WO2018151511A1 - In-pipe running robot - Google Patents

In-pipe running robot Download PDF

Info

Publication number
WO2018151511A1
WO2018151511A1 PCT/KR2018/001900 KR2018001900W WO2018151511A1 WO 2018151511 A1 WO2018151511 A1 WO 2018151511A1 KR 2018001900 W KR2018001900 W KR 2018001900W WO 2018151511 A1 WO2018151511 A1 WO 2018151511A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
driving
carriage
power
braking
Prior art date
Application number
PCT/KR2018/001900
Other languages
French (fr)
Korean (ko)
Inventor
이무림
강병권
김기선
박수종
최철훈
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170020110A external-priority patent/KR20180093678A/en
Priority claimed from KR1020170085571A external-priority patent/KR102041608B1/en
Priority claimed from KR1020170085952A external-priority patent/KR102018670B1/en
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to SG11201907478TA priority Critical patent/SG11201907478TA/en
Priority to CN201880025018.3A priority patent/CN110520253B/en
Priority to JP2019543923A priority patent/JP6863656B2/en
Publication of WO2018151511A1 publication Critical patent/WO2018151511A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/40Constructional aspects of the body

Definitions

  • the present invention relates to an internal pipe traveling robot that travels inside a pipe.
  • Conventional robots include electric motors and electric cables for driving wheels or rollers.
  • the use of electric motors and cables is limited in piping such as high temperature, high pressure piping or gas pipes for power plants due to the risk of explosion by electric sparks. Therefore, there is a need for a mobile robot of an improved structure that can be driven by a power source other than an electric drive means for exploration inside the pipe which is at risk of explosion.
  • the pipes take the form of ellipses rather than full circles.
  • the piping is connected to a number of accessories such as 90 ° elbow, 45 ° elbow, tee and reducer to form a piping system.
  • the robot is required to travel in a straight line through the open part of the lower part of the piping system connected to the bottom view T pipe or to bend to the open part.
  • embodiments of the present invention is to provide a pipe inside the traveling robot that can move inside the complex pipe.
  • a braking circuit for forming a braking force to provide a traveling robot inside the pipe that can ensure a sufficient braking force while removing or minimizing the braking device of the travel robot.
  • Inner pipe driving robot supports the front and rear carriage that can travel along the pipe inner wall to support the inner wall of the pipe, and connects between the front carriage and the rear carriage and the holder is adjustable flexibility do.
  • the holder may include an air cell whose internal pressure is changed by injecting or discharging air, and flexibility may be adjusted according to the internal pressure of the air cell.
  • the air cell may include a first air cell installed adjacent to the front carriage and a second air cell installed adjacent to the rear carriage, and the first air cell and the second air cell may be spaced apart from each other.
  • the holder may be provided between the first air cell and the second air cell, and may include a plurality of support rollers spaced apart along the outer side of the holder.
  • the holder When passing through the curved tube, the holder may be flexible so that the front carriage and the rear carriage travel the curved tube.
  • the holder may be hardened so that the front carriage and the rear carriage travel in a straight line.
  • the roller unit may include a driving roller connected to the front end of the first link and a driving roller connected to the driving motor, and an auxiliary roller connected to the front end of the second link.
  • a drive motor that provides power to the front carriage and the rear carriage by receiving power from an external power source, moves the pipe together with the front carriage and the rear carriage, and the current between the external power source and the drive motor by the operation of a switch.
  • the power source is operated by connecting the internal power source by connecting the internal power source. It may include a control unit for compensating the power provided to the drive motor.
  • the external power source is fixed at a point outside the pipe, and the driving motor may receive power from the external power source through a power cable constituting at least a portion of the current path.
  • a voltage measuring unit measuring a voltage provided to the driving motor, wherein the controller is configured to connect the internal power supply when a voltage deviation between the voltage measured by the voltage measuring unit and the target voltage according to the target power occurs.
  • the voltage deviation value can be compensated for.
  • the apparatus may further include a current measuring unit configured to measure a current provided to the driving motor, and the controller may determine the target voltage based on a relationship between the current measured by the current measuring unit and the target power.
  • the controller may connect the internal power supply when the voltage deviation is greater than or equal to the reference voltage value, and determine that the reference voltage value is smaller as the measured current is larger.
  • a drive motor that receives power from an external power source and provides a driving force to the front and rear carriages, a drive circuit including the external power source and selectively connected to the drive motor, a braking circuit selectively connected to the drive motor, and the And a control unit for controlling any one of a driving circuit and a braking circuit to the connection state with the driving motor, wherein the control unit controls the driving circuit in the connection state in the driving modes of the front carriage and the rear carriage, In the braking mode, the braking circuit can be controlled in a connected state.
  • Both ends of the driving motor may be provided with a control switch selectively connected to any one of the driving circuit and the braking circuit, and the controller may control the control switch to control the connection state of the driving circuit and the braking circuit.
  • the braking circuit may include a resistance line including a resistor unit and a non-resistance line in a short circuit state in parallel, and a resistance switch connecting one of the resistance line and the non-resistance line between the anodes of the driving motor may be provided.
  • the control unit connects the resistance line in the braking circuit when the speed of the front carriage and the rear carriage is greater than or equal to the reference speed in the braking mode of the braking mode.
  • the controller may connect the resistive line in the braking circuit regardless of the speeds of the front carriage and the rear carriage in the braking mode of the braking mode.
  • the resistor unit may include an NTC device having a lower resistance value as the temperature increases.
  • the resistor unit includes a variable resistor whose resistance is adjusted by the controller and the NTC element are arranged in series, and the driving motor is connected to the driving circuit and the braking circuit through a power cable, and the variable resistor is the length of the power cable. The longer is, the smaller the resistance value can be adjusted.
  • Embodiments of the present invention can easily move inside the complex pipe connection.
  • FIG. 1 is a perspective view showing an internal pipe traveling robot according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a carriage applied to FIG. 1.
  • FIG. 3 is a perspective view illustrating a holder applied to FIG. 1.
  • Figure 4 is a view showing a state traveling in the downward direction to the bottom view T pipe of the internal pipe traveling robot according to an embodiment of the present invention.
  • FIG 5 is a view showing a state running in a straight line across the lower view T pipe of the internal pipe running robot according to an embodiment of the present invention.
  • FIG. 6 is a view schematically showing a state in which a traveling robot inside a pipe according to an embodiment of the present invention is connected to an internal power source and a power cable and located inside the pipe.
  • FIG. 7 is a view schematically illustrating a power circuit diagram in which an internal power source is provided in a traveling robot inside a pipe according to an embodiment of the present invention.
  • FIG. 8 is a view schematically illustrating a circuit related to a driving motor in which a braking circuit is provided in a pipe running robot according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing an internal pipe traveling robot according to an embodiment of the present invention.
  • the inside of the pipe traveling robot 100 may include a carriage 10 and a holder 20.
  • the internal pipe traveling robot 100 may be used for the purpose of inspecting the inside of the pipe.
  • a camera (not shown) may be installed in the traveling direction of the pipe internal traveling robot 100.
  • the carriage 10 includes a front carriage 10a and a rear carriage 10b.
  • the inner pipe traveling robot 100 may travel while supporting the inner wall of the pipe 200 with the carriage 10.
  • the holder 20 is located between the front carriage 10a and the rear carriage 10b, and connects the front carriage 10a and the rear carriage 10b with each other. Holder 20 may be changed in length and internal pressure by the injection of air.
  • control unit 90 may inject or discharge air into the holder 20 to make the holder 20 flexible, or the holder 20 may be hardened. have.
  • the holder 20 is flexible to mean a state in which the relative positions are variable so that the longitudinal directions of the front carriage 10a and the rear carriage 10b may be different from each other, and that the holder 20 is rigid means that the front carriage ( It means a state in which the relative position or the longitudinal direction between 10a) and the rear carriage 10b is fixed.
  • the front carriage (10a) or the rear carriage (10b) can be supported or fixed to the rear carriage (10b) or front carriage (10a) through the holder 20 can be moved. have.
  • the pipe internal traveling robot 100 having the carriage 10 and the holder 20 in which the state can be changed may correspond to the change in the diameter of the pipe 200, and passes through the curved pipe or the lower-view T pipe 210. You can drive straight. At this time, the flexibility and the length of the holder 20 can be varied, thereby changing the relative longitudinal direction or the distance between the front carriage and the rear carriage.
  • FIG. 2 is a perspective view illustrating a carriage applied to FIG. 1.
  • the carriage 10 may include an air cylinder 12, a plate portion 11, and a link portion 13.
  • the carriage 10 may be supported by the inner wall of the pipe 200 to travel, and may be spaced apart from the inner wall of the pipe 200.
  • the carriage 10 includes an air cylinder 12. Air may be introduced or discharged into the air cylinder 12, and thus the air cylinder 12 may be expanded or contracted in length.
  • the controller 90 may determine the relative position restraint between the front carriage 10a and the rear carriage 10b by adjusting the flexibility of the holder 20.
  • the air cylinders 12 of the front carriage 10a and the rear carriage 10b may be controlled by a controller or the like, respectively.
  • air may be introduced into the air cylinder 12 of the front carriage 10a and air may be discharged to the air cylinder 12 of the rear carriage 10b.
  • the front carriage 10a is supported by the inner wall of the pipe 200 and can run, and the rear carriage 10b is spaced apart from the inner wall of the pipe 200 and cannot travel.
  • the rear carriage 10b may move inside the pipe 200 by being towed by the driving of the front carriage 10a.
  • the plate portion 11 includes a first plate 11a and a second plate 11b.
  • the first plate 11a may be connected to the rear end of the air cylinder 12.
  • the second plate 11b is connected to the first plate 11a and the guide post 16 and may be connected to and fixed to an end of the guide post 16.
  • the separation distance from the second plate 11b may be changed by the expansion or contraction of the air cylinder 12.
  • the first plate 11a is connected to the rear end of the air cylinder 12, and the guide post 16 is positioned between the first plate 11a and the second plate 11b, and the first plate 11a. 11a and the second plate 11b are connected to each other outside.
  • the first plate 11a installed at the rear end of the air cylinder 12 is movable by the expansion and contraction of the air cylinder 12 along the guide post 16.
  • the second plate 11b provided at the end of the guide post 16 is fixed.
  • the first plate 11a installed at the rear end of the air cylinder 12 moves along the guide post 16.
  • a surface of the first plate 11a and the second plate 11b facing each other may include a link part 13 installed to rotate.
  • the link portion 13 includes a first link 13a and a second link 13b and is installed on the first plate 11a and the second plate 11b, respectively.
  • first link 13a is installed on the first plate 11a and the second link 13b is installed on the second plate 11b, and the first link 13a and the second link 13b are provided. May be connected to an X character. Accordingly, the link portion 13 may vary in length in the direction perpendicular to the carriage 10 according to the separation distance between the first plate 11a and the second plate 11b.
  • the separation distance between the first plate 11a and the second plate 11b may be narrowed to adjust the link portion 13 to contact the inner wall of the pipe 200. have.
  • the distance between the first plate 11a and the second plate 11b may be increased to adjust the link portion 13 to contact the inner wall of the pipe 200. have.
  • a plurality of link portions 13 including the first link 13a and the second link 13b connected to the X letter may be provided along the outer circumferential surface of the plate portion 11.
  • three or more link portions 13 may be installed on the outer circumferential surface of the plate portion 11 at regular intervals. Through this, the carriage 10 may be more stably supported on the inner wall of the pipe 200 to be positioned at the inner center.
  • the roller portion 14 may be connected to the front end of the link portion 13.
  • the roller unit 14 may contact the inner wall of the pipe 200 to drive the carriage 10.
  • the link portion 13 may contact the inner wall of the pipe 200 via the roller portion 14.
  • the link part 13 may be supported by the inner wall of the pipe 200 by pressing the roller part 14.
  • the roller unit 14 may include a driving roller 14a and an auxiliary roller 14b.
  • the driving motor 15 may be connected to the driving roller 14a.
  • the driving roller 14a may be connected to the tip of the first link 13a.
  • the driving motor 15 may be connected to the driving roller 14a and connected to the side of the first link 13a.
  • the auxiliary roller 14b may be installed in the second link 13b.
  • the auxiliary roller 14b may guide the carriage 10 so that the carriage 10 can run stably without being separated from the inner wall of the pipe 200. Can be.
  • FIG. 3 is a perspective view illustrating a holder applied to FIG. 1.
  • the holder 20 may be positioned between the front carriage 10a and the rear carriage 10b and connect the front carriage 10a and the rear carriage 10b to each other.
  • the holder 20 may include an air cell 22 whose length and pressure are changed by the injection or discharge of air through the control of the controller 90. Accordingly, the holder 20 can be flexibly or rigidly connected between the front carriage 10a and the rear carriage 10b.
  • the holder 20 injects air into the air cell 22 to increase the internal pressure
  • either the front carriage 10a or the rear carriage 10b which is not supported by the inner wall of the pipe 200 is The pipe 200 may be fixed to or supported by the rear carriage 10b or the front carriage 10a supported by the inner wall. That is, the holder 20 may transmit a bearing force between the front carriage 10a and the rear carriage 10b.
  • the holder 20 is an air cell 22. The internal pressure is reduced by releasing air from the air.
  • the holder 20 may be flexible, and the length of the holder 20 may also change according to a change in the relative position of the front carriage 10a and the rear carriage 10b.
  • the holder 20 may include a plurality of air cells 22.
  • it may include a first air cell 22a installed adjacent to the front carriage 10a and a second air cell 22b installed adjacent to the rear carriage 10b.
  • the first air cell 22a and the second air cell 22b may be spaced apart from each other.
  • the holder 20 including the plurality of air cells 22 may adjust the flexibility in stages by injecting or discharging air into one of the air cells 22.
  • the controller 90 discharges air from the first air cell 22a to lower the internal pressure, and when the front carriage 10a completely enters the curved tube, The air pressure of the air cell 22b may be discharged to lower the internal pressure, and the air may be injected into the first air cell 22a to increase the internal pressure to further improve the traction force.
  • the support roller 23 may be connected between the first air cell 22a and the second air cell 22b.
  • the support rollers 23 may be connected in the radial direction of the first air cell 22a and the second air cell 22b and spaced apart in the circumferential direction.
  • the support roller 23 When the holder 20 is changed into a flexible state due to the injection or discharge of air into the first air cell 22a and the second air cell 22b, the support roller 23 has the holder 20 removed from the pipe 200. It can be assisted to be easily moved.
  • Figure 4 is a view showing a state traveling in the downward direction to the bottom view T pipe of the internal pipe traveling robot according to an embodiment of the present invention.
  • the internal pipe traveling robot 100 may move in the open downward direction of the lower view T pipe 210.
  • the present invention is not limited thereto, and the pipe driving robot 100 may move the curved pipe.
  • the front carriage 10a supported on the inner wall of the pipe 200 while moving in the running direction of the pipe inner traveling robot 100 is adjacent to the open downward direction of the downward view T pipe 210 while supporting force of the open area. This will naturally bend in the downward direction.
  • control unit 90 is the first air cell 22a of the holder 20 to discharge the air and lower the internal pressure so that the front carriage 10a can be bent downward.
  • the front carriage 10a is moved deeper and further downward, and comes into contact with and supports the inner wall of the pipe 200 connected downward.
  • the rear carriage 10b moves along the movement path of the front carriage 10a, and the second air cell 22b discharges air to lower the rear carriage 10b and lowers the internal pressure.
  • the support roller 23 of the holder 20 may assist to smoothly move the curved inner traveling robot 100 in contact with the inner wall of the lower view T pipe (210).
  • the first air cell 22a raises the internal pressure before the second air cell 22b and may improve the traction force.
  • FIG 5 is a view showing a state running in a straight line across the lower view T pipe of the internal pipe running robot according to an embodiment of the present invention.
  • the inner pipe traveling robot 100 is supported by the front carriage 10a and the rear carriage 10b on the inner wall of the pipe 200 to be driven by the driving roller 14a. Air is injected into the holder 20 to increase the internal pressure of the holder 20.
  • the link portion 13 of the front carriage 10a is spaced apart from the inner wall of the pipe 200. For example, by discharging air to the air cylinder 12 of the front carriage 10a, the first plate 11a and the second plate 11b of the air cylinder 12 are separated from each other, so that the link portion 13 is opened.
  • the pipe 200 may be spaced apart from the inner wall.
  • the inner pipe traveling robot 100 is supported on the inner wall of the pipe 200 by the rear carriage 10b, and travels in the traveling direction by the rear carriage 10b.
  • the front carriage 10a supported by the rear carriage 10b may move in a straight line through the open lower portion of the lower view T pipe 210. Thereafter, the front carriage 10a injects air into the air cylinder 12 to move the link portion 13 toward the inner wall of the pipe 200 to contact the roller portion 14. The front carriage 10a may be supported by the inner wall of the pipe 200 to travel.
  • the rear carriage 10b spaces the link portion 13 from the inner wall of the pipe 200.
  • the air is discharged to the air cylinder 12 of the rear carriage 10b so that the first plate 11a and the second plate 11b are spaced apart from each other so that the link portion 13 is connected to the inner wall of the pipe 200. Can be spaced apart.
  • the rear carriage 10b is supported by the front carriage 10a to travel past the open lower portion of the lower view T pipe 210.
  • the holder 20 injects air when the traveling robot 100 passes through the open lower portion of the bottom view T pipe 210 to greatly increase the internal pressure and keeps it tight. As such, by changing the properties of the holder 20 rigidly or flexibly, the pipe internal traveling robot 100 can travel through the open lower portion of the lower view T pipe 210 and travel smoothly through the curved pipe. can do.
  • Figure 6 is a diagram schematically showing the interior of the pipe traveling robot 100 in accordance with an embodiment of the present invention traveling through the pipe 200 by receiving power through the external power source 250.
  • the internal driving pipe 100 receives a power from an external power source 250 and provides a driving motor for providing driving force to the front carriage 10a and the rear carriage 10b.
  • An internal power source 70 that moves inside the pipe 200 together with the carriage 10 and is selectively connected to a current path between the external power source 250 and the driving motor 15 by the operation of the switch 75. ; And when the power deviation between the power provided to the driving motor 15 and the target power currently required by the external power supply 250 is generated, by operating the switch 75 to connect the internal power supply 70.
  • the controller 90 may compensate for the power provided to the driving motor 15 by the power deviation.
  • the carriage 10 including the front carriage 10a and the rear carriage 10b may be provided with a driving roller 14a.
  • the driving roller 14a By the driving of the driving roller 14a, the carriage 10 travels inside the pipe 200, and the driving motor 15 receives power from the external power source 250 to provide driving force to the driving roller 14a. do.
  • the driving motor 15 may be provided as one and may have a structure for providing driving force to the plurality of driving rollers 14a, or may be provided in plurality to provide driving force to each driving roller 14a separately.
  • FIG. 6 illustrates a structure in which a plurality of driving rollers 14a are provided on the carriage 10 and driving motors 15 are provided for each of the driving rollers 14a to provide driving force as an embodiment of the present invention. .
  • the inside of the pipe traveling robot 100 is the pipe 200 outside.
  • An external power source 250 is provided to transfer power from the external power source 250 to the driving motor 15.
  • the carriage 10 may be provided with an internal power source 70 separately from the external power source 250.
  • the internal power source 70 moves inside the pipe 200 together with the carriage 10, and selectively operates in the current path between the external power source 250 and the driving motor 15 by the operation of the switch 75. Connected.
  • the internal power source 70 may be provided in a state in which the carriage 10 or other components are mounted.
  • the internal power source 70 mounted in the carriage 10 is illustrated as an embodiment of the present invention.
  • FIG. 7 schematically shows a circuit connected to the current path between the external power source 250 and the driving motor 15 by the switch 75.
  • the switch 75 is provided on the current path of the drive motor 15 to selectively connect or disconnect the internal power source 70 on the path of the current delivered to the drive motor 15.
  • the operation of the switch 75 is controlled by the control unit 90, the control unit 90 operates the switch 75 in response to a user's operation signal, or operate the switch 75 according to a preset condition You can.
  • the internal power source 70 is not a main power source that is always connected to the current path delivered to the driving motor 15, the internal power source 70 may be provided in a smaller and lighter state than the external power source 250. At the same time with the 250 separately equipped with an internal power supply 70 on the traveling robot 100 is advantageous for driving.
  • the controller 90 operates the switch 75 when the power deviation between the power provided to the driving motor 15 and the target power currently required by the external power source 250 is generated. By connecting the 70 to compensate for the power provided to the drive motor 15 by the power deviation.
  • the control unit 90 may be provided in the traveling robot 100 or may be provided in a user's operation device. Hereinafter, the control unit 90 will be described with reference to the control robot 90 provided in the traveling robot 100 according to an embodiment of the present invention. do.
  • the controller 90 determines a current target power for driving the traveling robot 100, and the target power refers to power that satisfies the output required by the current driving motor 15 for traveling of the driving robot 100. do.
  • the target power may be determined based on the type of the driving motor 15 or the current required acceleration determined by the user.
  • the controller 90 determines whether a power deviation between the power provided to the driving motor 15 and the target power occurs.
  • the power provided to the driving motor 15 is provided from the external power source 250 spaced apart from the driving robot 100, and may be provided with a power different from the power set in the external power source 250 for various reasons.
  • the controller 90 controls the switch 75 to turn the internal power 70 into the driving motor. Connect on the current path to (15).
  • the power by the external power source 250 and the power by the internal power source 70 are delivered to the driving motor 15 together to compensate for the power deviation by the power by the internal power source 70, in various situations. It is possible to effectively cope with the power loss that may occur.
  • the external power source 250 is fixed to a point outside the pipe 200, the drive motor 15 is connected to the power cable 255 Power may be supplied from the external power source 250 through the power supply.
  • one embodiment of the present invention provides a main power source as an external power source 250 outside the pipe 200 to reduce the volume and load of the traveling robot 100. Means for supplying power from the external power source 250 to the driving motor 15 will be required. In one embodiment of the present invention, a power cable 255 is used.
  • FIG. 7 illustrates a circuit in which power is supplied from the external power source 250 to the driving motor 15 through the power cable 255.
  • the power cable 255 there may be a line resistance 257 generated from the power cable 255 itself, the power loss may be generated by the line resistance 257.
  • FIG. 7 shows the line resistance 257 caused by the power cable 255 itself. Meanwhile, the line resistance 257 existing in the power cable 255 increases as the length of the power cable 255 increases. When the line resistance 257 increases, in particular, the voltage transmitted from the external power source 250 to the driving motor 15 is lost, and thus a power loss occurs.
  • the driving robot 100 receives power from the external power source 250 fixed at one point outside the pipe 200 through the power cable 255.
  • a power cable 255 having an increased length is required, and power loss due to the line resistance 257 existing in the power cable 255 needs to be compensated for.
  • the driving motor 15 increases the amount of current consumed in order to output a high torque.
  • the voltage drop generated is increased together, and the amount of loss of power transmitted from the external power source 250 is also increased.
  • one embodiment of the present invention is driven by using the external power source 250 to reduce the volume and load of the traveling robot 100, and at the same time having the internal power source 70 and the power that can occur when driving To compensate for the loss.
  • one embodiment of the present invention provides an external power source 250 fixed at a point outside the pipe 200, and the electric power from the external power source 250 to the driving motor 15 through the power cable 255. Even if it is provided, despite the increase in the mileage or the power consumption of the drive motor 15, it is possible to stably satisfy the current target power required for the drive motor 15 by compensating for the power deviation through the internal power source 70. have.
  • the inner pipe running robot 100 may further include a voltage measuring unit 65 for measuring the voltage provided to the drive motor 15
  • the controller 90 connects the internal power supply 70 to compensate for the voltage deviation value. Can be.
  • control unit 90 may determine the power actually provided to the driving motor 15 through various methods, but in one embodiment of the present invention, the control unit 90 may drive the driving motor through the voltage measuring unit 65. The power provided to the driving motor 15 is determined by measuring the voltage provided to the 15.
  • the controller 90 determines an output currently required for the driving motor 15 by the user and determines a target power for the output. In addition, the current amount provided from the external power source 250 is adjusted to implement the target power.
  • the target power will normally be satisfied if the expected voltage for the regulated amount of current is provided to the drive motor 15, but if the voltage actually provided to the drive motor 15 has a voltage deviation with respect to the target power, the power deviation is Occurs.
  • the controller 90 determines the voltage actually transmitted to the driving motor 15 through the voltage measuring unit 65, and between the target voltage and the measured voltage determined by the target power. It is to determine whether there is a voltage deviation.
  • the controller 90 When there is the voltage deviation, the controller 90 operates the switch 75 shown in FIG. 7 toward the internal power supply 70, so that the voltage by the internal power supply 70 is transmitted by the external power supply 250. Can compensate. By compensating for the voltage delivered to the drive motor 15, the loss of power provided to the drive motor 15 is compensated.
  • the inner pipe running robot 100 may further include a current measuring unit 63 for measuring the current provided to the drive motor 15
  • the controller 90 may determine the target voltage based on a relationship between the current measured by the current measuring unit 63 and the target power.
  • FIG. 7 shows a state in which a current measuring unit 63 is provided on a current path provided to the driving motor 15 according to an embodiment of the present invention.
  • the controller 90 controls the current value transmitted to the driving motor 15 according to the target power.
  • control unit is provided such that a current value for achieving a target power is provided to the driving motor 15 with respect to the theoretical voltage provided by the external power source 250.
  • the current value set by the controller 90 and the current value provided to the actual driving motor 15 may have deviations for various reasons such as a control cause or a physical cause.
  • the exemplary embodiment of the present invention measures the actual current value provided to the driving motor 15 through the current measuring unit 63, and considers the measured current value with respect to the current target power. Calculate the voltage.
  • the embodiment of the present invention accurately and effectively considers the power deviation that may be generated by various causes by considering not only the voltage provided to the driving motor 15 but also the current deviation indicated by the current value.
  • the target power for driving of the driving robot 100 can be achieved with high reliability.
  • control unit 90 can connect the internal power supply 70 when the voltage deviation is more than the reference voltage value, the greater the measured current
  • the reference voltage value may be determined as a smaller value.
  • the voltage deviation between the voltage measured by the voltage measuring unit 65 and the target voltage may be caused by instability of the external power source 250, physical failure of the power cable 255, or a sudden change in driving state.
  • the voltage deviation generated when the driving change (acceleration change) of the traveling robot 100 is abruptly may be a natural result generated temporarily, and the influence on the running of the driving robot 100 may be weak. .
  • the power may be supplied through the internal power supply 70 in one embodiment of the present invention.
  • the reference voltage value may be determined as various values through various methods.
  • the reference voltage value may be determined statistically by grasping a voltage deviation accompanying unstable driving of the driving motor 15 due to power shortage through a plurality of experiments.
  • the reference voltage value may be changed in consideration of the control strategy side based on the statistical result. For example, if the emphasis is on stability, the reference voltage value may be set higher, and if the emphasis is on effectiveness, the reference voltage value may be set lower.
  • control unit 90 determines that the reference voltage value is smaller as the current provided to the driving motor 15 increases.
  • the large measured current means that the target power required for the driving motor 15 is large.
  • the situation where the target power is large corresponds to a situation in which a large load occurs in the driving robot 100 or a rapid acceleration situation.
  • driving the drive motor 15 unstable by the power loss affects the safety of the driving robot 100.
  • the reference voltage value is set for stability and effectiveness of the control of the driving robot 100, and the lower the reference voltage value is determined as the current provided to the driving motor 15 corresponds to a high current. This improves the running stability.
  • the internal pipe driving robot 100 receives power from an external power source 250 to provide driving force to the carriage 10 or the driving roller 14a.
  • the driving circuit 120 may be controlled in a connected state
  • the braking circuit 130 may be controlled in a connected state.
  • control unit 90 of the present invention may be provided as separate entities independent of each other according to each function, or may exist in a single configuration including a plurality of functions described above.
  • FIG. 6 illustrates an external power source 250 located outside the pipe 200 in order to reduce the volume and load of the traveling robot 100 as an embodiment of the present invention, and using the power cable 255 to drive the motor 15. A structure for providing power to is shown.
  • FIG. 8 schematically shows a driving circuit 120 and a braking circuit 130 according to an embodiment of the present invention.
  • the driving circuit 120 includes an external power source 250 and is provided to be selectively connected to the driving motor 15. Referring to FIG. 8, the driving circuit 120 may include an external power source 250 and may be connected to both ends of the driving motor 15 through a control switch 122.
  • the control switch 122 connects either the driving circuit 120 or the braking circuit 130 to the driving motor 15 by the control unit 90.
  • the control switch 122 alternatively connects either the driving circuit 120 or the braking circuit 130 with the driving motor 15.
  • the braking circuit 130 is released and separated from the driving motor 15.
  • the driving circuit 120 is in the released state. And separated from the driving motor 150.
  • FIG. 8 includes a line including an external power source 250 according to an embodiment of the present invention. Both ends of the line are shown to be selectively connected to both ends of the line provided with the drive motor 15 through the control switch 122.
  • the braking circuit 130 is a circuit that does not include the external power source 250, it is selectively connected to the drive motor 15 through the control of the control switch 122. 8 schematically illustrates the braking circuit 130.
  • the braking circuit 130 does not include an external power source 250.
  • the driving motor 15 operates as a generator that is generated by an external force.
  • a braking mode that consumes the external force of the drive motor 15 is implemented.
  • the braking circuit 130 is connected to both ends of the line on which the driving motor 15 is provided.
  • the braking circuit 130 may be provided to short-circuit the positive poles of the driving motor 15, and include resistors 136 and 137 as described below to electrically connect the positive poles of the driving motor 15. You can also connect
  • the braking circuit 130 that selectively connects the positive poles of the driving motor 15 may be provided in various structures, but in FIG. 8, the ends of the driving motor 15 are respectively provided in FIG. 8.
  • the control switch 122 is provided, and the structure is connected to the anode of the drive motor 15 in an alternative relationship with the drive circuit 120 by the control of the control switch 122 is shown.
  • the braking circuit 130 may be provided on the traveling robot 100 or may be provided on the external power source 250 side.
  • the driving circuit 120 and the braking circuit 130 may be electrically connected to the driving motor 15 through a power cable 255. .
  • FIG. 8 illustrates a structure in which the braking circuit 130 is provided in parallel with the driving circuit 120 and electrically connected to the driving motor 15 through a power cable 255. .
  • the driving circuit 120 and the braking circuit 130 are alternatively controlled in the connected state and the released state through the control switch 122.
  • the controller 90 controls any one of the driving circuit 120 and the braking circuit 130 in a connected state. That is, when the driving circuit 120 is controlled in the connected state by the controller 90, the braking circuit 130 is controlled in the released state, and when the braking circuit 130 is controlled in the connected state, the driving circuit 120 is controlled. It can be controlled in a released state.
  • Determination of the connection state of the driving circuit 120 and the braking circuit 130 may be determined by a user's control module manipulation. For example, when the user operates to decelerate or stop the driving robot 100 according to the present invention by using a control module provided to control the driving state of the driving robot 100, the controller 90 drives the driving circuit according to the corresponding signal. The connection state of the furnace 120 and the braking circuit 130 is determined.
  • the controller 90 controls the driving circuit 120 to be in a connected state in the driving mode of the carriage 10, and controls the braking circuit 130 to be in a connected state in the braking mode of the carriage 10. .
  • the driving mode refers to a state in which power is supplied to the driving motor 15 to generate power
  • the braking mode refers to a state in which no power is generated in the driving motor 15, and a braking force is formed to stop the carriage 10.
  • the controller 90 may determine the driving mode and the braking mode through a user's operation signal. That is, when the user manipulates the driving motor 15 to generate power for driving, the controller 90 may recognize the driving mode, and the user decelerates the speed of the separate stop button or the driving robot 100. Control unit 90 may control the controller 90 to recognize the braking mode.
  • the controller 90 controls the driving circuit 120 in a connected state. Accordingly, power may be supplied from the external power source 250 to the driving motor 15, and the driving motor 15 may provide driving force to the driving roller 14a using the power of the external power source 250.
  • the controller 90 controls the driving circuit 120 in a released state while controlling the braking circuit 130 in a connected state. Simultaneously with the release of the driving circuit 120, the driving motor 15 is cut off from the power supply to generate a driving force, and the braking circuit 130 is connected to function as a generator that is generated by external force.
  • the inertia force or the load of the traveling robot 100 that acts on the driving robot 100 acts as an external force in the driving roller 14a in the driving state, and the external force eventually drives the motor 15.
  • the drive motor 15 is operated as a generator through the external force.
  • the driving robot 100 acts as a braking force that consumes the external force.
  • the traveling robot 100 of the present invention traveling inside the pipe 200 has a narrow traveling space, it is advantageous to reduce the volume or the load, as in the embodiment of the present invention. 130, it is possible to form a braking force even without providing a separate braking device in the drive roller (14a), it is advantageous to reduce the volume or load of the traveling robot 100 running inside the pipe.
  • a braking device may be provided together with the braking circuit 130, but in this case, the size and load of the braking device can be greatly reduced.
  • an embodiment of the present invention is advantageous to implement the driving robot 100 stop in the vertical pipe by using the braking circuit 130.
  • the vertical pipe is preferably a pipe 200 extending perpendicularly to the ground, and means a pipe 200 whose weight of the traveling robot 100 is parallel to or similar to the traveling direction.
  • the stopping of the traveling robot 100 in the vertical pipe should provide a braking force corresponding to an external force caused by a load acting on the traveling robot 100 as well as an inertial force existing in the traveling robot 100 according to the driving state.
  • the braking circuit 130 by using the braking circuit 130 as described above, the external force acting on the driving motor 15 is consumed and provided as a reaction force.
  • the external force due to the load is continuously To be maintained, a braking force for stopping the traveling robot 100 should be continuously provided.
  • One embodiment of the present invention is a braking system of the concept of consuming an external force acting on the drive motor 15 through a braking circuit 130 connecting the positive pole of the drive motor 15, a separate to form a braking force No power supply is required, and the greater the external force, the greater the braking power available.
  • an embodiment of the present invention continuously applies a braking force for external force to the traveling robot 100 without a separate power supply through the braking circuit 130. It is advantageous because it can provide.
  • FIG. 8 illustrates a driving circuit 120 and a braking circuit 130 according to an embodiment of the present invention.
  • an embodiment of the present invention is the driving motor 15.
  • the control unit 90 controls the control switch 122 to The connection state of the driving circuit 120 and the braking circuit 130 is controlled.
  • control switch 122 may be provided at both ends of the line including the drive motor 15, respectively, as shown in FIG.
  • a pair of control switches 122 are provided and positioned at both ends of the driving motor 15.
  • the internal traveling pipe 100 has a resistance line 135 and a short circuit state in which the resistance parts 136 and 137 are included in the braking circuit 130.
  • Resistive line 138 of the is provided in parallel, a resistance switch 133 for connecting any one of the resistance line 135 and the non-resistance line 138 between the anode of the drive motor 15 may be provided. have.
  • the resistance line 135 includes resistance parts 136 and 137, and the resistance line 138 does not include the resistance parts 136 and 137, thereby shorting the positive pole of the external power supply 250. It means the line connecting with state.
  • the braking force required for the traveling robot 100 in the braking mode of the traveling robot 100 may vary in size.
  • An embodiment of the present invention includes a resistance line 135 and a non-resistance line 138 separately to form the braking force in various sizes.
  • the driving motor 15 operates as a generator, and the power consumed by the braking circuit 130 becomes a braking force acting on the driving motor 15.
  • the power is controlled by controlling the amount of power consumed by the braking circuit 130. Adjust the braking force formed in the motor 15.
  • the resistance line 135 including the resistance parts 136 and 137 has a larger size of a resistor that consumes power than the non-resistance line 138 which forms a short state because there is no resistance. The amount of power consumed by the voltage is reduced.
  • the braking circuit 130 to which the resistance line 135 is connected consumes less power than the power of the non-resistance line 138 for the same time, and thus the braking force provided to the driving motor 15 is smaller. Lose.
  • the resistive line 138 there are no resistors 136 and 137, and the power consumption of the driving motor 15 is consumed in the entire line, and the resistance is very small compared to the resistance line 135, and the same time. While consuming more power.
  • the braking circuit 130 to which the resistivity line 138 is connected provides a greater braking force to the driving motor 15.
  • one embodiment of the present invention provides a resistance line 135 and a non-resistance line 138 which are selectively and alternatively connected to the braking circuit 130, thereby varying the braking force required for the traveling robot 100. To meet.
  • the resistance line 135 and the non-resistance line 138 are alternatively connected to the braking circuit 130 by the operation of the resistance switch 133, and the controller 90 controls the resistance switch 133 to control the resistance line.
  • One of the furnace 135 and the resistivity line 138 is connected to the braking circuit 130.
  • the internal pipe running robot 100 when the control unit 90 is the normal braking mode of the braking mode, the speed of the carriage 10 is greater than the reference speed of the braking circuit ( The resistance line 135 is connected at 130, and when the resistance speed is less than the reference speed, the resistance line 138 may be connected at the braking circuit 130.
  • the braking mode may be largely divided into a general braking mode and a rapid braking mode.
  • the controller 90 may recognize the sudden braking mode.
  • the difference over a certain level for recognizing the sudden braking mode may be variously set as necessary, and may be determined through experiments and statistics. In addition, this is to be understood by way of example, it is possible to set the rapid braking mode in a variety of other ways.
  • the controller 90 may recognize the case that does not correspond to the criterion of the rapid braking mode as the general braking mode. Furthermore, the user may be preset in one of the general braking mode and the rapid braking mode so that subsequent control may be controlled in either the general braking mode or the rapid braking mode.
  • the rapid braking mode refers to a mode in which the braking force is directly formed to a maximum magnitude, and the general braking mode is at least initially greater than the braking force of the braking mode during braking to reduce the shock caused by braking. It can be understood as a braking mode that forms a low braking force.
  • the criteria for distinguishing the general braking mode and the rapid braking mode will be understood by way of example, and may be set in various ways in consideration of the above purpose.
  • the controller 90 connects the resistance line 135 on the braking circuit 130 when the speed of the carriage 10 is greater than or equal to the reference speed when determined as the general braking mode. As described above, the resistance line 135 has a smaller amount of braking force formed in the driving motor 15 compared to the non-resistance line 138.
  • the resistance line 135 is connected to the braking circuit 130 when the reference speed is higher than the reference speed, thereby alleviating the shock due to the braking.
  • the reference speed is a reference for the alternative connection of the resistance line 135 and the non-resistance line 138, and the value thereof may be variously determined in consideration of a control strategy. For example, when the speed of braking is pursued, the reference speed may be set to a large value, and when the shock relief due to braking is pursued, the reference speed may be set to a smaller value.
  • the control unit 90 connects the resistive line 138 in the braking circuit 130 to prevent braking force. To increase.
  • the braking circuit 130 to which the resistivity line 138 is connected provides a greater braking force to the driving motor 15 than when the resistance line 135 is connected, and drives the braking force by the resistance line 135 above the reference speed.
  • the impact is applied to the motor 15 to alleviate the impact, and the braking force by the resistive line 138 is applied to the driving motor 15 to form the maximum braking force for the final stationary state at the reference speed.
  • the control unit 90 in the braking mode of the braking mode regardless of the speed of the carriage 10 in the braking circuit 130
  • the resistivity line 138 may be connected.
  • the rapid braking mode is to prioritize braking of the carriage 10 more quickly than to alleviate a shock that may act on the carriage 10 according to the braking.
  • the present invention provides a maximum braking force regardless of the speed of the carriage (10).
  • the control circuit 90 connects the resistive line 138 to the braking circuit 130 to short-circuit the positive pole of the external power supply 250, thereby closing the braking circuit 130.
  • an embodiment of the present invention may include an NTC element 136 in which the resistance values are lowered as the resistances 136 and 137 increase in temperature.
  • the NTC (NEGATIVE TEMPERATURE COEFFICIENT OF RESISTANCE) device refers to a resistance device having a characteristic that the resistance value decreases as the temperature of the device increases.
  • the resistance line 135 provides resistors 136 and 137 to consume the external force of the driving motor 15 from the resistors 136 and 137 as power.
  • the power is mainly consumed by heat, and thus, the resistance parts 136 and 137 increase in temperature as the braking mode continues.
  • the NTC element 136 provided in the resistor units 136 and 137 of the present invention has a lower resistance value as braking continues, and accordingly, the amount of power consumed by the resistor units 136 and 137 increases, thereby increasing the driving motor ( The braking force provided in 15) is gradually increased.
  • one embodiment of the present invention includes a resistance line 135 for forming a lower braking force in the driving motor 15 than the resistivity line 138, but the resistance portions 136 and 137 of the resistance line 135 are provided.
  • the braking force is gradually increased by the NTC element 136 as the braking proceeds in the braking mode connecting the resistance line 135.
  • the braking force provided to the traveling robot 100 is gradually increased to alleviate the impact, and the braking force of sufficient magnitude for stopping of the traveling robot 100 may be provided as the braking process proceeds.
  • a variable resistor in which the resistance value is adjusted by the control unit and the NTC element are disposed in series in the resistor unit.
  • the driving motor is selectively connected to the driving circuit and the braking circuit through a power cable, and the variable resistor may be adjusted to have a smaller resistance value as the length of the power cable is longer.
  • the braking circuit 130 uses the line resistance 257 which exists in the power cable 255.
  • the braking force of the driving motor 15 may be formed in the braking circuit 130.
  • the size of the line resistance 257 present in the power cable 255 may vary according to the length of the power cable 255, and thus the resistance line using the line resistance 257 of the power cable 255 may vary.
  • the forming of the braking force of the furnace 135 may vary in magnitude of the braking force, and therefore, an embodiment of the present invention includes a variable resistor 137 on the resistance line 135.
  • the controller 90 may control the variable resistor 137 such that the sum of the line resistance 257 and the variable resistor 137 of the power cable 255 achieves a predetermined value. For example, when the length of the power cable 255 increases and the line resistance 257 becomes large, the controller 90 adjusts the size of the variable resistor 137 to a smaller value, and the length of the power cable 255 shortens the line resistance 257. When the size decreases, the controller 90 adjusts the size of the variable resistor 137 to keep the resistance value provided by the braking circuit 130 constant.
  • one embodiment of the present invention configures the braking circuit 130 using the line resistance 257 of the power cable 255, even if the line resistance 257 of the power cable 255 changes, the driving motor ( The variable resistor 137 is disposed so that the braking force provided to 15 may be uniformly formed.
  • link part 13a first link

Abstract

An in-pipe running robot is disclosed. An in-pipe running robot according to an embodiment of the present invention may comprise: a front carriage and a rear carriage which are supported by an inner wall of a pipe and can run along the inner wall of the pipe; and a holder which connects the front carriage and the rear carriage and has an adjustable flexibility.

