、撮像装置1000の撮像制御装置50は、後述の撮像制御処理を実行することにより、駆動機構500の駆動を制御して、撮像装置1000の傾きを制御するか、又は、固定台70の図示しない駆動モータの駆動を制御するための制御信号を通信部60を介して固定台70の図示しない通信部に対して無線送信する。この際に、撮像制御装置50は、撮像装置の光学系1aと固定台70とが平行な状態の角度に対して所定の角度の範囲内になるように撮像装置1000の傾きを制御する。所定の角度の範囲は、例えば±6度である。 Next, the imaging control device 50 of the imaging device 1000 executes imaging control processing, which will be described later, to control driving of the drive mechanism 500 to control the inclination of the imaging device 1000 or to control the tilt of the fixing table 70 . A control signal for controlling the driving of the drive motor (not shown) is wirelessly transmitted to the communication part (not shown) of the fixed base 70 via the communication part 60 . At this time, the image pickup control device 50 controls the inclination of the image pickup device 1000 so that the optical system 1a of the image pickup device and the fixed base 70 are within a predetermined angle range with respect to the parallel angle. The predetermined angle range is, for example, ±6 degrees.
 撮像制御装置50から制御信号を受信した固定台70は、受信した制御信号に基づいてアーム71の傾きを決定し、駆動モータを駆動してアーム71の傾きを変更して調節する。この際に、撮像制御装置50は、固定台70のワークWと撮像装置の光学系1aとが平行な状態の角度に対して所定の角度の範囲内になるようにアーム71の傾きを制御する。所定の角度の範囲は、例えば±6度である。 The fixing base 70 that has received the control signal from the imaging control device 50 determines the inclination of the arm 71 based on the received control signal, and drives the drive motor to change and adjust the inclination of the arm 71 . At this time, the imaging control device 50 controls the inclination of the arm 71 so that the workpiece W on the fixing table 70 and the optical system 1a of the imaging device are parallel to each other within a predetermined angle range. . The predetermined angle range is, for example, ±6 degrees.
 尚、アーム71の傾きを決定及び調節せずに、ワークWを支持する部材である載置部76を第2駆動機構によって駆動させてもよい。この場合には、撮像装置1000は、載置部76を駆動させるための制御信号を固定台70に送信する。そして、固定台70は、受信した制御信号に基づいて、載置部76の基準面に対する傾きを制御することによりワークWの傾きを制御する。 The placement section 76, which is a member for supporting the workpiece W, may be driven by the second drive mechanism without determining and adjusting the inclination of the arm 71. In this case, the imaging device 1000 transmits a control signal for driving the mounting section 76 to the fixed base 70 . Then, the fixing table 70 controls the inclination of the workpiece W by controlling the inclination of the mounting section 76 with respect to the reference plane based on the received control signal.
 上記の動作により、撮像装置の光学系1aと載置部76とが平行になることにより、撮像装置の光学系1aとワークWとは平行になる。従って、撮像装置1000は、載置部76にセットされたワークWの鮮明な撮像画像を得ることができ、撮像画像よりワークWの文字情報等の認識対象を確実に認識することができる。 By the above operation, the optical system 1a of the imaging device and the mounting portion 76 become parallel, so that the optical system 1a of the imaging device and the workpiece W become parallel. Therefore, the imaging device 1000 can obtain a clear captured image of the work W set on the placement section 76, and can reliably recognize recognition targets such as character information of the work W from the captured image.
 また、制御部53は、撮像装置1000が機械の振動等による外力を受けた場合に、図示しない加速度センサにより検出した外力の影響を打ち消すように駆動機構500を制御する通常の振れ補正処理を行う。これにより、撮像装置1000が振動等の外力の影響を受ける場合であってもワークWのより鮮明な画像を得ることができる。 Further, when the imaging apparatus 1000 receives an external force such as mechanical vibration, the control unit 53 performs normal shake correction processing to control the driving mechanism 500 so as to cancel out the influence of the external force detected by an acceleration sensor (not shown). . As a result, a clearer image of the workpiece W can be obtained even when the imaging device 1000 is affected by an external force such as vibration.
 また、撮像装置1000によりワークWの鮮明な撮像画像を得ることができるため、AI処理又は古典的なルールベースの画像処理等による検査精度を向上させることができ、管理面でも、QRコード(登録商標)等のコード認識又は文字認識等の様々な認識において認識精度を向上させることができる。 In addition, since a clear captured image of the workpiece W can be obtained by the imaging device 1000, inspection accuracy can be improved by AI processing or classical rule-based image processing. It is possible to improve the recognition accuracy in various types of recognition such as code recognition such as trademark) or character recognition.
