WO2022064564A1 - Head-mounted display - Google Patents

Head-mounted display Download PDF

Info

Publication number
WO2022064564A1
WO2022064564A1 PCT/JP2020/035821 JP2020035821W WO2022064564A1 WO 2022064564 A1 WO2022064564 A1 WO 2022064564A1 JP 2020035821 W JP2020035821 W JP 2020035821W WO 2022064564 A1 WO2022064564 A1 WO 2022064564A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
image
fixed
beam splitter
head
Prior art date
Application number
PCT/JP2020/035821
Other languages
French (fr)
Japanese (ja)
Inventor
治 川前
ニコラス サイモン ウォーカー
ジャンジャスパー バンデンバーグ
康宣 橋本
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to PCT/JP2020/035821 priority Critical patent/WO2022064564A1/en
Publication of WO2022064564A1 publication Critical patent/WO2022064564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a head-mounted display that is mounted on the user's head and displays an image of virtual reality or augmented reality.
  • a head-mounted display worn on the user's head displays an image of virtual reality (VR: Virtual Reality) or augmented reality (AR: Augmented Reality) on a glasses-shaped display screen. It is something to do.
  • VR Virtual Reality
  • AR Augmented Reality
  • the spectacle-shaped display screen is made translucent, and the AR image is displayed on top of the object in the real space in front of the eyes while visually recognizing it.
  • the VR and AR images presented by the HMD generally have a fixed depth of focus.
  • binocular stereoscopic vision it is possible to present VR and AR objects at a distance different from the fixed display depth.
  • the focus of the user's eye converges on the object, but the accommodation of the crystalline lens corresponding to the convergence of both eyes may not match. It is known that this disagreement in accommodation / accommodation (VA) causes discomfort to the user and causes so-called "VR sickness".
  • Patent Document 1 discloses a retinal scanning display device including two retinal scanning optical systems for the purpose of performing good image processing while suppressing an increase in the amount of image information.
  • An object of the present invention is to provide a head-mounted display that can be made smaller by ensuring a wide field of view (FOV) while reducing congestion / adjustment (VA) inconsistencies.
  • FOV wide field of view
  • VA congestion / adjustment
  • the head mount display of the present invention has a focus-free image display unit that emits a narrow-field focus-free image in the substantially center of the display screen, and a fixed-focus image that emits a wide-field fixed-focus image on the display screen. It includes a focus image display unit and a control unit that controls the display of the focus-free image and the fixed-focus image, and the control unit positions the focus-free image and the fixed-focus image so that they are displayed simultaneously or alternately.
  • the configuration is such that the focus-free image display unit and the fixed-focus image display unit are controlled.
  • a Maxwell visual optical system that focuses the image light at the user's pupil position is adopted, and a polarized beam splitter that reflects the image light emitted from the focus-free image display unit and a polarized beam splitter.
  • the image light retroreflected from the above is provided with a transparent retroreflecting plate having a transparent region in a part thereof, and the image light retroreflected by the transparent retroreflecting plate passes through the polarizing beam splitter and enters the user's eye. It was configured to be.
  • a head-mounted display that can be made smaller by ensuring a wide field of view (FOV) while reducing the disagreement of congestion / adjustment (VA).
  • FIG. 1 The external view of the head-mounted display (HMD) which concerns on Example 1.
  • FIG. The block diagram which shows the internal structure of an HMD. The figure explaining the basic structure of a focus-free image display. The figure which shows the specific structure and operation of the HMD which concerns on Example 1.
  • FIG. The figure explaining image composition The figure which shows the specific structure and operation of the HMD which concerns on Example 2.
  • FIG. 1 shows an external view of a head-mounted display (HMD) according to the first embodiment.
  • the HMD 1 has a spectacle-shaped shape, and an image synthesis optical system 9 (a polarization beam splitter 91, a transparent retroreflector 92, etc., which will be described later) that provides an image to the user's eye is arranged on the front surface, and a temple portion (vine) 11 is provided.
  • Various processing units described later are stored. Further, a part of the processing unit in the temple unit 11 may be separated from the HMD main body and stored in another housing, and may be connected to the HMD main body by a cable or wireless communication.
  • FIG. 2 is a block diagram showing the internal configuration of HMD1.
  • the HMD 1 includes a main control unit 2, a system bus 3, a storage unit 4, a sensor unit 5, a communication processing unit 6, a focus-free image display unit 7, a fixed focus image display unit 8, an image synthesis optical system 9, and a line-of-sight direction detection unit. It is composed of 10.
  • the main control unit 2 is a microprocessor unit that controls the entire HMD 1 according to a predetermined operation program.
  • the system bus 3 is a data communication path for transmitting and receiving various commands and data between the main control unit 2 and each constituent block in the HMD 1.
  • the storage unit 4 stores various programs 41 for controlling the operation of the HMD 1, various data 42 such as operation setting values, detection values from the sensor unit 5 described later, and image contents to be displayed, and is used in the operation of various programs. Has a work area 43 to work on. At that time, the storage unit 4 can store the operation program downloaded from the network, various created data, and the downloaded image content.
  • the sensor unit 5 is composed of a GPS (Global Positioning System) sensor 51, a geomagnetic sensor 52, a distance sensor 53, an acceleration sensor 54, a gyro sensor 55, etc. in order to detect various states of the HMD1. These sensor groups detect the position, tilt, direction, movement, altitude, etc. of the HMD1.
  • GPS Global Positioning System
  • the communication processing unit 6 is composed of a LAN (Local Area Network) communication unit 61 and a telephone network communication unit 62.
  • the LAN communication unit 61 is connected to a network such as the Internet via an access point or the like, and transmits / receives data to / from each server device on the network.
  • the connection with the access point or the like may be made by a wireless connection such as Wi-Fi (registered trademark).
  • the telephone network communication unit 62 performs telephone communication and data transmission / reception by wireless communication with a base station or the like of a mobile telephone communication network.
  • Each image display unit has an image generation unit 71, 81 that generates an image provided by the user based on an input image signal, and a display unit 72, 82 that displays the generated image.
  • the focus-free image display unit 7 has an image generation unit 71 that generates an image having a narrow field of view (FOV) but a deep depth of focus (that is, focus-free).
  • the focus-free image display unit 7 employs, for example, a retinal scanning method using a Maxwell visual optical system described later.
  • the fixed focus image display unit 8 has an image generation unit 81 that has a wide field of view (FOV) and generates an image with a fixed depth of focus.
  • the fixed focus image display unit 8 is a display method used in a conventional general HMD.
  • Each of the display units 72 and 82 describes a method of converting the light from the light source into a desired image by a spatial light modulator (for example, a liquid crystal panel) (hereinafter referred to as a panel method).
  • a spatial light modulator for example, a liquid crystal panel
  • a method of displaying an image by scanning with a light source (hereinafter referred to as a laser scanning method) is also possible.
  • the image synthesizing optical system 9 is an optical system for synthesizing two images generated by the focus-free image display unit 7 and the fixed-focus image display unit 8, and transmits or reflects the incident light according to the polarization direction. It has a polarization beam splitter 91 and a transparent retroreflective plate 92.
  • the transparent retroreflective plate 92 is a reflector (retroreflector) having a characteristic (retroflexivity) of reflecting incident light in the same direction, and has a structure having a transparent region in a part thereof.
  • the line-of-sight direction detection unit 10 is a so-called eye tracking device that detects the line-of-sight direction (line-of-sight direction and pupil size) of the user wearing the HMD1.
  • the line-of-sight direction can also be obtained by taking an image of the user's face with an internal camera (not shown) provided in the HMD 1 and analyzing the image.
  • FIG. 3 is a diagram illustrating a basic configuration of a focus-free image display. This is a method of projecting an image onto the retina of the user's eye, and employs Maxwell visual optical system.
  • the focus-free image display unit 7 may be either a panel method or a laser scanning method.
  • the image light (polarization) emitted from the focus-free image display unit 7 is diverged at a predetermined angle by the variable divergent lens 73, incident on the polarizing beam splitter 91, reflected here, and incident on the transparent retroreflective plate 92.
  • the transparent retroreflector 92 reflects in the same direction as the incident direction (that is, retroreflector), and is re-incidents into the polarizing beam splitter 91.
  • the angle of polarization is rotated in the transparent retroreflective plate 92, it is transmitted through the polarization beam splitter 91, focused on the pupil position of the user's eye 20, and projected onto the retina.
  • the image is projected on the retina in this way, it is possible to display a focus-free image having a deep depth of focus while having a narrow field of view.
  • the polarization beam splitter 91 can be adjusted horizontally / vertically, and the variable divergent lens 73 is moved to make the apparent lens 73 in front of the eye. Provide an adjustment mechanism to move the'.
  • the transparent retroreflector 92 retroreflects the image light from the polarizing beam splitter 91 and has a transparent region partially or entirely, the actual object existing in front of the transparent retroreflector 92 is superimposed and visually recognized. (The external light is indicated by the reference numeral L3).
  • the transparent retroreflective plate 92 has a planar shape, it is easier to adjust the image light to be focused on the center of the lens of the pupil of the user's eye and projected onto the retina, as compared with the case of the concave reflector. Become.
  • FIG. 4 is a diagram showing a specific configuration and operation of the HMD 1 according to the first embodiment.
  • the two image display units 7 and 8 have a hybrid structure in which the image display units 7 and 8 are arranged at both ends of a shaft passing through the inclined polarization beam splitter 91.
  • the focus-free image display unit 7 is arranged at the upper end, and the fixed-focus image display unit 8 is arranged at the lower end.
  • the focus-free image display unit 7 has a configuration corresponding to 7 and 73 in FIG.
  • the focus-free image display unit 7 emits the focus-free image light L1.
  • the image light L1 has a polarization direction (for example, H polarization) reflected by the polarization beam splitter 91.