Description

배관내부 주행로봇Piping Inside Robot
본 발명은 배관내부를 주행하는 배관내부 주행로봇에 관한 것이다.The present invention relates to an internal pipe traveling robot that travels inside a pipe.
산업용 설비의 배관 내부를 이동 하면서 배관 상태를 탐사하고 보수하기 위하여 배관 내부를 주행할 수 있는 로봇이 요구된다. In order to explore and repair the pipe condition while moving inside the pipe of an industrial facility, a robot capable of traveling inside the pipe is required.
종래의 로봇은 바퀴나 롤러를 구동하기 위한 전기 모터 및 전기 케이블을 포함하고 있다. 그러나, 발전소용의 고온고압 배관이나 가스관과 같은 배관에서는 전기 스파크에 의한 폭발 위험성으로 인하여 전기 모터 및 전기 케이블의 사용이 제한된다. 따라서, 이러한 폭발 위험성이 있는 배관 내부 탐사를 위하여 전기적 구동수단이 아닌 다른 동력원에 의하여 구동될 수 있는 개선된 구조의 이동로봇이 요구된다. Conventional robots include electric motors and electric cables for driving wheels or rollers. However, the use of electric motors and cables is limited in piping such as high temperature, high pressure piping or gas pipes for power plants due to the risk of explosion by electric sparks. Therefore, there is a need for a mobile robot of an improved structure that can be driven by a power source other than an electric drive means for exploration inside the pipe which is at risk of explosion.
배관은 제작 오차로 인하여 완전한 원형이 아닌 타원의 형태를 띠게 된다. 또한, 배관은 90˚엘보, 45˚엘보, 티(Tee) 및 레듀서와 같은 다수의 부속품들이 연결되어 배관 시스템을 이루게 된다. Due to manufacturing errors, the pipes take the form of ellipses rather than full circles. In addition, the piping is connected to a number of accessories such as 90 ° elbow, 45 ° elbow, tee and reducer to form a piping system.
이러한 배관과 다수의 부속품들이 연결되어 하나의 배관 시스템을 이루고, 로봇은 배관 시스템의 복잡한 경로를 주행할 수 있어야 한다. These pipes and a number of accessories are connected to form a single piping system, and the robot must be able to travel the complicated path of the piping system.
로봇은 아래보기 T관으로 연결된 배관 시스템에서 하부가 개방된 부분을 통과하여 직선으로 주행하거나, 개방된 부분으로 휘어져 주행할 수 있도록 요구된다.The robot is required to travel in a straight line through the open part of the lower part of the piping system connected to the bottom view T pipe or to bend to the open part.
이러한 배관과 다수의 부속품들이 연결되어 하나의 배관 시스템을 이루고, 로봇은 배관 시스템의 복잡한 경로를 주행할 수 있도록 하는 것은 중요한 과제가 된다.It is an important task that these pipes and a number of accessories are connected to form a pipe system, and the robot can travel the complicated path of the pipe system.
상기와 같은 기술적 배경을 바탕으로 안출된 것으로, 본 발명의 실시예들은 복잡하게 연결된 배관 내부를 이동할 수 있는 배관내부 주행로봇을 제공하고자 한다.Based on the technical background as described above, embodiments of the present invention is to provide a pipe inside the traveling robot that can move inside the complex pipe.
또한, 전력손실을 효과적으로 보상하여 안정적인 주행이 가능한 배관내부 주행로봇을 제공하고자 한다.In addition, to effectively compensate for the power loss to provide a stable running inside the pipe running robot.
또한, 제동력을 형성하기 위한 제동회로를 구성함으로써, 주행로봇의 제동장치를 제거하거나 최소화하면서도 충분한 제동력을 확보할 수 있는 배관내부 주행로봇을 제공하고자 한다.In addition, by constructing a braking circuit for forming a braking force, to provide a traveling robot inside the pipe that can ensure a sufficient braking force while removing or minimizing the braking device of the travel robot.
본 발명의 일 실시예에 따른 배관내부 주행로봇은 배관 내벽에 지지하여 배관 내벽을 따라 주행할 수 있는 전방캐리지 및 후방캐리지, 상기 전방캐리지와 상기 후방캐리지 사이를 연결하며 유연성이 조절되는 홀더를 포함한다.Inner pipe driving robot according to an embodiment of the present invention supports the front and rear carriage that can travel along the pipe inner wall to support the inner wall of the pipe, and connects between the front carriage and the rear carriage and the holder is adjustable flexibility do.
상기 홀더는, 공기의 주입 또는 배출에 의해 내부 압력이 변화하는 에어셀을 포함할 수 있고, 상기 에어셀의 내부 압력에 따라 유연성이 조절될 수 있다.The holder may include an air cell whose internal pressure is changed by injecting or discharging air, and flexibility may be adjusted according to the internal pressure of the air cell.
상기 에어셀은, 상기 전방캐리지에 인접하여 설치되는 제1 에어셀 및 상기 후방캐리지에 인접하여 설치되며 제2 에어셀을 포함하고, 상기 제1 에어셀과 상기 제2 에어셀은 서로 이격될 수 있다. The air cell may include a first air cell installed adjacent to the front carriage and a second air cell installed adjacent to the rear carriage, and the first air cell and the second air cell may be spaced apart from each other.
상기 홀더는, 상기 제1 에어셀과 상기 제2 에어셀 사이에 설치되며, 상기 홀더의 외측을 따라 이격 배치되는 복수개의 지지롤러를 포함할 수 있다.The holder may be provided between the first air cell and the second air cell, and may include a plurality of support rollers spaced apart along the outer side of the holder.
곡관을 통과하는 경우, 상기 전방캐리지 및 상기 후방캐리지가 상기 곡관을 주행하도록 상기 홀더가 유연해질 수 있다. When passing through the curved tube, the holder may be flexible so that the front carriage and the rear carriage travel the curved tube.
상기 배관에서 하부가 개방된 구역을 직선으로 통과하는 경우, 상기 전방캐리지 및 상기 후방캐리지가 직선으로 주행하도록 상기 홀더가 단단해질 수 있다. In a case where the lower portion of the pipe passes straight through the open area, the holder may be hardened so that the front carriage and the rear carriage travel in a straight line.
상기 전방캐리지 및 상기 후방캐리지는, 공압으로 작동하는 에어실린더, 상기 에어실린더의 후단에 설치되는 제1 플레이트, 상기 제1 프레이트의 외측에 연결되는 가이드포스트, 상기 가이드포스트의 단부에 연결되는 제2 플레이트, 상기 제1 플레이트 및 상기 제2 플레이트에 각각 회동할 수 있게 연결된 제1 링크 및 제2 링크를 가지는 링크부 및 상기 링크부 선단에 연결되는 롤러부를 포함할 수 있다. The front carriage and the rear carriage, the air cylinder operated by pneumatic, a first plate installed on the rear end of the air cylinder, a guide post connected to the outside of the first plate, a second connected to the end of the guide post It may include a link portion having a first link and a second link rotatably connected to the plate, the first plate and the second plate, respectively, and a roller portion connected to the tip of the link portion.
상기 롤러부는, 상기 제1 링크의 선단에 연결되며 구동모터가 연결된 구동롤러 및 상기 제2 링크의 선단에 연결되는 보조롤러를 포함할 수 있다.The roller unit may include a driving roller connected to the front end of the first link and a driving roller connected to the driving motor, and an auxiliary roller connected to the front end of the second link.
외부전원으로부터 전력을 공급받아 상기 전방캐리지 및 후방캐리지에 구동력을 제공하는 구동모터, 상기 전방캐리지 및 후방캐리지와 함께 상기 배관을 이동하며, 스위치의 작동에 의해 상기 외부전원과 상기 구동모터 사이의 전류경로에 선택적으로 연결되는 내부전원 및 상기 외부전원에 의해 상기 구동모터에 제공되는 전력과 현재 요구되는 목표전력간의 전력편차가 발생된 경우, 상기 스위치를 작동시켜 상기 내부전원을 연결함으로써 상기 전력편차만큼 상기 구동모터에 제공되는 전력을 보상하는 제어부를 포함할 수 있다.A drive motor that provides power to the front carriage and the rear carriage by receiving power from an external power source, moves the pipe together with the front carriage and the rear carriage, and the current between the external power source and the drive motor by the operation of a switch. When a power deviation between the power supplied to the drive motor and the target power currently required is generated by the external power source and the external power source selectively connected to a path, the power source is operated by connecting the internal power source by connecting the internal power source. It may include a control unit for compensating the power provided to the drive motor.
상기 외부전원은 상기 배관 외부의 일지점에 고정되고, 상기 구동모터는 상기 전류경로의 적어도 일부를 구성하는 전원케이블을 통해 상기 외부전원으로부터 전력을 공급받을 수 있다.The external power source is fixed at a point outside the pipe, and the driving motor may receive power from the external power source through a power cable constituting at least a portion of the current path.
상기 구동모터에 제공되는 전압을 측정하는 전압측정부를 더 포함하고, 상기 제어부는 상기 전압측정부에서 측정된 전압과 상기 목표전력에 따른 목표전압간의 전압편차가 발생하는 경우, 상기 내부전원을 연결하여 상기 전압편차값을 보상할 수 있다.And a voltage measuring unit measuring a voltage provided to the driving motor, wherein the controller is configured to connect the internal power supply when a voltage deviation between the voltage measured by the voltage measuring unit and the target voltage according to the target power occurs. The voltage deviation value can be compensated for.
상기 구동모터에 제공되는 전류를 측정하는 전류측정부를 더 포함하고, 상기 제어부는 상기 전류측정부에서 측정된 전류와 상기 목표전력과의 관계에서 상기 목표전압을 결정할 수 있다.The apparatus may further include a current measuring unit configured to measure a current provided to the driving motor, and the controller may determine the target voltage based on a relationship between the current measured by the current measuring unit and the target power.
상기 제어부는 상기 전압편차가 기준전압값 이상인 경우 상기 내부전원을 연결하며, 상기 측정된 전류가 클수록 상기 기준전압값을 더 작은 값으로 결정할 수 있다.The controller may connect the internal power supply when the voltage deviation is greater than or equal to the reference voltage value, and determine that the reference voltage value is smaller as the measured current is larger.
외부전원으로부터 전력을 공급받아 상기 전방캐리지 및 후방캐리지에 구동력을 제공하는 구동모터, 상기 외부전원을 포함하며 상기 구동모터에 선택적으로 연결되는 구동회로, 상기 구동모터에 선택적으로 연결되는 제동회로 및 상기 구동회로 및 제동회로 중 어느 하나를 상기 구동모터와의 연결상태로 제어하는 제어부를 포함하고, 상기 제어부는 상기 전방캐리지 및 후방캐리지의 주행모드에서 상기 구동회로를 연결상태로 제어하고, 상기 캐리지의 제동모드에서 상기 제동회로를 연결상태로 제어할 수 있다.A drive motor that receives power from an external power source and provides a driving force to the front and rear carriages, a drive circuit including the external power source and selectively connected to the drive motor, a braking circuit selectively connected to the drive motor, and the And a control unit for controlling any one of a driving circuit and a braking circuit to the connection state with the driving motor, wherein the control unit controls the driving circuit in the connection state in the driving modes of the front carriage and the rear carriage, In the braking mode, the braking circuit can be controlled in a connected state.
상기 구동모터의 양단에는 상기 구동회로 및 제동회로 중 어느 하나와 선택적으로 연결되는 제어스위치가 각각 마련되고, 상기 제어부는 상기 제어스위치를 제어하여 상기 구동회로 및 제동회로의 연결상태를 제어할 수 있다.Both ends of the driving motor may be provided with a control switch selectively connected to any one of the driving circuit and the braking circuit, and the controller may control the control switch to control the connection state of the driving circuit and the braking circuit. .
상기 제동회로에는 저항부가 포함된 저항선로와 단락상태의 비저항선로가 병렬적으로 마련되고, 상기 저항선로 및 비저항선로 중 어느 하나를 상기 구동모터의 양극 사이에 연결하는 저항스위치가 마련될 수 있다.The braking circuit may include a resistance line including a resistor unit and a non-resistance line in a short circuit state in parallel, and a resistance switch connecting one of the resistance line and the non-resistance line between the anodes of the driving motor may be provided.
상기 제어부는 상기 제동모드 중 일반제동모드인 경우, 상기 전방캐리지 및 후방캐리지의 속도가 기준속도 이상인 경우 상기 제동회로에서 상기 저항선로를 연결하며, 상기 기준속도 미만인 경우 상기 제동회로에서 상기 비저항선로를 연결할 수 있다.The control unit connects the resistance line in the braking circuit when the speed of the front carriage and the rear carriage is greater than or equal to the reference speed in the braking mode of the braking mode. Can connect
상기 제어부는 상기 제동모드 중 급제동모드인 경우, 상기 전방캐리지 및 후방캐리지의 속도와 무관하게 상기 제동회로에서 상기 비저항선로를 연결할 수 있다.The controller may connect the resistive line in the braking circuit regardless of the speeds of the front carriage and the rear carriage in the braking mode of the braking mode.
상기 저항부는 온도가 증가할수록 저항값이 낮아지는 NTC소자를 포함할 수 있다.The resistor unit may include an NTC device having a lower resistance value as the temperature increases.
상기 저항부는 상기 제어부에 의해 저항값이 조절되는 가변저항과 상기 NTC소자가 직렬 배치되고, 상기 구동모터는 전원케이블을 통해 상기 구동회로 및 제동회로와 연결되며, 상기 가변저항은 상기 전원케이블의 길이가 길수록 저항값이 더 작도록 조절될 수 있다.The resistor unit includes a variable resistor whose resistance is adjusted by the controller and the NTC element are arranged in series, and the driving motor is connected to the driving circuit and the braking circuit through a power cable, and the variable resistor is the length of the power cable. The longer is, the smaller the resistance value can be adjusted.
본 발명의 실시예들은 복잡하게 연결된 배관 내부를 용이하게 이동할 수 있다.Embodiments of the present invention can easily move inside the complex pipe connection.
또한, 주행로봇의 구동롤러에 구동력을 제공하는 구동모터에 제공되는 전력에 손실이 발생하더라도 효과적이고 안정적으로 손실된 전력을 보상하여 주행할 수 있다.In addition, even if a loss occurs in the power provided to the driving motor that provides the driving force to the driving roller of the traveling robot, it is possible to efficiently and stably compensate for the lost power.
또한, 주행로봇에 제동회로를 형성함으로써 별도의 제동장치를 제거하거나 최소화하더라도 효과적으로 충분한 제동력을 확보할 수 있다.In addition, by forming a braking circuit in the traveling robot, it is possible to effectively secure a sufficient braking force even if the separate braking device is removed or minimized.
도 1은 본 발명의 일 실시예에 따른 배관내부 주행로봇을 나타낸 사시도이다. 1 is a perspective view showing an internal pipe traveling robot according to an embodiment of the present invention.
도 2는 도 1에 적용되는 캐리지를 나타낸 사시도이다.FIG. 2 is a perspective view illustrating a carriage applied to FIG. 1.
도 3은 도 1에 적용되는 홀더를 나타낸 사시도이다.3 is a perspective view illustrating a holder applied to FIG. 1.
도 4는 본 발명의 일 실시예에 따른 배관내부 주행로봇의 아래보기 T관에 아래방향으로 주행하는 상태를 도시한 도면이다. Figure 4 is a view showing a state traveling in the downward direction to the bottom view T pipe of the internal pipe traveling robot according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 배관내부 주행로봇의 아래보기 T관을 건너 직선으로 주행하는 상태를 도시한 도면이다.5 is a view showing a state running in a straight line across the lower view T pipe of the internal pipe running robot according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 배관내부 주행로봇이 외부전원과 전원케이블을 통해 연결되어 배관 내부에 위치한 모습을 모식적으로 나타낸 도면이다.FIG. 6 is a view schematically showing a state in which a traveling robot inside a pipe according to an embodiment of the present invention is connected to an internal power source and a power cable and located inside the pipe.
도 7은 본 발명의 일 실시예에 따른 배관내부 주행로봇에서 내부전원이 마련된 전력회로도를 개략적으로 나타낸 도면이다.FIG. 7 is a view schematically illustrating a power circuit diagram in which an internal power source is provided in a traveling robot inside a pipe according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 배관내부 주행로봇에서 제동회로가 마련된 구동모터 관련 회로를 개략적으로 나타낸 도면이다.FIG. 8 is a view schematically illustrating a circuit related to a driving motor in which a braking circuit is provided in a pipe running robot according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
도 1은 본 발명의 일 실시예에 따른 배관내부 주행로봇을 나타낸 사시도이다.1 is a perspective view showing an internal pipe traveling robot according to an embodiment of the present invention.
도 1을 참고하면, 배관내부 주행로봇(100)은 캐리지(10)와 홀더(20)를 포함할 수 있다. Referring to FIG. 1, the inside of the pipe traveling robot 100 may include a carriage 10 and a holder 20.
배관내부 주행로봇(100)은 배관내부를 검사하는 목적으로 이용될 수 있으며, 일례로, 배관내부 주행로봇(100)의 진행방향에 카메라(미도시)가 설치될 수 있다. The internal pipe traveling robot 100 may be used for the purpose of inspecting the inside of the pipe. For example, a camera (not shown) may be installed in the traveling direction of the pipe internal traveling robot 100.
캐리지(10)는 전방캐리지(10a) 및 후방캐리지(10b)를 포함한다. 배관내부 주행로봇(100)은 캐리지(10)로 배관(200)의 내측벽을 지지하며 주행할 수 있다. The carriage 10 includes a front carriage 10a and a rear carriage 10b. The inner pipe traveling robot 100 may travel while supporting the inner wall of the pipe 200 with the carriage 10.
홀더(20)는 전방캐리지(10a)와 후방캐리지(10b) 사이에 위치하고, 전방캐리지(10a) 및 후방캐리지(10b)를 서로 연결한다. 홀더(20)는 공기의 주입에 의해 길이 및 내부 압력이 변화될 수 있다. The holder 20 is located between the front carriage 10a and the rear carriage 10b, and connects the front carriage 10a and the rear carriage 10b with each other. Holder 20 may be changed in length and internal pressure by the injection of air.
예를 들면, 배관(200)의 상태에 따라, 제어부(90)에 의해 홀더(20)에 공기를 주입 또는 배출시켜 홀더(20)를 유연하게 할 수도 있고, 홀더(20)를 단단하게 할 수도 있다. For example, depending on the state of the pipe 200, the control unit 90 may inject or discharge air into the holder 20 to make the holder 20 flexible, or the holder 20 may be hardened. have.
여기서 홀더(20)가 유연해지는 것은 전방캐리지(10a) 및 후방캐리지(10b)의 길이방향이 서로 달라질 수 있도록 상대위치가 가변하는 상태를 의미하고, 홀더(20)가 단단해진다는 것은 전방캐리지(10a) 및 후방캐리지(10b)간의 상대위치 또는 길이방향이 고정되는 상태를 의미한다.Herein, the holder 20 is flexible to mean a state in which the relative positions are variable so that the longitudinal directions of the front carriage 10a and the rear carriage 10b may be different from each other, and that the holder 20 is rigid means that the front carriage ( It means a state in which the relative position or the longitudinal direction between 10a) and the rear carriage 10b is fixed.
이와 같이 홀더(20)의 상태를 변화시킴으로써, 전방캐리지(10a) 또는 후방캐리지(10b)는 홀더(20)를 매개로 후방캐리지(10b) 또는 전방캐리지(10a)에 지지되거나 고정되어 이동될 수 있다. By changing the state of the holder 20 in this way, the front carriage (10a) or the rear carriage (10b) can be supported or fixed to the rear carriage (10b) or front carriage (10a) through the holder 20 can be moved. have.
따라서, 캐리지(10)와 상태가 변화될 수 있는 홀더(20)를 가지는 배관내부 주행로봇(100)은 배관(200) 직경의 변화에 대응할 수 있고, 곡관 또는 아래보기 T관(210)을 통과하여 직선주행을 할 수 있다. 이때, 홀더(20)의 유연성 및 길이는 가변될 수 있으며, 이에 따라서 전방캐리지와 후방캐리지의 상대적인 길이방향이나 상호간의 거리를 가변시킬 수 있다. Accordingly, the pipe internal traveling robot 100 having the carriage 10 and the holder 20 in which the state can be changed may correspond to the change in the diameter of the pipe 200, and passes through the curved pipe or the lower-view T pipe 210. You can drive straight. At this time, the flexibility and the length of the holder 20 can be varied, thereby changing the relative longitudinal direction or the distance between the front carriage and the rear carriage.
도 2는 도 1에 적용되는 캐리지를 나타낸 사시도이다.FIG. 2 is a perspective view illustrating a carriage applied to FIG. 1.
도 1 및 2를 참고하면, 캐리지(10)는 에어실린더(12), 플레이트부(11) 및 링크부(13)를 포함할 수 있다. 캐리지(10)는 배관(200) 내측벽에 지지되어 주행할 수 있으며, 배관(200) 내측벽으로부터 이격될 수 있다. 1 and 2, the carriage 10 may include an air cylinder 12, a plate portion 11, and a link portion 13. The carriage 10 may be supported by the inner wall of the pipe 200 to travel, and may be spaced apart from the inner wall of the pipe 200.
캐리지(10)는 에어실린더(12)를 포함한다. 에어실린더(12) 내부로 공기가 유입 또는 배출 될 수 있으며, 이에 따라 에어실린더(12)는 길이가 팽창 또는 수축될 수 있다. The carriage 10 includes an air cylinder 12. Air may be introduced or discharged into the air cylinder 12, and thus the air cylinder 12 may be expanded or contracted in length.
제어부(90)는 상기 홀더(20)의 유연성을 조절하여 상기 전방캐리지(10a) 및 후방캐리지(10b)간의 상대위치 구속여부를 결정할 수 있다.The controller 90 may determine the relative position restraint between the front carriage 10a and the rear carriage 10b by adjusting the flexibility of the holder 20.
전방캐리지(10a) 및 후방캐리지(10b)의 에어실린더(12)는 제어부 등에 의해 각각 제어될 수 있다. 예를 들면, 전방캐리지(10a)의 에어실린더(12)에 공기가 유입되고, 후방캐리지(10b)의 에어실린더(12)에 공기가 배출될 수 있다. 이 경우는, 전방캐리지(10a)는 배관(200)의 내측벽에 지지되어 주행할 수 있는 상태이며 후방캐리지(10b)는 배관(200)의 내측벽으로부터 이격되어 있어, 주행할 수 없는 상태이다. 다만, 전방캐리지(10a)의 주행에 견인되어 후방캐리지(10b)는 배관(200) 내부를 이동할 수는 있다. The air cylinders 12 of the front carriage 10a and the rear carriage 10b may be controlled by a controller or the like, respectively. For example, air may be introduced into the air cylinder 12 of the front carriage 10a and air may be discharged to the air cylinder 12 of the rear carriage 10b. In this case, the front carriage 10a is supported by the inner wall of the pipe 200 and can run, and the rear carriage 10b is spaced apart from the inner wall of the pipe 200 and cannot travel. . However, the rear carriage 10b may move inside the pipe 200 by being towed by the driving of the front carriage 10a.