 上記の動作を行う場合の状況としては、ワークWを乗せるトレーが歪んでいることにより、ワークWが斜めになってしまう場合が想定される。このような状況においては、ワークWを撮像する際に、ワークWへの照明の当たり方が変化して、微細な傷が見えない現象が発生する。このような現象が発生した場合に、撮像装置1000は、光源そのものを制御するのではなく、光が反射するワークWの表面が変化したことを検出して、ワークWの表面と撮像装置の光学系1aが平行になるように制御を行うことにより、撮像画像に対する影響を最小化することができ、検出精度を向上させることができる。  As a situation when performing the above operation, it is assumed that the work W is tilted because the tray on which the work W is placed is distorted. In such a situation, when an image of the work W is captured, the way in which the work W is illuminated changes, and a phenomenon occurs in which fine flaws cannot be seen. When such a phenomenon occurs, the imaging device 1000 does not control the light source itself, but detects a change in the surface of the work W that reflects the light, and detects the change in the surface of the work W and the optics of the imaging device. By controlling the system 1a to be parallel, the influence on the captured image can be minimized, and the detection accuracy can be improved.
 <撮像制御処理>
 本発明の第1の実施形態に係る撮像制御処理について説明する。
<Imaging control processing>
An imaging control process according to the first embodiment of the present invention will be described.
 まず、撮像装置の光学系1aの傾きを制御する撮像制御処理について、図5を参照しながら、詳細に説明する。 First, the imaging control process for controlling the tilt of the optical system 1a of the imaging device will be described in detail with reference to FIG.
 図5に示す撮像制御処理は、撮像装置1000のタッチパネルに表示された所定のメニュを選択したタイミングで開始される。 The imaging control process shown in FIG. 5 is started at the timing when a predetermined menu displayed on the touch panel of the imaging device 1000 is selected.
 撮像制御装置50は、ワーク傾き検出部52による検出結果又は光学ユニット100により撮像した撮像画像の画像解析よりワークWを特定する。なお、撮像制御装置50は、撮像装置1000に対するユーザ操作によってワークWを特定してもよい。 The imaging control device 50 identifies the workpiece W based on the result of detection by the workpiece inclination detection unit 52 or image analysis of the captured image captured by the optical unit 100 . Note that the imaging control device 50 may specify the work W by a user's operation on the imaging device 1000 .
 次に、撮像制御装置50は、光学系傾き検出部51により撮像装置の光学系1aの傾きを検出すると共に、ワーク傾き検出部52により撮像装置1000と載置部76のワークとの距離を測定することによりワークの傾きを検出する(S1)。具体的には、光学系傾き検出部51は、X軸、Y軸及びZ軸の各々における基準面に対する傾きを検出する。また、ワーク傾き検出部52は、ワークWの複数点との距離の点群データに基づいて、ワークWのX軸、Y軸及びZ軸の各々における基準面に対する傾きを検出する。点群データに基づいてワークWの傾きを検出することにより、ワークWの傾きの検出精度を向上させることができる。 Next, the imaging control device 50 detects the inclination of the optical system 1a of the imaging apparatus by the optical system inclination detection section 51, and measures the distance between the imaging apparatus 1000 and the workpiece on the placement section 76 by the work inclination detection section 52. By doing so, the inclination of the work is detected (S1). Specifically, the optical system tilt detector 51 detects tilts relative to the reference plane in each of the X-axis, Y-axis, and Z-axis. In addition, the work tilt detection unit 52 detects the tilt of the work W with respect to the reference plane in each of the X-axis, Y-axis, and Z-axis based on the point cloud data of the distances from the plurality of points of the work W. By detecting the tilt of the work W based on the point cloud data, the detection accuracy of the tilt of the work W can be improved.
 次に、撮像制御装置50の制御部53は、検出した撮像装置の光学系1aの傾き及びワークWの傾きに基づいて、撮像装置の光学系1aと載置部76のワークWとを平行にするための補正値を算出する(S2)。具体的には、制御部53は、X座標、Y座標及びZ座標を用いて補正値を算出する。ここで、補正値は、撮像装置の光学系1aとワークWとが平行な状態の角度に対する角度のずれ量である。 Next, the control unit 53 of the imaging control device 50 aligns the optical system 1a of the imaging device and the workpiece W on the mounting unit 76 in parallel based on the detected inclination of the optical system 1a of the imaging device and the inclination of the workpiece W. A correction value for this is calculated (S2). Specifically, the control unit 53 calculates the correction value using the X coordinate, Y coordinate and Z coordinate. Here, the correction value is the amount of deviation of the angle with respect to the angle when the optical system 1a of the imaging device and the workpiece W are parallel.
 次に、制御部53は、算出した補正値を初期設定値とする(S3)。 Next, the control unit 53 sets the calculated correction value as an initial set value (S3).
 次に、制御部53は、初期設定値に基づいて駆動機構500の駆動を制御することにより、撮像装置の光学系1aとワークWとが平行な状態を維持するように、ジンバル機構30によって撮像装置の光学系1aの傾きを制御する(S4)。 Next, the control unit 53 controls the driving of the drive mechanism 500 based on the initial set values, so that the optical system 1a of the imaging device and the work W are kept parallel to each other, and the gimbal mechanism 30 performs imaging. The tilt of the optical system 1a of the apparatus is controlled (S4).
 次に、制御部53は、所定の処理回数n(nは正の整数)か否かを判定する(S5)。 Next, the control unit 53 determines whether or not it is a predetermined number of times of processing n (n is a positive integer) (S5).