  • the image light L1 is reflected by the polarizing beam splitter 91 and heads toward the front transparent retroreflecting plate 92, and returns as light (V-polarized) whose polarization plane is rotated by the transparent retroreflecting plate 92. It is transmitted, focused on the pupil of the eye 20, and projected onto the retina. This displays a focus-free image with a narrow field of view.
  • the fixed-focus image light L2 (for example, H-polarized light) emitted upward from the fixed-focus image display unit 8 is reflected by the polarized beam splitter 91 and directly returns to the eye 20.
  • the light L3 from an external object passes through the transparent retroreflector plate 92, then passes through the polarizing beam splitter 91, and reaches the eye 20.
  • eyeglasses for visual acuity correction, it is possible to use ordinary eyeglasses by arranging them on the outside (opposite side of the eye) of the transparent retroreflector plate 92.
  • the focus-free image with a narrow field of view and the fixed-focus image with a wide field of view are generated from a common image, it is necessary to combine and display both images without discomfort.
  • a focus-free image is visible only in a limited central field of view, but because it is an image with a large depth of field, it is possible to avoid a convergence / accommodation (VA) mismatch given to the user.
  • VA convergence / accommodation
  • the central part of the visual field has a high resolution and the peripheral part has a low resolution. Therefore, it is desirable to display an image with an appropriate resolution according to the area in the field of view.
  • FIG. 5 is a diagram illustrating image composition of a focus-free image and a fixed-focus image.
  • the image composition algorithm is included in one of the various programs 41 stored in the storage unit 4, and the image composition process is performed by the main control unit 2.
  • the fixed-focus image G2 from the fixed-focus image display unit 8 is displayed in a wide viewing range
  • the focus-free image G1 from the focus-free image display unit 7 is displayed in a narrow viewing range in a substantially central portion of the fixed-focus image G2. indicate.
  • the focus-free image G1 is displayed as an image having a higher resolution than the surrounding fixed-focus image G2 because the pixel resolution is improved by using an image taken by a high-definition camera on the screen displayed by the image display unit 7.
  • the mask function for the fixed focus image G2 is represented by M2 (broken line)
  • the mask function for the focus free image G1 is represented by M1 (solid line).
  • the focus-free image G1 is positioned using the line-of-sight direction parameter detected by the line-of-sight direction detection unit 10, and the optimum mask for the two images G1 and G2.
  • Image composition is performed by setting the functions M1 and M2.
  • the direction of the eye is determined using the line-of-sight direction parameter.
  • Two-dimensional mask functions M1 and M2 representing a change in luminance within a predetermined region are calculated centering on a direction in which the focus-free image G1 is visible.
  • the calculated mask function M2 is multiplied by the image signal (pixel luminance data) that generates the fixed focus image G2.
  • the calculated mask function M1 is multiplied by the image signal (pixel luminance data) that generates the focus-free image G1.
  • the boundary positions (outer edges) of the images are aligned by rotating and scaling the respective display grids.
  • the focus-free image G1 is displayed in a suitable area (direction and size) according to the line-of-sight direction parameter.
  • both images G1. G2 can be displayed as a single seamless image.
  • the above description is an image composition method when the focus-free image G1 is visible to the user.
  • the Maxwell visual optical system since the field of view is narrowed in the Maxwell visual optical system that focuses the image light at the pupil position, the Maxwell visual optical system may not be established depending on the deviation of the pupil direction depending on the user's line-of-sight direction and the condition of the pupil size. That is, even if the focus-free image G1 is displayed, the user cannot comfortably see it, but rather gives a sense of discomfort.
  • the processing method in that case will be described below.
  • the line-of-sight direction parameters (line-of-sight direction and pupil size) detected by the line-of-sight direction detection unit 10 are used.
  • the focal spot front of the eye
  • the function vertical angle of the eye, horizontal angle of the eye, pupil size
  • This function can be determined by displaying a white or colored square only on the focus-free image and confirming that the function table matches the user's visual response.
  • the focus-free image G1 is not visible to the user, the focus-free image G1 is not displayed at all (for example, a black image is displayed), and only the fixed-focus image G2 is displayed without masking.
  • the mask function M2 of the fixed focus image G2 is 1 over the entire screen, and the mask function M1 of the focus free image G1 is 0 over the entire screen.
  • the focus-free image G1 is partially visible to the user, or it is uncertain whether or not it is visible.
  • the focus-free image G1 is not displayed and only the fixed-focus image G2 is displayed without masking, as in the case where the image is not visible.
  • the following effects can be obtained by combining a focus-free image with a deep depth of focus and a fixed-focus image with a wide field of view.
  • VA congestion / accommodation
  • the pixel resolution is improved by reducing and inserting the focus-free image, and the focus-free image is displayed at a higher resolution than the surrounding fixed-focus image. This matches the visual characteristics of the eye (the central part of the visual field has high resolution), and the user can comfortably view the image.
  • FIG. 6A and 6B are diagrams showing a specific configuration and operation of the HMD 1 according to the second embodiment.
  • the single image display unit 12 is commonly used as the focus-free image display unit 7 and the fixed-focus image display unit 8, and the polarization state (H, V) of the image display unit 12 is switched at a predetermined cycle. It realizes the operation as each image display unit.
  • FIG. 6A shows a state of operating as a focus-free image display unit 7 (focus-free image mode)
  • FIG. 6B shows a state of operating as a fixed-focus image display unit 8 (fixed-focus image mode). Switching between polarization states can be done quickly using a polarized rotator.
  • a 1/4 wave plate 93 and a mirror 94 are additionally arranged on the opposite side of the image display unit 12 (lower part of the drawing) via a polarization beam splitter 91.
  • H-polarized image light L1 is emitted from the common image display unit 12, reflected by the polarization beam splitter 91, and directed toward the transparent retroreflector 92.
  • the transparent retroreflector 92 the retroreflector is reflected and the polarization direction is changed to V-polarization, returns to the polarization beam splitter 91, passes through the polarization beam splitter 91, and is incident on the user's eye 20.
  • the Maxwell visual optical system is configured as described in FIG. 3 and a focus-free image is displayed.
  • the image display unit 12 corresponds to the configurations of 7 and 73 in FIG.
  • the lens as shown in FIG. 3 73 cannot be arranged. Therefore, instead of the lens 73, an element such as a liquid crystal shutter may be used to form a diffraction grating to refract the image light L1.
  • V-polarized image light L2 is emitted from the common image display unit 12, passes through the polarization beam splitter 91, is incident on the 1/4 wave plate 93, and is reflected by the mirror 94. Then, by passing through the 1/4 wave plate 93 again, the polarization direction is switched to H polarization (rotation by 90 degrees), and this time, the polarization beam splitter 91 is reflected and incident on the user's eye 20. In this mode, a fixed focus image is displayed.
  • Example 2 the focus-free image of FIG. 6A and the fixed-focus image of FIG. 6B are positioned and combined in the same manner as in Example 1. Then, the common image display unit 12 alternately displays the focus-free image and the fixed-focus image by switching the linear polarization (H, V) at a predetermined cycle.
  • the second embodiment it is possible to realize a head-mounted display that secures a wide field of view (FOV) while reducing the disagreement of the VA as in the first embodiment. Further, according to the second embodiment, since the common image display unit 12 is used, there is an effect that the configuration of the apparatus becomes simpler than that of the first embodiment.
  • FOV wide field of view
  • Example 3 the image lights from the two image display units 7 and 8 were mixed by a polarizing beam splitter cube and incident on the same synthetic optical system as in Example 2 (FIGS. 6A and 6B).
  • the image display unit 7 has a configuration corresponding to 7 and 73 in FIG.
  • FIG. 7 is a diagram showing a specific configuration and operation of the HMD 1 according to the third embodiment.
  • the focus-free image display unit 7 and the fixed-focus image display unit 8 are arranged on orthogonal sides of a separately provided polarization beam splitter cube 95, and emit image light whose polarization directions are orthogonal to each other.
  • the focus-free image display unit 7 is arranged on the right side surface of the cube 95 to emit H-polarized image light L1
  • the fixed-focus image display unit 8 is arranged on the upper surface of the cube 95 to emit V-polarized image light L2.
  • the image light L1 (H polarized light) from the focus-free image display unit 7 is reflected and directed downward, and the image light L2 (V polarized light) from the fixed focus image display unit 8 is transmitted. And head down. In this way, the image lights L1 and L2 from the two image display units 7 and 8 are mixed.
  • the mixed two image lights (L1 + L2) are incident on the same synthetic optical system as in Example 2.
  • the focus-free image light L1 is reflected by the polarizing beam splitter 91 and heads toward the transparent retroreflector 92, as shown in FIG. 6A.
  • the transparent retroreflector 92 is retroreflected, returns to the polarizing beam splitter 91, passes through the polarizing beam splitter 91, and is incident on the user's eye 20.
  • the fixed focus image light L2 passes through the polarizing beam splitter 91, enters the quarter wave plate 93, and is reflected by the mirror 94. Then, by passing through the 1/4 wave plate 93 again, the polarization direction is switched to H polarization, and this time, the polarization beam splitter 91 is reflected and incident on the user's eye 20.
  • the third embodiment it is possible to realize a head-mounted display that secures a wide field of view (FOV) while reducing the disagreement of the VA as in the first and second embodiments.
  • the two image display units 7 and 8 can be arranged on the same side as viewed from the polarization beam splitter 91, and the polarization switching of the image display unit is unnecessary. There is a merit.
  • the configuration for realizing the technique of the present invention is not limited to each of the above-described embodiments, and various modifications can be considered.
  • HMD Head mount display
  • 2 Main control unit
  • 4 Storage unit
  • 5 Sensor unit
  • 6 Communication processing unit
  • 7 Focus-free image display unit
  • 8 Fixed focus image display unit
  • 9 Image Synthetic optical system
  • 10 Line-of-sight detection unit
  • 12 Common image display unit
  • 20 User's eye
  • 91 Polarization beam splitter
  • 92 Transparent retroreflector
  • 93 1/4 wave plate
  • 94 Mirror
  • 95 Polarized beam splitter cube.