플레이트부(11)는 제1 플레이트(11a) 및 제2 플레이트(11b)를 포함한다. The plate portion 11 includes a first plate 11a and a second plate 11b.
제1 플레이트(11a)는 에어실린더(12)의 후단에 연결될 수 있다. 제2 플레이트(11b)는 제1 플레이트(11a)와 가이드포스트(16)로 연결되어 있으며, 가이드포스트(16)의 단부에 연결되어 고정될 수 있다. 에어실린더(12) 후단에 설치되는 제1 플레이트(11a)는, 에어실린더(12)의 팽창 또는 수축에 의해 제2 플레이트(11b)와의 이격거리가 변화될 수 있다.The first plate 11a may be connected to the rear end of the air cylinder 12. The second plate 11b is connected to the first plate 11a and the guide post 16 and may be connected to and fixed to an end of the guide post 16. In the first plate 11a installed at the rear end of the air cylinder 12, the separation distance from the second plate 11b may be changed by the expansion or contraction of the air cylinder 12.
예를 들면, 제1 플레이트(11a)는 에어실린더(12)의 후단에 연결되어 있으며, 제1 플레이트(11a)와 제2 플레이트(11b) 사이에는 가이드포스트(16)가 위치하며, 제1 플레이트(11a) 및 제2 플레이트(11b)의 외측에서 서로를 연결한다. 에어실린더(12)의 후단에 설치되는 제1 플레이트(11a)는 가이드포스트(16)를 따라 에어실린더(12)의 팽창 및 수축에 의해 이동이 가능하다. For example, the first plate 11a is connected to the rear end of the air cylinder 12, and the guide post 16 is positioned between the first plate 11a and the second plate 11b, and the first plate 11a. 11a and the second plate 11b are connected to each other outside. The first plate 11a installed at the rear end of the air cylinder 12 is movable by the expansion and contraction of the air cylinder 12 along the guide post 16.
가이드포스트(16)의 단부에 설치된 제2 플레이트(11b)는 고정되어 있다. 예를 들면, 에어실린더(12)에 공기가 주입되어 에어실린더(12)가 팽창되면, 에어실린더(12)의 후단에 설치된 제1 플레이트(11a)는 가이드포스트(16)를 따라 이동하게 된다. The second plate 11b provided at the end of the guide post 16 is fixed. For example, when air is injected into the air cylinder 12 and the air cylinder 12 is expanded, the first plate 11a installed at the rear end of the air cylinder 12 moves along the guide post 16.
제1 플레이트(11a)와 제2 플레이트(11b)의 서로 마주보는 면에는 회동되도록 설치된 링크부(13)를 포함할 수 있다. 링크부(13)는 제1 링크(13a)와 제2 링크(13b)를 포함하며 각각 제1 플레이트(11a) 및 제2 플레이트(11b)에 설치된다. A surface of the first plate 11a and the second plate 11b facing each other may include a link part 13 installed to rotate. The link portion 13 includes a first link 13a and a second link 13b and is installed on the first plate 11a and the second plate 11b, respectively.
예를 들면, 제1 링크(13a)는 제1 플레이트(11a)에 설치되고 제2 링크(13b)는 제2 플레이트(11b)에 설치되며, 제1 링크(13a)와 제2 링크(13b)는 X자로 연결될 수 있다. 이에 따라, 링크부(13)는 제1 플레이트(11a)와 제2 플레이트(11b)의 이격거리에 따라, 캐리지(10)에서 수직한 방향으로 길이가 변화될 수 있다. For example, the first link 13a is installed on the first plate 11a and the second link 13b is installed on the second plate 11b, and the first link 13a and the second link 13b are provided. May be connected to an X character. Accordingly, the link portion 13 may vary in length in the direction perpendicular to the carriage 10 according to the separation distance between the first plate 11a and the second plate 11b.
예를 들면, 배관(200)의 직경이 클 경우, 제1 플레이트(11a)와 제2 플레이트(11b) 사이의 이격거리를 좁혀 링크부(13)를 배관(200) 내측벽에 닿도록 조절할 수 있다. 반대로, 배관(200)의 직경이 작을 경우에는, 제1 플레이트(11a)와 제2 플레이트(11b) 사이의 이격거리를 넓혀 링크부(13)를 배관(200) 내측벽에 닿도록 조절 할 수 있다. For example, when the diameter of the pipe 200 is large, the separation distance between the first plate 11a and the second plate 11b may be narrowed to adjust the link portion 13 to contact the inner wall of the pipe 200. have. On the contrary, when the diameter of the pipe 200 is small, the distance between the first plate 11a and the second plate 11b may be increased to adjust the link portion 13 to contact the inner wall of the pipe 200. have.
X자로 연결된 제1 링크(13a)와 제2 링크(13b)를 포함하는 링크부(13)는 플레이트부(11)의 외주면을 따라 복수개가 설치될 수 있다. 예를 들면, 링크부(13)는 플레이트부(11) 외주면에 일정하게 이격되어 3개 이상 설치될 수 있다. 이를 통해, 캐리지(10)를 배관(200) 내측벽에 보다 안정적으로 지지하여 내부 중앙에 위치시킬 수 있다. A plurality of link portions 13 including the first link 13a and the second link 13b connected to the X letter may be provided along the outer circumferential surface of the plate portion 11. For example, three or more link portions 13 may be installed on the outer circumferential surface of the plate portion 11 at regular intervals. Through this, the carriage 10 may be more stably supported on the inner wall of the pipe 200 to be positioned at the inner center.
링크부(13)의 선단에는 롤러부(14)가 연결될 수 있다. 롤러부(14)는 배관(200) 내측벽에 접촉되어 캐리지(10)를 주행시킬 수 있다. 예를 들면, 링크부(13)는 배관(200)의 내측벽에 롤러부(14)를 매개로 접촉될 수 있다. 링크부(13)는 롤러부(14)를 가압하여 배관(200)의 내측벽에 지지될 수 있다. The roller portion 14 may be connected to the front end of the link portion 13. The roller unit 14 may contact the inner wall of the pipe 200 to drive the carriage 10. For example, the link portion 13 may contact the inner wall of the pipe 200 via the roller portion 14. The link part 13 may be supported by the inner wall of the pipe 200 by pressing the roller part 14.
롤러부(14)는 구동롤러(14a)와 보조롤러(14b)를 포함할 수 있다. 예를 들면, 구동롤러(14a)에는 구동모터(15)가 연결될 수 있다. 구동롤러(14a)는 제1 링크(13a)의 선단에 연결될 수 있다. 구동모터(15)는 구동롤러(14a)와 연결되어 제1 링크(13a)의 측면에 연결될 수 있다. 보조롤러(14b)는 제2 링크(13b)에 설치될 수 있다. 예를 들면, 구동롤러(14a)에 의해 캐리지(10)가 주행하게 될 때, 보조롤러(14b)는 캐리지(10)가 배관(200) 내측벽에 이탈되지 않고 안정적으로 주행할 수 있도록 가이드할 수 있다. The roller unit 14 may include a driving roller 14a and an auxiliary roller 14b. For example, the driving motor 15 may be connected to the driving roller 14a. The driving roller 14a may be connected to the tip of the first link 13a. The driving motor 15 may be connected to the driving roller 14a and connected to the side of the first link 13a. The auxiliary roller 14b may be installed in the second link 13b. For example, when the carriage 10 is driven by the driving roller 14a, the auxiliary roller 14b may guide the carriage 10 so that the carriage 10 can run stably without being separated from the inner wall of the pipe 200. Can be.
도 3은 도 1에 적용되는 홀더를 나타낸 사시도이다.3 is a perspective view illustrating a holder applied to FIG. 1.
도 1 및 3을 참고하면, 홀더(20)는 전방캐리지(10a)와 후방캐리지(10b) 사이에 위치하고 전방캐리지(10a)와 후방캐리지(10b)를 서로 연결할 수 있다.1 and 3, the holder 20 may be positioned between the front carriage 10a and the rear carriage 10b and connect the front carriage 10a and the rear carriage 10b to each other.
홀더(20)는 제어부(90)의 제어를 통해 공기의 주입 또는 배출에 의해 길이 및 압력이 변화되는 에어셀(22)을 포함할 수 있다. 이에 따라, 홀더(20)는 전방캐리지(10a)와 후방캐리지(10b) 사이를 유연하게 또는 단단하게 연결할 수 있다. The holder 20 may include an air cell 22 whose length and pressure are changed by the injection or discharge of air through the control of the controller 90. Accordingly, the holder 20 can be flexibly or rigidly connected between the front carriage 10a and the rear carriage 10b.
예를 들면, 홀더(20)가 에어셀(22)에 공기를 주입시켜 내부 압력을 높일 경우, 배관(200)의 내측벽에 지지 되지 않은 전방캐리지(10a) 또는 후방캐리지(10b) 중 어느 하나는 배관(200) 내측벽에 지지되고 있는 후방캐리지(10b) 또는 전방캐리지(10a)에 고정되거나 지지될 수 있다. 즉, 홀더(20)는 전방캐리지(10a)와 후방캐리지(10b) 사이에 지지력을 전달할 수 있다. 다른 예로, 전방캐리지(10a)와 후방캐리지(10b)가 곡관을 통과하게 되어 전방캐리지(10a)가 후방캐리지(10b)에 대해 곡선 주행을 하게 될 경우에, 홀더(20)는 에어셀(22)에서 공기를 배출 시켜 내부 압력을 줄이게 된다. 이때에는 홀더(20)가 유연해지고 전방캐리지(10a)와 후방캐리지(10b)의 상대적인 위치의 변화에 따라 홀더(20)의 길이도 변화할 수 있다. For example, when the holder 20 injects air into the air cell 22 to increase the internal pressure, either the front carriage 10a or the rear carriage 10b which is not supported by the inner wall of the pipe 200 is The pipe 200 may be fixed to or supported by the rear carriage 10b or the front carriage 10a supported by the inner wall. That is, the holder 20 may transmit a bearing force between the front carriage 10a and the rear carriage 10b. As another example, when the front carriage 10a and the rear carriage 10b pass through the curved pipe so that the front carriage 10a curves with respect to the rear carriage 10b, the holder 20 is an air cell 22. The internal pressure is reduced by releasing air from the air. In this case, the holder 20 may be flexible, and the length of the holder 20 may also change according to a change in the relative position of the front carriage 10a and the rear carriage 10b.
홀더(20)는 복수개의 에어셀(22)을 포함할 수 있다. 예를 들면, 전방캐리지(10a)에 인접하여 설치되는 제1 에어셀(22a)과, 후방캐리지(10b)에 인접하여 설체되는 제2 에어셀(22b)을 포함할 수 있다. 제1 에어셀(22a)과 제2 에어셀(22b)은 서로 이격될 수 있다. The holder 20 may include a plurality of air cells 22. For example, it may include a first air cell 22a installed adjacent to the front carriage 10a and a second air cell 22b installed adjacent to the rear carriage 10b. The first air cell 22a and the second air cell 22b may be spaced apart from each other.
예를 들면, 복수개의 에어셀(22)을 포함하는 홀더(20)는 어느 하나의 에어셀(22)에 공기의 주입 또는 배출을 하여 유연성을 단계적으로 조절할 수 있다. For example, the holder 20 including the plurality of air cells 22 may adjust the flexibility in stages by injecting or discharging air into one of the air cells 22.
즉, 전방캐리지(10a)가 곡관에 진입하게 될 때에는 제어부(90)가 제1 에어셀(22a)의 공기를 배출시켜 내부 압력을 낮추고, 전방캐리지(10a)가 곡관에 완전히 진입하게 되면, 제2 에어셀(22b)의 공기를 배출시켜 내부 압력을 낮추고, 제1 에어셀(22a)에는 공기를 주입시켜 내부 압력을 높여 견인력을 보다 향상시키도록 제어할 수 있다. That is, when the front carriage 10a enters the curved tube, the controller 90 discharges air from the first air cell 22a to lower the internal pressure, and when the front carriage 10a completely enters the curved tube, The air pressure of the air cell 22b may be discharged to lower the internal pressure, and the air may be injected into the first air cell 22a to increase the internal pressure to further improve the traction force.
제1 에어셀(22a)과 제2 에어셀(22b) 사이에는 지지롤러(23)가 연결될 수 있다. 지지롤러(23)는, 제1 에어셀(22a) 및 제2 에어셀(22b)의 반경방향으로 연결되며 원주방향으로 이격되어 연결될 수 있다. The support roller 23 may be connected between the first air cell 22a and the second air cell 22b. The support rollers 23 may be connected in the radial direction of the first air cell 22a and the second air cell 22b and spaced apart in the circumferential direction.
지지롤러(23)는 제1 에어셀(22a)과 제2 에어셀(22b)에 공기의 주입 또는 배출로 인하여 홀더(20)가 유연한 상태로 변화될 때, 홀더(20)를 배관(200)으로부터 보다 용이하게 이동될 수 있도록 보조할 수 있다. When the holder 20 is changed into a flexible state due to the injection or discharge of air into the first air cell 22a and the second air cell 22b, the support roller 23 has the holder 20 removed from the pipe 200. It can be assisted to be easily moved.
도 4는 본 발명의 일 실시예에 따른 배관내부 주행로봇의 아래보기 T관에 아래방향으로 주행하는 상태를 도시한 도면이다. Figure 4 is a view showing a state traveling in the downward direction to the bottom view T pipe of the internal pipe traveling robot according to an embodiment of the present invention.
도 1 내지 4를 참고하면, 배관내부 주행로봇(100)은 아래보기 T관(210)의 개방된 아래 방향으로 이동할 수 있다. 다만, 이에 한정되는 것은 아니며 배관내부 주행로봇(100)은 곡관을 이동할 수도 있다. 1 to 4, the internal pipe traveling robot 100 may move in the open downward direction of the lower view T pipe 210. However, the present invention is not limited thereto, and the pipe driving robot 100 may move the curved pipe.
이하 에서는 아래보기 T관(210)의 개방된 아래 방향으로 이동하는 경우를 예로 들어 설명한다. Hereinafter, the case of moving in the open downward direction of the lower view T pipe 210 will be described as an example.
배관내부 주행로봇(100)의 주행방향으로 이동하면서, 배관(200)의 내측벽에 지지되는 전방캐리지(10a)는 아래보기 T관(210)의 개방된 아래 방향으로 인접하면서 개방된 부위의 지지력이 소실되는 아래 방향으로 자연스럽게 휘어지게 된다. The front carriage 10a supported on the inner wall of the pipe 200 while moving in the running direction of the pipe inner traveling robot 100 is adjacent to the open downward direction of the downward view T pipe 210 while supporting force of the open area. This will naturally bend in the downward direction.
이때, 전방캐리지(10a)가 아래방향으로 휘어질 수 있도록 제어부(90)는 홀더(20)의 제1 에어셀(22a)은 공기를 배출하고 내부 압력을 낮추게 된다. 전방캐리지(10a)는 아래방향으로 더욱 더 깊숙히 이동되고, 아래방향으로 연결된 배관(200)의 내측벽에 다시 접촉되어 지지하며 주행하게 된다. At this time, the control unit 90 is the first air cell 22a of the holder 20 to discharge the air and lower the internal pressure so that the front carriage 10a can be bent downward. The front carriage 10a is moved deeper and further downward, and comes into contact with and supports the inner wall of the pipe 200 connected downward.
후방캐리지(10b)는 전방캐리지(10a)의 이동 경로를 따라 움직이게 되고, 제2 에어셀(22b)은 후방캐리지(10b)가 휘어질 수 있도록 공기를 배출하고 내부 압력을 낮추게 된다. 이때, 홀더(20)의 지지롤러(23)는 아래보기 T관(210)의 내측벽에 맞닿아 휘어진 배관내부 주행로봇(100)을 보다 원활하게 이동할 수 있도록 보조할 수 있다. 제1 에어셀(22a)은 제2 에어셀(22b)보다 먼저 내부 압력을 상승시키며, 견인력을 향상 시킬 수 있다. The rear carriage 10b moves along the movement path of the front carriage 10a, and the second air cell 22b discharges air to lower the rear carriage 10b and lowers the internal pressure. At this time, the support roller 23 of the holder 20 may assist to smoothly move the curved inner traveling robot 100 in contact with the inner wall of the lower view T pipe (210). The first air cell 22a raises the internal pressure before the second air cell 22b and may improve the traction force.
도 5는 본 발명의 일 실시예에 따른 배관내부 주행로봇의 아래보기 T관을 건너 직선으로 주행하는 상태를 도시한 도면이다.5 is a view showing a state running in a straight line across the lower view T pipe of the internal pipe running robot according to an embodiment of the present invention.
도 5를 참고하면, 아래보기 T관(210)을 통과하여 직선주행을 하는 방법이 도시된다. Referring to Figure 5, it is shown how to travel straight through the T tube 210 below.
배관내부 주행로봇(100)은 배관(200)의 내측벽에 전방캐리지(10a) 및 후방캐리지(10b)가 지지되어 구동롤러(14a)에 의해 주행하게 된다. 홀더(20)에 공기를 주입시켜 홀더(20)의 내부 압력을 증가시킨다. 전방캐리지(10a)의 링크부(13)를 배관(200) 내측벽으로부터 이격시킨다. 예를 들면, 전방캐리지(10a)의 에어실린더(12)에 공기를 배출시켜 에어실린더(12)의 제1 플레이트(11a)와 제2 플레이트(11b)를 서로 이격시켜, 링크부(13)를 배관(200) 내측벽으로 이격시킬 수 있다. 배관내부 주행로봇(100)은 후방캐리지(10b)에 의해 배관(200) 내측벽에 지지되고, 후방캐리지(10b)에 의해 주행방향으로 주행할 수 있다.The inner pipe traveling robot 100 is supported by the front carriage 10a and the rear carriage 10b on the inner wall of the pipe 200 to be driven by the driving roller 14a. Air is injected into the holder 20 to increase the internal pressure of the holder 20. The link portion 13 of the front carriage 10a is spaced apart from the inner wall of the pipe 200. For example, by discharging air to the air cylinder 12 of the front carriage 10a, the first plate 11a and the second plate 11b of the air cylinder 12 are separated from each other, so that the link portion 13 is opened. The pipe 200 may be spaced apart from the inner wall. The inner pipe traveling robot 100 is supported on the inner wall of the pipe 200 by the rear carriage 10b, and travels in the traveling direction by the rear carriage 10b.
후방캐리지(10b)에 의해 지지된 전방캐리지(10a)는 아래보기 T관(210)의 개방된 하부를 지나 직선으로 이동할 수 있다. 이후, 전방캐리지(10a)는 에어실린더(12)에 공기를 주입하여 링크부(13)를 배관(200) 내측벽을 향하여 이동시켜 롤러부(14)를 접촉시킨다. 전방캐리지(10a)는 배관(200) 내측벽에 지지되어 주행할 수 있다. The front carriage 10a supported by the rear carriage 10b may move in a straight line through the open lower portion of the lower view T pipe 210. Thereafter, the front carriage 10a injects air into the air cylinder 12 to move the link portion 13 toward the inner wall of the pipe 200 to contact the roller portion 14. The front carriage 10a may be supported by the inner wall of the pipe 200 to travel.
이후, 후방캐리지(10b)는 링크부(13)를 배관(200) 내측벽으로부터 이격시킨다. 예를 들면, 후방캐리지(10b)의 에어실린더(12)에 공기를 배출시켜 제1 플레이트(11a)와 제2 플레이트(11b)를 서로 이격시켜 링크부(13)를 배관(200) 내측벽으로터 이격시킬 수 있다. Thereafter, the rear carriage 10b spaces the link portion 13 from the inner wall of the pipe 200. For example, the air is discharged to the air cylinder 12 of the rear carriage 10b so that the first plate 11a and the second plate 11b are spaced apart from each other so that the link portion 13 is connected to the inner wall of the pipe 200. Can be spaced apart.
이 경우, 후방캐리지(10b)는 전방캐리지(10a)에 의해 지지되어 아래보기 T관(210)의 개방된 하부를 지나쳐 주행할 수 있다. In this case, the rear carriage 10b is supported by the front carriage 10a to travel past the open lower portion of the lower view T pipe 210.
홀더(20)는 배관내부 주행로봇(100)이 아래보기 T관(210)의 개방된 하부를 통과하게 될 때 공기를 주입시켜 내부 압력을 크게 증가시켜 단단하게 유지한다. 이와 같이 홀더(20)의 성질을 단단하게 변화시키거나 유연하게 변화시켜 배관내부 주행로봇(100)은 아래보기 T관(210)의 개방된 하부를 통과하여 주행할 수 있고 곡관을 보다 원활하게 주행할 수 있다. The holder 20 injects air when the traveling robot 100 passes through the open lower portion of the bottom view T pipe 210 to greatly increase the internal pressure and keeps it tight. As such, by changing the properties of the holder 20 rigidly or flexibly, the pipe internal traveling robot 100 can travel through the open lower portion of the lower view T pipe 210 and travel smoothly through the curved pipe. can do.
한편, 도 6은 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)이 외부전원(250)을 통해 전력을 공급받아 배관(200) 내부를 주행하는 모습을 모식적으로 나타낸 도면이다.On the other hand, Figure 6 is a diagram schematically showing the interior of the pipe traveling robot 100 in accordance with an embodiment of the present invention traveling through the pipe 200 by receiving power through the external power source 250.
도 6을 참고하면, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 외부전원(250)으로부터 전력을 공급받아 전방캐리지(10a) 및 후방캐리지(10b)에 구동력을 제공하는 구동모터(15); 캐리지(10)와 함께 배관(200) 내부를 이동하며, 스위치(75)의 작동에 의해 상기 외부전원(250)과 상기 구동모터(15) 사이의 전류경로에 선택적으로 연결되는 내부전원(70); 및 상기 외부전원(250)에 의해 상기 구동모터(15)에 제공되는 전력과 현재 요구되는 목표전력간의 전력편차가 발생된 경우, 상기 스위치(75)를 작동시켜 상기 내부전원(70)을 연결함으로써 상기 전력편차만큼 상기 구동모터(15)에 제공되는 전력을 보상하는 제어부(90)를 포함할 수 있다.Referring to FIG. 6, the internal driving pipe 100 according to an embodiment of the present invention receives a power from an external power source 250 and provides a driving motor for providing driving force to the front carriage 10a and the rear carriage 10b. (15); An internal power source 70 that moves inside the pipe 200 together with the carriage 10 and is selectively connected to a current path between the external power source 250 and the driving motor 15 by the operation of the switch 75. ; And when the power deviation between the power provided to the driving motor 15 and the target power currently required by the external power supply 250 is generated, by operating the switch 75 to connect the internal power supply 70. The controller 90 may compensate for the power provided to the driving motor 15 by the power deviation.
전방캐리지(10a) 및 후방캐리지(10b)를 포함하여 구성되는 캐리지(10)에는 구동롤러(14a)가 구비될 수 있다. 상기 구동롤러(14a)의 구동에 의해 캐리지(10)는 배관(200) 내부를 주행하고, 구동모터(15)는 외부전원(250)으로부터 전력을 공급받아 상기 구동롤러(14a)에 구동력을 제공한다.The carriage 10 including the front carriage 10a and the rear carriage 10b may be provided with a driving roller 14a. By the driving of the driving roller 14a, the carriage 10 travels inside the pipe 200, and the driving motor 15 receives power from the external power source 250 to provide driving force to the driving roller 14a. do.
구동모터(15)는 하나로 구비되어 복수의 구동롤러(14a)에 구동력을 제공하는 구조를 가지거나, 복수개로 마련되어 각각의 구동롤러(14a)에 별개로 구동력을 제공할 수 있다.The driving motor 15 may be provided as one and may have a structure for providing driving force to the plurality of driving rollers 14a, or may be provided in plurality to provide driving force to each driving roller 14a separately.