 制御部53は、所定の処理回数nである場合に(ステップS5:Yes)、撮像制御処理を終了する。 The control unit 53 ends the imaging control process when the predetermined number of times of processing is n (step S5: Yes).
 一方、制御部53は、所定の処理回数nではない場合に(ステップS5:No)、所定のタイミングであるか否かを判定する(S6)。ここで、所定のタイミングは、複数のワークWが所定時間毎に載置部76に順次載置される場合にはワークWが載置部76に載置されるタイミングであり、又は所定の時間が経過したタイミングである。 On the other hand, if the number of times of processing is not the predetermined number n (step S5: No), the control unit 53 determines whether or not it is the predetermined timing (S6). Here, the predetermined timing is the timing at which the workpieces W are placed on the placement unit 76 when a plurality of works W are sequentially placed on the placement unit 76 at predetermined time intervals, or the predetermined time. is the timing that has passed.
 制御部53は、所定のタイミングではない場合に(S6:No)、ステップS6の処理を繰り返す。 If it is not the predetermined timing (S6: No), the control unit 53 repeats the process of step S6.
 一方、制御部53は、所定のタイミングである場合に(S6:Yes)、処理回数nをインクリメントし(ステップS7)、ステップS1の処理に戻る。このように、制御部53は、ステップS1の処理からステップS6の処理を実行する毎に処理回数nをイクリメントする。 On the other hand, if it is the predetermined timing (S6: Yes), the control unit 53 increments the number of times of processing n (step S7), and returns to the process of step S1. In this manner, the control unit 53 increments the number of times of processing n each time the processing of step S1 to step S6 is executed.
 図5に示す撮像制御処理によれば、繰り返しワークWを撮像する際に、常にワークWのより鮮明な画像を得ることができる。 According to the imaging control process shown in FIG. 5, a clearer image of the workpiece W can always be obtained when repeatedly imaging the workpiece W.
 続いて、撮像装置1000を固定する固定台70の傾きを制御する撮像制御処理について、図6を参照しながら、詳細に説明する。図6では、固定台70の載置部76の傾きを制御する撮像制御処理について説明する。 Next, imaging control processing for controlling the tilt of the fixing base 70 that fixes the imaging device 1000 will be described in detail with reference to FIG. With reference to FIG. 6, imaging control processing for controlling the inclination of the mounting portion 76 of the fixing table 70 will be described.
 なお、図6において図5と同一処理である部分については同一符号を付して、その説明を省略する。図6では、ステップS2の後に、ステップS11が実行される。 In addition, in FIG. 6, parts that are the same processing as in FIG. In FIG. 6, step S11 is performed after step S2.
 制御部53は、算出した補正値を固定台70の制御開始時の基準位置とする(S11)。 The control unit 53 sets the calculated correction value as the reference position at the start of control of the fixing table 70 (S11).
 次に、制御部53は、通信部60を介して固定台70の駆動を制御するための制御信号を固定台70に送信し、基準位置に基づいて固定台70の載置部76のワークWと撮像装置の光学系1aとが平行な状態を維持するようにワークWの傾きを制御する(S12)。撮像装置1000が比較的軽量であるため、アーム71を駆動する駆動モータとしてサーボモータ等の安価なモータを用いることができる。 Next, the control unit 53 transmits a control signal for controlling the driving of the fixing table 70 to the fixing table 70 via the communication unit 60, and moves the workpiece W on the mounting part 76 of the fixing table 70 based on the reference position. and the optical system 1a of the imaging device are controlled to maintain a parallel state (S12). Since the imaging device 1000 is relatively lightweight, an inexpensive motor such as a servomotor can be used as the drive motor for driving the arm 71 .
 そして、ステップS12の処理の後にステップS5の処理に進む。 After the process of step S12, the process proceeds to step S5.
 図6に示す撮像制御処理によれば、繰り返しワークWを撮像する際に、常にワークWのより鮮明な画像を得ることができる。また、図6に示す撮像制御処理は、撮像装置が光学振れ補正機構を備えていない場合に有効である。 According to the imaging control process shown in FIG. 6, a clearer image of the workpiece W can always be obtained when the workpiece W is repeatedly imaged. Also, the imaging control processing shown in FIG. 6 is effective when the imaging apparatus does not have an optical shake correction mechanism.
 なお、制御部53は、図5に示す撮像制御処理及び図6に示す撮像制御処理の何れか一方を実行してもよいし両方を実行してもよい。 Note that the control unit 53 may execute either one of the imaging control process shown in FIG. 5 and the imaging control process shown in FIG. 6, or may execute both.
 このように、本実施形態によれば、取得した光学系傾き情報と取得したワーク傾き情報とに基づいて、撮像装置の光学系1a又はワークWの傾きを制御することにより、撮像装置1000によりワークWを撮像する際に、3Dモデルを予め入力して記憶させておくことなく、撮像装置の光学系1aとワークWとを平行にすることにより、ワークWの鮮明な画像を得ることができる。 As described above, according to the present embodiment, by controlling the inclination of the optical system 1a of the imaging apparatus or the workpiece W based on the acquired optical system inclination information and the acquired workpiece inclination information, the imaging apparatus 1000 can tilt the workpiece. When capturing an image of W, a clear image of the work W can be obtained by making the optical system 1a of the imaging device parallel to the work W without inputting and storing a 3D model in advance.