Abstract

A head-mounted display 1 comprises a focus-free image display part 7 for emitting a narrow-field focus-free image L1 to the substantial center of a display screen, a fixed-focus image display part 8 for emitting a wide-field fixed-focus image L2 to the display screen, and a control unit 2 for performing control so that the focus-free image and the fixed-focus image are positioned and simultaneously or alternately displayed. The present invention employs a retina-scanning-type optical system using a Maxwellian view optical system to display the focus-free image, and comprises a polarizing beam splitter 91 for reflecting image light L1 emitted from the focus-free image display part 7, and a transparent retroreflection plate 92 which has a transparent region in a portion thereof and retroreflects the image light L1, the retroreflected image light L1 passing through the polarizing beam splitter 91 and being incident on an eye 20 of the user.

Description

ヘッドマウントディスプレイHead mounted display
 本発明は、ユーザの頭部に装着され、仮想現実または拡張現実の画像を表示するヘッドマウントディスプレイに関する。 The present invention relates to a head-mounted display that is mounted on the user's head and displays an image of virtual reality or augmented reality.
 ユーザの頭部に装着するヘッドマウントディスプレイ(以下、HMD:Head Mounted Display)は、眼鏡型の表示画面上に、仮想現実(VR:Virtual Reality)または拡張現実(AR:Augmented Reality)の画像を表示するものである。このうちAR画像の場合は、眼鏡型の表示画面を半透明にして、眼前の現実空間の物体を視認しながらこれに重ねてAR画像を表示するものである。 A head-mounted display (hereinafter, HMD: Head Mounted Display) worn on the user's head displays an image of virtual reality (VR: Virtual Reality) or augmented reality (AR: Augmented Reality) on a glasses-shaped display screen. It is something to do. Of these, in the case of an AR image, the spectacle-shaped display screen is made translucent, and the AR image is displayed on top of the object in the real space in front of the eyes while visually recognizing it.
 HMDで提示されるVR及びAR画像は、一般的に固定の焦点深度を有している。一方、二眼式の立体視を使用することで、固定の表示深度とは異なる距離でVR,ARオブジェクトを提示することができる。そのときユーザの眼の焦点はオブジェクトに収束するが、両眼球の輻輳(Vergence)に対応する水晶体の調節(Accommodation)が一致しない場合がある。この輻輳/調節(VA)の不一致により、ユーザに不快感を引き起こし、いわゆる「VR酔い」の原因となることが知られている。 The VR and AR images presented by the HMD generally have a fixed depth of focus. On the other hand, by using binocular stereoscopic vision, it is possible to present VR and AR objects at a distance different from the fixed display depth. At that time, the focus of the user's eye converges on the object, but the accommodation of the crystalline lens corresponding to the convergence of both eyes may not match. It is known that this disagreement in accommodation / accommodation (VA) causes discomfort to the user and causes so-called "VR sickness".
 VAの不一致を解消する方法として、マクスウェル視光学系(網膜投影、網膜走査)を用いる方式が知られている。マクスウェル視光学系では、表示する画像を、ユーザの眼の瞳孔位置に集束し、その後網膜上に発散させて投影する。すなわち、眼をピンホールカメラのように用いて、眼の水晶体の調節値に関係なく画像を網膜上に結像させる方法である。例えば特許文献1には、画像情報量の増加を抑えつつ、良好なる画像処理を実施することを目的に、2系統の網膜走査光学系を備えた網膜走査ディスプレイ装置が開示されている。 As a method of eliminating the VA disagreement, a method using a Maxwell visual optical system (retinal projection, retinal scanning) is known. In Maxwell visual optics, the image to be displayed is focused on the position of the pupil of the user's eye and then diverged and projected onto the retina. That is, it is a method of using the eye like a pinhole camera to form an image on the retina regardless of the accommodation value of the crystalline lens of the eye. For example, Patent Document 1 discloses a retinal scanning display device including two retinal scanning optical systems for the purpose of performing good image processing while suppressing an increase in the amount of image information.
特開2001-281594号公報Japanese Unexamined Patent Publication No. 2001-281594
 マクスウェル視光学系(網膜投影)を用いる方式では画像を瞳孔に集束しなければならないので、HMDのような限られた光学系のサイズでは、ユーザの視野(FOV:Field of View)が狭くなる欠点がある。特許文献1の構成では、走査範囲が異なる2系統の網膜走査光学系を用いることで、広視野角画像と高精細な狭視野角画像とをユーザに同時に知覚させることができると述べられている。しかしながら、眼前の接眼レンズの径が巨大になり、ディスプレイ装置が大型化する課題がある。また、ディスプレイ装置を通してユーザの眼前の現実空間の物体(風景)を見ることが困難であるので、AR画像の表示には適していない。 In the method using Maxwell optical system (retinal projection), the image must be focused in the pupil, so the user's field of view (FOV) is narrowed with the limited optical system size such as HMD. There is. In the configuration of Patent Document 1, it is stated that by using two retinal scanning optical systems having different scanning ranges, a user can simultaneously perceive a wide viewing angle image and a high-definition narrow viewing angle image. .. However, there is a problem that the diameter of the eyepiece in front of the eye becomes huge and the display device becomes large. Further, since it is difficult to see an object (landscape) in the real space in front of the user through the display device, it is not suitable for displaying an AR image.
 本発明の目的は、輻輳/調節(VA)の不一致を低減しつつ広い視野(FOV)を確保し、より小型化可能なヘッドマウントディスプレイを提供することである。 An object of the present invention is to provide a head-mounted display that can be made smaller by ensuring a wide field of view (FOV) while reducing congestion / adjustment (VA) inconsistencies.
 前記課題を解決するため、本発明のヘッドマウントディスプレイは、表示画面の略中央に狭視野のフォーカスフリー画像を出射するフォーカスフリー画像表示部と、表示画面に広視野の固定焦点画像を出射する固定焦点画像表示部と、フォーカスフリー画像と固定焦点画像の表示を制御する制御部と、を備え、制御部は、フォーカスフリー画像と固定焦点画像とを位置決めし、同時又は交互に表示されるようにフォーカスフリー画像表示部及び固定焦点画像表示部を制御する構成とした。 In order to solve the above problems, the head mount display of the present invention has a focus-free image display unit that emits a narrow-field focus-free image in the substantially center of the display screen, and a fixed-focus image that emits a wide-field fixed-focus image on the display screen. It includes a focus image display unit and a control unit that controls the display of the focus-free image and the fixed-focus image, and the control unit positions the focus-free image and the fixed-focus image so that they are displayed simultaneously or alternately. The configuration is such that the focus-free image display unit and the fixed-focus image display unit are controlled.
 ここでフォーカスフリー画像を表示するために、ユーザの瞳孔位置に画像光を集束させるマクスウェル視光学系を採用し、フォーカスフリー画像表示部から出射した画像光を反射する偏光ビームスプリッタと、偏光ビームスプリッタからの画像光を再帰反射するとともに、一部に透明領域を有する透明再帰反射板とを備え、透明再帰反射板で再帰反射された画像光は、偏光ビームスプリッタを透過してユーザの眼に入射する構成とした。 Here, in order to display a focus-free image, a Maxwell visual optical system that focuses the image light at the user's pupil position is adopted, and a polarized beam splitter that reflects the image light emitted from the focus-free image display unit and a polarized beam splitter. The image light retroreflected from the above is provided with a transparent retroreflecting plate having a transparent region in a part thereof, and the image light retroreflected by the transparent retroreflecting plate passes through the polarizing beam splitter and enters the user's eye. It was configured to be.
 本発明によれば、輻輳/調節(VA)の不一致を低減しつつ広い視野(FOV)を確保し、より小型化可能なヘッドマウントディスプレイを提供することができる。 According to the present invention, it is possible to provide a head-mounted display that can be made smaller by ensuring a wide field of view (FOV) while reducing the disagreement of congestion / adjustment (VA).
実施例1に係るヘッドマウントディスプレイ(HMD)の外観図。The external view of the head-mounted display (HMD) which concerns on Example 1. FIG. HMDの内部構成を示すブロック図。The block diagram which shows the internal structure of an HMD. フォーカスフリー画像表示の基本構成を説明する図。The figure explaining the basic structure of a focus-free image display. 実施例1に係るHMDの具体構成と動作を示す図。The figure which shows the specific structure and operation of the HMD which concerns on Example 1. FIG. 画像合成を説明する図。The figure explaining image composition. 実施例2に係るHMDの具体構成と動作を示す図。The figure which shows the specific structure and operation of the HMD which concerns on Example 2. FIG. 実施例2に係るHMDの具体構成と動作を示す図。The figure which shows the specific structure and operation of the HMD which concerns on Example 2. FIG. 実施例3に係るHMDの具体構成と動作を示す図。The figure which shows the specific structure and operation of the HMD which concerns on Example 3. FIG.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1に係るヘッドマウントディスプレイ(HMD)の外観図を示す。HMD1はメガネ型形状で、前面にはユーザの眼に画像を提供する画像合成光学系9(後述する偏光ビームスプリッタ91、透明再帰反射板92など)が配置され、テンプル部(つる)11には、後述する各種処理部が格納されている。また、テンプル部11内の一部の処理部は、HMD本体と分離して別の筐体に格納し、HMD本体とケーブルや無線通信で接続する構成でも良い。 FIG. 1 shows an external view of a head-mounted display (HMD) according to the first embodiment. The HMD 1 has a spectacle-shaped shape, and an image synthesis optical system 9 (a polarization beam splitter 91, a transparent retroreflector 92, etc., which will be described later) that provides an image to the user's eye is arranged on the front surface, and a temple portion (vine) 11 is provided. , Various processing units described later are stored. Further, a part of the processing unit in the temple unit 11 may be separated from the HMD main body and stored in another housing, and may be connected to the HMD main body by a cable or wireless communication.
 図2は、HMD1の内部構成を示すブロック図である。HMD1は、主制御部2、システムバス3、記憶部4、センサ部5、通信処理部6、フォーカスフリー画像表示部7、固定焦点画像表示部8、画像合成光学系9、及び視線方向検出部10で構成される。 FIG. 2 is a block diagram showing the internal configuration of HMD1. The HMD 1 includes a main control unit 2, a system bus 3, a storage unit 4, a sensor unit 5, a communication processing unit 6, a focus-free image display unit 7, a fixed focus image display unit 8, an image synthesis optical system 9, and a line-of-sight direction detection unit. It is composed of 10.
 主制御部2は、所定の動作プログラムに従ってHMD1全体を制御するマイクロプロセッサユニットである。システムバス3は、主制御部2とHMD1内の各構成ブロックとの間で各種コマンドやデータなどの送受信を行うためのデータ通信路である。 The main control unit 2 is a microprocessor unit that controls the entire HMD 1 according to a predetermined operation program. The system bus 3 is a data communication path for transmitting and receiving various commands and data between the main control unit 2 and each constituent block in the HMD 1.