도 6에는 본 발명의 일 실시예로서 캐리지(10)에 복수의 구동롤러(14a)가 마련되고, 상기 구동롤러(14a)마다 각각 구동모터(15)가 마련되어 구동력을 제공하는 구조가 도시되어 있다.6 illustrates a structure in which a plurality of driving rollers 14a are provided on the carriage 10 and driving motors 15 are provided for each of the driving rollers 14a to provide driving force as an embodiment of the present invention. .
또한, 배관(200) 내부를 주행하기 위해 주행로봇(100)은 그 부피나 하중을 감소시키는 것이 중요한데, 이를 위해 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 배관(200) 외부에 위치하는 외부전원(250)을 마련하고, 상기 외부전원(250)으로부터 구동모터(15)에 동력을 전달한다.In addition, it is important to reduce the volume or load of the traveling robot 100 in order to travel inside the pipe 200. For this purpose, the inside of the pipe traveling robot 100 according to an embodiment of the present invention is the pipe 200 outside. An external power source 250 is provided to transfer power from the external power source 250 to the driving motor 15.
한편, 캐리지(10)에는 상기 외부전원(250)과 별도로 내부전원(70)이 마련될 수 있다. 내부전원(70)은 상기 캐리지(10)와 함께 배관(200) 내부를 이동하며, 스위치(75)의 작동에 의해 상기 외부전원(250)과 상기 구동모터(15) 사이의 전류경로에 선택적으로 연결된다.Meanwhile, the carriage 10 may be provided with an internal power source 70 separately from the external power source 250. The internal power source 70 moves inside the pipe 200 together with the carriage 10, and selectively operates in the current path between the external power source 250 and the driving motor 15 by the operation of the switch 75. Connected.
내부전원(70)은 캐리지(10) 또는 기타 부품에 장착된 상태로 마련될 수 있는데, 도 6에는 본 발명의 일 실시예로서 캐리지(10)에 장착된 내부전원(70)의 모습이 도시되어 있으며, 도 7에는 스위치(75)에 의해 외부전원(250)과 구동모터(15) 사이의 전류경로상에 연결되는 회로가 개략적으로 도시되어 있다.The internal power source 70 may be provided in a state in which the carriage 10 or other components are mounted. In FIG. 6, the internal power source 70 mounted in the carriage 10 is illustrated as an embodiment of the present invention. FIG. 7 schematically shows a circuit connected to the current path between the external power source 250 and the driving motor 15 by the switch 75.
스위치(75)는 도 7에 도시된 것처럼 구동모터(15)의 전류경로상에 마련되어 상기 구동모터(15)로 전달되는 전류의 경로상에 내부전원(70)을 선택적으로 연결시키거나 단절시킨다. The switch 75 is provided on the current path of the drive motor 15 to selectively connect or disconnect the internal power source 70 on the path of the current delivered to the drive motor 15.
스위치(75)의 작동은 제어부(90)에 의해 제어되고, 상기 제어부(90)는 사용자의 조작신호를 받아 상기 스위치(75)를 작동시키거나, 미리 설정된 조건에 따라 상기 스위치(75)를 작동시킬 수 있다.The operation of the switch 75 is controlled by the control unit 90, the control unit 90 operates the switch 75 in response to a user's operation signal, or operate the switch 75 according to a preset condition You can.
내부전원(70)은 구동모터(15)로 전달되는 전류경로상에 항시 연결되는 주 전원이 아니므로 외부전원(250) 등에 비해 그 부피가 작고 경량화된 상태로 마련될 수 있는 바, 외부전원(250)을 별도로 구비함과 동시에 내부전원(70)을 주행로봇(100)상에 장착하여 주행에 유리하다.Since the internal power source 70 is not a main power source that is always connected to the current path delivered to the driving motor 15, the internal power source 70 may be provided in a smaller and lighter state than the external power source 250. At the same time with the 250 separately equipped with an internal power supply 70 on the traveling robot 100 is advantageous for driving.
한편, 제어부(90)는 상기 외부전원(250)에 의해 상기 구동모터(15)에 제공되는 전력과 현재 요구되는 목표전력간의 전력편차가 발생된 경우, 상기 스위치(75)를 작동시켜 상기 내부전원(70)을 연결함으로써 상기 전력편차만큼 상기 구동모터(15)에 제공되는 전력을 보상한다.On the other hand, the controller 90 operates the switch 75 when the power deviation between the power provided to the driving motor 15 and the target power currently required by the external power source 250 is generated. By connecting the 70 to compensate for the power provided to the drive motor 15 by the power deviation.
제어부(90)는 주행로봇(100)에 마련되거나, 사용자의 조작장치에 마련될 수도 있는데, 이하에서는 본 발명의 일 실시예에 따라 제어부(90)가 주행로봇(100)에 마련된 것을 기준으로 설명한다.The control unit 90 may be provided in the traveling robot 100 or may be provided in a user's operation device. Hereinafter, the control unit 90 will be described with reference to the control robot 90 provided in the traveling robot 100 according to an embodiment of the present invention. do.
제어부(90)는 주행로봇(100)의 주행을 위한 현재의 목표전력을 결정하는데, 목표전력이란 주행로봇(100)의 주행을 위해 현재 구동모터(15)에서 요구되는 출력을 만족시키는 전력을 의미한다. 상기 목표전력은 구동모터(15)의 종류 또는 사용자에 의해 결정된 현재의 요구 가속도 등을 바탕으로 결정될 수 있다.The controller 90 determines a current target power for driving the traveling robot 100, and the target power refers to power that satisfies the output required by the current driving motor 15 for traveling of the driving robot 100. do. The target power may be determined based on the type of the driving motor 15 or the current required acceleration determined by the user.
또한, 제어부(90)는 상기 구동모터(15)에 제공되는 전력과 목표전력간의 전력편차가 발생하는지 판단한다. 구동모터(15)에 제공되는 전력은 주행로봇(100)과 이격된 외부전원(250)으로부터 제공되는 것이며, 다양한 이유로 외부전원(250)에서 설정된 전력과 다른 전력이 제공될 수 있다.In addition, the controller 90 determines whether a power deviation between the power provided to the driving motor 15 and the target power occurs. The power provided to the driving motor 15 is provided from the external power source 250 spaced apart from the driving robot 100, and may be provided with a power different from the power set in the external power source 250 for various reasons.
예컨대, 전력의 전달경로가 되는 전원케이블(255) 등의 이상 또는 전력의 전달과정에서 발생되는 전압손실 등에 의해 구동모터(15)로 전달되는 전력에 손실이 있을 수 있다.For example, there may be a loss in power delivered to the driving motor 15 due to an abnormality such as a power cable 255 serving as a power transmission path or a voltage loss generated during a power delivery process.
제어부(90)는 구동모터(15)로 전달된 전력에 손실이 발생하여 목표전력과의 관계에서 전력편차가 있는 것으로 판단되면, 상기 스위치(75)를 제어하여 내부전원(70)을 상기 구동모터(15)로의 전류경로상에 연결한다.If a loss occurs in the power delivered to the driving motor 15 and the controller 90 determines that there is a power deviation in the relationship with the target power, the controller 90 controls the switch 75 to turn the internal power 70 into the driving motor. Connect on the current path to (15).
즉, 상기 외부전원(250)에 의한 전력과 내부전원(70)에 의한 전력이 함께 구동모터(15)로 전달되도록 하여 상기 전력편차를 내부전원(70)에 의한 전력으로 보상함으로써, 다양한 상황에서 발생될 수 있는 전력손실에 효과적으로 대처할 수 있게 된다.That is, the power by the external power source 250 and the power by the internal power source 70 are delivered to the driving motor 15 together to compensate for the power deviation by the power by the internal power source 70, in various situations. It is possible to effectively cope with the power loss that may occur.
한편, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 외부전원(250)이 상기 배관(200) 외부의 일지점에 고정되고, 상기 구동모터(15)는 전원케이블(255)을 통해 상기 외부전원(250)으로부터 전력을 공급받을 수 있다.On the other hand, the internal pipe running robot 100 according to an embodiment of the present invention, the external power source 250 is fixed to a point outside the pipe 200, the drive motor 15 is connected to the power cable 255 Power may be supplied from the external power source 250 through the power supply.
앞서 설명한 바와 같이 본 발명의 일 실시예서는 주행로봇(100)의 부피 및 하중 감소를 위해 주 전원을 배관(200) 외부의 외부전원(250)으로 마련한다. 상기 외부전원(250)으로부터 구동모터(15)로 전력을 공급하기 위한 수단이 필요할 것인데, 본 발명의 일 실시예에서는 전원케이블(255)을 이용한다.As described above, one embodiment of the present invention provides a main power source as an external power source 250 outside the pipe 200 to reduce the volume and load of the traveling robot 100. Means for supplying power from the external power source 250 to the driving motor 15 will be required. In one embodiment of the present invention, a power cable 255 is used.
도 7에는 외부전원(250)으로부터 전원케이블(255)을 통해 구동모터(15)로 전력이 공급되는 회로가 도시되어 있다. 한편, 전원케이블(255)을 이용하는 경우, 전원케이블(255) 자체에서 발생하는 선로저항(257)이 존재할 수 있고, 상기 선로저항(257)에 의해 전력의 손실이 발생될 수 있다.7 illustrates a circuit in which power is supplied from the external power source 250 to the driving motor 15 through the power cable 255. On the other hand, when using the power cable 255, there may be a line resistance 257 generated from the power cable 255 itself, the power loss may be generated by the line resistance 257.
도 7에는 전원케이블(255) 자체에 의한 선로저항(257)이 표시되어 있다. 한편, 전원케이블(255)에 존재하는 선로저항(257)은 상기 전원케이블(255)의 길이가 길수록 증가하게 된다. 선로저항(257)이 증가하면 특히 외부전원(250)으로부터 구동모터(15)로 전달되는 전압이 손실되며, 이에 따라 전력손실이 발생한다.7 shows the line resistance 257 caused by the power cable 255 itself. Meanwhile, the line resistance 257 existing in the power cable 255 increases as the length of the power cable 255 increases. When the line resistance 257 increases, in particular, the voltage transmitted from the external power source 250 to the driving motor 15 is lost, and thus a power loss occurs.
도 6에 도시된 것과 같이 배관(200) 외부의 일지점에 고정된 외부전원(250)으로부터 전원케이블(255)을 통해 전력을 공급받는 본 발명의 일 실시예에 따른 주행로봇(100)은 주행거리가 증가할수록 더 증가된 길이의 전원케이블(255)이 필요하고, 상기 전원케이블(255)에 존재하는 선로저항(257)에 의한 전력손실을 보상할 필요가 있는 것이다.As shown in FIG. 6, the driving robot 100 according to an embodiment of the present invention receives power from the external power source 250 fixed at one point outside the pipe 200 through the power cable 255. As the distance increases, a power cable 255 having an increased length is required, and power loss due to the line resistance 257 existing in the power cable 255 needs to be compensated for.
한편, 경사로 또는 수직로의 주행이나 높은 가속도가 요구되는 경우, 구동모터(15)는 고토크를 출력하기 위해 소모전류량을 증가시키는데, 전류량의 증가로 전원케이블(255)의 선로저항(257)에서 발생되는 전압강하가 함께 증가하게 되고, 외부전원(250)으로부터 전달되는 전력의 손실량도 증가하게 된다.On the other hand, when driving on a slope or a vertical road or when high acceleration is required, the driving motor 15 increases the amount of current consumed in order to output a high torque. The voltage drop generated is increased together, and the amount of loss of power transmitted from the external power source 250 is also increased.
이에 따라, 본 발명의 일 실시예는 주행로봇(100)의 부피 및 하중을 감소시키기 위해 외부전원(250)을 이용하여 구동함과 동시에, 내부전원(70)을 구비하고 주행 시 발생할 수 있는 전력손실을 보상하는 것이다.Accordingly, one embodiment of the present invention is driven by using the external power source 250 to reduce the volume and load of the traveling robot 100, and at the same time having the internal power source 70 and the power that can occur when driving To compensate for the loss.
결국, 본 발명의 일 실시예는 배관(200) 외부의 일지점에 고정된 외부전원(250)을 마련하고, 상기 외부전원(250)으로부터 전원케이블(255)을 통해 구동모터(15)로 전력을 제공하더라도, 주행거리의 증가 또는 구동모터(15)의 소모전력 증가에도 불구하고 내부전원(70)을 통해 전력편차를 보상하여 안정적으로 구동모터(15)에 요구되는 현재 목표전력을 만족시킬 수 있다.As a result, one embodiment of the present invention provides an external power source 250 fixed at a point outside the pipe 200, and the electric power from the external power source 250 to the driving motor 15 through the power cable 255. Even if it is provided, despite the increase in the mileage or the power consumption of the drive motor 15, it is possible to stably satisfy the current target power required for the drive motor 15 by compensating for the power deviation through the internal power source 70. have.
한편, 도 7에 도시된 바와 같이 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 구동모터(15)에 제공되는 전압을 측정하는 전압측정부(65)를 더 포함할 수 있고, 상기 제어부(90)는 상기 전압측정부(65)에서 측정된 전압과 상기 목표전력에 따른 목표전압간의 전압편차가 발생하는 경우, 상기 내부전원(70)을 연결하여 상기 전압편차값을 보상할 수 있다.On the other hand, as shown in Figure 7 the inner pipe running robot 100 according to an embodiment of the present invention may further include a voltage measuring unit 65 for measuring the voltage provided to the drive motor 15 When the voltage deviation between the voltage measured by the voltage measuring unit 65 and the target voltage according to the target power occurs, the controller 90 connects the internal power supply 70 to compensate for the voltage deviation value. Can be.
본 발명에서 제어부(90)는 다양한 방식을 통해 구동모터(15)에 실제 제공되는 전력을 파악할 수 있지만, 본 발명의 일 실시예는 제어부(90)가 상기 전압측정부(65)를 통해 구동모터(15)에 제공되는 전압을 측정하여 구동모터(15)에 제공되는 전력을 파악한다.In the present invention, the control unit 90 may determine the power actually provided to the driving motor 15 through various methods, but in one embodiment of the present invention, the control unit 90 may drive the driving motor through the voltage measuring unit 65. The power provided to the driving motor 15 is determined by measuring the voltage provided to the 15.
구체적으로, 제어부(90)는 사용자에 의해 현재 구동모터(15)에 요구되는 출력을 파악하고, 상기 출력을 위한 목표전력을 결정한다. 또한, 상기 목표전력을 구현하기 위해 외부전원(250)으로부터 제공되는 전류량을 조절한다.In detail, the controller 90 determines an output currently required for the driving motor 15 by the user and determines a target power for the output. In addition, the current amount provided from the external power source 250 is adjusted to implement the target power.
상기 조절된 전류량에 대해 예상된 전압이 구동모터(15)로 제공되는 경우 목표전력이 정상적으로 만족될 것이나, 구동모터(15)에 실제 제공된 전압이 상기 목표전력에 대해 전압편차를 가지는 경우 전력편차가 발생한다.The target power will normally be satisfied if the expected voltage for the regulated amount of current is provided to the drive motor 15, but if the voltage actually provided to the drive motor 15 has a voltage deviation with respect to the target power, the power deviation is Occurs.
따라서, 본 발명의 일 실시예는 제어부(90)가 전압측정부(65)를 통해 구동모터(15)에 실제 전달되는 전압을 파악하고, 상기 목표전력에 의해 결정되는 목표전압과 측정된 전압간에 전압편차가 있는지 판단하는 것이다.Therefore, in one embodiment of the present invention, the controller 90 determines the voltage actually transmitted to the driving motor 15 through the voltage measuring unit 65, and between the target voltage and the measured voltage determined by the target power. It is to determine whether there is a voltage deviation.
상기 전압편차가 있는 경우, 제어부(90)는 도 7에 도시된 스위치(75)를 내부전원(70)측으로 작동시킴으로써 상기 내부전원(70)에 의한 전압이 외부전원(250)에 의해 전달된 전압을 보상할 수 있다. 구동모터(15)에 전달되는 전압의 보상이 이루어짐으로써, 구동모터(15)에 제공되는 전력의 손실이 보상된다.When there is the voltage deviation, the controller 90 operates the switch 75 shown in FIG. 7 toward the internal power supply 70, so that the voltage by the internal power supply 70 is transmitted by the external power supply 250. Can compensate. By compensating for the voltage delivered to the drive motor 15, the loss of power provided to the drive motor 15 is compensated.
한편, 도 7에 도시된 바와 같이 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 구동모터(15)에 제공되는 전류를 측정하는 전류측정부(63)를 더 포함할 수 있고, 상기 제어부(90)는 상기 전류측정부(63)에서 측정된 전류와 상기 목표전력과의 관계에서 상기 목표전압을 결정할 수 있다.On the other hand, as shown in Figure 7 the inner pipe running robot 100 according to an embodiment of the present invention may further include a current measuring unit 63 for measuring the current provided to the drive motor 15 The controller 90 may determine the target voltage based on a relationship between the current measured by the current measuring unit 63 and the target power.
도 7에는 본 발명의 일 실시예에 따라 구동모터(15)로 제공되는 전류경로상에 전류측정부(63)가 마련된 모습이 도시되어 있다. 제어부(90)는 목표전력에 따라 구동모터(15)에 전달되는 전류값을 제어한다.7 shows a state in which a current measuring unit 63 is provided on a current path provided to the driving motor 15 according to an embodiment of the present invention. The controller 90 controls the current value transmitted to the driving motor 15 according to the target power.
즉, 외부전원(250)에 의해 제공되는 이론적 전압에 대해 목표전력 달성을 위한 전류값이 구동모터(15)에 제공되도록 제어한다. 그러나, 제어부(90)에 의해 설정된 전류값과 실제 구동모터(15)에 제공되는 전류값은 제어적 원인이나 물리적 원인 등 다양한 이유로 편차를 가질 수 있다.That is, the control unit is provided such that a current value for achieving a target power is provided to the driving motor 15 with respect to the theoretical voltage provided by the external power source 250. However, the current value set by the controller 90 and the current value provided to the actual driving motor 15 may have deviations for various reasons such as a control cause or a physical cause.
따라서, 본 발명의 일 실시예는 상기 구동모터(15)에 제공되는 실제 전류값을 전류측정부(63)를 통해 측정하고, 현재 목표전력에 대해 상기 측정된 전류값을 고려하여 현재 요구되는 목표전압을 산출한다.Therefore, the exemplary embodiment of the present invention measures the actual current value provided to the driving motor 15 through the current measuring unit 63, and considers the measured current value with respect to the current target power. Calculate the voltage.
따라서, 본 발명의 일 실시예는 전력편차를 파악함에 있어 구동모터(15)에 제공되는 전압은 물론, 전류값이 나타내는 전류편차까지 고려함으로써 다양한 원인에 의해 발생될 수 있는 전력편차를 정확하고 효과적으로 파악할 수 있고, 나아가 주행로봇(100)의 주행을 위한 목표전력을 신뢰도높게 달성할 수 있다.Therefore, the embodiment of the present invention accurately and effectively considers the power deviation that may be generated by various causes by considering not only the voltage provided to the driving motor 15 but also the current deviation indicated by the current value. In addition, the target power for driving of the driving robot 100 can be achieved with high reliability.
한편, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 제어부(90)가 상기 전압편차가 기준전압값 이상인 경우 상기 내부전원(70)을 연결할 수 있고, 상기 측정된 전류가 클수록 상기 기준전압값을 더 작은 값으로 결정할 수 있다. On the other hand, the internal pipe driving robot 100 according to an embodiment of the present invention, the control unit 90 can connect the internal power supply 70 when the voltage deviation is more than the reference voltage value, the greater the measured current The reference voltage value may be determined as a smaller value.
상기 전압측정부(65)에 의해 측정된 전압과 목표전압간의 전압편차는 외부전원(250)의 불안정이나 전원케이블(255)의 물리적 불량 또는 주행상태의 급격한 변화 등에 의해 발생할 수 있다.The voltage deviation between the voltage measured by the voltage measuring unit 65 and the target voltage may be caused by instability of the external power source 250, physical failure of the power cable 255, or a sudden change in driving state.
또한, 주행로봇(100)의 주행변화(가속도 변화)등이 급격하게 이루어지는 경우 발생되는 전압편차는 일시적으로 발생되는 자연스러운 결과일 수 있으며, 주행로봇(100)의 주행에 미치는 영향이 미약할 수 있다.In addition, the voltage deviation generated when the driving change (acceleration change) of the traveling robot 100 is abruptly may be a natural result generated temporarily, and the influence on the running of the driving robot 100 may be weak. .
나아가, 기준전압값 미만의 전압편차는 구동모터(15)에 현재 요구되는 출력을 구현하는 데에는 영향을 미치지 않을 정도로 작은 경우가 존재하므로, 본 발명의 일 실시에는 내부전원(70)을 통해 전력을 보상하기 위한 기준으로 기준전압값을 설정한다.Furthermore, since the voltage deviation less than the reference voltage value is small enough to not affect the implementation of the output currently required for the driving motor 15, the power may be supplied through the internal power supply 70 in one embodiment of the present invention. Set the reference voltage as a reference to compensate.
기준전압값은 다양한 방식을 통해 다양한 값으로 결정될 수 있다. 예컨대, 복수의 실험을 통해 전력부족에 의한 구동모터(15)의 불안정한 구동이 수반되는 전압편차를 파악하여 통계적으로 상기 기준전압값을 결정할 수 있다.The reference voltage value may be determined as various values through various methods. For example, the reference voltage value may be determined statistically by grasping a voltage deviation accompanying unstable driving of the driving motor 15 due to power shortage through a plurality of experiments.
나아가, 상기 통계적인 결과에 기초하여 제어전략적인 측면을 고려하여 기준전압값을 변화시킬 수 있다. 예컨대, 안정성을 강조한다면 기준전압값을 더 크게 설정할 수 있고, 실효성을 강조한다면 더 낮게 설정할 수 있을 것이다.Further, the reference voltage value may be changed in consideration of the control strategy side based on the statistical result. For example, if the emphasis is on stability, the reference voltage value may be set higher, and if the emphasis is on effectiveness, the reference voltage value may be set lower.
한편, 본 발명의 일 실시예는 제어부(90)는 구동모터(15)에 제공되는 전류가 클수록 상기 기준전압값을 더 작게 결정한다. 측정된 전류가 크다는 것은 구동모터(15)에 요구되는 목표전력이 큰 것을 의미한다.Meanwhile, in one embodiment of the present invention, the control unit 90 determines that the reference voltage value is smaller as the current provided to the driving motor 15 increases. The large measured current means that the target power required for the driving motor 15 is large.
목표전력이 큰 상황은 주행로봇(100)에 큰 부하가 발생하는 상황이나 급가속상황 등에 해당한다. 위와 같은 상황에서 전력손실에 의해 구동모터(15)가 불안정하게 구동되는 것은 주행로봇(100)의 안전에 영향을 미친다. The situation where the target power is large corresponds to a situation in which a large load occurs in the driving robot 100 or a rapid acceleration situation. In the above situation, driving the drive motor 15 unstable by the power loss affects the safety of the driving robot 100.
이에 따라, 본 발명의 일 실시에는 주행로봇(100) 제어의 안정성과 실효성을 위해 상기 기준전압값을 설정하되, 구동모터(15)에 제공되는 전류가 고전류에 해당할수록 기준전압값을 더 낮게 결정함으로써, 주행의 안정성을 향상시킨다.Accordingly, in one embodiment of the present invention, the reference voltage value is set for stability and effectiveness of the control of the driving robot 100, and the lower the reference voltage value is determined as the current provided to the driving motor 15 corresponds to a high current. This improves the running stability.
다시 도 6을 참고하면, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 외부전원(250)으로부터 전력을 공급받아 상기 캐리지(10) 또는 구동롤러(14a)에 구동력을 제공하는 구동모터(15); 상기 외부전원(250)을 포함하며 상기 구동모터(15)에 선택적으로 연결되는 구동회로(120); 상기 구동모터(15)에 선택적으로 연결되는 제동회로(130); 및 상기 구동회로(120) 및 제동회로(130) 중 어느 하나를 상기 구동모터(15)와의 연결상태로 제어하는 제어부(90);를 포함하고, 상기 제어부(90)는 상기 캐리지(10)의 주행모드에서 상기 구동회로(120)를 연결상태로 제어하고, 상기 캐리지(10)의 제동모드에서 상기 제동회로(130)를 연결상태로 제어할 수 있다.Referring back to FIG. 6, the internal pipe driving robot 100 according to an embodiment of the present invention receives power from an external power source 250 to provide driving force to the carriage 10 or the driving roller 14a. A motor 15; A driving circuit 120 including the external power source 250 and selectively connected to the driving motor 15; A braking circuit 130 selectively connected to the driving motor 15; And a control unit 90 for controlling any one of the driving circuit 120 and the braking circuit 130 to be connected to the driving motor 15, wherein the control unit 90 is configured to control the carriage 10. In the driving mode, the driving circuit 120 may be controlled in a connected state, and in the braking mode of the carriage 10, the braking circuit 130 may be controlled in a connected state.
본 발명의 제어부(90)는 각 기능에 따라 서로 독립된 별개의 개체로 마련될 수도 있고, 앞서 설명된 복수의 기능을 포함하는 단일의 구성으로 존재할 수 있다.The control unit 90 of the present invention may be provided as separate entities independent of each other according to each function, or may exist in a single configuration including a plurality of functions described above.
도 6에는 본 발명의 일 실시예로서 주행로봇(100)의 부피 및 하중을 감소시키기 위해 외부전원(250)를 배관(200) 외부에 위치시키고, 전원케이블(255)을 이용하여 구동모터(15)에 전력을 제공하는 구조가 도시되어 있다.6 illustrates an external power source 250 located outside the pipe 200 in order to reduce the volume and load of the traveling robot 100 as an embodiment of the present invention, and using the power cable 255 to drive the motor 15. A structure for providing power to is shown.
한편, 도 8에는 본 발명의 일실시예에 따른 구동회로(120) 및 제동회로(130)가 개략적으로 도시되어 있다.Meanwhile, FIG. 8 schematically shows a driving circuit 120 and a braking circuit 130 according to an embodiment of the present invention.
구동회로(120)는 외부전원(250)을 포함하며 구동모터(15)에 선택적으로 연결될 수 있도록 마련된다. 도 8을 참고하면, 구동회로(120)는 외부전원(250)를 포함하고 제어스위치(122)를 통해 상기 구동모터(15)의 양단에 연결될 수 있다.The driving circuit 120 includes an external power source 250 and is provided to be selectively connected to the driving motor 15. Referring to FIG. 8, the driving circuit 120 may include an external power source 250 and may be connected to both ends of the driving motor 15 through a control switch 122.
제어스위치(122)는 제어부(90)에 의해 구동회로(120) 또는 제동회로(130) 중 어느 하나를 구동모터(15)와 연결시킨다. 제어스위치(122)는 상기 구동회로(120) 또는 제동회로(130) 중 어느 하나를 택일적으로 구동모터(15)와 연결시킨다.The control switch 122 connects either the driving circuit 120 or the braking circuit 130 to the driving motor 15 by the control unit 90. The control switch 122 alternatively connects either the driving circuit 120 or the braking circuit 130 with the driving motor 15.
따라서, 구동회로(120)가 연결상태인 경우 제동회로(130)는 해제상태가 되어 구동모터(15)과 분리되고, 제동회로(130)가 연결상태인 경우 구동회로(120)는 해제상태가 되어 구동모터(150)와 분리된다.Therefore, when the driving circuit 120 is in the connected state, the braking circuit 130 is released and separated from the driving motor 15. When the braking circuit 130 is in the connected state, the driving circuit 120 is in the released state. And separated from the driving motor 150.
본 발명에서 구동회로(120)의 구체적인 구조는 다양하게 설정될 수 있지만, 도 8에는 본 발명의 일 실시예에 따라 외부전원(250)을 포함하는 선로로 구성되며, 상기 구동회로(120)의 선로 양단은 상기 구동모터(15)가 마련된 선로의 양단에 상기 제어스위치(122)를 통해 선택적으로 연결되는 구조가 도시되어 있다.In the present invention, the specific structure of the driving circuit 120 may be set in various ways, but FIG. 8 includes a line including an external power source 250 according to an embodiment of the present invention. Both ends of the line are shown to be selectively connected to both ends of the line provided with the drive motor 15 through the control switch 122.
한편, 제동회로(130)는 외부전원(250)를 포함하지 않는 회로로서, 상기 제어스위치(122)의 제어를 통해 상기 구동모터(15)에 선택적으로 연결된다. 도 8에는 상기 제동회로(130)가 개략적으로 도시되어 있다. On the other hand, the braking circuit 130 is a circuit that does not include the external power source 250, it is selectively connected to the drive motor 15 through the control of the control switch 122. 8 schematically illustrates the braking circuit 130.
제동회로(130)는 외부전원(250)를 포함하지 않는 바, 제동회로(130)가 연결상태로 제어된 경우, 상기 구동모터(15)는 외력에 의해 발전하는 발전기로서 작동하게 되고, 이에 따라 구동모터(15)의 외력을 소비하는 제동모드가 구현된다.The braking circuit 130 does not include an external power source 250. When the braking circuit 130 is controlled in a connected state, the driving motor 15 operates as a generator that is generated by an external force. A braking mode that consumes the external force of the drive motor 15 is implemented.
도 8을 참고하면, 제동회로(130)는 구동모터(15)가 마련된 선로의 양단에 연결된다. 제동회로(130)는 상기 구동모터(15)의 양극을 상호 단락시키도록 마련될 수도 있고, 이하에서 설명할 내용과 같이 저항부(136, 137)를 포함하며 구동모터(15)의 양극을 전기적으로 연결할 수도 있다.Referring to FIG. 8, the braking circuit 130 is connected to both ends of the line on which the driving motor 15 is provided. The braking circuit 130 may be provided to short-circuit the positive poles of the driving motor 15, and include resistors 136 and 137 as described below to electrically connect the positive poles of the driving motor 15. You can also connect
본 발명에서 구동모터(15)의 양극을 선택적으로 연결하는 제동회로(130)는 다양한 구조로 마련될 수 있지만, 도 8에는 본 발명의 일 실시예에 따라 구동모터(15)의 선로 양단에 각각 제어스위치(122)가 마련되고, 상기 제어스위치(122)의 제어에 의해 구동회로(120)와의 관계에서 택일적으로 구동모터(15)의 양극에 연결되는 구조가 도시되어 있다.In the present invention, the braking circuit 130 that selectively connects the positive poles of the driving motor 15 may be provided in various structures, but in FIG. 8, the ends of the driving motor 15 are respectively provided in FIG. 8. The control switch 122 is provided, and the structure is connected to the anode of the drive motor 15 in an alternative relationship with the drive circuit 120 by the control of the control switch 122 is shown.
또한, 제동회로(130)는 주행로봇(100)상에 마련될 수도 있고, 상기 외부전원(250)측에 마련될 수도 있다. 상기 외부전원(250)측에 제동회로(130)가 마련된 경우, 상기 구동회로(120) 및 제동회로(130)는 전원케이블(255) 등을 통해 상기 구동모터(15)와 전기적으로 연결될 수 있다.In addition, the braking circuit 130 may be provided on the traveling robot 100 or may be provided on the external power source 250 side. When the braking circuit 130 is provided on the external power source 250, the driving circuit 120 and the braking circuit 130 may be electrically connected to the driving motor 15 through a power cable 255. .
도 8에는 제동회로(130)가 구동회로(120)측에 병렬적으로 마련되고, 전원케이블(255) 등을 통해 상기 구동모터(15)와 전기적으로 연결되는 구조가 일 실시예로서 도시되어 있다.8 illustrates a structure in which the braking circuit 130 is provided in parallel with the driving circuit 120 and electrically connected to the driving motor 15 through a power cable 255. .
한편, 앞서 설명한 바와 같이 본 발명의 일 실시예는 제어스위치(122)를 통해 상기 구동회로(120) 및 제동회로(130)가 택일적으로 연결상태 및 해제상태로 제어된다.Meanwhile, as described above, in the exemplary embodiment of the present invention, the driving circuit 120 and the braking circuit 130 are alternatively controlled in the connected state and the released state through the control switch 122.
한편, 제어부(90)는 상기 구동회로(120) 및 제동회로(130) 중 어느 하나를 연결상태로 제어한다. 즉, 제어부(90)에 의해 구동회로(120)가 연결상태로 제어되면 제동회로(130)는 해제상태로 제어되고, 제동회로(130)가 연결상태로 제어된 경우는 구동회로(120)가 해제상태로 제어될 수 있다.On the other hand, the controller 90 controls any one of the driving circuit 120 and the braking circuit 130 in a connected state. That is, when the driving circuit 120 is controlled in the connected state by the controller 90, the braking circuit 130 is controlled in the released state, and when the braking circuit 130 is controlled in the connected state, the driving circuit 120 is controlled. It can be controlled in a released state.
구동회로(120) 및 제동회로(130)의 연결상태 결정은 사용자의 컨트롤모듈 조작에 의해 결정될 수 있다. 예컨대, 사용자가 주행로봇(100)의 주행상태 제어를 위해 마련된 컨트롤모듈을 이용하여 본 발명에 따른 주행로봇(100)을 감속 또는 정지시키도록 조작하는 경우, 제어부(90)는 해당 신호에 따라 구동회로(120) 및 제동회로(130)의 연결상태를 결정한다. Determination of the connection state of the driving circuit 120 and the braking circuit 130 may be determined by a user's control module manipulation. For example, when the user operates to decelerate or stop the driving robot 100 according to the present invention by using a control module provided to control the driving state of the driving robot 100, the controller 90 drives the driving circuit according to the corresponding signal. The connection state of the furnace 120 and the braking circuit 130 is determined.
한편, 제어부(90)는 상기 캐리지(10)의 주행모드에서 상기 구동회로(120)를 연결상태로 제어하고, 상기 캐리지(10)의 제동모드에서 상기 제동회로(130)를 연결상태로 제어한다.Meanwhile, the controller 90 controls the driving circuit 120 to be in a connected state in the driving mode of the carriage 10, and controls the braking circuit 130 to be in a connected state in the braking mode of the carriage 10. .
본 발명에서 주행모드란 구동모터(15)에 전력이 제공되어 동력이 발생하는 상태를 말하고, 제동모드란 구동모터(15)에서 동력이 발생되지 않으며 제동력이 형성되어 캐리지(10)의 정지가 의욕되는 상태를 말한다.In the present invention, the driving mode refers to a state in which power is supplied to the driving motor 15 to generate power, and the braking mode refers to a state in which no power is generated in the driving motor 15, and a braking force is formed to stop the carriage 10. Say the state.
제어부(90)는 사용자의 조작신호를 통해 상기 주행모드 및 제동모드를 파악할 수 있다. 즉, 사용자가 주행을 위해 구동모터(15)에 동력이 발생되도록 조작하는 경우에는 제어부(90)가 주행모드로 인식할 수 있고, 사용자가 별도의 정지버튼 내지 주행로봇(100)의 속도를 감속시키거나 '0'으로 제어하는 경우 제어부(90)는 제동모드로 인식할 수 있다.The controller 90 may determine the driving mode and the braking mode through a user's operation signal. That is, when the user manipulates the driving motor 15 to generate power for driving, the controller 90 may recognize the driving mode, and the user decelerates the speed of the separate stop button or the driving robot 100. Control unit 90 may control the controller 90 to recognize the braking mode.
주행모드에서 제어부(90)는 상기 구동회로(120)를 연결상태로 제어한다. 이에 따라, 외부전원(250)로부터 구동모터(15)로 전력이 공급될 수 있고, 구동모터(15)는 외부전원(250)의 전력을 이용하여 구동롤러(14a)에 구동력을 제공한다.In the driving mode, the controller 90 controls the driving circuit 120 in a connected state. Accordingly, power may be supplied from the external power source 250 to the driving motor 15, and the driving motor 15 may provide driving force to the driving roller 14a using the power of the external power source 250.
한편, 제동모드에서 제어부(90)는 상기 구동회로(120)를 해제상태로 제어하면서 제동회로(130)를 연결상태로 제어한다. 구동회로(120)가 해제됨과 동시에 구동모터(15)는 전력 공급이 차단되어 구동력을 발생시키지 않는 상태가 되며, 제동회로(130)가 연결됨으로써 외력에 의해 발전하는 발전기로서 기능하게 된다.Meanwhile, in the braking mode, the controller 90 controls the driving circuit 120 in a released state while controlling the braking circuit 130 in a connected state. Simultaneously with the release of the driving circuit 120, the driving motor 15 is cut off from the power supply to generate a driving force, and the braking circuit 130 is connected to function as a generator that is generated by external force.
제동회로(130)가 연결된 경우, 구동롤러(14a)에는 주행상태에서 주행로봇(100)에 존재하는 관성력 또는 주행로봇(100)의 하중이 외력으로 작용하게 되는데, 상기 외력이 결국 구동모터(15)로 전달되고 구동모터(15)는 상기 외력을 통해 발전기로 작동한다.When the braking circuit 130 is connected, the inertia force or the load of the traveling robot 100 that acts on the driving robot 100 acts as an external force in the driving roller 14a in the driving state, and the external force eventually drives the motor 15. The drive motor 15 is operated as a generator through the external force.
즉, 상기 제동회로(130)가 연결상태가 되면 주행로봇(100)에는 상기 구동모터(15)의 발전량이 상기 외력을 소모하는 제동력으로 작용하는 것이다.That is, when the braking circuit 130 is connected, the driving robot 100 acts as a braking force that consumes the external force.
배관(200) 내부를 주행하는 본 발명의 주행로봇(100)은 그 주행공간이 협소하므로 부피나 하중을 감소시키는 것이 유리한데, 본 발명의 일 실시예와 같이 구동모터(15)에 제동회로(130)를 마련한 경우, 상기 구동롤러(14a)에 별도의 제동장치를 마련하지 않더라도 제동력을 형성할 수 있으므로, 배관내부를 주행하는 주행로봇(100)의 부피나 하중을 감소시키는 데에 유리하다.Since the traveling robot 100 of the present invention traveling inside the pipe 200 has a narrow traveling space, it is advantageous to reduce the volume or the load, as in the embodiment of the present invention. 130, it is possible to form a braking force even without providing a separate braking device in the drive roller (14a), it is advantageous to reduce the volume or load of the traveling robot 100 running inside the pipe.
나아가, 제동력을 충분히 확보하기 위해서 상기 제동회로(130)와 함께 제동장치를 마련할 수도 있으나, 이 경우도 상기 제동장치의 크기나 하중을 크게 감소시킬 수 있어 유리하다.Furthermore, in order to sufficiently secure the braking force, a braking device may be provided together with the braking circuit 130, but in this case, the size and load of the braking device can be greatly reduced.
한편, 본 발명의 일 실시예는 제동회로(130)를 이용함으로써 수직배관에서의 주행로봇(100) 정지를 구현함에 유리하다. 수직배관이란, 바람직하게는 지면에 수직하게 연장된 배관(200)으로서 주행로봇(100)의 자중이 주행방향과 나란하거나 유사한 배관(200)을 의미한다.On the other hand, an embodiment of the present invention is advantageous to implement the driving robot 100 stop in the vertical pipe by using the braking circuit 130. The vertical pipe is preferably a pipe 200 extending perpendicularly to the ground, and means a pipe 200 whose weight of the traveling robot 100 is parallel to or similar to the traveling direction.
수직배관에서 주행로봇(100)이 정지하는 것은 주행상태에 따라 주행로봇(100)에 존재하는 관성력은 물론, 주행로봇(100)에 작용하는 하중에 의한 외력에 대응하는 제동력을 제공해야 한다.The stopping of the traveling robot 100 in the vertical pipe should provide a braking force corresponding to an external force caused by a load acting on the traveling robot 100 as well as an inertial force existing in the traveling robot 100 according to the driving state.
본 발명의 일실시예의 경우, 상기한 바와 같이 제동회로(130)를 이용하여 구동모터(15)에 작용하는 외력을 소비하여 반력과 같이 제공하게 되는데, 수직배관의 경우 하중에 의한 외력이 지속적으로 유지되는바, 주행로봇(100)의 정지를 위한 제동력이 지속적으로 제공되어야 한다.In one embodiment of the present invention, by using the braking circuit 130 as described above, the external force acting on the driving motor 15 is consumed and provided as a reaction force. In the case of vertical piping, the external force due to the load is continuously To be maintained, a braking force for stopping the traveling robot 100 should be continuously provided.
본 발명의 일 실시예는 구동모터(15)의 양극을 연결하는 제동회로(130)를 통해 상기 구동모터(15)에 작용하는 외력을 소비하는 개념의 제동시스템이므로, 제동력을 형성하기 위한 별도의 동력 공급이 요구되지 않으며, 외력이 클수록 더 많은 제동력 제공이 가능하다.One embodiment of the present invention is a braking system of the concept of consuming an external force acting on the drive motor 15 through a braking circuit 130 connecting the positive pole of the drive motor 15, a separate to form a braking force No power supply is required, and the greater the external force, the greater the braking power available.
이에 따라, 경사로 또는 수직배관과 같이 제동력이 지속적으로 유지되어야 하는 경우, 본 발명의 일 실시예는 제동회로(130)를 통해 별도의 동력 공급없이 주행로봇(100)에 외력에 대한 제동력을 지속적으로 제공할 수 있으므로 유리한 것이다.Accordingly, when the braking force must be continuously maintained, such as a ramp or a vertical pipe, an embodiment of the present invention continuously applies a braking force for external force to the traveling robot 100 without a separate power supply through the braking circuit 130. It is advantageous because it can provide.
한편, 앞서 설명한 바와 같이 도 8에는 본 발명의 일 실시예에 따른 구동회로(120) 및 제동회로(130)가 도시되어 있으며, 도 8을 참고하면 본 발명의 일 실시예는 상기 구동모터(15)의 양단에는 상기 구동회로(120) 및 제동회로(130) 중 어느 하나와 선택적으로 연결되는 제어스위치(122)가 각각 마련되고, 상기 제어부(90)는 상기 제어스위치(122)를 제어하여 상기 구동회로(120) 및 제동회로(130)의 연결상태를 제어한다.Meanwhile, as described above, FIG. 8 illustrates a driving circuit 120 and a braking circuit 130 according to an embodiment of the present invention. Referring to FIG. 8, an embodiment of the present invention is the driving motor 15. ) Are respectively provided with a control switch 122 that is selectively connected to any one of the driving circuit 120 and the braking circuit 130, the control unit 90 controls the control switch 122 to The connection state of the driving circuit 120 and the braking circuit 130 is controlled.
본 발명의 일 실시예에서 제어스위치(122)는 도 8에 도시된 바와 같이 구동모터(15)를 포함한 선로의 양단에 각각 마련될 수 있다.In one embodiment of the present invention, the control switch 122 may be provided at both ends of the line including the drive motor 15, respectively, as shown in FIG.
본 발명의 일 실시예는 구동회로(120) 및 제동회로(130)의 안정적이고 신속한 제어를 위해, 제어스위치(122)를 한 쌍으로 마련하여 구동모터(15)의 양단에 위치시킨다.In an embodiment of the present invention, for stable and rapid control of the driving circuit 120 and the braking circuit 130, a pair of control switches 122 are provided and positioned at both ends of the driving motor 15.
한편, 도 8에 도시된 바와 같이 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 제동회로(130)에 저항부(136, 137)가 포함된 저항선로(135)와 단락상태의 비저항선로(138)가 병렬적으로 마련되고, 상기 저항선로(135) 및 비저항선로(138) 중 어느 하나를 상기 구동모터(15)의 양극 사이에 연결하는 저항스위치(133)가 마련될 수 있다.Meanwhile, as shown in FIG. 8, the internal traveling pipe 100 according to the exemplary embodiment of the present invention has a resistance line 135 and a short circuit state in which the resistance parts 136 and 137 are included in the braking circuit 130. Resistive line 138 of the is provided in parallel, a resistance switch 133 for connecting any one of the resistance line 135 and the non-resistance line 138 between the anode of the drive motor 15 may be provided. have.
본 발명의 일 실시예에서 저항선로(135)는 저항부(136, 137)를 포함하고, 비저항선로(138)는 저항부(136, 137)가 포함되지 않아 외부전원(250)의 양극을 단락상태로 연결하는 선로를 의미한다.In one embodiment of the present invention, the resistance line 135 includes resistance parts 136 and 137, and the resistance line 138 does not include the resistance parts 136 and 137, thereby shorting the positive pole of the external power supply 250. It means the line connecting with state.
주행로봇(100)의 제동모드에서 주행로봇(100)에 요구되는 제동력을 그 크기가 다양하게 요구될 수 있다. 본 발명의 일 실시예는 상기 제동력을 크기를 다양하게 형성할 수 있도록 저항선로(135)와 비저항선로(138)를 별도 구비한다.The braking force required for the traveling robot 100 in the braking mode of the traveling robot 100 may vary in size. An embodiment of the present invention includes a resistance line 135 and a non-resistance line 138 separately to form the braking force in various sizes.
앞서 설명한 것처럼 제동회로(130)가 연결상태가 되면 구동모터(15)는 발전기로서 동작하게 되고, 제동회로(130)에서 소비하는 전력이 곧 구동모터(15)에 작용하는 제동력이 된다.As described above, when the braking circuit 130 is connected, the driving motor 15 operates as a generator, and the power consumed by the braking circuit 130 becomes a braking force acting on the driving motor 15.
즉, 제동회로(130)에서 소비하는 전력을 클수록 구동모터(15)에서 소비되는 외력이 커지는 것이며, 이에 따라 본 발명의 일 실시예는 제동회로(130)에서 소비하는 전력 크기를 조절하여 상기 구동모터(15)에 형성되는 제동력을 조절한다.That is, the greater the power consumed by the braking circuit 130, the greater the external force consumed by the driving motor 15. Accordingly, according to one embodiment of the present invention, the power is controlled by controlling the amount of power consumed by the braking circuit 130. Adjust the braking force formed in the motor 15.
예컨대, 저항부(136, 137)를 포함하는 저항선로(135)는 저항이 존재하지 않아 단락상태를 형성하는 비저항선로(138)보다 전력을 소비하는 저항의 크기가 크고, 저항의 크기가 크면 동일 전압에서 소비하는 전력의 크기가 줄어든다.For example, the resistance line 135 including the resistance parts 136 and 137 has a larger size of a resistor that consumes power than the non-resistance line 138 which forms a short state because there is no resistance. The amount of power consumed by the voltage is reduced.
이에 따라, 저항선로(135)가 연결된 제동회로(130)는 동일한 시간동안 비저항선로(138)가 소비하는 전력보다 더 적은 전력을 소비하게 되고, 따라서 구동모터(15)에 제공되는 제동력을 더 작아진다.Accordingly, the braking circuit 130 to which the resistance line 135 is connected consumes less power than the power of the non-resistance line 138 for the same time, and thus the braking force provided to the driving motor 15 is smaller. Lose.
한편, 비저항선로(138)는 저항부(136, 137)가 존재하지 않으며 구동모터(15)의 발전량을 선로 전체에서 소비하게 되는데, 그 저항 크기가 상기 저항선로(135)에 비해 매우 작아 동일한 시간동안 더 큰 전력을 소비한다.On the other hand, in the resistive line 138, there are no resistors 136 and 137, and the power consumption of the driving motor 15 is consumed in the entire line, and the resistance is very small compared to the resistance line 135, and the same time. While consuming more power.
이에 따라, 비저항선로(138)가 연결된 제동회로(130)는 구동모터(15)에 더 큰 제동력을 제공하게 된다.Accordingly, the braking circuit 130 to which the resistivity line 138 is connected provides a greater braking force to the driving motor 15.
결국, 본 발명의 일 실시예는 제동회로(130)에 각각 선택적이고 택일적으로 연결되는 저항선로(135) 및 비저항선로(138)를 마련함으로써, 주행로봇(100)에 요구되는 제동력을 다양하게 충족시킬 수 있도록 한다.As a result, one embodiment of the present invention provides a resistance line 135 and a non-resistance line 138 which are selectively and alternatively connected to the braking circuit 130, thereby varying the braking force required for the traveling robot 100. To meet.
상기 저항선로(135) 및 비저항선로(138)는 저항스위치(133)의 작동에 의해 제동회로(130)에 택일적으로 연결되고, 제어부(90)는 상기 저항스위치(133)를 제어하여 상기 저항선로(135) 및 비저항선로(138) 중 어느 하나를 제동회로(130)상에 연결한다.The resistance line 135 and the non-resistance line 138 are alternatively connected to the braking circuit 130 by the operation of the resistance switch 133, and the controller 90 controls the resistance switch 133 to control the resistance line. One of the furnace 135 and the resistivity line 138 is connected to the braking circuit 130.
한편, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 제어부(90)는 상기 제동모드 중 일반제동모드인 경우, 상기 캐리지(10)의 속도가 기준속도 이상인 경우 상기 제동회로(130)에서 상기 저항선로(135)를 연결하며, 상기 기준속도 미만인 경우 상기 제동회로(130)에서 상기 비저항선로(138)를 연결할 수 있다.On the other hand, the internal pipe running robot 100 according to an embodiment of the present invention, when the control unit 90 is the normal braking mode of the braking mode, the speed of the carriage 10 is greater than the reference speed of the braking circuit ( The resistance line 135 is connected at 130, and when the resistance speed is less than the reference speed, the resistance line 138 may be connected at the braking circuit 130.
본 발명의 일 실시예에서 상기한 제동모드는 크게 일반제동모드와 급제동모드로 구분될 수 있다. 사용자가 컨트롤콘솔의 급제동버튼을 조작하거나, 주행로봇(100)을 현재 속도로부터 일정수준 이상의 차이로 감속시키도록 조작하는 경우 제어부(90)는 급제동모드로 인식할 수 있다.In one embodiment of the present invention, the braking mode may be largely divided into a general braking mode and a rapid braking mode. When the user manipulates the sudden braking button of the control console or controls the driving robot 100 to decelerate by a predetermined level or more from the current speed, the controller 90 may recognize the sudden braking mode.
상기 급제동모드를 인식하기 위한 일정수준 이상의 차이는 필요에 따라 다양하게 설정될 수 있는 것이고, 실험과 통계를 통해 결정될 수 있다. 또한, 이는 예시적으로 이해되어야 하는 것이며, 기타 다양한 방식으로 급제동모드를 설정할 수 있다.The difference over a certain level for recognizing the sudden braking mode may be variously set as necessary, and may be determined through experiments and statistics. In addition, this is to be understood by way of example, it is possible to set the rapid braking mode in a variety of other ways.
한편, 제어부(90)는 상기한 급제동모드의 기준에 해당하지 않는 경우를 일반제동모드로 인식할 수 있다. 나아가, 사용자에 의해 일반제동모드 및 급제동모드 중 어느 하나로 미리 설정되어 이후의 제어가 일반제동모드 또는 급제동모드 중 어느 하나로 제어될 수도 있다.On the other hand, the controller 90 may recognize the case that does not correspond to the criterion of the rapid braking mode as the general braking mode. Furthermore, the user may be preset in one of the general braking mode and the rapid braking mode so that subsequent control may be controlled in either the general braking mode or the rapid braking mode.
본 발명의 일 실시예에서 급제동모드는 제동력이 곧바로 최대 크기로 형성되는 모드를 의미하는 것이고, 일반제동모드는 제동에 의해 발생되는 충격을 감소시키기 위해 제동 시 적어도 초기에는 상기 급제동모드의 제동력보다 더 낮은 제동력을 형성하는 제동모드로 이해될 수 있다.In one embodiment of the present invention, the rapid braking mode refers to a mode in which the braking force is directly formed to a maximum magnitude, and the general braking mode is at least initially greater than the braking force of the braking mode during braking to reduce the shock caused by braking. It can be understood as a braking mode that forms a low braking force.
이러한 관점에서, 상기의 일반제동모드 및 급제동모드를 구분하는 기준은 예시적으로 이해되어야 할 것이고, 상기 취지를 고려하여 다양한 방식으로 설정될 수 있다.In view of this, the criteria for distinguishing the general braking mode and the rapid braking mode will be understood by way of example, and may be set in various ways in consideration of the above purpose.
제어부(90)는 일반제동모드로 판단되면 상기 캐리지(10)의 속도가 기준속도 이상인 경우 상기 저항선로(135)를 상기 제동회로(130)상에 연결한다. 앞서 설명한 바와 같이 저항선로(135)는 비저항선로(138)와 비교하여 구동모터(15)에 형성하는 제동력의 크기가 더 작다.The controller 90 connects the resistance line 135 on the braking circuit 130 when the speed of the carriage 10 is greater than or equal to the reference speed when determined as the general braking mode. As described above, the resistance line 135 has a smaller amount of braking force formed in the driving motor 15 compared to the non-resistance line 138.
캐리지(10)의 속도가 기준속도 이상인 경우 초기 제동력을 크게 하면 그에 따른 충격이 크게 발생되어 주행로봇(100)에 작용하므로 안전 및 내구에 불리하다. 따라서, 본 발명의 일 실시예에서는 기준속도 이상인 경우 상기 저항선로(135)를 제동회로(130)상에 연결하여 제동에 따른 충격을 완화시킨다.When the speed of the carriage 10 is greater than or equal to the reference speed, increasing the initial braking force causes a large impact and acts on the driving robot 100, which is disadvantageous for safety and durability. Therefore, in an embodiment of the present invention, the resistance line 135 is connected to the braking circuit 130 when the reference speed is higher than the reference speed, thereby alleviating the shock due to the braking.
상기 기준속도는 저항선로(135) 및 비저항선로(138)의 택일적 연결에 대한 기준이 되며, 그 값은 제어전략적인 측면을 고려하여 다양하게 결정될 수 있다. 예컨대, 제동의 신속성을 추구하는 경우 상기 기준속도를 큰 값으로 설정할 수 있고, 제동에 따른 충격 완화를 추구하는 경우 상기 기준속도를 더 작은 값으로 설정할 수 있을 것이다.The reference speed is a reference for the alternative connection of the resistance line 135 and the non-resistance line 138, and the value thereof may be variously determined in consideration of a control strategy. For example, when the speed of braking is pursued, the reference speed may be set to a large value, and when the shock relief due to braking is pursued, the reference speed may be set to a smaller value.
한편, 상기 저항선로(135)의 연결에 의해 제동이 수행되어 상기 캐리지(10)의 속도가 기준속도 미만이 되면, 제어부(90)는 제동회로(130)에서 비저항선로(138)를 연결함으로써 제동력을 증가시킨다.On the other hand, when braking is performed by the connection of the resistance line 135 so that the speed of the carriage 10 is less than the reference speed, the control unit 90 connects the resistive line 138 in the braking circuit 130 to prevent braking force. To increase.
비저항선로(138)가 연결된 제동회로(130)는 저항선로(135)가 연결된 경우보다 더 큰 제동력을 구동모터(15)에 제공하게 되고, 기준속도 이상에서는 저항선로(135)에 의한 제동력을 구동모터(15)에 부여하여 충격을 완화하며, 기준속도 미만에서 비저항선로(138)에 의한 제동력을 구동모터(15)에 부여하여 종국적인 정지상태를 위해 최대 제동력을 형성하는 것이다.The braking circuit 130 to which the resistivity line 138 is connected provides a greater braking force to the driving motor 15 than when the resistance line 135 is connected, and drives the braking force by the resistance line 135 above the reference speed. The impact is applied to the motor 15 to alleviate the impact, and the braking force by the resistive line 138 is applied to the driving motor 15 to form the maximum braking force for the final stationary state at the reference speed.
한편, 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 제어부(90)는 상기 제동모드 중 급제동모드인 경우, 상기 캐리지(10)의 속도와 무관하게 상기 제동회로(130)에서 상기 비저항선로(138)를 연결할 수 있다.On the other hand, in the pipe running robot 100 according to an embodiment of the present invention, the control unit 90 in the braking mode of the braking mode, regardless of the speed of the carriage 10 in the braking circuit 130 The resistivity line 138 may be connected.
앞서 설명한 바와 같이 본 발명의 일 실시예에서 상기 급제동모드는 제동에 따라 캐리지(10)에 작용할 수 있는 충격을 완화하는 것보다 신속하게 캐리지(10)를 제동하는 것을 우선하는 것이며, 이를 위해 본 발명의 일 실시예는 상기 캐리지(10)의 속도에 무관하게 제동력을 최대로 부여한다.As described above, in one embodiment of the present invention, the rapid braking mode is to prioritize braking of the carriage 10 more quickly than to alleviate a shock that may act on the carriage 10 according to the braking. In one embodiment of the present invention provides a maximum braking force regardless of the speed of the carriage (10).
즉, 제어부(90)는 급제동모드로 인식한 경우, 상기 제동회로(130)에 상기 비저항선로(138)를 연결함으로써 상기 외부전원(250)의 양극을 단락시키고, 이를 통해 제동회로(130)를 통해 구동모터(15)에 제공할 수 있는 최대 제동력을 제공하여 신속한 제동을 수행하도록 한다.That is, when the controller 90 recognizes the rapid braking mode, the control circuit 90 connects the resistive line 138 to the braking circuit 130 to short-circuit the positive pole of the external power supply 250, thereby closing the braking circuit 130. By providing the maximum braking force that can be provided to the drive motor 15 to perform a rapid braking.
한편, 도 8에 도시된 바와 같이 본 발명의 일 실시예는 상기 저항부(136, 137)가 온도가 증가할수록 저항값이 낮아지는 NTC소자(136)를 포함할 수 있다. NTC(NEGATIVE TEMPERATURE COEFFICIENT OF RESISTANCE)소자란, 해당 소자의 온도가 증가할 수록 저항값이 낮아지는 특성을 가지는 저항소자를 의미한다.Meanwhile, as shown in FIG. 8, an embodiment of the present invention may include an NTC element 136 in which the resistance values are lowered as the resistances 136 and 137 increase in temperature. The NTC (NEGATIVE TEMPERATURE COEFFICIENT OF RESISTANCE) device refers to a resistance device having a characteristic that the resistance value decreases as the temperature of the device increases.
앞서 설명한 바와 같이 본 발명에서 저항선로(135)는 저항부(136, 137)를 마련하여 상기 저항부(136, 137)에서 구동모터(15)의 외력을 전력으로 소비하는데, 상기 저항부(136, 137)에서 상기 전력은 주로 열로 소비되며, 이에 따라 상기 저항부(136, 137)는 제동모드가 지속될수록 온도가 증가한다.As described above, in the present invention, the resistance line 135 provides resistors 136 and 137 to consume the external force of the driving motor 15 from the resistors 136 and 137 as power. In 137, the power is mainly consumed by heat, and thus, the resistance parts 136 and 137 increase in temperature as the braking mode continues.
즉, 본 발명의 저항부(136, 137)에 마련된 NTC소자(136)는 제동이 지속될수록 저항값이 낮아지고, 이에 따라 저항부(136, 137)에서 소비되는 전력량이 증가하면서 상기 구동모터(15)에 제공되는 제동력이 점차 증가하게 된다.That is, the NTC element 136 provided in the resistor units 136 and 137 of the present invention has a lower resistance value as braking continues, and accordingly, the amount of power consumed by the resistor units 136 and 137 increases, thereby increasing the driving motor ( The braking force provided in 15) is gradually increased.
결국, 본 발명의 일 실시예는 비저항선로(138)보다 더 낮은 제동력을 구동모터(15)에 형성하는 저항선로(135)를 구비하되, 저항선로(135)의 저항부(136, 137)에 NTC소자(136)를 포함시킴으로써, 저항선로(135)를 연결한 제동모드에서 제동이 진행될수록 NTC소자(136)에 의해 점차 제동력이 증가되도록 한다.As a result, one embodiment of the present invention includes a resistance line 135 for forming a lower braking force in the driving motor 15 than the resistivity line 138, but the resistance portions 136 and 137 of the resistance line 135 are provided. By including the NTC element 136, the braking force is gradually increased by the NTC element 136 as the braking proceeds in the braking mode connecting the resistance line 135.
이를 통해, 주행로봇(100)에 제공되는 제동력이 점진적으로 증가하게 하여 충격을 완화시키고, 제동과정이 진행되면서 주행로봇(100)의 정지를 위한 충분한 크기의 제동력이 제공될 수 있도록 하는 것이다.Through this, the braking force provided to the traveling robot 100 is gradually increased to alleviate the impact, and the braking force of sufficient magnitude for stopping of the traveling robot 100 may be provided as the braking process proceeds.
한편, 도 8에 도시된 바와 같이 본 발명의 일 실시예에 따른 배관내부 주행로봇(100)은 상기 저항부에 상기 제어부에 의해 저항값이 조절되는 가변저항과 상기 NTC소자가 직렬 배치되고, 상기 구동모터는 전원케이블을 통해 상기 구동회로 및 제동회로와 선택적으로 연결되며, 상기 가변저항은 상기 전원케이블의 길이가 길수록 저항값이 더 작도록 조절될 수 있다.Meanwhile, as shown in FIG. 8, in the pipe driving robot 100 according to the exemplary embodiment of the present invention, a variable resistor in which the resistance value is adjusted by the control unit and the NTC element are disposed in series in the resistor unit. The driving motor is selectively connected to the driving circuit and the braking circuit through a power cable, and the variable resistor may be adjusted to have a smaller resistance value as the length of the power cable is longer.
외부전원(250)으로부터 전원케이블(255)을 통해 전력을 공급받는 구동모터(15)의 경우, 상기 제동회로(130)에서 상기 전원케이블(255)에 존재하는 선로저항(257)을 이용하여 상기 제동회로(130)에서 상기 구동모터(15)의 제동력을 형성할 수 있다.In the case of the driving motor 15 that receives power from the external power source 250 through the power cable 255, the braking circuit 130 uses the line resistance 257 which exists in the power cable 255. The braking force of the driving motor 15 may be formed in the braking circuit 130.
다만, 상기 전원케이블(255)의 길이에 따라 전원케이블(255)에 존재하는 선로저항(257)의 크기가 변할 수 있고, 이에 따라 상기 전원케이블(255)의 선로저항(257)을 이용하여 저항선로(135)가 제동력을 형성하는 것은 그 제동력의 크기가 변할 수 있으므로, 본 발명의 일 실시예는 저항선로(135)상에 가변저항(137)을 구비한다.However, the size of the line resistance 257 present in the power cable 255 may vary according to the length of the power cable 255, and thus the resistance line using the line resistance 257 of the power cable 255 may vary. The forming of the braking force of the furnace 135 may vary in magnitude of the braking force, and therefore, an embodiment of the present invention includes a variable resistor 137 on the resistance line 135.
제어부(90)는 상기 전원케이블(255)의 선로저항(257)과 가변저항(137)의 합산값이 일정값을 이루도록 상기 가변저항(137)을 제어할 수 있다. 예컨대, 전원케이블(255)의 길이가 길어 선로저항(257)이 커지면 제어부(90)는 가변저항(137)의 크기를 작게 조절하고, 전원케이블(255)의 길이가 짧아 선로저항(257)이 작아지면 제어부(90)는 가변저항(137)의 크기를 크게 조절하여 제동회로(130)에 의해 제공되는 저항값을 일정하게 유지한다.The controller 90 may control the variable resistor 137 such that the sum of the line resistance 257 and the variable resistor 137 of the power cable 255 achieves a predetermined value. For example, when the length of the power cable 255 increases and the line resistance 257 becomes large, the controller 90 adjusts the size of the variable resistor 137 to a smaller value, and the length of the power cable 255 shortens the line resistance 257. When the size decreases, the controller 90 adjusts the size of the variable resistor 137 to keep the resistance value provided by the braking circuit 130 constant.
이에 따라, 본 발명의 일 실시예는 전원케이블(255)의 선로저항(257)을 이용하여 제동회로(130)를 구성하면서, 전원케이블(255)의 선로저항(257)이 변하더라도 구동모터(15)에 제공되는 제동력을 일정하게 형성될 수 있도록 가변저항(137)을 배치한다.Accordingly, one embodiment of the present invention configures the braking circuit 130 using the line resistance 257 of the power cable 255, even if the line resistance 257 of the power cable 255 changes, the driving motor ( The variable resistor 137 is disposed so that the braking force provided to 15 may be uniformly formed.
본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.Although the present invention has been described through the preferred embodiments as described above, the present invention is not limited thereto and various modifications and variations are possible without departing from the spirit and scope of the claims set out below. Those in the technical field to which they belong will easily understand.
- 부호의 설명 -Description of the sign
100: 배관내부 주행로봇 10: 캐리지100: inside the pipe driving robot 10: carriage
10a: 전방캐리지 10b: 후방캐리지10a: front carriage 10b: rear carriage
11: 플레이트부 11a: 제1 플레이트11: plate portion 11a: first plate
11b: 제2 플레이트 12: 에어실린더11b: second plate 12: air cylinder
13: 링크부 13a: 제1 링크13: link part 13a: first link
13b: 제2 링크 14: 롤러부13b: second link 14: roller portion
14a: 구동롤러 14b: 보조롤러14a: drive roller 14b: auxiliary roller
15: 구동모터 16: 가이드포스트15: Drive motor 16: Guide post
20: 홀더 22: 에어셀20: holder 22: air cell
22a: 제1 에어셀 22b: 제2 에어셀22a: first air cell 22b: second air cell
23: 지지롤러 63 : 전류측정부23: support roller 63: current measuring unit
65 : 전압측정부 70 : 내부전원65: voltage measuring unit 70: internal power
75 : 스위치 90 : 제어부75 switch 90 control unit
120 : 구동회로 122 : 제어스위치120: drive circuit 122: control switch
130 : 제동회로 135 : 저항선로130: braking circuit 135: resistance line
138 : 비저항선로 200: 배관138: resistivity line 200: piping
210: 아래보기 T관 250 : 외부전원210: bottom view T pipe 250: external power
255 : 전원케이블 257 : 선로저항255: power cable 257: line resistance

Claims (20)

  1. 배관 내벽에 지지하여 배관 내벽을 따라 주행할 수 있는 전방캐리지 및 후방캐리지;A front carriage and a rear carriage that can support the inner wall of the pipe and travel along the inner wall of the pipe;
    상기 전방캐리지와 상기 후방캐리지 사이를 연결하며 유연성이 조절되는 홀더를 포함하는 배관내부 주행로봇.A connecting robot running inside the pipe including a holder which is connected between the front carriage and the rear carriage and the flexibility is adjustable.
  2. 제1항에 있어서,The method of claim 1,
    상기 홀더는,The holder,
    공기의 주입 또는 배출에 의해 내부 압력이 변화하는 에어셀을 포함하고, 상기 에어셀의 내부 압력에 따라 유연성이 조절되는 배관내부 주행로봇. A traveling robot in a pipe including an air cell whose internal pressure is changed by injecting or discharging air, and whose flexibility is adjusted according to the internal pressure of the air cell.
  3. 제2항에 있어서, The method of claim 2,
    상기 에어셀은, The air cell,
    상기 전방캐리지에 인접하여 설치되는 제1 에어셀; 및A first air cell installed adjacent to the front carriage; And
    상기 후방캐리지에 인접하여 설치되는 제2 에어셀을 포함하고, A second air cell installed adjacent to the rear carriage,
    상기 제1 에어셀과 상기 제2 에어셀은 서로 이격된 배관내부 주행로봇. The first air cell and the second air cell is an internal pipe running robot spaced apart from each other.
  4. 제3항에 있어서,The method of claim 3,
    상기 홀더는, The holder,
    상기 제1 에어셀과 상기 제2 에어셀 사이에 설치되며, 상기 홀더의 외측을 따라 이격 배치되는 복수개의 지지롤러를 포함하는 배관내부 주행로봇.And a plurality of support rollers disposed between the first air cell and the second air cell and spaced apart along the outer side of the holder.
  5. 제1항에 있어서,The method of claim 1,
    곡관을 통과하는 경우, 상기 전방캐리지 및 상기 후방캐리지가 상기 곡관을 주행하도록 상기 홀더가 유연해지는 배관내부 주행로봇. When passing through the curved pipe, the traveling robot inside the pipe that the holder is flexible so that the front carriage and the rear carriage travels the curved pipe.
  6. 제1항에 있어서,The method of claim 1,
    상기 배관에서 하부가 개방된 구역을 직선으로 통과하는 경우, When passing straight through the open area in the lower portion of the pipe,
    상기 전방캐리지 및 상기 후방캐리지가 직선으로 주행하도록 상기 홀더가 단단해지는 배관내부 주행로봇.And the holder is rigid inside the pipe so that the front carriage and the rear carriage run in a straight line.
  7. 제1항에 있어서,The method of claim 1,
    상기 전방캐리지 및 상기 후방캐리지는, The front carriage and the rear carriage,
    공압으로 작동하는 에어실린더;Pneumatically operated air cylinders;
    상기 에어실린더의 후단에 설치되는 제1 플레이트; A first plate installed at a rear end of the air cylinder;
    상기 제1 프레이트의 외측에 연결되는 가이드포스트;A guide post connected to the outside of the first plate;
    상기 가이드포스트의 단부에 연결되는 제2 플레이트; A second plate connected to an end of the guide post;
    상기 제1 플레이트 및 상기 제2 플레이트에 각각 회동할 수 있게 연결된 제1 링크 및 제2 링크를 가지는 링크부; 및A link portion having a first link and a second link rotatably connected to the first plate and the second plate, respectively; And
    상기 링크부 선단에 연결되는 롤러부를 포함하는 배관내부 주행로봇.Inner pipe running robot including a roller connected to the tip of the link.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 롤러부는, The roller unit,
    상기 제1 링크의 선단에 연결되며 구동모터가 연결된 구동롤러; 및A driving roller connected to the front end of the first link and connected to a driving motor; And
    상기 제2 링크의 선단에 연결되는 보조롤러를 포함하는 배관내부 주행로봇.Inner pipe traveling robot including an auxiliary roller connected to the tip of the second link.
  9. 제1항에 있어서,The method of claim 1,
    외부전원으로부터 전력을 공급받아 상기 전방캐리지 및 후방캐리지에 구동력을 제공하는 구동모터;A driving motor receiving power from an external power source and providing driving power to the front carriage and the rear carriage;
    상기 전방캐리지 및 후방캐리지와 함께 상기 배관을 이동하며, 스위치의 작동에 의해 상기 외부전원과 상기 구동모터 사이의 전류경로에 선택적으로 연결되는 내부전원; 및An internal power source that moves the pipe together with the front carriage and the rear carriage and is selectively connected to a current path between the external power source and the driving motor by an operation of a switch; And
    상기 외부전원에 의해 상기 구동모터에 제공되는 전력과 현재 요구되는 목표전력간의 전력편차가 발생된 경우, 상기 스위치를 작동시켜 상기 내부전원을 연결함으로써 상기 전력편차만큼 상기 구동모터에 제공되는 전력을 보상하는 제어부;를 포함하는 배관내부 주행로봇.When a power deviation between the power provided to the drive motor and the target power currently required is generated by the external power source, the power supplied to the drive motor is compensated for by the power deviation by operating the switch to connect the internal power source. Inside the piping driving robot comprising a control unit.
  10. 제9항에 있어서,The method of claim 9,
    상기 외부전원은 상기 배관 외부의 일지점에 고정되고, 상기 구동모터는 상기 전류경로의 적어도 일부를 구성하는 전원케이블을 통해 상기 외부전원으로부터 전력을 공급받는 배관내부 주행로봇.The external power source is fixed to a point outside the pipe, the driving motor inside the pipe running robot receives power from the external power via a power cable constituting at least part of the current path.
  11. 제10항에 있어서,The method of claim 10,
    상기 구동모터에 제공되는 전압을 측정하는 전압측정부;를 더 포함하고,And a voltage measuring unit measuring a voltage provided to the driving motor.
    상기 제어부는 상기 전압측정부에서 측정된 전압과 상기 목표전력에 따른 목표전압간의 전압편차가 발생하는 경우, 상기 내부전원을 연결하여 상기 전압편차값을 보상하는 배관내부 주행로봇.And the controller is configured to compensate for the voltage deviation by connecting the internal power when a voltage deviation between the voltage measured by the voltage measuring unit and the target voltage according to the target power occurs.
  12. 제11항에 있어서,The method of claim 11,
    상기 구동모터에 제공되는 전류를 측정하는 전류측정부;를 더 포함하고,Further comprising: a current measuring unit for measuring the current provided to the drive motor,
    상기 제어부는 상기 전류측정부에서 측정된 전류와 상기 목표전력과의 관계에서 상기 목표전압을 결정하는 배관 내부 주행로봇.And the controller determines the target voltage based on a relationship between the current measured by the current measuring unit and the target power.
  13. 제12항에 있어서,The method of claim 12,
    상기 제어부는 상기 전압편차가 기준전압값 이상인 경우 상기 내부전원을 연결하며, 상기 측정된 전류가 클수록 상기 기준전압값을 더 작은 값으로 결정하는 배관내부 주행로봇.The control unit connects the internal power supply when the voltage deviation is greater than or equal to a reference voltage value, and determines the reference voltage value as a smaller value as the measured current is larger.
  14. 제1항에 있어서,The method of claim 1,
    외부전원으로부터 전력을 공급받아 상기 전방캐리지 및 후방캐리지에 구동력을 제공하는 구동모터;A driving motor receiving power from an external power source and providing driving power to the front carriage and the rear carriage;
    상기 외부전원을 포함하며 상기 구동모터에 선택적으로 연결되는 구동회로;A driving circuit including the external power source and selectively connected to the driving motor;
    상기 구동모터에 선택적으로 연결되는 제동회로; 및 A braking circuit selectively connected to the drive motor; And
    상기 구동회로 및 제동회로 중 어느 하나를 상기 구동모터와의 연결상태로 제어하는 제어부;를 포함하고,And a controller configured to control any one of the driving circuit and the braking circuit to a connection state with the driving motor.
    상기 제어부는 상기 전방캐리지 및 후방캐리지의 주행모드에서 상기 구동회로를 연결상태로 제어하고, 상기 캐리지의 제동모드에서 상기 제동회로를 연결상태로 제어하는 배관내부 주행로봇.The control unit controls the driving circuit in the connection state in the driving mode of the front carriage and the rear carriage, and the inside of the pipe driving robot for controlling the braking circuit in the connection state in the braking mode of the carriage.
  15. 제14항에 있어서,The method of claim 14,
    상기 구동모터의 양단에는 상기 구동회로 및 제동회로 중 어느 하나와 선택적으로 연결되는 제어스위치가 각각 마련되고,Both ends of the drive motor are provided with a control switch selectively connected to any one of the drive circuit and the braking circuit,
    상기 제어부는 상기 제어스위치를 제어하여 상기 구동회로 및 제동회로의 연결상태를 제어하는 배관내부 주행로봇.The control unit controls the control switch inside the pipe driving robot for controlling the connection state of the driving circuit and the braking circuit.
  16. 제14항에 있어서,The method of claim 14,
    상기 제동회로에는 저항부가 포함된 저항선로와 단락상태의 비저항선로가 병렬적으로 마련되고, 상기 저항선로 및 비저항선로 중 어느 하나를 상기 구동모터의 양극 사이에 연결하는 저항스위치가 마련된 배관내부 주행로봇.The braking circuit includes a resistance line including a resistor unit and a non-resistance line in a short circuit state, and a traveling robot inside a pipe provided with a resistance switch connecting one of the resistance line and the non-resistance line between the anodes of the driving motor. .
  17. 제16항에 있어서,The method of claim 16,
    상기 제어부는 상기 제동모드 중 일반제동모드인 경우, 상기 전방캐리지 및 후방캐리지의 속도가 기준속도 이상인 경우 상기 제동회로에서 상기 저항선로를 연결하며, 상기 기준속도 미만인 경우 상기 제동회로에서 상기 비저항선로를 연결하는 배관내부 주행로봇.The control unit connects the resistance line in the braking circuit when the speed of the front carriage and the rear carriage is greater than or equal to the reference speed in the braking mode of the braking mode. Running robot inside pipe to connect.
  18. 제15항에 있어서,The method of claim 15,
    상기 제어부는 상기 제동모드 중 급제동모드인 경우, 상기 전방캐리지 및 후방캐리지의 속도와 무관하게 상기 제동회로에서 상기 비저항선로를 연결하는 배관내부 주행로봇.The controller may be configured to connect the resistive line in the braking circuit, regardless of the speed of the front carriage and the rear carriage, in the braking mode of the braking mode.
  19. 제16항에 있어서,The method of claim 16,
    상기 저항부는 온도가 증가할수록 저항값이 낮아지는 NTC소자를 포함하는 배관내부 주행로봇.The resistance unit inside the pipe running robot including an NTC element that the resistance value is lower as the temperature increases.
  20. 제19항에 있어서,The method of claim 19,
    상기 저항부는 상기 제어부에 의해 저항값이 조절되는 가변저항과 상기 NTC소자가 직렬 배치되고,The resistor unit includes a variable resistor in which the resistance value is adjusted by the control unit and the NTC element,
    상기 구동모터는 전원케이블을 통해 상기 구동회로 및 제동회로와 연결되며,The drive motor is connected to the drive circuit and the braking circuit through a power cable,
    상기 가변저항은 상기 전원케이블의 길이가 길수록 저항값이 더 작도록 조절되는 배관내부 주행로봇.The variable resistance is a robot inside the pipe is adjusted so that the resistance value is smaller the longer the length of the power cable.
PCT/KR2018/001900 2017-02-14 2018-02-13 In-pipe running robot WO2018151511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201907478TA SG11201907478TA (en) 2017-02-14 2018-02-13 In-pipe running robot
CN201880025018.3A CN110520253B (en) 2017-02-14 2018-02-13 Robot walking in pipeline
JP2019543923A JP6863656B2 (en) 2017-02-14 2018-02-13 Piping internal traveling robot

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020170020110A KR20180093678A (en) 2017-02-14 2017-02-14 Driving robot inside pipe
KR10-2017-0020110 2017-02-14
KR10-2017-0085571 2017-07-05
KR1020170085571A KR102041608B1 (en) 2017-07-05 2017-07-05 Driving robot inside pipe and controll method for the same
KR10-2017-0085952 2017-07-06
KR1020170085952A KR102018670B1 (en) 2017-07-06 2017-07-06 Driving robot inside pipe

Publications (1)

Publication Number Publication Date
WO2018151511A1 true WO2018151511A1 (en) 2018-08-23

Family

ID=63169583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001900 WO2018151511A1 (en) 2017-02-14 2018-02-13 In-pipe running robot

Country Status (4)

Country Link
JP (1) JP6863656B2 (en)
CN (1) CN110520253B (en)
SG (1) SG11201907478TA (en)
WO (1) WO2018151511A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109849015A (en) * 2019-03-22 2019-06-07 上海交通大学 Polypody pipeline mobile robot device
CN112413281A (en) * 2020-11-03 2021-02-26 三峡大学 Novel spiral wheel type miniature pipeline detection robot and use method
CN114151650A (en) * 2021-12-17 2022-03-08 西安石油大学 Pipeline inspection robot and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365563A (en) * 2020-03-26 2020-07-03 湖北楚天卓越工程技术有限公司 Running gear for detecting internal quality of concrete pipeline and operation method
CN113483192A (en) * 2021-06-17 2021-10-08 中广核研究院有限公司 Pipeline crawling carrier
KR102519598B1 (en) * 2022-09-28 2023-04-10 (주)로보아이 Milling or grinding robot for bead

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552686A (en) * 1993-03-09 1996-09-03 Robert Bosch Gmbh Series motor, in particular universal motor with brake device
KR20090010697A (en) * 2007-07-24 2009-01-30 성균관대학교산학협력단 Robot for internal inspection of pipeline
US8041456B1 (en) * 2008-10-22 2011-10-18 Anybots, Inc. Self-balancing robot including an ultracapacitor power source
KR20150078119A (en) * 2013-12-30 2015-07-08 한국원자력연구원 Mobile robot for inspectiing inside-pipe
KR200479032Y1 (en) * 2014-11-20 2015-12-10 한국원자력연구원 In-Pipe Inspection Robot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153708A (en) * 1991-06-07 1993-06-18 Showa Electric Wire & Cable Co Ltd Electric traveling unit
JPH10167053A (en) * 1996-12-06 1998-06-23 Toshiba Corp Working device
JP4495422B2 (en) * 2003-08-20 2010-07-07 株式会社ディスコ Instantaneous power failure / instantaneous voltage drop countermeasure device, processing device, and instantaneous power failure / instantaneous voltage drop detection method
JP4228907B2 (en) * 2003-12-19 2009-02-25 Jfeエンジニアリング株式会社 In-pipe inspection method
CN100486856C (en) * 2006-11-24 2009-05-13 江苏工业学院 Robot walking mechanism for tapered pipeline
JP3152398U (en) * 2009-05-18 2009-07-30 株式会社石川鉄工所 Tire-type in-pipe inspection robot and in-pipe inspection apparatus using the same
CN204293056U (en) * 2014-12-23 2015-04-29 湖南格兰博智能科技有限责任公司 A kind of window wiping robot device
CN105045151B (en) * 2015-07-23 2018-05-04 安徽江淮汽车集团股份有限公司 A kind of vehicle electrical balance control method and device
CN105937683B (en) * 2016-06-06 2017-12-19 安徽工业大学 Adaptive inner wall duct robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552686A (en) * 1993-03-09 1996-09-03 Robert Bosch Gmbh Series motor, in particular universal motor with brake device
KR20090010697A (en) * 2007-07-24 2009-01-30 성균관대학교산학협력단 Robot for internal inspection of pipeline
US8041456B1 (en) * 2008-10-22 2011-10-18 Anybots, Inc. Self-balancing robot including an ultracapacitor power source
KR20150078119A (en) * 2013-12-30 2015-07-08 한국원자력연구원 Mobile robot for inspectiing inside-pipe
KR200479032Y1 (en) * 2014-11-20 2015-12-10 한국원자력연구원 In-Pipe Inspection Robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109849015A (en) * 2019-03-22 2019-06-07 上海交通大学 Polypody pipeline mobile robot device
CN109849015B (en) * 2019-03-22 2020-11-06 上海交通大学 Multi-foot type pipeline mobile robot device
CN112413281A (en) * 2020-11-03 2021-02-26 三峡大学 Novel spiral wheel type miniature pipeline detection robot and use method
CN114151650A (en) * 2021-12-17 2022-03-08 西安石油大学 Pipeline inspection robot and control method
CN114151650B (en) * 2021-12-17 2023-10-20 西安石油大学 Pipeline inspection robot and control method

Also Published As

Publication number Publication date
JP6863656B2 (en) 2021-04-21
JP2020507486A (en) 2020-03-12
CN110520253B (en) 2022-11-08
CN110520253A (en) 2019-11-29
SG11201907478TA (en) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2018151511A1 (en) In-pipe running robot
WO2012173408A2 (en) Power relay assembly driving apparatus and driving method thereof
WO2021096183A1 (en) Electrode assembly manufacturing method and electrode assembly manufacturing apparatus
WO2020189918A1 (en) Battery management device
WO2019066214A1 (en) Battery module equalization apparatus, and battery pack and automobile including same
WO2021006571A1 (en) Apparatus and method for detecting defect in battery pack
WO2010110509A1 (en) Electric pruning shears equipped with trigger
WO2017000216A1 (en) Charging control circuit, charging device, charging system and charging control method
WO2018159910A1 (en) Uninterruptible power supply system comprising energy storage system
WO2019078475A1 (en) Heater control system for battery packs having parallel connection structure, and method therefor
WO2013095066A1 (en) Wireless power transmission device and method
WO2020050692A1 (en) Power transmission underground cable winding device and power transmission underground cable spreading system comprising same
WO2020055188A1 (en) Cross-linked polyolefin separator and method for producing same
WO2020162661A1 (en) Cassette assembly and battery tray comprising same
WO2018034550A1 (en) Control system for controlling operation mode of dc-dc voltage converter
WO2014081053A1 (en) Apparatus and method for controlling preferential function of construction machine
WO2020050589A1 (en) Crosslinked polyolefin separator and method of preparing same
WO2022019517A1 (en) System and method for controlling power of fuel cell
WO2013159421A1 (en) Method and device for detecting anomaly in differential signal receiving terminal of liquid crystal display module
WO2018147491A1 (en) Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method
WO2019112132A1 (en) Lens curvature variation apparatus
WO2020130608A2 (en) Graphene manufacturing device and graphene manufacturing method using same
WO2022149764A1 (en) Electrode slurry coating system capable of controlling flow rate of electrode slurry, and slurry coating method using same
WO2011152587A1 (en) Non-contact conveying device using vacuum pad
WO2022182106A1 (en) Meandering correction device for electrode and meandering correction method for electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18755041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18755041

Country of ref document: EP

Kind code of ref document: A1