 また、本実施形態によれば、撮像装置に備わっている重力センサ及び距離センサを活用して撮像制御処理を実行することにより、高額な制御システムを用いることなく鮮明な撮像画像を得ることができる。 Further, according to the present embodiment, a clear captured image can be obtained without using an expensive control system by executing the imaging control process utilizing the gravity sensor and the distance sensor provided in the imaging device. .
 また、本実施形態によれば、ハードウェア制御により撮像制御処理を実行することができる。 Also, according to this embodiment, the imaging control process can be executed by hardware control.
 なお、本実施形態において、撮像装置1000を固定台70に固定したが、これに限らず、撮像装置1000を固定台70に固定せずに撮像装置1000を手持ち等によって移動可能にしてもよい。 Although the imaging device 1000 is fixed to the fixed base 70 in this embodiment, the imaging device 1000 may be moved by hand or the like without being fixed to the fixed base 70 .
 また、本実施形態において、光学系傾き検出部51及びワーク傾き検出部52とは別に設けた加速度センサによって検出した外力の影響を打ち消すように動作したが、これに限らず、光学系傾き検出部51により外力を検出できる場合には、光学系傾き検出部51によって検出した外力の影響を打ち消すように動作してもよい。 In the present embodiment, an acceleration sensor provided separately from the optical system tilt detection unit 51 and the workpiece tilt detection unit 52 operates to cancel out the influence of the external force detected by the acceleration sensor. If the external force can be detected by the optical system tilt detection unit 51, it may be operated to cancel the influence of the external force detected by the optical system tilt detection unit 51. FIG.
 (第2の実施形態)
 <撮像装置の構成>
 本発明の実施形態に係る撮像装置3000の構成について、図7を参照しながら、詳細に説明する。
(Second embodiment)
<Structure of Imaging Device>
A configuration of the imaging device 3000 according to the embodiment of the present invention will be described in detail with reference to FIG.
 なお、図7において図1と同一構成である部分については同一符号を付して、その説明を省略する。 In addition, in FIG. 7, parts having the same configurations as those in FIG.
 撮像装置3000は、通信部60と、撮像制御装置80と、光学ユニット100と、フレキシブル配線基板1900と、シャーシ2000と、を有している。撮像装置3000は、スマートフォン又はタブレット端末等のカメラ付き携帯端末である。本実施形態では、光学系傾き検出部151とワーク傾き検出部152とは、撮像装置3000の外部に設けられている。例えば、光学系傾き検出部151は撮像装置3000の光学ユニット100の近傍に設けられ、ワーク傾き検出部152はワークの載置部76の近傍に設けられる。 The imaging device 3000 has a communication section 60 , an imaging control device 80 , an optical unit 100 , a flexible wiring board 1900 and a chassis 2000 . The imaging device 3000 is a camera-equipped mobile terminal such as a smart phone or a tablet terminal. In this embodiment, the optical system tilt detection unit 151 and the work tilt detection unit 152 are provided outside the imaging device 3000 . For example, the optical system tilt detection unit 151 is provided near the optical unit 100 of the imaging device 3000, and the work tilt detection unit 152 is provided near the work placement unit .
 光学系傾き検出部151は、鉛直方向と直交する基準面に対する撮像装置3000の傾きを検出することにより撮像装置の光学系1aの基準面に対する傾きを検出し、検出結果を光学系傾き情報として撮像装置3000に送信する。光学系傾き検出部151から撮像装置3000に送信される光学系傾き情報は、通信部60を介して、撮像制御装置80の第1取得部81により取得される。 The optical system tilt detection unit 151 detects the tilt of the optical system 1a of the imaging device with respect to the reference plane by detecting the tilt of the imaging device 3000 with respect to the reference plane perpendicular to the vertical direction, and images the detection result as optical system tilt information. Send to device 3000 . Optical system tilt information transmitted from the optical system tilt detection unit 151 to the imaging device 3000 is acquired by the first acquisition unit 81 of the imaging control device 80 via the communication unit 60 .
 ワーク傾き検出部152は、撮像装置3000により撮像されるワークの基準面に対する傾きを検出し、検出結果をワーク傾き情報として撮像装置3000に送信する。ワーク傾き検出部152から撮像装置3000に送信されるワーク傾き情報は、通信部60を介して、撮像制御装置80の第2取得部82により取得される。 The work tilt detection unit 152 detects the tilt of the work imaged by the imaging device 3000 with respect to the reference plane, and transmits the detection result to the imaging device 3000 as work tilt information. The work tilt information transmitted from the work tilt detection unit 152 to the imaging device 3000 is acquired by the second acquisition unit 82 of the imaging control device 80 via the communication unit 60 .
 撮像制御装置80は、駆動機構500の駆動を制御し、又はワークの駆動を制御する制御信号を通信部60に出力する。なお、撮像制御装置80の構成の詳細については後述する。 The imaging control device 80 controls driving of the driving mechanism 500 or outputs a control signal for controlling driving of the workpiece to the communication unit 60 . Details of the configuration of the imaging control device 80 will be described later.
 通信部60は、撮像制御装置80より入力された制御信号を無線送信する。 The communication unit 60 wirelessly transmits the control signal input from the imaging control device 80 .
 光学ユニット100は、撮像制御装置80の制御により、撮像装置の光学系1aの傾きを決定し、撮像装置の光学系1aが決定した傾きになるように動作する。 The optical unit 100 determines the tilt of the optical system 1a of the imaging device under the control of the imaging control device 80, and operates so that the optical system 1a of the imaging device has the determined tilt.
 フレキシブル配線基板1900は、光学ユニット100への給電を行うと共に、光学ユニット100と撮像制御装置80とを電気的に接続している。 The flexible wiring board 1900 supplies power to the optical unit 100 and electrically connects the optical unit 100 and the imaging control device 80 .
 <撮像制御装置の構成>
 本発明の実施形態に係る撮像制御装置80の構成について、図7を参照しながら、詳細に説明する。
<Configuration of imaging control device>
A configuration of the imaging control device 80 according to the embodiment of the present invention will be described in detail with reference to FIG.
 撮像制御装置80は、制御部53と、第1取得部81と、第2取得部82と、を備えている。 The imaging control device 80 includes a control section 53, a first acquisition section 81, and a second acquisition section .
 制御部53は、図示しない記憶部に予め記憶されている制御プログラムを実行することにより撮像装置3000全体の動作を制御する。制御部53は、第1取得部81より入力された光学系傾き情報と、第2取得部82より入力されたワーク傾き情報と、に基づいて、光学ユニット100の駆動機構500に対して通電することによって駆動機構500の駆動を制御し、又は制御信号を生成して通信部60に出力する。 The control unit 53 controls the overall operation of the imaging device 3000 by executing a control program stored in advance in a storage unit (not shown). The control unit 53 energizes the driving mechanism 500 of the optical unit 100 based on the optical system tilt information input from the first acquisition unit 81 and the work tilt information input from the second acquisition unit 82. Thus, it controls driving of the drive mechanism 500 or generates a control signal and outputs it to the communication unit 60 .
 第1取得部81は、光学系傾き検出部151より光学系傾き情報を取得し、取得した光学系傾き情報を制御部53に出力する。 The first acquisition unit 81 acquires optical system tilt information from the optical system tilt detection unit 151 and outputs the acquired optical system tilt information to the control unit 53 .
 第2取得部82は、ワーク傾き検出部152よりワーク傾き情報を取得し、取得したワーク傾き情報を制御部53に出力する。 The second acquisition section 82 acquires work inclination information from the work inclination detection section 152 and outputs the acquired work inclination information to the control section 53 .
 なお、撮像装置3000の動作は上記の撮像装置1000の動作と同一動作であるので、その説明を省略する。また、本実施形態における撮像制御処理は、図5又は図6と同一処理であるので、その説明を省略する。 Note that the operation of the imaging device 3000 is the same as the operation of the imaging device 1000 described above, so description thereof will be omitted. Also, the imaging control processing in this embodiment is the same processing as in FIG. 5 or 6, so the description thereof will be omitted.
 このように、本実施形態によれば、取得した光学系傾き情報と取得したワーク傾き情報とに基づいて、撮像装置の光学系1a又はワークWの傾きを制御することにより、撮像装置3000によりワークWを撮像する際に、3Dモデルを予め入力して記憶させておくことなく、撮像装置の光学系1aとワークWとを平行にすることにより、ワークWの鮮明な画像を得ることができる。 As described above, according to the present embodiment, by controlling the inclination of the optical system 1a of the imaging device or the workpiece W based on the acquired optical system inclination information and the acquired workpiece inclination information, the imaging device 3000 can tilt the workpiece. When capturing an image of W, a clear image of the work W can be obtained by making the optical system 1a of the imaging device parallel to the work W without inputting and storing a 3D model in advance.
 また、本実施形態によれば、撮像装置3000に光学系傾き検出部151及びワーク傾き検出部152を設けなくてよい。例えば、本実施形態の撮像装置3000には、第1の実施形態の撮像装置に備えられていた距離センサ(ワーク傾き検出部)を設ける必要がない。よって、撮像装置3000の製造コストを低減することができる。 Further, according to this embodiment, the imaging device 3000 does not need to be provided with the optical system tilt detection unit 151 and the workpiece tilt detection unit 152 . For example, the imaging apparatus 3000 of the present embodiment does not need to be provided with the distance sensor (work tilt detection unit) provided in the imaging apparatus of the first embodiment. Therefore, the manufacturing cost of the imaging device 3000 can be reduced.
 なお、本実施形態において、撮像装置3000を固定台70に固定したが、これに限らず、撮像装置3000を固定台70に固定せずに撮像装置3000を手持ち等によって移動可能にしてもよい。 Although the imaging device 3000 is fixed to the fixed base 70 in this embodiment, the imaging device 3000 is not limited to being fixed to the fixed base 70, and the imaging device 3000 may be moved by hand or the like.
 また、本実施形態において、光学系傾き検出部151及びワーク傾き検出部152とは別に設けた加速度センサによって検出した外力の影響を打ち消すように動作したが、これに限らず、光学系傾き検出部51により外力を検出できる場合には、光学系傾き検出部51によって検出した外力の影響を打ち消すように動作してもよい。 Further, in the present embodiment, the operation is performed so as to cancel the influence of the external force detected by the acceleration sensor provided separately from the optical system tilt detection unit 151 and the workpiece tilt detection unit 152. However, the optical system tilt detection unit is not limited to this. If the external force can be detected by the optical system tilt detection unit 51, it may be operated to cancel the influence of the external force detected by the optical system tilt detection unit 51. FIG.
 また、本実施形態において、光学系傾き検出部151とワーク傾き検出部152とが、撮像装置3000の外部に設けられているとしたが、光学系傾き検出部151のみ又はワーク傾き検出部152のみが、撮像装置3000の外部に設けられる場合も、本実施形態を適用することができる。 Also, in the present embodiment, the optical system tilt detection unit 151 and the work tilt detection unit 152 are provided outside the imaging device 3000, but only the optical system tilt detection unit 151 or only the work tilt detection unit 152 However, the present embodiment can also be applied when provided outside the imaging device 3000 .
 上述した実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The above-described embodiments should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 具体的には、上記第1の実施形態及び第2の実施形態において、固定台70に載置されたワークWを撮像したが、これに限らず、搬送用装置等に搭載されているトレー又は搬送装置自体の品質が悪い場合であっても、撮像制御処理を実行して傾きを補正することにより、鮮明な撮像画像を得ることができる。 Specifically, in the first embodiment and the second embodiment, the image of the work W placed on the fixed table 70 is imaged. Even if the quality of the conveying device itself is poor, a clear captured image can be obtained by executing the imaging control process and correcting the tilt.
 また、上記第1の実施形態及び第2の実施形態において、撮像装置の光学系1aとワークWとが平行になるように制御したが、これに限らず、撮像装置から照明装置台の動作を制御させることにより同様の効果を得ることができる。 Further, in the first and second embodiments, the optical system 1a of the imaging device and the workpiece W are controlled to be parallel. A similar effect can be obtained by controlling.
 また、上記第1の実施形態及び第2の実施形態において、撮像装置1000と固定台70とを無線回線によって接続したが、これに限らず、撮像装置と固定台とを有線によって接続してもよい。 Further, in the first and second embodiments, the imaging device 1000 and the fixing base 70 are connected by a wireless line, but the imaging device and the fixing base may be connected by a wire. good.
 1・・・撮像ユニット
 1a・・・撮像装置の光学系
 10・・・光学モジュール
 20・・・固定体
 25・・・矩形枠
 30・・・ジンバル機構
 32・・・可動枠
 41・・・第1枠
 42・・・第2枠
 50・・・撮像制御装置
 51・・・光学系傾き検出部
 52・・・ワーク傾き検出部
 53・・・制御部
 60・・・通信部
 70・・・固定台
 71・・・アーム
 72・・・固定部
 73・・・支柱
 76・・・載置部
 80・・・撮像制御装置
 81・・・第1取得部
 82・・・第2取得部
 100・・・光学ユニット
 110・・・カバー
 151・・・光学系傾き検出部
 152・・・ワーク傾き検出部
 200・・・ケース
 500・・・駆動機構
 520・・・磁石
 560・・・空芯コイル
 1000・・・撮像装置
 1900・・・フレキシブル配線基板
 2000・・・シャーシ
 3000・・・撮像装置
Reference Signs List 1 Imaging unit 1a Optical system of imaging device 10 Optical module 20 Fixed body 25 Rectangular frame 30 Gimbal mechanism 32 Movable frame 41 Third 1st frame 42 Second frame 50 Imaging control device 51 Optical system tilt detector 52 Work tilt detector 53 Control unit 60 Communication unit 70 Fixed Base 71 Arm 72 Fixing Part 73 Post 76 Placement Part 80 Imaging Control Device 81 First Acquisition Part 82 Second Acquisition Part 100 Optical unit 110 Cover 151 Optical system tilt detector 152 Work tilt detector 200 Case 500 Drive mechanism 520 Magnet 560 Air-core coil 1000 Imaging device 1900 Flexible wiring board 2000 Chassis 3000 Imaging device

Claims (16)

  1.  撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得部と、
     前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得部と、
     前記第1取得部により取得した前記光学系傾き情報と前記第2取得部により取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御部と、
     を有することを特徴とする撮像制御装置。
    a first acquisition unit that acquires optical system tilt information indicating the tilt of the optical system of the imaging device;
    a second acquisition unit that acquires work tilt information indicating the tilt of the work imaged by the imaging device;
    a control unit that controls the inclination of the optical system or the workpiece based on the optical system inclination information acquired by the first acquisition unit and the workpiece inclination information acquired by the second acquisition unit;
    An imaging control device comprising:
  2.  前記光学系の傾きを検出して前記光学系傾き情報とする第1検出部と、
     前記ワークの傾きを検出して前記ワーク傾き情報とする第2検出部と、
     を有することを特徴とする請求項1記載の撮像制御装置。
    a first detection unit that detects the tilt of the optical system and uses it as the optical system tilt information;
    a second detection unit that detects the inclination of the workpiece and uses it as the workpiece inclination information;
    2. The imaging control device according to claim 1, characterized by comprising:
  3.  前記第1取得部は、前記第1検出部であり、
     前記第2取得部は、前記第2検出部である、
     ことを特徴とする請求項2記載の撮像制御装置。
    The first acquisition unit is the first detection unit,