 記憶部4は、HMD1の動作を制御するための各種プログラム41、動作設定値や後述するセンサ部5からの検出値や表示する画像コンテンツなどの各種データ42を格納し、各種プログラムの動作で使用するワークエリア43を有する。その際記憶部4は、ネットワーク上からダウンロードした動作プログラムや作成した各種データ、ダウンロードした画像コンテンツを記憶可能である。 The storage unit 4 stores various programs 41 for controlling the operation of the HMD 1, various data 42 such as operation setting values, detection values from the sensor unit 5 described later, and image contents to be displayed, and is used in the operation of various programs. Has a work area 43 to work on. At that time, the storage unit 4 can store the operation program downloaded from the network, various created data, and the downloaded image content.
 センサ部5は、HMD1の各種の状態を検出するため、GPS(Global Positioning System)センサ51、地磁気センサ52、距離センサ53、加速度センサ54、ジャイロセンサ55等で構成される。これらのセンサ群により、HMD1の位置、傾き、方角、動き、高度等を検出する。 The sensor unit 5 is composed of a GPS (Global Positioning System) sensor 51, a geomagnetic sensor 52, a distance sensor 53, an acceleration sensor 54, a gyro sensor 55, etc. in order to detect various states of the HMD1. These sensor groups detect the position, tilt, direction, movement, altitude, etc. of the HMD1.
 通信処理部6は、LAN(Local Area Network)通信部61と、電話網通信部62で構成される。LAN通信部61はアクセスポイント等を介してインターネット等のネットワークと接続され、ネットワーク上の各サーバ装置とデータの送受信を行う。アクセスポイント等との接続はWi-Fi(登録商標)等の無線接続で行われて良い。電話網通信部62は移動体電話通信網の基地局等との無線通信により、電話通信及びデータの送受信を行う。 The communication processing unit 6 is composed of a LAN (Local Area Network) communication unit 61 and a telephone network communication unit 62. The LAN communication unit 61 is connected to a network such as the Internet via an access point or the like, and transmits / receives data to / from each server device on the network. The connection with the access point or the like may be made by a wireless connection such as Wi-Fi (registered trademark). The telephone network communication unit 62 performs telephone communication and data transmission / reception by wireless communication with a base station or the like of a mobile telephone communication network.
 次に、画像表示部として、本実施例では2系統の画像表示部を備え、フォーカスフリー画像表示部7と固定焦点画像表示部8と呼ぶことにする。いずれの画像表示部も、入力する画像信号に基づきユーザの提供する画像を生成する画像生成部71,81と、生成した画像を表示する表示部72、82とを有する。 Next, as the image display unit, in this embodiment, two image display units are provided, and they are referred to as a focus-free image display unit 7 and a fixed focus image display unit 8. Each image display unit has an image generation unit 71, 81 that generates an image provided by the user based on an input image signal, and a display unit 72, 82 that displays the generated image.
 フォーカスフリー画像表示部7は、狭い視野(FOV)であるが深い焦点深度(すなわちフォーカスフリー)の画像を生成する画像生成部71を有する。フォーカスフリー画像表示部7は、例えば後述のマクスウェル視光学系による網膜走査方式を採用する。一方、固定焦点画像表示部8は、広い視野(FOV)を持ち固定の焦点深度の画像を生成する画像生成部81を有する。固定焦点画像表示部8は、従来の一般的なHMDに用いられる表示方式である。それぞれの表示部72、82は、光源からの光を空間光変調器(例えば液晶パネル)により所望の画像に変換する方式(以下、パネル方式)について説明するが、レーザ光を変調して走査ミラーにより走査して画像を表示する方式(以下、レーザ走査方式)も可能である。 The focus-free image display unit 7 has an image generation unit 71 that generates an image having a narrow field of view (FOV) but a deep depth of focus (that is, focus-free). The focus-free image display unit 7 employs, for example, a retinal scanning method using a Maxwell visual optical system described later. On the other hand, the fixed focus image display unit 8 has an image generation unit 81 that has a wide field of view (FOV) and generates an image with a fixed depth of focus. The fixed focus image display unit 8 is a display method used in a conventional general HMD. Each of the display units 72 and 82 describes a method of converting the light from the light source into a desired image by a spatial light modulator (for example, a liquid crystal panel) (hereinafter referred to as a panel method). A method of displaying an image by scanning with a light source (hereinafter referred to as a laser scanning method) is also possible.
 画像合成光学系9は、フォーカスフリー画像表示部7と固定焦点画像表示部8にて生成された2つの画像を合成するための光学系で、入射光の偏光方向に応じて透過または反射を行う偏光ビームスプリッタ91と、透明再帰反射板92とを有する。透明再帰反射板92は、入射した光を同じ方向に反射させる特性(再帰性)を持つ反射板(リトロレフレクタ)で、一部に透明領域を有する構造となっている。 The image synthesizing optical system 9 is an optical system for synthesizing two images generated by the focus-free image display unit 7 and the fixed-focus image display unit 8, and transmits or reflects the incident light according to the polarization direction. It has a polarization beam splitter 91 and a transparent retroreflective plate 92. The transparent retroreflective plate 92 is a reflector (retroreflector) having a characteristic (retroflexivity) of reflecting incident light in the same direction, and has a structure having a transparent region in a part thereof.
 視線方向検出部10は、HMD1を装着したユーザの視線方向(視線方向及び瞳孔サイズ)を検出するいわゆるアイトラッキング装置である。なお、視線方向は、HMD1に備える内部カメラ(図示せず)でユーザの顔画像を撮影しこれを解析することで取得することもできる。 The line-of-sight direction detection unit 10 is a so-called eye tracking device that detects the line-of-sight direction (line-of-sight direction and pupil size) of the user wearing the HMD1. The line-of-sight direction can also be obtained by taking an image of the user's face with an internal camera (not shown) provided in the HMD 1 and analyzing the image.
 図3は、フォーカスフリー画像表示の基本構成を説明する図である。これは、ユーザの眼の網膜に画像を投影する方式で、マクスウェル視光学系を採用する。フォーカスフリー画像表示部7は、パネル方式、レーザ走査方式のいずれでも良い。 FIG. 3 is a diagram illustrating a basic configuration of a focus-free image display. This is a method of projecting an image onto the retina of the user's eye, and employs Maxwell visual optical system. The focus-free image display unit 7 may be either a panel method or a laser scanning method.
 フォーカスフリー画像表示部7から出射した画像光(偏光)は可変発散レンズ73で所定角度に発散されて、偏光ビームスプリッタ91に入射し、ここで反射され透明再帰反射板92へ入射する。透明再帰反射板92では入射した方向と同じ方向に反射して(すなわち再帰性)、偏光ビームスプリッタ91に再度入射する。その際透明再帰反射板92では偏光の角度が回転するため、偏光ビームスプリッタ91を透過してユーザの眼20の瞳孔位置に集束し、網膜上に投影される。このように画像は網膜上に投影されるので、視野は狭いながらも深い焦点深度を有するフォーカスフリーの画像を表示させることができる。なお、画像光のスポット位置を眼の瞳孔に確実に集光させるため、偏光ビームスプリッタ91を水平/垂直方向に調整可能とし、また可変発散レンズ73を移動させることで、眼前の見かけのレンズ73’を移動させるような調整機構を設ける。 The image light (polarization) emitted from the focus-free image display unit 7 is diverged at a predetermined angle by the variable divergent lens 73, incident on the polarizing beam splitter 91, reflected here, and incident on the transparent retroreflective plate 92. The transparent retroreflector 92 reflects in the same direction as the incident direction (that is, retroreflector), and is re-incidents into the polarizing beam splitter 91. At that time, since the angle of polarization is rotated in the transparent retroreflective plate 92, it is transmitted through the polarization beam splitter 91, focused on the pupil position of the user's eye 20, and projected onto the retina. Since the image is projected on the retina in this way, it is possible to display a focus-free image having a deep depth of focus while having a narrow field of view. In order to ensure that the spot position of the image light is focused on the pupil of the eye, the polarization beam splitter 91 can be adjusted horizontally / vertically, and the variable divergent lens 73 is moved to make the apparent lens 73 in front of the eye. Provide an adjustment mechanism to move the'.
 透明再帰反射板92は、偏光ビームスプリッタ91からの画像光を再帰反射するとともに、一部もしくは全体に透明領域を有するので、透明再帰反射板92の前方に存在する現実の物体を重ねて視認することができる(外光を符号L3で示す)。また透明再帰反射板92は平面形状としているため、凹面反射板の場合と比較し、画像光をユーザの眼の瞳孔のレンズの中心に集光させ、網膜上に投影するための調整が容易となる。 Since the transparent retroreflector 92 retroreflects the image light from the polarizing beam splitter 91 and has a transparent region partially or entirely, the actual object existing in front of the transparent retroreflector 92 is superimposed and visually recognized. (The external light is indicated by the reference numeral L3). In addition, since the transparent retroreflective plate 92 has a planar shape, it is easier to adjust the image light to be focused on the center of the lens of the pupil of the user's eye and projected onto the retina, as compared with the case of the concave reflector. Become.
 図4は、実施例1に係るHMD1の具体構成と動作を示す図である。2系統の画像表示部7、8を、傾斜した偏光ビームスプリッタ91を通る軸の両端に配置したハイブリッド構造としている。本例では上端にはフォーカスフリー画像表示部7を、下端には固定焦点画像表示部8を配置している。フォーカスフリー画像表示部7は、図3の7と73に相当する構成である。 FIG. 4 is a diagram showing a specific configuration and operation of the HMD 1 according to the first embodiment. The two image display units 7 and 8 have a hybrid structure in which the image display units 7 and 8 are arranged at both ends of a shaft passing through the inclined polarization beam splitter 91. In this example, the focus-free image display unit 7 is arranged at the upper end, and the fixed-focus image display unit 8 is arranged at the lower end. The focus-free image display unit 7 has a configuration corresponding to 7 and 73 in FIG.
 まず、フォーカスフリー画像表示部7はフォーカスフリーの画像光L1を出射する。画像光L1は、偏光ビームスプリッタ91で反射される偏光方向(例えばH偏光)とする。画像光L1は偏光ビームスプリッタ91で反射して前面の透明再帰反射板92に向かい、透明再帰反射板92によって偏光面が回転した光(V偏光)となって戻り、再度、偏光ビームスプリッタ91では透過して眼20の瞳孔に集束し、網膜上に投影される。これにより、狭い視野であるがフォーカスフリーの画像を表示する。 First, the focus-free image display unit 7 emits the focus-free image light L1. The image light L1 has a polarization direction (for example, H polarization) reflected by the polarization beam splitter 91. The image light L1 is reflected by the polarizing beam splitter 91 and heads toward the front transparent retroreflecting plate 92, and returns as light (V-polarized) whose polarization plane is rotated by the transparent retroreflecting plate 92. It is transmitted, focused on the pupil of the eye 20, and projected onto the retina. This displays a focus-free image with a narrow field of view.
 一方、固定焦点画像表示部8から上方に出射する固定焦点の画像光L2(例えばH偏光)は、偏光ビームスプリッタ91によって反射されて、直接眼20に戻る。これにより、広い視野の固定焦点画像を表示する。 On the other hand, the fixed-focus image light L2 (for example, H-polarized light) emitted upward from the fixed-focus image display unit 8 is reflected by the polarized beam splitter 91 and directly returns to the eye 20. This displays a fixed focus image with a wide field of view.
 外部の物体からの光L3は、透明再帰反射板92を透過し、次いで偏光ビームスプリッタ91を透過して眼20に到達する。これによりユーザは、外部風景に重ねてフォーカスフリー画像と固定焦点画像を視認することができる。ここで、ユーザが視力矯正用の眼鏡を使用している場合は、透明再帰反射板92の外側(眼と逆側)に配置することで、通常の眼鏡を供用することが可能である。 The light L3 from an external object passes through the transparent retroreflector plate 92, then passes through the polarizing beam splitter 91, and reaches the eye 20. This allows the user to visually recognize the focus-free image and the fixed-focus image overlaid on the external landscape. Here, when the user is using eyeglasses for visual acuity correction, it is possible to use ordinary eyeglasses by arranging them on the outside (opposite side of the eye) of the transparent retroreflector plate 92.
 ここで、狭い視野のフォーカスフリー画像と広い視野の固定焦点画像は共通の画像から生成したものであるから、両者の画像を、違和感なく合成して表示する必要がある。フォーカスフリー画像は、中央の限られた視野でのみ視認可能であるが、被写界深度が大きい画像であるため、ユーザに与える輻輳/調節(VA)の不一致を回避できる。また、眼の視覚特性として、視野の中央部は分解能が高く、周辺は分解能が低いことが知られている。そのため、視野内の領域に応じて適切な解像度の画像を表示することが望ましい。 Here, since the focus-free image with a narrow field of view and the fixed-focus image with a wide field of view are generated from a common image, it is necessary to combine and display both images without discomfort. A focus-free image is visible only in a limited central field of view, but because it is an image with a large depth of field, it is possible to avoid a convergence / accommodation (VA) mismatch given to the user. Further, as a visual characteristic of the eye, it is known that the central part of the visual field has a high resolution and the peripheral part has a low resolution. Therefore, it is desirable to display an image with an appropriate resolution according to the area in the field of view.
 図5は、フォーカスフリー画像と固定焦点画像の画像合成を説明する図である。画像合成アルゴリズムは、記憶部4格納する各種プログラム41の1つに含まれ、主制御部2によって画像合成処理が行われる。固定焦点画像表示部8からの固定焦点画像G2は広い視野範囲に表示するのに対し、フォーカスフリー画像表示部7からのフォーカスフリー画像G1は、固定焦点画像G2の略中央部の狭い視野範囲に表示する。その際、フォーカスフリー画像G1は画像表示部7で表示する画面は高精細なカメラで撮影した画像を用いることでピクセル解像度が向上し、周囲の固定焦点画像G2よりも解像度が高い画像として表示される。 FIG. 5 is a diagram illustrating image composition of a focus-free image and a fixed-focus image. The image composition algorithm is included in one of the various programs 41 stored in the storage unit 4, and the image composition process is performed by the main control unit 2. The fixed-focus image G2 from the fixed-focus image display unit 8 is displayed in a wide viewing range, whereas the focus-free image G1 from the focus-free image display unit 7 is displayed in a narrow viewing range in a substantially central portion of the fixed-focus image G2. indicate. At that time, the focus-free image G1 is displayed as an image having a higher resolution than the surrounding fixed-focus image G2 because the pixel resolution is improved by using an image taken by a high-definition camera on the screen displayed by the image display unit 7. To.
 画像合成では、2つの画像G1,G2を正しく位置合わせを行い、両者の画像の境界が滑らかで継ぎ目がなく遷移するように、マスク関数を用いる。固定焦点画像G2に対するマスク関数をM2(破線)、フォーカスフリー画像G1に対するマスク関数をM1(実線)で表す。マスク関数値は画像信号(輝度値)の通過割合を示し、M=1は100%通過、M=0は0%通過(完全遮断)である。画像の境界部では、マスク関数Mを1と0の間で勾配を持たせて変化させ、遷移区間ではM1+M2=1となるようにする。このようにして、固定焦点画像G2の遮断された領域にフォーカスフリー画像G1を縮小して挿入する。また遷移区間では両者の画像G1,G2に陰影を施すことで、不自然さを解消する。 In image composition, two images G1 and G2 are correctly aligned, and a mask function is used so that the boundary between the two images is smooth and seamlessly transitions. The mask function for the fixed focus image G2 is represented by M2 (broken line), and the mask function for the focus free image G1 is represented by M1 (solid line). The mask function value indicates the passing ratio of the image signal (luminance value), M = 1 is 100% passing, and M = 0 is 0% passing (complete cutoff). At the boundary of the image, the mask function M is changed with a gradient between 1 and 0 so that M1 + M2 = 1 in the transition interval. In this way, the focus-free image G1 is reduced and inserted into the blocked region of the fixed-focus image G2. Further, in the transition section, the unnaturalness is eliminated by shading both images G1 and G2.
 フォーカスフリー画像G1と固定焦点画像G2との合成処理においては、視線方向検出部10が検出した視線方向パラメータを使用して、フォーカスフリー画像G1を位置決めし、2つの画像G1,G2に最適なマスク関数M1,M2を設定して画像合成を行う。 In the compositing process of the focus-free image G1 and the fixed-focus image G2, the focus-free image G1 is positioned using the line-of-sight direction parameter detected by the line-of-sight direction detection unit 10, and the optimum mask for the two images G1 and G2. Image composition is performed by setting the functions M1 and M2.
 具体的には以下の手順で処理する。
(1)まず、視線方向パラメータを使用して、眼(瞳孔)の向きを判定する。
(2)フォーカスフリー画像G1の視認範囲と、視線可能な方向(角度)から視認可能かを計算する。
(3)フォーカスフリー画像G1が視認可能である方向を中心に、所定領域内の輝度変更を表す2次元マスク関数M1,M2を計算する。
(4)固定焦点画像G2を生成する画像信号(ピクセル輝度データ)に、計算されたマスク関数M2を掛ける。
(5)フォーカスフリー画像G1を生成する画像信号(ピクセル輝度データ)に、計算されたマスク関数M1を掛ける。
(6)なお、2つの画像G1,G2の位置決めは、それぞれの表示グリッドの回転とスケーリング操作を行い、画像の境界位置(外縁)を合わせる。
Specifically, it is processed by the following procedure.
(1) First, the direction of the eye (pupil) is determined using the line-of-sight direction parameter.
(2) It is calculated from the viewable range of the focus-free image G1 and whether it is visible from the line-of-sight direction (angle).
(3) Two-dimensional mask functions M1 and M2 representing a change in luminance within a predetermined region are calculated centering on a direction in which the focus-free image G1 is visible.
(4) The calculated mask function M2 is multiplied by the image signal (pixel luminance data) that generates the fixed focus image G2.
(5) The calculated mask function M1 is multiplied by the image signal (pixel luminance data) that generates the focus-free image G1.
(6) In the positioning of the two images G1 and G2, the boundary positions (outer edges) of the images are aligned by rotating and scaling the respective display grids.
 このように、フォーカスフリー画像G1は視線方向パラメータに合わせて、好適な領域(方向及びサイズ)に表示される。また、マスク関数を施すことで、両方の画像G1.G2を単一のシームレスな画像として表示できる。 In this way, the focus-free image G1 is displayed in a suitable area (direction and size) according to the line-of-sight direction parameter. In addition, by applying the mask function, both images G1. G2 can be displayed as a single seamless image.
 上記の説明は、フォーカスフリー画像G1がユーザに視認可能である場合の画像合成方法である。しかしながら、画像光を瞳孔位置に集束するマクスウェル視光学系では視野が狭くなるので、ユーザの視線方向による瞳孔の向きのずれや瞳孔サイズの条件によっては、マクスウェル視光学系が成立しない場合がありえる。すなわち、フォーカスフリー画像G1を表示してもユーザが快適に視認できず、むしろ違和感を与えることになる。以下では、その場合の処理方法について説明する。 The above description is an image composition method when the focus-free image G1 is visible to the user. However, since the field of view is narrowed in the Maxwell visual optical system that focuses the image light at the pupil position, the Maxwell visual optical system may not be established depending on the deviation of the pupil direction depending on the user's line-of-sight direction and the condition of the pupil size. That is, even if the focus-free image G1 is displayed, the user cannot comfortably see it, but rather gives a sense of discomfort. The processing method in that case will be described below.
 フォーカスフリー画像G1が視認可能であるかを判定するために、視線方向検出部10が検出した視線方向パラメータ(視線方向及び瞳孔サイズ)を使用する。まず、フォーカスフリー画像の焦点スポット(目の前面)が瞳孔内にあるかどうかを判定する。次いで、3D座標をマッピングする関数(眼の垂直角、眼の水平角、瞳孔サイズ)から、視認可能か否かを判定する。この関数は、フォーカスフリー画像にのみ白又は色付きの正方形を表示し、関数表がユーザの視認の反応と一致することを確認することで判定できる。 In order to determine whether the focus-free image G1 is visible, the line-of-sight direction parameters (line-of-sight direction and pupil size) detected by the line-of-sight direction detection unit 10 are used. First, it is determined whether or not the focal spot (front of the eye) of the focus-free image is in the pupil. Next, it is determined whether or not it is visible from the function (vertical angle of the eye, horizontal angle of the eye, pupil size) that maps the 3D coordinates. This function can be determined by displaying a white or colored square only on the focus-free image and confirming that the function table matches the user's visual response.
 上記判定の結果、フォーカスフリー画像G1がユーザに視認可能でない場合には、フォーカスフリー画像G1を何も表示せず(例えば黒い画像を表示する)、固定焦点画像G2のみをマスキングなしで表示する。言い換えれば、固定焦点画像G2のマスク関数M2は画面全体に渡って1であり、フォーカスフリー画像G1のマスク関数M1は画面全体に渡って0とする。 As a result of the above determination, if the focus-free image G1 is not visible to the user, the focus-free image G1 is not displayed at all (for example, a black image is displayed), and only the fixed-focus image G2 is displayed without masking. In other words, the mask function M2 of the fixed focus image G2 is 1 over the entire screen, and the mask function M1 of the focus free image G1 is 0 over the entire screen.
 また、上記判定の結果、フォーカスフリー画像G1がユーザに部分的に視認可能である場合、あるいは視認可能であるか否かが不確実な場合もある。この場合には、上記した視認可能でない場合と同様に、フォーカスフリー画像G1を表示せず、固定焦点画像G2のみをマスキングなしで表示する。 Further, as a result of the above determination, there are cases where the focus-free image G1 is partially visible to the user, or it is uncertain whether or not it is visible. In this case, the focus-free image G1 is not displayed and only the fixed-focus image G2 is displayed without masking, as in the case where the image is not visible.
 以上説明したように実施例1によれば、深い焦点深度のフォーカスフリー画像と広い視野の固定焦点画像を組み合わせることで、次の効果が得られる。 
(1)仮想現実または拡張現実の画像を見ているときの輻輳/調節(VA)の不一致の発生を最小限に抑えることにより、不快感や眼精疲労の問題を低減する。これは、ユーザが通常長時間に渡って注視する視線領域(すなわち画面中央部)に、フォーカスフリー画像を配置することで実現される。
(2)深い焦点深度のフォーカスフリー画像の視野(FOV)が狭いという欠点は、その周囲に広い視野(FOV)の固定焦点画像を配置し、両者の画像を合成して表示することで克服される。
(3)画像合成の際、フォーカスフリー画像を縮小して挿入することでピクセル解像度が向上し、周囲の固定焦点画像よりも高解像度で表示する。これは、眼の視覚特性(視野の中央部は分解能が高い)に一致し、ユーザは快適に画像を見ることができる。
As described above, according to the first embodiment, the following effects can be obtained by combining a focus-free image with a deep depth of focus and a fixed-focus image with a wide field of view.
(1) By minimizing the occurrence of congestion / accommodation (VA) discrepancies when viewing virtual reality or augmented reality images, problems of discomfort and eye strain are reduced. This is achieved by arranging the focus-free image in the line-of-sight region (that is, the center of the screen) where the user normally gazes for a long time.