    The second acquisition unit is the second detection unit,
    3. The imaging control device according to claim 2, wherein:
  4.  前記第2検出部は、
     複数の検出位置からそれぞれ検出された前記ワークの点群データに基づいて前記ワークの傾きを検出する、
     ことを特徴とする請求項2または請求項3記載の撮像制御装置。
    The second detection unit is
    detecting the inclination of the work based on point cloud data of the work detected from a plurality of detection positions;
    4. The imaging control apparatus according to claim 2, wherein:
  5.  前記第1検出部は、
     重力センサであり、
     前記第2検出部は、
     距離センサである、
     ことを特徴とする請求項2から請求項4のいずれかに記載の撮像制御装置。
    The first detection unit is
    is a gravity sensor,
    The second detection unit is
    is a distance sensor,
    5. The imaging control apparatus according to any one of claims 2 to 4, characterized in that:
  6.  前記第1取得部は、
     外部から受信する信号により前記光学系傾き情報を取得し、
     前記第2取得部は、
     外部から受信する信号により前記ワーク傾き情報を取得する、
     ことを特徴とする請求項1記載の撮像制御装置。
    The first acquisition unit
    Acquiring the optical system tilt information from a signal received from the outside,
    The second acquisition unit
    Acquiring the work inclination information by a signal received from the outside;
    2. The imaging control device according to claim 1, wherein:
  7.  前記制御部は、
     所定のタイミング毎に前記光学系又は前記ワークの傾きを制御する、
     ことを特徴とする請求項1から請求項6のいずれかに記載の撮像制御装置。
    The control unit
    controlling the tilt of the optical system or the workpiece at each predetermined timing;
    7. The imaging control apparatus according to any one of claims 1 to 6, characterized by:
  8.  前記光学系の傾きは第1駆動機構によって決定されると共に、前記ワークの傾きは第2駆動機構によって決定され、
     前記制御部は、
     前記第1駆動機構を制御して前記光学系の傾きを制御し、前記第2駆動機構を制御して前記ワークの傾きを制御する、
     ことを特徴とする請求項1から請求項7のいずれかに記載の撮像制御装置。
    The tilt of the optical system is determined by a first drive mechanism, and the tilt of the workpiece is determined by a second drive mechanism,
    The control unit
    controlling the first drive mechanism to control the tilt of the optical system, and controlling the second drive mechanism to control the tilt of the workpiece;
    8. The imaging control apparatus according to any one of claims 1 to 7, characterized by:
  9.  前記第1駆動機構は、
     前記撮像装置が備えている光学振れ補正機構である、
     ことを特徴とする請求項8記載の撮像制御装置。
    The first drive mechanism is
    An optical shake correction mechanism provided in the imaging device,
    9. The imaging control device according to claim 8, wherein:
  10.  前記撮像装置に加わる外力を検出する外力検出部を有し、
     前記制御部は、
     前記外力検出部の検出結果に基づいて、前記外力の影響を打ち消すように前記光学振れ補正機構を制御する、
     ことを特徴とする請求項9記載の撮像制御装置。
    Having an external force detection unit that detects an external force applied to the imaging device,
    The control unit
    controlling the optical shake correction mechanism so as to cancel out the influence of the external force based on the detection result of the external force detection unit;
    10. The imaging control device according to claim 9, wherein:
  11.  前記第2駆動機構は、
     前記ワークを支持している部材の傾きを変化させる機構である、
     ことを特徴とする請求項8から請求項10のいずれかに記載の撮像制御装置。
    The second drive mechanism is
    A mechanism for changing the inclination of the member supporting the work,
    11. The imaging control apparatus according to any one of claims 8 to 10, characterized in that:
  12.  請求項1から請求項11のいずれかに記載の撮像制御装置と、
     前記ワークを撮像する撮像部と、
     を有することを特徴とする撮像装置。
    an imaging control device according to any one of claims 1 to 11;
    an imaging unit that images the workpiece;
    An imaging device characterized by comprising:
  13.  筐体を有し、
     前記第1取得部と前記第2取得部とは、
     前記筐体内に設けられている、
     ことを特徴とする請求項12記載の撮像装置。
    having a housing,
    The first acquisition unit and the second acquisition unit are
    provided within the housing,
    13. The imaging apparatus according to claim 12, characterized by:
  14.  前記撮像装置は、
     スマートフォンまたはタブレット端末である、
     ことを特徴とする請求項12又は請求項13記載の撮像装置。
    The imaging device is
    a smartphone or tablet,
    14. The imaging apparatus according to claim 12 or 13, characterized in that:
  15.  撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得ステップと、
     前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得ステップと、
     前記第1取得ステップにより取得した前記光学系傾き情報と前記第2取得ステップにより取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御ステップと、
     を有することを特徴とする撮像制御方法。
    a first acquisition step of acquiring optical system tilt information indicating the tilt of the optical system of the imaging device;
    a second obtaining step of obtaining work tilt information indicating the tilt of the work imaged by the imaging device;
    a control step of controlling the inclination of the optical system or the workpiece based on the optical system inclination information acquired in the first acquisition step and the workpiece inclination information acquired in the second acquisition step;
    An imaging control method, comprising:
  16.  コンピュータに、
     撮像装置の光学系の傾きを示す光学系傾き情報を取得する第1取得ステップと、
     前記撮像装置により撮像されるワークの傾きを示すワーク傾き情報を取得する第2取得ステップと、
     前記第1取得ステップにより取得した前記光学系傾き情報と前記第2取得ステップにより取得した前記ワーク傾き情報とに基づいて、前記光学系又は前記ワークの傾きを制御する制御ステップと、
     を実行させるプログラム。
    to the computer,
    a first acquisition step of acquiring optical system tilt information indicating the tilt of the optical system of the imaging device;
    a second obtaining step of obtaining work tilt information indicating the tilt of the work imaged by the imaging device;
    a control step of controlling the inclination of the optical system or the workpiece based on the optical system inclination information acquired in the first acquisition step and the workpiece inclination information acquired in the second acquisition step;
    program to run.
PCT/JP2022/004196 2021-03-30 2022-02-03 Imaging control device, imaging device, imaging control method, and program WO2022209272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280024401.3A CN117083869A (en) 2021-03-30 2022-02-03 Imaging control device, imaging control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058009 2021-03-30
JP2021-058009 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209272A1 true WO2022209272A1 (en) 2022-10-06

Family

ID=83458752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004196 WO2022209272A1 (en) 2021-03-30 2022-02-03 Imaging control device, imaging device, imaging control method, and program

Country Status (2)

Country Link
CN (1) CN117083869A (en)
WO (1) WO2022209272A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241247A (en) * 2008-03-10 2009-10-22 Kyokko Denki Kk Stereo-image type detection movement device
JP2011507714A (en) * 2007-12-27 2011-03-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Method and system for accurately positioning at least one object in a final pose in space
US20170177005A1 (en) * 2014-09-10 2017-06-22 X Development Llc Tablet Computer-Based Robotic System
JP2021016910A (en) * 2019-07-18 2021-02-15 株式会社ファースト Object recognition device for picking or devanning, object recognition method for picking or devanning, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507714A (en) * 2007-12-27 2011-03-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Method and system for accurately positioning at least one object in a final pose in space
JP2009241247A (en) * 2008-03-10 2009-10-22 Kyokko Denki Kk Stereo-image type detection movement device
US20170177005A1 (en) * 2014-09-10 2017-06-22 X Development Llc Tablet Computer-Based Robotic System
JP2021016910A (en) * 2019-07-18 2021-02-15 株式会社ファースト Object recognition device for picking or devanning, object recognition method for picking or devanning, and program

Also Published As

Publication number Publication date
CN117083869A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
JP6027286B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
CN100510931C (en) Image capture device
JP5038046B2 (en) Image blur correction apparatus and imaging apparatus
JP6019265B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP2018060160A (en) Imaging apparatus
CN113711581B (en) Camera module and optical device
JP2014199964A (en) Imaging apparatus and image processing apparatus
US10412306B1 (en) Optical image stabilization method and apparatus
JP2017173801A (en) Imaging device and image projection device tremor correction device, as well as tremor correction method
JP2018106038A (en) Method for calibrating drive amount of actuator configured so as to correct image blur of camera
KR20210071253A (en) Camera movement controlling method and apparatus
US10880479B2 (en) Imaging device including mechanical fixing mechanism responsive to large external force
JP5574157B2 (en) Imaging device assembling method and imaging device
JP2013003301A (en) Imaging device, optical adjustment method and program
JP2011081288A (en) Optical device for photography and portable equipment including the optical device for photography
WO2022209272A1 (en) Imaging control device, imaging device, imaging control method, and program
JP5337975B2 (en) Imaging device
JP2015117943A (en) Electronic apparatus, method for controlling the same, and program
JP6509157B2 (en) Lens element transport mechanism, optical module manufacturing equipment
JP2011019035A (en) Information device, imaging apparatus having the same, and method of angle correction
JP6966229B2 (en) Runout correction characteristic evaluation device for optical equipment with runout correction function
US20180316840A1 (en) Optical image stabilization devices and methods for gyroscope alignment
JP2014115179A (en) Measuring device, document camera and measuring method
JP2013038678A (en) Imaging system and electronic apparatus using the same
JP2008107731A (en) Lens device, imaging apparatus, digital camera and portable telephone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024401.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779501

Country of ref document: EP

Kind code of ref document: A1