(2) The disadvantage that the field of view (FOV) of a focus-free image with a deep depth of focus is narrow can be overcome by arranging a fixed-focus image with a wide field of view (FOV) around it and displaying both images in combination. To.
(3) At the time of image composition, the pixel resolution is improved by reducing and inserting the focus-free image, and the focus-free image is displayed at a higher resolution than the surrounding fixed-focus image. This matches the visual characteristics of the eye (the central part of the visual field has high resolution), and the user can comfortably view the image.
 実施例2では、2系統の画像表示部7、8を共通の画像表示部にて構成する場合について説明する。 In the second embodiment, a case where the two image display units 7 and 8 are configured by a common image display unit will be described.
 図6Aと図6Bは、実施例2に係るHMD1の具体構成と動作を示す図である。ここでは、単一の画像表示部12がフォーカスフリー画像表示部7と固定焦点画像表示部8として共通に使用され、画像表示部12の偏光状態(H,V)を所定の周期で切り替えることでそれぞれの画像表示部としての動作を実現する。図6Aはフォーカスフリー画像表示部7として動作する状態(フォーカスフリー画像モード)、図6Bは固定焦点画像表示部8として動作する状態(固定焦点画像モード)を示す。偏光状態の切り替えは、偏光回転子を使用して迅速に切り替えることができる。また本実施例では、合成光学系として、偏光ビームスプリッタ91を介して画像表示部12の反対側に(図面下方)、1/4波長板93とミラー94を追加配置している。 6A and 6B are diagrams showing a specific configuration and operation of the HMD 1 according to the second embodiment. Here, the single image display unit 12 is commonly used as the focus-free image display unit 7 and the fixed-focus image display unit 8, and the polarization state (H, V) of the image display unit 12 is switched at a predetermined cycle. It realizes the operation as each image display unit. FIG. 6A shows a state of operating as a focus-free image display unit 7 (focus-free image mode), and FIG. 6B shows a state of operating as a fixed-focus image display unit 8 (fixed-focus image mode). Switching between polarization states can be done quickly using a polarized rotator. Further, in this embodiment, as a synthetic optical system, a 1/4 wave plate 93 and a mirror 94 are additionally arranged on the opposite side of the image display unit 12 (lower part of the drawing) via a polarization beam splitter 91.
 まず、図6Aのフォーカスフリー画像モードの動作を説明する。共通の画像表示部12からは、例えばH偏光の画像光L1が出射され、偏光ビームスプリッタ91によって反射されて透明再帰反射板92に向かう。透明再帰反射板92では、再帰反射されて偏光方向がV偏光に変わって偏光ビームスプリッタ91に戻り、これを透過してユーザの眼20に入射する。このモードでは、図3で説明したようにマクスウェル視光学系が構成され、フォーカスフリー画像が表示される。画像表示部12は図3の7と73の構成に相当する。ただし、画像表示部12は、固定焦点の画像表示部でもあるため、図3の73のようなレンズを配置することができない。そのため、ここではレンズ73の代わりに、液晶シャッタのような素子を用いて回折格子を形成して画像光L1を屈折させる構成としてもよい。 First, the operation of the focus-free image mode of FIG. 6A will be described. For example, H-polarized image light L1 is emitted from the common image display unit 12, reflected by the polarization beam splitter 91, and directed toward the transparent retroreflector 92. In the transparent retroreflector 92, the retroreflector is reflected and the polarization direction is changed to V-polarization, returns to the polarization beam splitter 91, passes through the polarization beam splitter 91, and is incident on the user's eye 20. In this mode, the Maxwell visual optical system is configured as described in FIG. 3 and a focus-free image is displayed. The image display unit 12 corresponds to the configurations of 7 and 73 in FIG. However, since the image display unit 12 is also a fixed-focus image display unit, the lens as shown in FIG. 3 73 cannot be arranged. Therefore, instead of the lens 73, an element such as a liquid crystal shutter may be used to form a diffraction grating to refract the image light L1.
 次に、図6Bの固定焦点画像モードの動作を説明する。共通の画像表示部12からは、例えばV偏光の画像光L2が出射され、偏光ビームスプリッタ91を透過し、1/4波長板93に入射し、ミラー94で反射する。そして再度1/4波長板93を通過することで、偏光方向がH偏光に切り替わり(90度回転)、今度は偏光ビームスプリッタ91を反射して、ユーザの眼20に入射する。このモードでは、固定焦点画像が表示される。 Next, the operation of the fixed focus image mode of FIG. 6B will be described. For example, V-polarized image light L2 is emitted from the common image display unit 12, passes through the polarization beam splitter 91, is incident on the 1/4 wave plate 93, and is reflected by the mirror 94. Then, by passing through the 1/4 wave plate 93 again, the polarization direction is switched to H polarization (rotation by 90 degrees), and this time, the polarization beam splitter 91 is reflected and incident on the user's eye 20. In this mode, a fixed focus image is displayed.
 実施例2においても、図6Aのフォーカスフリー画像と図6Bの固定焦点画像の位置決めと合成は実施例1と同様に行う。そして、共通の画像表示部12は、その直線偏光(H,V)を所定の周期で切り替えることで、フォーカスフリー画像と固定焦点画像とを交互に表示する。 In Example 2, the focus-free image of FIG. 6A and the fixed-focus image of FIG. 6B are positioned and combined in the same manner as in Example 1. Then, the common image display unit 12 alternately displays the focus-free image and the fixed-focus image by switching the linear polarization (H, V) at a predetermined cycle.
 実施例2によれば、実施例1と同様にVAの不一致を低減しつつ広い視野(FOV)を確保するヘッドマウントディスプレイを実現できる。さらに実施例2によれば、共通の画像表示部12を用いるので、実施例1と比べ装置の構成が簡単になる効果がある。 According to the second embodiment, it is possible to realize a head-mounted display that secures a wide field of view (FOV) while reducing the disagreement of the VA as in the first embodiment. Further, according to the second embodiment, since the common image display unit 12 is used, there is an effect that the configuration of the apparatus becomes simpler than that of the first embodiment.
 実施例3では、2系統の画像表示部7、8からの画像光を偏光ビームスプリッタキューブで混合し、実施例2(図6A,B)と同様の合成光学系に入射させる構成とした。画像表示部7は、図3の7と73に相当する構成である。 In Example 3, the image lights from the two image display units 7 and 8 were mixed by a polarizing beam splitter cube and incident on the same synthetic optical system as in Example 2 (FIGS. 6A and 6B). The image display unit 7 has a configuration corresponding to 7 and 73 in FIG.
 図7は、実施例3に係るHMD1の具体構成と動作を示す図である。フォーカスフリー画像表示部7と固定焦点画像表示部8は、別途設けた偏光ビームスプリッタキューブ95の直交する側面に配置し、互いに偏光方向が直交する画像光を出射する。例えばフォーカスフリー画像表示部7はキューブ95の右側面に配しH偏光の画像光L1を出射し、固定焦点画像表示部8はキューブ95の上面に配しV偏光の画像光L2を出射する。偏光ビームスプリッタキューブ95の偏光面では、フォーカスフリー画像表示部7からの画像光L1(H偏光)は反射して下方に向かい、固定焦点画像表示部8からの画像光L2(V偏光)は透過して下方に向かう。このようにして、2系統の画像表示部7、8からの画像光L1、L2は混合される。 FIG. 7 is a diagram showing a specific configuration and operation of the HMD 1 according to the third embodiment. The focus-free image display unit 7 and the fixed-focus image display unit 8 are arranged on orthogonal sides of a separately provided polarization beam splitter cube 95, and emit image light whose polarization directions are orthogonal to each other. For example, the focus-free image display unit 7 is arranged on the right side surface of the cube 95 to emit H-polarized image light L1, and the fixed-focus image display unit 8 is arranged on the upper surface of the cube 95 to emit V-polarized image light L2. On the polarization plane of the polarized beam splitter cube 95, the image light L1 (H polarized light) from the focus-free image display unit 7 is reflected and directed downward, and the image light L2 (V polarized light) from the fixed focus image display unit 8 is transmitted. And head down. In this way, the image lights L1 and L2 from the two image display units 7 and 8 are mixed.
 混合された2系統の画像光(L1+L2)は、実施例2と同様の合成光学系に入射する。このうちフォーカスフリー画像光L1は、前記図6Aに示したように、偏光ビームスプリッタ91によって反射されて透明再帰反射板92に向かう。透明再帰反射板92では再帰反射されて偏光ビームスプリッタ91に戻り、これを透過してユーザの眼20に入射する。一方、固定焦点画像光L2は、前記図6Bに示したように、偏光ビームスプリッタ91を透過し、1/4波長板93に入射しミラー94で反射する。そして再度1/4波長板93を通過することで、偏光方向がH偏光に切り替わり、今度は偏光ビームスプリッタ91を反射して、ユーザの眼20に入射する。 The mixed two image lights (L1 + L2) are incident on the same synthetic optical system as in Example 2. Of these, the focus-free image light L1 is reflected by the polarizing beam splitter 91 and heads toward the transparent retroreflector 92, as shown in FIG. 6A. The transparent retroreflector 92 is retroreflected, returns to the polarizing beam splitter 91, passes through the polarizing beam splitter 91, and is incident on the user's eye 20. On the other hand, as shown in FIG. 6B, the fixed focus image light L2 passes through the polarizing beam splitter 91, enters the quarter wave plate 93, and is reflected by the mirror 94. Then, by passing through the 1/4 wave plate 93 again, the polarization direction is switched to H polarization, and this time, the polarization beam splitter 91 is reflected and incident on the user's eye 20.
 実施例3においても、実施例1、2と同様にVAの不一致を低減しつつ広い視野(FOV)を確保するヘッドマウントディスプレイを実現できる。前記実施例1、2と比較し、実施例3によれば、2系統の画像表示部7、8は偏光ビームスプリッタ91から見て同じ側に配置できること、また画像表示部の偏光切り替えが不要であること、がメリットとなる。 Also in the third embodiment, it is possible to realize a head-mounted display that secures a wide field of view (FOV) while reducing the disagreement of the VA as in the first and second embodiments. Compared with the first and second embodiments, according to the third embodiment, the two image display units 7 and 8 can be arranged on the same side as viewed from the polarization beam splitter 91, and the polarization switching of the image display unit is unnecessary. There is a merit.
 以上、本発明の実施形態を説明したが、本発明の技術を実現する構成は前記各実施例に限られるものではなく、様々な変形例が考えられる。例えば、ある実施例の構成の一部を他の実施例の構成と置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。これらは全て本発明の範疇に属するものである。 Although the embodiments of the present invention have been described above, the configuration for realizing the technique of the present invention is not limited to each of the above-described embodiments, and various modifications can be considered. For example, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. All of these belong to the category of the present invention.
 1:ヘッドマウントディスプレイ(HMD)、2:主制御部、4:記憶部、5:センサ部、6:通信処理部、7:フォーカスフリー画像表示部、8:固定焦点画像表示部、9:画像合成光学系、10:視線方向検出部、12:共通の画像表示部、20:ユーザの眼、91:偏光ビームスプリッタ、92:透明再帰反射板、93:1/4波長板、94:ミラー、95:偏光ビームスプリッタキューブ。 1: Head mount display (HMD), 2: Main control unit, 4: Storage unit, 5: Sensor unit, 6: Communication processing unit, 7: Focus-free image display unit, 8: Fixed focus image display unit, 9: Image Synthetic optical system, 10: Line-of-sight detection unit, 12: Common image display unit, 20: User's eye, 91: Polarization beam splitter, 92: Transparent retroreflector, 93: 1/4 wave plate, 94: Mirror, 95: Polarized beam splitter cube.

Claims (8)

  1.  ユーザの頭部に装着され、仮想現実または拡張現実の画像を表示するヘッドマウントディスプレイであって、
     表示画面の略中央に狭視野のフォーカスフリー画像を出射するフォーカスフリー画像表示部と、
     前記表示画面に広視野の固定焦点画像を出射する固定焦点画像表示部と、
     前記フォーカスフリー画像と前記固定焦点画像の表示を制御する制御部と、を備え、
     前記制御部は、前記フォーカスフリー画像と前記固定焦点画像とを位置決めし、同時又は交互に表示されるように前記フォーカスフリー画像表示部及び前記固定焦点画像表示部を制御することを特徴とするヘッドマウントディスプレイ。
    A head-mounted display that is worn on the user's head and displays images of virtual reality or augmented reality.
    A focus-free image display unit that emits a focus-free image with a narrow field of view in the center of the display screen,
    A fixed-focus image display unit that emits a wide-field fixed-focus image onto the display screen,
    A control unit for controlling the display of the focus-free image and the fixed-focus image is provided.
    The control unit positions the focus-free image and the fixed-focus image, and controls the focus-free image display unit and the fixed-focus image display unit so that the focus-free image and the fixed-focus image are displayed simultaneously or alternately. Mount display.
  2.  請求項1記載のヘッドマウントディスプレイであって、
     前記フォーカスフリー画像を表示するためにユーザの瞳孔位置に画像光を集束させる網膜走査型光学系を採用し、
     前記フォーカスフリー画像表示部から出射した画像光を反射する偏光ビームスプリッタと、
     前記偏光ビームスプリッタからの画像光を再帰反射するとともに、一部または全体に透明領域を有する透明再帰反射板とを備え、
     前記透明再帰反射板で再帰反射された画像光は、前記偏光ビームスプリッタを透過してユーザの眼に入射することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 1.
    In order to display the focus-free image, a retinal scanning optical system that focuses the image light at the position of the user's pupil is adopted.
    A polarization beam splitter that reflects the image light emitted from the focus-free image display unit,
    It is provided with a transparent retroreflector plate that retroreflects the image light from the polarization beam splitter and has a transparent region partially or entirely.
    A head-mounted display characterized in that the image light retroreflected by the transparent retroreflector is transmitted through the polarization beam splitter and incident on the user's eye.
  3.  請求項2記載のヘッドマウントディスプレイであって、
     前記網膜走査型光学系は、レンズ位置を調整することができる構成であり、
     レンズ位置調整により、ユーザの眼に焦点を調整することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 2.
    The retinal scanning optical system has a configuration in which the lens position can be adjusted.
    A head-mounted display characterized by adjusting the focus on the user's eyes by adjusting the lens position.
  4.  請求項2記載のヘッドマウントディスプレイであって、
     前記固定焦点画像を表示するための光学系は、
     前記固定焦点画像表示部を、前記偏光ビームスプリッタを介して前記フォーカスフリー画像表示部の反対側に対向して配置し、
     前記固定焦点画像表示部から出射した画像光は、前記偏光ビームスプリッタで反射してユーザの眼に入射することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 2.
    The optical system for displaying the fixed focus image is
    The fixed focus image display unit is arranged so as to face the opposite side of the focus free image display unit via the polarization beam splitter.
    A head-mounted display characterized in that image light emitted from the fixed-focus image display unit is reflected by the polarization beam splitter and incident on the user's eye.
  5.  請求項2記載のヘッドマウントディスプレイであって、
     前記フォーカスフリー画像表示部と前記固定焦点画像表示部とを共通の画像表示部で構成し、
     前記制御部は、前記共通の画像表示部の偏光状態を所定の周期で切り替えながら前記フォーカスフリー画像と前記固定焦点画像を交互に出射させ、
     前記固定焦点画像を表示させるための光学系として、前記偏光ビームスプリッタを介して前記共通の画像表示部の反対側に1/4波長板とミラーを配置し、
     前記固定焦点画像の画像光は、前記偏光ビームスプリッタを透過して前記1/4波長板に入射し、前記ミラーで反射して再度前記1/4波長板を通過し、前記偏光ビームスプリッタを反射して、ユーザの眼に入射することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 2.
    The focus-free image display unit and the fixed-focus image display unit are configured by a common image display unit.
    The control unit alternately emits the focus-free image and the fixed-focus image while switching the polarization state of the common image display unit at a predetermined cycle.
    As an optical system for displaying the fixed focus image, a 1/4 wave plate and a mirror are arranged on the opposite side of the common image display unit via the polarization beam splitter.
    The image light of the fixed focus image passes through the polarization beam splitter, enters the 1/4 wave plate, is reflected by the mirror, passes through the 1/4 wave plate again, and reflects the polarization beam splitter. A head-mounted display that is characterized by being incident on the user's eye.
  6.  請求項2記載のヘッドマウントディスプレイであって、
     前記フォーカスフリー画像表示部と前記固定焦点画像表示部を、偏光ビームスプリッタキューブの偏光面を挟んで直交する側面に配置し、
     前記偏光ビームスプリッタキューブから前記フォーカスフリー画像と前記固定焦点画像を混合して前記偏光ビームスプリッタに向けて出射させ、
     前記固定焦点画像を表示させるための光学系として、前記偏光ビームスプリッタを介して前記偏光ビームスプリッタキューブの反対側に1/4波長板とミラーを配置し、
     前記固定焦点画像の画像光は、前記偏光ビームスプリッタを透過して前記1/4波長板に入射し、前記ミラーで反射して再度前記1/4波長板を通過し、前記偏光ビームスプリッタを反射して、ユーザの眼に入射することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 2.
    The focus-free image display unit and the fixed-focus image display unit are arranged on side surfaces orthogonal to each other with the polarization plane of the polarization beam splitter cube in between.
    The focus-free image and the fixed-focus image are mixed from the polarization beam splitter cube and emitted toward the polarization beam splitter.
    As an optical system for displaying the fixed-focus image, a 1/4 wave plate and a mirror are arranged on the opposite side of the polarization beam splitter cube via the polarization beam splitter.
    The image light of the fixed focus image passes through the polarization beam splitter, enters the 1/4 wave plate, is reflected by the mirror, passes through the 1/4 wave plate again, and reflects the polarization beam splitter. A head-mounted display that is characterized by being incident on the user's eye.
  7.  請求項1記載のヘッドマウントディスプレイであって、
     前記制御部は、前記フォーカスフリー画像と前記固定焦点画像とを表示するとき、マスク関数を掛けて表示画面の略中央の前記固定焦点画像を遮断し、遮断された領域に前記フォーカスフリー画像を合成することで、前記フォーカスフリー画像を前記固定焦点画像よりも高解像度に表示することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 1.
    When displaying the focus-free image and the fixed-focus image, the control unit applies a mask function to block the fixed-focus image in the substantially center of the display screen, and synthesizes the focus-free image in the blocked region. A head-mounted display characterized by displaying the focus-free image at a higher resolution than the fixed-focus image.
  8.  請求項7記載のヘッドマウントディスプレイであって、
     ユーザの眼の視線方向及び瞳孔サイズを検出する視線方向検出部を備え、
     前記制御部は、前記視線方向検出部にて検出した視線方向及び瞳孔サイズに基づき、ユーザが前記フォーカスフリー画像を視認可能であるかを判定し、
     判定の結果、前記フォーカスフリー画像を視認可能でない場合には、前記フォーカスフリー画像を表示せず、前記固定焦点画像のみを表示することを特徴とするヘッドマウントディスプレイ。
    The head-mounted display according to claim 7.
    It is equipped with a line-of-sight direction detection unit that detects the line-of-sight direction and pupil size of the user's eyes.
    The control unit determines whether the focus-free image can be visually recognized by the user based on the line-of-sight direction and the pupil size detected by the line-of-sight direction detection unit.
    As a result of the determination, when the focus-free image is not visible, the head-mounted display is characterized in that the focus-free image is not displayed and only the fixed-focus image is displayed.
PCT/JP2020/035821 2020-09-23 2020-09-23 Head-mounted display WO2022064564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035821 WO2022064564A1 (en) 2020-09-23 2020-09-23 Head-mounted display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035821 WO2022064564A1 (en) 2020-09-23 2020-09-23 Head-mounted display

Publications (1)

Publication Number Publication Date
WO2022064564A1 true WO2022064564A1 (en) 2022-03-31

Family

ID=80845585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035821 WO2022064564A1 (en) 2020-09-23 2020-09-23 Head-mounted display

Country Status (1)

Country Link
WO (1) WO2022064564A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141262A (en) * 1992-10-26 1994-05-20 Olympus Optical Co Ltd Head mounted display device
WO2018220608A1 (en) * 2017-05-29 2018-12-06 Eyeway Vision Ltd Image projection system
JP2018538573A (en) * 2015-12-03 2018-12-27 アイウェイ ビジョン リミテッドEyeWay Vision Ltd. Image projection system
WO2019155916A1 (en) * 2018-02-09 2019-08-15 国立大学法人 福井大学 Image display device using retinal scan display unit and method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141262A (en) * 1992-10-26 1994-05-20 Olympus Optical Co Ltd Head mounted display device
JP2018538573A (en) * 2015-12-03 2018-12-27 アイウェイ ビジョン リミテッドEyeWay Vision Ltd. Image projection system
WO2018220608A1 (en) * 2017-05-29 2018-12-06 Eyeway Vision Ltd Image projection system
WO2019155916A1 (en) * 2018-02-09 2019-08-15 国立大学法人 福井大学 Image display device using retinal scan display unit and method therefor

Similar Documents

Publication Publication Date Title
JP7329105B2 (en) Depth-Based Foveated Rendering for Display Systems
TWI666467B (en) Eye projection system
US20120013988A1 (en) Head mounted display having a panoramic field of view
US10404975B2 (en) Retroreflective light field display
JP2019091051A (en) Display device, and display method using focus display and context display
US6803884B1 (en) Projection image display device
KR20170055908A (en) Cap type virtual reality display image system
JP2016212177A (en) Transmission type display device
US20220311992A1 (en) System and method for displaying an object with depths
WO2021113154A1 (en) Folded-beam, low-obliquity beam scanner
WO2022064564A1 (en) Head-mounted display
US20220350149A1 (en) Waveguide configurations in a head-mounted display (hmd) for improved field of view (fov)
TW202318072A (en) Optic system for head wearable devices
JP2000249975A (en) Video display device
JP2021103276A (en) Image display device
JP2019049724A (en) Projection system for eyes
TWI802826B (en) System and method for displaying an object with depths
KR100245332B1 (en) A head mount display
CN117850025A (en) Multi-beam emission system and method for near-eye display based on retina scanning
TW202416013A (en) System and method for multi-instances emission for retina scanning based near eye display
WO2022232236A1 (en) Waveguide configurations in a head-mounted display (hmd) for improved field of view (fov)
CN117242390A (en) Waveguide configuration for improving field of view (FOV) in Head Mounted Display (HMD)
CN117631275A (en) Head-mounted display, display device and image display method thereof
EP3370100A1 (en) Virtual and augmented reality apparatus, near-eye displays comprising the same, and method of displaying virtual and augmented reality
KR20010001314A (en) A head mount display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP