WO2018042806A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2018042806A1
WO2018042806A1 PCT/JP2017/021162 JP2017021162W WO2018042806A1 WO 2018042806 A1 WO2018042806 A1 WO 2018042806A1 JP 2017021162 W JP2017021162 W JP 2017021162W WO 2018042806 A1 WO2018042806 A1 WO 2018042806A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cancel
sensor
input device
electrodes
Prior art date
Application number
PCT/JP2017/021162
Other languages
French (fr)
Japanese (ja)
Inventor
良平 杉本
宙生 川合
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2018042806A1 publication Critical patent/WO2018042806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector

Definitions

  • the present invention relates to an input device.
  • a technology has been developed to improve the detection accuracy of capacitive sensors.
  • a technique related to a capacitive sensor including a guard electrode to which the same voltage as the voltage applied to the detection electrode is applied for example, a technique described in Patent Document 1 is cited.
  • the capacitance type input device detects, for example, the capacitance of an electrode corresponding to an electrostatic sensor (electrostatic switch), and detects a change in the capacitance of the electrode caused by an operation with an operating body such as a finger. Thus, it is determined whether or not an operation is performed on the electrostatic sensor corresponding to the electrode.
  • the change in the capacitance of the electrode is detected, for example, by comparing the detected capacitance of the electrode with a predetermined threshold value.
  • parasitic capacitance is generated between an electrode for detecting capacitance (hereinafter referred to as “sensor electrode”) and a reference potential point (ground).
  • sensor electrode an electrode for detecting capacitance
  • ground a reference potential point
  • the magnitude of the parasitic capacitance generated between the sensor electrode and the reference potential point depends on the area of the sensor electrode.
  • the parasitic capacitance generated between the sensor electrode and the reference potential point can be a noise in the operation determination for the electrostatic sensor corresponding to the sensor electrode, the parasitic capacitance generated between the sensor electrode and the reference potential point is large.
  • the SNR (Signal-to-Noise Ratio) characteristic is disadvantageous. Therefore, in order to improve the operation determination accuracy for the electrostatic sensor, it is desirable to reduce the parasitic capacitance generated between the sensor electrode and the reference potential point.
  • an electrode separate from the sensor electrode Is provided with a capacitance type input device.
  • a drive signal (voltage signal) for detection When a drive signal (voltage signal) for detection is applied to the sensor electrode, a signal (voltage signal) having the same waveform as the drive signal is applied to the separate electrode.
  • the electrode and the separate electrode have the same potential. Therefore, in the above case, no parasitic capacitance is generated between the sensor electrode and the separate electrode.
  • the separate electrode to which a signal having the same waveform as the drive signal applied to the sensor electrode is applied is referred to as a “cancel electrode”.
  • control for applying a signal having the same waveform as the drive signal to the cancel electrode when the drive signal is applied to the sensor electrode is referred to as “cancel control”.
  • non-cancel control is referred to as “non-cancel control”.
  • the input device having a plurality of sensor electrodes respectively corresponding to a plurality of electrostatic sensors.
  • the input device has a plurality of sensor electrodes, for example, as disclosed in Patent Document 1, the input device has a plurality of cancel electrodes corresponding to the plurality of sensor electrodes on a one-to-one basis.
  • a drive signal is sequentially applied to each of the sensor electrodes.
  • an input device in which electrodes are controlled independently hereinafter referred to as “input device in which a plurality of sensor electrodes are controlled independently”.
  • the “input device having a plurality of sensor electrodes and a plurality of cancel electrodes corresponding to the plurality of sensor electrodes on a one-to-one basis and independently controlling the plurality of sensor electrodes” This may cause a change in the capacitance of the determination target sensor electrode (detection target sensor electrode).
  • detection target sensor electrode An example of causing a change in the capacitance of the sensor electrode to be determined for operation will be described later.
  • the electrostatic sensor corresponding to the sensor electrode is not operated by the operating body. There is a possibility that an erroneous determination is made that it is determined that an operation is being performed on.
  • the present invention has been made in view of the above problems, and an object of the present invention is new and improved, which can prevent erroneous determination of an operation caused by a dielectric other than the operation body. It is to provide an input device.
  • a plurality of sensor electrodes to which drive signals are respectively applied, and a parasitic capacitance between each of the sensor electrodes and a reference potential point are reduced.
  • a switch unit having a cancel electrode; a detection unit for detecting an operation on the switch unit based on a change in capacitance of each of the sensor electrodes; a control for applying the drive signal to each of the sensor electrodes;
  • the cancel control for the cancel electrode is performed. Reduces the parasitic capacitance between all of the sensor electrode and the reference potential point, the input device is provided.
  • the switch unit includes one cancel electrode for reducing parasitic capacitance between all the sensor electrodes and the reference potential point, and the control unit is connected to any one of the sensor electrodes.
  • the cancel control may be performed on one cancel electrode.
  • the switch unit has a plurality of cancel electrodes that correspond to each of the plurality of sensor electrodes on a one-to-one basis and reduce parasitic capacitance between the corresponding sensor electrode and the reference potential point.
  • the control unit may perform the cancel control on all the cancel electrodes when the drive signal is applied to any one of the sensor electrodes.
  • the plurality of sensor electrodes are divided into a plurality of electrode groups, and the switch unit reduces parasitic capacitance between the sensor electrode belonging to the electrode group and the reference potential point.
  • the cancel electrode is provided for each of the electrode groups, and the control unit may perform the cancel control on all the cancel electrodes when the drive signal is applied to any of the sensor electrodes. Good.
  • control unit may perform non-cancellation control in which the drive signal is not applied to the cancel electrode when the drive signal is not applied to the plurality of sensor electrodes.
  • parasitic capacitance Cpn the parasitic capacitance generated between one object and another object
  • n is a number for distinguishing the parasitic capacitance
  • Cp. 1 to 4 the magnitude relation of the size of the parasitic capacitance Cpn is represented by two types of sizes of circuit symbols indicating capacitors for convenience.
  • FIG. 1 is an explanatory diagram showing an example of parasitic capacitance generated between a sensor electrode and a reference potential point GND in an input device having a plurality of sensor electrodes.
  • FIG. 1 shows an example in which the input device has two sensor electrodes represented by “sensor 1” and “sensor 2”.
  • the parasitic capacitances Cp1 and Cp2 shown in FIG. 1 are as follows. As described above, the parasitic capacitances Cp1 and Cp2 depend on the sensor electrode area and the like.
  • Parasitic capacitance Cp1 Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND.
  • Parasitic capacitance Cp2 between the sensor electrode represented by “Sensor 2” and the reference potential point GND. Parasitic capacitance generated between
  • the parasitic capacitances Cp1 and Cp2 can be noise in the determination of the operation on the electrostatic sensor corresponding to the sensor electrode.
  • FIG. 2 illustrates a parasitic capacitance generated between the sensor electrode and the reference potential point GND and a parasitic capacitance generated between the cancellation electrode and the reference potential point GND in an input device having a plurality of sensor electrodes and a cancellation electrode. It is explanatory drawing which shows an example.
  • the input device has two sensor electrodes represented by “sensor 1” and “sensor 2”, and two cancel electrodes represented by “cancel 1” and “cancel 2”. An example is shown.
  • cancel electrode represented by “cancel 1” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 1” and the reference potential point GND.
  • cancel electrode represented by “cancel 2” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 2” and the reference potential point GND.
  • Parasitic capacitances Cp1 ′, Cp2 ′, Cp3, and Cp4 shown in FIG. 2 are as follows.
  • Parasitic capacitance Cp1 ′ Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND.
  • Parasitic capacitance Cp2 ′ Sensor electrode represented by “Sensor 2” and the reference potential point GND.
  • the parasitic capacitance Cp3 is generated between the cancel electrode represented by "Cancel 1" and the reference potential point GND.
  • the parasitic capacitance Cp4 is represented by "Cancel 2". Parasitic capacitance generated between the cancel electrode and the reference potential point GND
  • cancel electrodes represented by “cancel 1” and “cancel 2” are provided and cancel control is performed for each cancel electrode, as described above, each corresponds to each sensor electrode and each sensor electrode. No parasitic capacitance is generated between the cancel electrode.
  • parasitic capacitances Cp3 and Cp4 between the cancel electrode and the reference potential point GND cause a gap between the sensor electrode and the reference potential point GND.
  • the parasitic capacitances Cp1 ′ and Cp2 ′ are reduced more than the parasitic capacitances Cp1 and Cp2 shown in FIG.
  • the sensor electrodes are independently controlled.
  • the change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 2” is detected.
  • the controlled input device causes each electrode to be in the following state.
  • Cancel electrode represented by “Cancel 2” A signal having the same waveform as the drive signal is not applied. The cancel electrode is not driven (non-cancel control is performed)
  • each electrode when detecting a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 2”, an input in which a plurality of sensor electrodes illustrated with reference to FIG. 2 are independently controlled.
  • the apparatus causes each electrode to be in the following state.
  • -Cancel electrode represented by "Cancel 1" A signal having the same waveform as the drive signal is not applied.
  • the cancel electrode is not driven (non-cancel control is performed) -Sensor electrode represented by "Sensor 2": A state where the drive signal is applied and the sensor electrode is driven-Cancel electrode represented by "Cancel 2": A signal having the same waveform as the drive signal is applied, and the cancel electrode is Driving state (cancellation control)
  • the cancel electrode is Even if it is provided, it causes a change in the capacitance of the sensor electrode to be determined for operation.
  • FIG. 3 is an explanatory diagram for explaining an example of a change in capacitance of a sensor electrode that can be caused by a dielectric in an input device having a cancel electrode and in which a plurality of sensor electrodes are independently controlled.
  • FIG. 3 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected in the input device shown in FIG.
  • An example of a change in the capacitance of the sensor electrode is shown.
  • dielectric D examples include water, towels containing moisture, and metals such as iron and aluminum.
  • the dielectric D is represented by a rectangular parallelepiped. Needless to say, the shape of the dielectric D is not limited to a rectangular parallelepiped.
  • Parasitic capacitances Cp1 ′, Cp2 ′, Cp3, Cp5, and Cp6 shown in FIG. 3 are as follows.
  • Parasitic capacitance Cp1 ′ Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND.
  • Parasitic capacitance Cp2 ′ Sensor electrode represented by “Sensor 2” and the reference potential point GND.
  • Cp3 Parasitic capacitance
  • Cp3 Parasitic capacitance generated between the cancel electrode represented by "Cancel 1" and the reference potential point
  • Cp5 Dielectric D and "Sensor 1"
  • Cp6 Parasitic capacitance generated between the dielectric D and the reference potential point GND
  • the increase in the parasitic capacitance generated between the sensor electrode represented by the “sensor 1” and the reference potential point GND is caused by the dielectric D to be large in the sensor electrode represented by the “sensor 1”. This can be seen as an increase in parasitic capacitance.
  • the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is operated with respect to the electrostatic sensor even though the operation body is not operated. There is a possibility that a misjudgment in which it is determined that is performed is generated.
  • an input device reduces a parasitic capacitance between a plurality of sensor electrodes and each of the sensor electrodes and a reference potential point.
  • Cancellation electrode As will be described later, the input device according to the embodiment of the present invention may have one cancel electrode, or may have two or more cancel electrodes.
  • the input device performs the following control for each of the plurality of sensor electrodes and the cancel electrode.
  • ⁇ Control for multiple sensor electrodes Apply drive signals sequentially
  • ⁇ Control for cancel electrodes When drive signals are applied to any of the sensor electrodes, cancel control is performed, and all sensor electrodes and reference potentials Reduce the parasitic capacitance between points.
  • cancel control is not performed when drive signals are not applied to the plurality of sensor electrodes (that is, non-cancel control is performed when drive signals are not applied to the plurality of sensor electrodes).
  • the input device has a cancel electrode configuration as shown in the following [2-1] to [2-3], for example, and the cancel electrode configuration Control according to.
  • an electrode having a size including all the arranged sensor electrodes can be cited.
  • the one cancel electrode is, for example, between all the sensor electrodes and the reference potential point so that all the sensor electrodes are included in the cancel electrode if the cancel electrode and all the sensor electrodes are overlapped. Is provided.
  • the shape and size of one cancel electrode included in the input device according to the first embodiment is not limited to the example described above.
  • the input device according to the first embodiment has an arbitrary shape that can reduce the parasitic capacitance between all the sensor electrodes and the reference potential point when cancel control is performed, and / or Alternatively, it is possible to have one cancel electrode of any size.
  • the input device sequentially applies drive signals to a plurality of sensor electrodes.
  • the input device performs cancel control on one cancel electrode when a drive signal is applied to any one of the sensor electrodes.
  • the input device according to the first embodiment performs non-cancel control on one cancel electrode.
  • FIG. 4 is an explanatory diagram for explaining an example of a change in the capacitance of the sensor electrode that may be caused by a dielectric in the input device according to the first embodiment.
  • the input device according to the first embodiment has two sensor electrodes represented by “sensor 1” and “sensor 2” and one cancel electrode represented by “cancel”. An example is shown.
  • FIG. 4 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, as in FIG.
  • the example of the change of the electrostatic capacitance of the represented sensor electrode is shown.
  • the dielectric D is represented by a rectangular parallelepiped.
  • the shape of the dielectric D is not limited to a rectangular parallelepiped.
  • the cancel electrode represented by “cancel” reduces the parasitic capacitance between the sensor electrode represented by “sensor 1” and the sensor electrode represented by “sensor 2” and the reference potential point GND.
  • This is a cancel electrode.
  • the cancel electrode represented by “cancel” is configured by one cancel electrode so as to correspond to each of all the sensor electrodes configuring the input device according to the first embodiment. . That is, the cancel electrode represented by “cancel” is a cancel electrode for reducing the parasitic capacitance between all the sensor electrodes and the reference potential point GND.
  • Parasitic capacitances Cp1 ′, Cp2 ′, Cp5, Cp6 ′, and Cp7 shown in FIG. 4 are as follows.
  • Parasitic capacitance Cp1 ′ Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND.
  • Parasitic capacitance Cp2 ′ Sensor electrode represented by “Sensor 2” and the reference potential point GND.
  • -Parasitic capacitance Cp5 Parasitic capacitance
  • Cp5 Parasitic capacitance generated between the dielectric D and the sensor electrode represented by "Sensor 1"-Parasitic capacitance
  • Cp6 ' Dielectric D and reference potential point GND
  • Cp7 Parasitic capacitance generated between the cancel electrode represented by "cancel" and the reference potential point GND
  • the cancel electrode represented by “cancel” is canceled. Control is taking place. Therefore, the parasitic capacitance Cp6 ′ generated between the dielectric D and the reference potential point GND is reduced from the parasitic capacitance Cp6 shown in FIG. 3 by the parasitic capacitance Cp7 between the cancel electrode and the reference potential point GND. .
  • the input device has a parasitic capacitance due to the pseudo increase in the sensor electrode represented by “sensor 1” by the dielectric D, as shown in FIG.
  • the increase can be suppressed by cancel control for the cancel electrode represented by “cancel”.
  • misjudgment in some cases, it is determined that an operation is performed on the electrostatic sensor corresponding to the sensor electrode to be judged due to the increase in Reduced.
  • the input device can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
  • the input device according to the first embodiment has one cancel electrode corresponding to each of the plurality of sensor electrodes, and performs cancel control on the cancel electrode. Therefore, the input device according to the first embodiment can improve the detection accuracy in the capacitance-type input device, similarly to the input device shown in FIG.
  • the cancel electrode included in the input device includes, for example, an electrode having a size including a sensor electrode to which the cancel electrode corresponds (for example, an area larger than the corresponding sensor electrode) Electrode).
  • the cancel electrode is provided between the sensor electrode and a reference potential point so that the sensor electrode is included in the cancel electrode, for example, when the sensor electrode corresponding to the cancel electrode is overlapped. It is done.
  • the shape and size of the cancel electrode included in the input device according to the second embodiment are not limited to the example described above.
  • the input device according to the second embodiment has an arbitrary shape that can reduce the parasitic capacitance between the corresponding sensor electrode and the reference potential point when cancel control is performed, and / or Alternatively, a cancel electrode having any size can be provided.
  • the shape and / or size of the plurality of cancel electrodes included in the input device according to the second embodiment may be the same in all cancel electrodes, or in some cancel electrodes or all cancel electrodes. May be different.
  • the input device performs cancel control on all cancel electrodes when a drive signal is applied to any one of the sensor electrodes.
  • the input device according to the second embodiment performs non-cancel control for all the cancel electrodes.
  • FIG. 5 is an explanatory diagram for explaining an example of a change in the capacitance of the sensor electrode that may be caused by a dielectric in the input device according to the second embodiment.
  • the input device according to the second embodiment includes two sensor electrodes represented by “sensor 1” and “sensor 2”, and two cancels represented by “cancel 1” and “cancel 2”. An example having electrodes is shown.
  • FIG. 5 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, as in FIG.
  • the example of the change of the electrostatic capacitance of the represented sensor electrode is shown.
  • the dielectric D is represented by a rectangular parallelepiped.
  • the shape of the dielectric D is not limited to a rectangular parallelepiped.
  • the cancel electrode represented by “cancel 1” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 1” and the reference potential point GND.
  • the cancel electrode represented by “cancel 2” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 2” and the reference potential point GND.
  • the parasitic capacitances Cp1 ′, Cp2 ′, Cp3, CP4, Cp5, and Cp6 ′ shown in FIG. 5 are as follows.
  • Parasitic capacitance Cp1 ′ Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND.
  • Parasitic capacitance Cp2 ′ Sensor electrode represented by “Sensor 2” and the reference potential point GND.
  • Cp3 Parasitic capacitance
  • Cp4 Cancellation represented by "Cancel 2" Parasitic capacitance generated between the electrode and the reference potential point
  • Cp5 Parasitic capacitance generated between the dielectric D and the sensor electrode represented by "Sensor 1"
  • Parasitic capacitance Cp6 ' Dielectric D Parasitic capacitance generated between the reference potential point GND and the reference potential point GND
  • the cancel electrode represented by “cancel 1” and “cancel” Cancel control is performed for each cancel electrode represented by 2 ′′. Therefore, the parasitic capacitance Cp6 ′ generated between the dielectric D and the reference potential point GND is reduced from the parasitic capacitance Cp6 shown in FIG. 3 by the parasitic capacitances Cp3 and Cp4 between the cancel electrode and the reference potential point GND. Is done.
  • the input device has a parasitic capacitance due to the fact that the sensor electrode represented by “sensor 1” is artificially enlarged by the dielectric D as shown in FIG. The increase can be suppressed by cancel control for the cancel electrode represented by “cancel”.
  • the dielectric D adheres so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation, the parasitic capacitance caused by the dielectric D The possibility of misjudgment due to an increase in the number is reduced.
  • the input device can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
  • the input device according to the second embodiment has a plurality of cancel electrodes corresponding to each of the plurality of sensor electrodes, and performs cancel control on each of the cancel electrodes. Therefore, the input device according to the second embodiment can improve the detection accuracy of the capacitance-type input device, similarly to the input device shown in FIG.
  • a plurality of sensor electrodes are divided into a plurality of electrode groups.
  • one electrode or a plurality of sensor electrodes belong to each electrode group.
  • the configuration of the cancel electrode in the input device according to the third embodiment is the same as the configuration of the cancel electrode in the input device according to the second embodiment. It becomes.
  • the configuration of the cancel electrode in the input device according to the third embodiment is different from the configuration of the cancel electrode in the input device according to the second embodiment. It becomes.
  • the input device has a cancel electrode for each electrode group for reducing the parasitic capacitance between the sensor electrode belonging to the electrode group and the reference potential point.
  • Examples of the cancel electrode included in the input device according to the third embodiment include an electrode having a size including all sensor electrodes belonging to the electrode group to which the cancel electrode corresponds.
  • the cancel electrode belongs to the corresponding electrode group so that, for example, when all the sensor electrodes belonging to the electrode group corresponding to the cancel electrode are overlapped with each other, the sensor electrode is included in the cancel electrode. Provided between all sensor electrodes and a reference potential point.
  • the shape and size of the cancel electrode included in the input device according to the third embodiment are not limited to the examples described above.
  • the input device according to the third embodiment can reduce the parasitic capacitance between all sensor electrodes belonging to the corresponding electrode group and the reference potential point when cancel control is performed. It is possible to have cancel electrodes of any shape and / or any size.
  • the shape and / or size of the plurality of cancel electrodes included in the input device according to the third embodiment may be the same in all cancel electrodes, or in some cancel electrodes or all cancel electrodes. May be different.
  • the input device like the input device according to the second embodiment, cancels control for all the cancel electrodes when a drive signal is applied to any one of the sensor electrodes. I do.
  • the input device performs non-cancel control for all the cancel electrodes.
  • the input device according to the third embodiment and the input device according to the second embodiment have different correspondences between the cancel electrode and the sensor electrode depending on the number of sensor electrodes belonging to the electrode group. There is. However, in the input device according to the third embodiment, as in the input device according to the second embodiment, all sensor electrodes correspond to one of the cancel electrodes.
  • control is performed on each electrode similarly to the input device according to the second embodiment.
  • the dielectric D adheres so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation. Even so, the possibility of erroneous determination due to an increase in parasitic capacitance caused by the dielectric D is reduced.
  • the input device according to the third embodiment can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
  • the input device according to the third embodiment has a plurality of cancel electrodes corresponding one-to-one to each electrode group, and performs cancel control on each cancel electrode. Therefore, the input device according to the third embodiment can improve the detection accuracy of the capacitance-type input device, similarly to the input device shown in FIG.
  • the input device has a cancel electrode configuration as in the embodiments described in [2-1] to [2-3], for example, and performs control according to the cancel electrode configuration. .
  • the example having two sensor electrodes is mainly shown, but the number of sensor electrodes included in the input device according to the embodiment of the present invention is two. It is not restricted to, You may have three or more sensor electrodes. Even in the configuration having three or more sensor electrodes, the input device according to the embodiment of the present invention has the configuration of the cancel electrode as in the embodiments shown in [2-1] to [2-3]. By performing the control as in the embodiments shown in the above [2-1] to [2-3], it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operating body. . Moreover, even if it is the structure which has three or more sensor electrodes, the input device which concerns on embodiment of this invention can aim at the improvement of the detection accuracy in an electrostatic capacitance type input device.
  • the input device according to the embodiment of the present invention has two sensor electrodes is taken as an example.
  • the input device according to the embodiment of the present invention may have three or more sensor electrodes.
  • FIG. 6 is a block diagram showing an example of the configuration of the input device 100 according to the embodiment of the present invention.
  • the input device 100 includes, for example, a switch unit 102, a detection unit 104, a switching unit 106, and a control unit 108.
  • the input device 100 may include, for example, a ROM (Read Only Memory, not shown), a RAM (Random Access Memory, not shown), a storage unit (not shown), and the like.
  • the input device 100 connects the above-described components by a bus as a data transmission path.
  • the input device 100 is driven by, for example, power supplied from an internal power source such as a battery provided in the input device 100 or power supplied from a connected external power source.
  • the ROM (not shown) stores data such as programs and calculation parameters used by the control unit 108, the processing circuit 114 described later, and the like.
  • a RAM (not shown) temporarily stores programs executed by the control unit 108, the processing circuit 114, processing data, and the like.
  • the storage unit (not shown) is a storage unit included in the input device 100.
  • the storage unit (not shown) stores various data such as application software.
  • examples of the storage unit include a magnetic recording medium such as a hard disk and a nonvolatile memory such as a flash memory.
  • the storage unit may be detachable from the input device 100.
  • Switch unit 102 includes a plurality of sensor electrodes E1 and E2 and one cancel electrode CC.
  • the sensor electrodes E1 and E2 are electrodes for which the detection unit 104 detects capacitance. For example, a drive signal is applied to each of the sensor electrodes E1 and E2 from a voltage source 110 described later.
  • the cancel electrode CC is provided to reduce the parasitic capacitance between the sensor electrodes E1 and E2 and the reference potential point.
  • the cancel electrode CC corresponds to one cancel electrode according to the first embodiment shown in [2-1] above.
  • the cancel electrode CC is provided in parallel with, for example, the sensor electrodes E1 and E2 via a base.
  • FIG. 6 shows an example of “a configuration in which the cancel electrode CC is electrically connected to the voltage source 110 by the switching unit 106 described later, and the drive signal itself is applied to the cancel electrode CC as a signal having the same waveform as the drive signal”.
  • FIG. 6 shows an example of “a configuration in which the cancel electrode CC is electrically connected to the reference potential point by the switching unit 106 described later”. That is, the cancel electrode CC shown in FIG. 6 functions as, for example, an electrode provided to reduce parasitic capacitance between the sensor electrodes E1, E2 and the reference potential point, or a reference electrode connected to the reference potential point. To do.
  • the structure of the switch part 102 with which the input device 100 which concerns on embodiment of this invention is provided is not restricted to the example shown in FIG.
  • the cancel electrode and the reference electrode may be separate electrodes.
  • FIG. 6 shows a configuration in which the switch unit 102 has one cancel electrode according to the first embodiment shown in [2-1]. However, the switch unit 102 is shown in [2-2]. A plurality of cancel electrodes according to the second embodiment shown, or a plurality of cancel electrodes according to the third embodiment shown in [2-3] may be included.
  • Detection unit 104 detects an operation on the switch unit 102 based on a change in capacitance of each of the sensor electrodes E1 and E2.
  • the detection unit 104 detects the capacitance values of the sensor electrodes E1 and E2 by the self-capacitance method.
  • the detection unit 104 uses, for example, a sensor electrode to which a drive signal is applied, that is, a sensor electrode that is an operation determination target, as a capacitance value detection target. Then, the detection unit 104 performs an operation on the electrostatic sensor corresponding to the sensor electrode included in the switch unit 102 by comparing the detected capacitance value with a predetermined threshold value. Detect that. In the following, “the operation has been performed on the electrostatic sensor corresponding to the sensor electrode included in the switch unit 102” detected by the detection unit 104, “the operation has been performed on the switch unit 102. Sometimes ".
  • the predetermined threshold value according to the embodiment of the present invention may be a fixed threshold value that is set in advance, or may be a variable threshold value that changes based on an operation detection result in the detection unit 104. Good.
  • the variable threshold value based on the operation detection result for example, “when an operation is detected by the detection unit 104, the threshold value is set to be higher than the threshold value set before the operation is detected by the detection unit 104. “A smaller value is set”.
  • the electrostatic capacitances of the sensor electrodes E1 and E2 change, for example, when an operating body such as a finger approaches the sensor electrodes E1 and E2.
  • the detection unit 104 detects changes in the capacitances of the sensor electrodes E1 and E2 by threshold processing using a predetermined threshold as described above, and detects an operation on the switch unit 102.
  • the detection unit 104 when the detected capacitance value is greater than or equal to a predetermined threshold (or when the capacitance value is greater than the predetermined threshold), the detection unit 104 causes the switch unit 102 to It is detected that an operation has been performed on the device.
  • the detection unit 104 determines that an operation has been performed on the switch unit 102 when an operation on the switch unit 102 is detected, for example.
  • the determination method of operation with respect to the switch part 102 in the detection part 104 is not restricted above.
  • the detection unit 104 can determine that an operation on the switch unit 102 has been performed when an operation is detected a predetermined number of times.
  • the predetermined number of times according to the embodiment of the present invention may be a fixed number set in advance, or may be a variable number that can be changed based on a command from the control unit 108 or an external controller. .
  • the detection unit 104 determines that an operation has been performed on the switch unit 102 when an operation is detected a predetermined number of times, the possibility of erroneous determination of the operation on the switch unit 102 is further reduced. can do.
  • the detection unit 104 includes, for example, a voltage source 110, measurement circuits 112A and 112B, a processing circuit 114, switching circuits SW1, SW2, SW3, SW4, SW5, and SW6, and ground capacitors C1 and C2.
  • the voltage source 110 outputs a drive signal (voltage signal) for driving the sensor electrodes E1 and E2.
  • the voltage source 110 may be a voltage source external to the input device 100.
  • the measurement circuits 112A and 112B detect the capacitance value (self-capacitance value) by measuring the charging time of the capacity, for example.
  • the measurement circuit 112A is electrically connected to the sensor electrode E1 via the switching circuit SW2, and detects the capacitance value of the sensor electrode E1.
  • the measurement circuit 112B is electrically connected to the sensor electrode E2 via the switching circuit SW5 and detects the capacitance value of the sensor electrode E2.
  • the measurement circuits 112A and 112B measure the capacitance charging time using, for example, one or more comparators, and detect the capacitance value by obtaining the capacitance value from the measured charging time.
  • the measurement circuits 112A and 112B are not limited to the example shown above.
  • the measurement circuits 112A and 112B can take a configuration corresponding to an arbitrary method capable of measuring the capacitance value.
  • the processing circuit 114 detects an operation on the switch unit 102 based on the capacitance values of the sensor electrodes E1 and E2 detected in the measurement circuits 112A and 112B, respectively. For example, the processing circuit 114 detects an operation on the electrostatic sensor corresponding to the sensor electrode E1 by comparing the detected capacitance value of the sensor electrode E1 with a predetermined threshold value. Further, the processing circuit 114 detects an operation on the electrostatic sensor corresponding to the sensor electrode E2, for example, by comparing the detected capacitance value of the sensor electrode E2 with a predetermined threshold value.
  • the processing circuit 114 may determine whether or not an operation has been performed on the switch unit 102 based on a detection result of the operation on the switch unit 102 and a predetermined number of times.
  • Examples of the processing circuit 114 include one or two or more processors configured by an arithmetic circuit such as a CPU (Central Processing Unit).
  • a CPU Central Processing Unit
  • the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 are constituted by, for example, switching transistors, and are turned on (conductive state) or off (non-conductive state) according to the signal level (voltage level) of the applied signal. )
  • switching transistors include bipolar transistors, and FETs (Field-Effect Transistors) such as TFTs (Thin Film Transistors) and MOSFETs (Metal-Oxide-Semiconductor-Field Effect Transistors).
  • FETs Field-Effect Transistors
  • TFTs Thin Film Transistors
  • MOSFETs Metal-Oxide-Semiconductor-Field Effect Transistors
  • Switching control of each of the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 between the on state and the off state is performed by, for example, the control unit 108 described later.
  • switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 are not limited to switching transistors, and may be any elements (or circuits) that can be switched between an on state and an off state.
  • the switching circuit SW1, SW2, SW3, SW4, SW5, and SW6 are switched between the on state and the off state, whereby the sensor electrode E1 is statically switched.
  • the detection of the capacitance value and the detection of the capacitance value of the sensor electrode E2 are sequentially performed.
  • the detection unit 104 applies each to the sensor electrodes E1 and E2.
  • the drive signals are sequentially applied to the measurement circuits 112A and 112B, and the capacitance values (self-capacitance values) of the sensor electrodes E1 and E2 are sequentially detected.
  • the switching circuits SW3 and SW6 are switching circuits for initializing the measurement of the capacitance value.
  • the measurement of the capacitance value of the sensor electrode E1 is initialized by switching the switching circuits SW1, SW2, and SW3 between on and off states.
  • the ON / OFF control of the switching circuits SW1, SW2, and SW3 shown in (c) below detects the capacitance value of the sensor electrode E1, for example, when detecting the capacitance value of the sensor electrode E2. When not done.
  • the switching circuit SW4, SW5, SW6 is switched between the on state and the off state, whereby the measurement of the capacitance value of the sensor electrode E2 is performed.
  • the on / off control of the switching circuits SW4, SW5, and SW6 shown in (d) below detects the capacitance value of the sensor electrode E2, for example, when detecting the capacitance value of the sensor electrode E1. When not done.
  • the grounding capacitor C1 is connected between the sensor electrode E1 and the switching circuit SW2, for example.
  • the grounding capacitor C1 may be a parasitic capacitor or a circuit element such as a capacitor.
  • the grounding capacitor C2 is connected between the sensor electrode E2 and the switching circuit SW5, for example.
  • the ground capacitance C2 may be a parasitic capacitance or a circuit element such as a capacitor.
  • the detection unit 104 detects the electrostatic capacitance values (self-capacitance values) of the sensor electrodes E1 and E2 with the configuration shown in FIG. 6, for example, and detects the capacitance with respect to the switch unit 102 based on changes in the electrostatic capacitances of the sensor electrodes E1 and E2. Detect operations.
  • the configuration of the detection unit 104 is not limited to the example shown in FIG.
  • the detection unit 104 can take any configuration that can measure the capacitance values (self-capacitance values) of the sensor electrodes E1 and E2.
  • the detection unit 104 may not include the processing circuit 114.
  • the detection unit 104 sequentially detects the capacitance values of the plurality of sensor electrodes E1 and E2. Therefore, the detection unit 104 may be configured to include one measurement circuit corresponding to the plurality of sensor electrodes E1 and E2.
  • the switching unit 106 includes a switching circuit including switching circuits SW7 and SW8, and the switching circuit is electrically connected to the cancel electrode CC.
  • the switching circuits SW7 and SW8 are constituted by, for example, switching transistors, and are turned on (conductive state) or off (non-conductive state) according to the signal level (voltage level) of the applied signal.
  • switching circuits SW7 and SW8 are not limited to switching transistors, and may be arbitrary elements (or circuits) capable of switching between an on state and an off state.
  • the cancel electrode CC is connected to the voltage source 110 or the reference potential point.
  • the cancel electrode CC is connected to the voltage source 110 and not connected to the reference potential point, for example, by switching the on state and the off state of the switching circuits SW7 and SW8 as described below.
  • the state where the cancel electrode CC is connected to the voltage source 110 corresponds to a state where cancel control is performed on the cancel electrode CC.
  • the cancel electrode CC is connected to the reference potential point and is not connected to the voltage source 110, for example, by switching between the ON state and the OFF state of the switching circuits SW7 and SW8 as described below.
  • the state where the cancel electrode CC is not connected to the voltage source 110 corresponds to a state where non-cancel control is performed on the cancel electrode CC.
  • Switching between the ON state and the OFF state of each of the switching circuits SW7 and SW8 is performed by the control unit 108, for example.
  • the configuration of the switching unit 106 is not limited to the example shown in FIG.
  • the switching unit 106 can have any configuration that can connect the cancel electrode CC to one of the voltage source 110 and the reference potential point.
  • Control unit 108 The control unit 108 performs control on the sensor electrode and control on the cancel electrode.
  • control unit 108 performs control for sequentially applying drive signals as control for a plurality of sensor electrodes.
  • control unit 108 transmits a signal for switching between an on state and an off state to each of the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 included in the detection unit 104, thereby a plurality of sensors. Driving signals are sequentially applied to the electrodes.
  • control unit 108 transmits, for example, a control signal including a command to switch the on state / off state of each switching circuit to the processing circuit 114 configuring the detection unit 104, thereby transmitting the control signal to the plurality of sensor electrodes.
  • drive signals may be sequentially applied.
  • the detection unit 104 causes the “processing circuit 114 to send to the switching circuits SW 1, SW 2, SW 3, SW 4, SW 5, SW 6 based on the transmitted control signal.
  • by transmitting a signal for switching between the on state and the off state sequential application of drive signals to a plurality of sensor electrodes is realized.
  • Control on Cancel Electrode in Control Unit 108 As described above, the control unit 108 cancels the cancel electrode CC when a drive signal is applied to any one of the sensor electrodes. Control is performed to reduce the parasitic capacitance between all the sensor electrodes E1, E2 and the reference potential point.
  • control unit 108 performs non-cancellation control when the drive signals are not applied to the plurality of sensor electrodes E1 and E2.
  • control unit 108 transmits a signal for switching between the on state and the off state to the switching circuits SW7 and SW8 included in the switching unit 106, thereby canceling the cancel electrode CC or canceling the cancel electrode CC.
  • Non-cancellation control for CC is performed.
  • the example of the control in the control unit 108 described above corresponds to an example of the control according to the first embodiment described in [2-1], for example.
  • control in the control unit 108 is not limited to the example shown above.
  • the control unit 108 can perform control according to the configuration of the cancel electrode that configures the switch unit 102. is there.
  • control unit 108 may play a role of controlling the entire input device 100.
  • the control unit 108 includes, for example, one or two or more processors and various processing circuits configured by an arithmetic circuit such as a CPU.
  • the input device 100 has a configuration shown in FIG. 6, for example.
  • the control unit 108 shown in FIG. 6 performs cancel control on one cancel electrode CC when a drive signal is applied to any one of the sensor electrodes.
  • the plurality of sensor electrodes E ⁇ b> 1 and E ⁇ b> 2 are straddled.
  • the capacitance that occurs when the sensor electrode becomes pseudo large due to the dielectric can be suppressed by the cancel electrode CC.
  • the input device 100 there is a low possibility that an erroneous determination is caused by an increase in parasitic capacitance caused by a dielectric other than the operating body.
  • the input device 100 can prevent an erroneous determination of an operation caused by a dielectric other than the operation body.
  • the input device 100 has one cancel electrode CC corresponding to each of the plurality of sensor electrodes E1 and E2, and performs cancel control on the cancel electrode CC. Therefore, the input device 100 can improve the detection accuracy in the capacitance-type input device, similarly to the input device shown in FIG.
  • the configuration of the input device according to the embodiment of the present invention is not limited to the configuration shown in FIG.
  • the input device according to the embodiment of the present invention includes a switching unit. 106 may not be provided.
  • the control unit 108 controls the external switching circuit similarly to the control for the switching circuit constituting the switching unit 106 shown in FIG. The same effect as the input device 100 shown in FIG.
  • the input device according to the embodiment of the present invention is The configuration may be such that a signal having the same waveform as the drive signal is applied to the cancel electrode CC from a voltage source different from the source 110.
  • the switch unit 102 includes a plurality of cancel electrodes according to the second embodiment shown in [2-2], or a third embodiment shown in [2-3].
  • a plurality of cancel electrodes may be provided.
  • the switch unit 102 includes a plurality of cancel electrodes according to the second embodiment shown in [2-2] or a plurality of cancel electrodes according to the third embodiment shown in [2-3]. If so, the control unit 108 performs control according to the configuration of the cancel electrode constituting the switch unit 102 as in the embodiments described in [2-2] and [2-3].
  • the number of sensor electrodes constituting the switch unit 102 is not limited to two as illustrated in FIG. 6, and the switch unit 102 may include three or more sensor electrodes. .
  • an input device having the same function as the switch unit 102, the detection unit 104, and the switching unit 106 illustrated in FIG. 6 and a processing device having the same function as the control unit 108 (for example, a micro device outside the input device).
  • An input device is, for example, a vehicle such as a vehicle (or a UI (User Interface) part constituting a vehicle system). It can be applied to various systems and devices such as communication devices such as mobile phones and smartphones, tablet devices, television receivers, and computers such as PCs (Personal Computers).
  • vehicle such as a vehicle (or a UI (User Interface) part constituting a vehicle system). It can be applied to various systems and devices such as communication devices such as mobile phones and smartphones, tablet devices, television receivers, and computers such as PCs (Personal Computers).
  • Program according to the embodiment of the present invention A program for causing a computer to function as the input device according to the embodiment of the present invention (for example, a program for causing the computer to function as the control unit 108 illustrated in FIG. 6) By being executed by the processor or the like, it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operation body.
  • a program for causing a computer to function as the input device according to the embodiment of the present invention is executed by a processor or the like in the computer, thereby controlling each electrode in the input device according to the above-described embodiment of the present invention (for example, the effect produced by the control in the control unit 108 shown in FIG. 6 can be produced.
  • a program for causing a computer to function as an input device according to the embodiment of the present invention is provided.
  • the embodiment of the present invention further stores the program.
  • the recorded recording medium can also be provided.

Abstract

Provided is an input device comprising: a switch unit having a plurality of sensor electrodes to which a drive signal is applied and a cancel electrode for reducing the parasitic capacity between a reference electric potential and each of the sensor electrodes; a detection unit detecting an operation being performed on the switch unit on the basis of the electrostatic capacity change in each of the sensor electrodes; a control unit performing control whereby a drive signal is applied to each of the sensor electrodes and cancel control whereby a signal having an identical waveform to the drive signal is applied to the cancel electrode. The control unit causes a drive signal to be applied to each of the sensor electrodes sequentially, and when the drive signal is being applied to any of the sensor electrodes, performs the cancel control on the cancel electrode, causing a reduction in the parasitic capacity between the reference electric potential and all the sensor electrodes.

Description

入力装置Input device
 本発明は、入力装置に関する。 The present invention relates to an input device.
 静電容量式センサにおいて検出精度の向上を図るための技術が開発されている。検出電極に印加される電圧と同電圧が印加されるガード電極を備える静電容量式センサに係る技術としては、例えば特許文献1に記載の技術が挙げられる。 A technology has been developed to improve the detection accuracy of capacitive sensors. As a technique related to a capacitive sensor including a guard electrode to which the same voltage as the voltage applied to the detection electrode is applied, for example, a technique described in Patent Document 1 is cited.
特開2013-190404号公報JP 2013-190404 A
 静電容量式の入力装置は、例えば、静電センサ(静電スイッチ)に対応する電極の静電容量を検出し、指などの操作体による操作によって生じる電極の静電容量の変化を検出することによって、電極に対応する静電センサに対して操作が行われているか否かを判定する。上記電極の静電容量の変化は、例えば、検出された電極の静電容量と所定の閾値とを比較することによって、検出される。 The capacitance type input device detects, for example, the capacitance of an electrode corresponding to an electrostatic sensor (electrostatic switch), and detects a change in the capacitance of the electrode caused by an operation with an operating body such as a finger. Thus, it is determined whether or not an operation is performed on the electrostatic sensor corresponding to the electrode. The change in the capacitance of the electrode is detected, for example, by comparing the detected capacitance of the electrode with a predetermined threshold value.
 静電容量式の入力装置では、静電容量を検出する対象の電極(以下、「センサ電極」と示す。)と、基準電位点(グランド)との間に寄生容量が発生する。上記センサ電極と基準電位点との間に発生する寄生容量の大きさは、センサ電極の面積などに依存する。 In a capacitance type input device, parasitic capacitance is generated between an electrode for detecting capacitance (hereinafter referred to as “sensor electrode”) and a reference potential point (ground). The magnitude of the parasitic capacitance generated between the sensor electrode and the reference potential point depends on the area of the sensor electrode.
 センサ電極と基準電位点との間に発生する寄生容量は、センサ電極に対応する静電センサに対する操作の判定におけるノイズとなりうるので、センサ電極と基準電位点との間に発生する寄生容量が大きい程、SNR(Signal-to-Noise Ratio)特性などにおいて不利となる。そのため、静電センサに対する操作の判定精度の向上を図る上では、センサ電極と基準電位点との間に発生する寄生容量をより小さくすることが望ましい。 Since the parasitic capacitance generated between the sensor electrode and the reference potential point can be a noise in the operation determination for the electrostatic sensor corresponding to the sensor electrode, the parasitic capacitance generated between the sensor electrode and the reference potential point is large. However, the SNR (Signal-to-Noise Ratio) characteristic is disadvantageous. Therefore, in order to improve the operation determination accuracy for the electrostatic sensor, it is desirable to reduce the parasitic capacitance generated between the sensor electrode and the reference potential point.
 ここで、例えば特許文献1に記載の静電容量式センサのように、センサ電極(上記検出電極が該当する。)に加えて、センサ電極とは別体の電極(上記ガード電極が該当する。)が設けられる静電容量式の入力装置が、ある。 Here, for example, in addition to the sensor electrode (the detection electrode corresponds) as in the capacitive sensor described in Patent Document 1, an electrode separate from the sensor electrode (the guard electrode corresponds). ) Is provided with a capacitance type input device.
 検出のための駆動信号(電圧信号)がセンサ電極に印加されるときに、駆動信号と同一の波形の信号(電圧信号)が、上記別体の電極に対して印加される場合には、センサ電極と上記別体の電極とは同電位となる。そのため、上記の場合には、センサ電極と上記別体の電極との間には、寄生容量が発生しない。 When a drive signal (voltage signal) for detection is applied to the sensor electrode, a signal (voltage signal) having the same waveform as the drive signal is applied to the separate electrode. The electrode and the separate electrode have the same potential. Therefore, in the above case, no parasitic capacitance is generated between the sensor electrode and the separate electrode.
 よって、駆動信号がセンサ電極に印加されるときに、駆動信号と同一の波形の信号が、上記別体の電極に対して印加される場合には、例えばセンサ電極と基準電位点との間における寄生容量を低減させることが、可能となる。 Therefore, when a drive signal is applied to the sensor electrode, a signal having the same waveform as the drive signal is applied to the separate electrode, for example, between the sensor electrode and the reference potential point. It is possible to reduce the parasitic capacitance.
 したがって、駆動信号がセンサ電極に印加されるときに、駆動信号と同一の波形の信号が上記別体の電極に対して印加される場合には、静電容量式の入力装置における検出精度の向上を図ることが可能となるという、利点がある。 Therefore, when a drive signal is applied to the sensor electrode and a signal having the same waveform as that of the drive signal is applied to the separate electrode, the detection accuracy of the capacitive input device is improved. There is an advantage that it is possible to achieve.
 以下では、センサ電極に印加される駆動信号と同一の波形の信号が印加される上記別体の電極を、「キャンセル電極」と示す。また、以下では、“駆動信号がセンサ電極に印加されるときに、駆動信号と同一の波形の信号をキャンセル電極に対して印加させる制御”を、「キャンセル制御」と示す。また、以下では、
“キャンセル電極に対して駆動信号を印加させない制御”を、「非キャンセル制御」と示す。
Hereinafter, the separate electrode to which a signal having the same waveform as the drive signal applied to the sensor electrode is applied is referred to as a “cancel electrode”. Hereinafter, “control for applying a signal having the same waveform as the drive signal to the cancel electrode when the drive signal is applied to the sensor electrode” is referred to as “cancel control”. In the following,
“Control not applying a drive signal to the cancel electrode” is referred to as “non-cancel control”.
 一方、静電容量式の入力装置の中には、複数の静電センサにそれぞれ対応する複数のセンサ電極を有する入力装置がある。入力装置が複数のセンサ電極を有する場合には、例えば特許文献1に開示されているように、入力装置は、複数のセンサ電極と一対一に対応する複数のキャンセル電極を有する。また、複数のセンサ電極を有する入力装置(すなわち、各センサ電極に対応する複数の静電センサを有する入力装置)の中には、センサ電極それぞれに対して駆動信号が順次印加されることによりセンサ電極が独立に制御される入力装置(以下、「複数のセンサ電極が独立に制御される入力装置」と示す。)がある。 On the other hand, among the capacitance type input devices, there is an input device having a plurality of sensor electrodes respectively corresponding to a plurality of electrostatic sensors. When the input device has a plurality of sensor electrodes, for example, as disclosed in Patent Document 1, the input device has a plurality of cancel electrodes corresponding to the plurality of sensor electrodes on a one-to-one basis. Further, in an input device having a plurality of sensor electrodes (that is, an input device having a plurality of electrostatic sensors corresponding to each sensor electrode), a drive signal is sequentially applied to each of the sensor electrodes. There is an input device in which electrodes are controlled independently (hereinafter referred to as “input device in which a plurality of sensor electrodes are controlled independently”).
 しかしながら、“複数のセンサ電極と、複数のセンサ電極と一対一に対応する複数のキャンセル電極とを有し、複数のセンサ電極が独立に制御される入力装置”では、例えば下記の場合に、操作の判定対象のセンサ電極(検出対象のセンサ電極)の静電容量の変化を生じさせてしまう場合がある。なお、操作の判定対象のセンサ電極の静電容量の変化を生じさせる場合の一例については、後述する。
  ・操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように、操作体以外の誘電体が付着した場合
However, in the “input device having a plurality of sensor electrodes and a plurality of cancel electrodes corresponding to the plurality of sensor electrodes on a one-to-one basis and independently controlling the plurality of sensor electrodes”, for example, This may cause a change in the capacitance of the determination target sensor electrode (detection target sensor electrode). An example of causing a change in the capacitance of the sensor electrode to be determined for operation will be described later.
・ When a dielectric other than the operating object adheres across multiple sensor electrodes including the sensor electrode that is the target of operation determination
 そのため、上記の場合において生じる“操作の判定対象のセンサ電極の静電容量の変化”の大きさによっては、操作体による操作が行われていないにも関わらず、センサ電極に対応する静電センサに対して操作が行われていると判定される誤判定が、生じる恐れがある。 Therefore, depending on the magnitude of the “change in capacitance of the sensor electrode subject to operation determination” that occurs in the above case, the electrostatic sensor corresponding to the sensor electrode is not operated by the operating body. There is a possibility that an erroneous determination is made that it is determined that an operation is being performed on.
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、操作体以外の誘電体に起因する操作の誤判定の防止を図ることが可能な、新規かつ改良された入力装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is new and improved, which can prevent erroneous determination of an operation caused by a dielectric other than the operation body. It is to provide an input device.
 上記目的を達成するために、本発明の一の観点によれば、駆動信号がそれぞれ印加される複数のセンサ電極、および上記センサ電極それぞれと基準電位点との間における寄生容量を減少させるためのキャンセル電極を有するスイッチ部と、上記センサ電極それぞれの静電容量の変化に基づき上記スイッチ部に対する操作を検出する検出部と、上記センサ電極それぞれに対して上記駆動信号を印加させる制御と、上記キャンセル電極に対して上記駆動信号と同一波形の信号を印加させるキャンセル制御とを行う制御部と、を備え、上記制御部は、上記センサ電極それぞれに対して上記駆動信号を順次印加させ、いずれかの上記センサ電極に対して上記駆動信号を印加させているときには、上記キャンセル電極に対する上記キャンセル制御を行い、全ての上記センサ電極と上記基準電位点との間における寄生容量を減少させる、入力装置が、提供される。 In order to achieve the above object, according to one aspect of the present invention, a plurality of sensor electrodes to which drive signals are respectively applied, and a parasitic capacitance between each of the sensor electrodes and a reference potential point are reduced. A switch unit having a cancel electrode; a detection unit for detecting an operation on the switch unit based on a change in capacitance of each of the sensor electrodes; a control for applying the drive signal to each of the sensor electrodes; A control unit that performs cancel control to apply a signal having the same waveform as the drive signal to the electrode, and the control unit sequentially applies the drive signal to each of the sensor electrodes. When the drive signal is applied to the sensor electrode, the cancel control for the cancel electrode is performed. Reduces the parasitic capacitance between all of the sensor electrode and the reference potential point, the input device is provided.
 かかる構成によって、例えば、操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように誘電体が付着したことによってセンサ電極が擬似的に大きくなったような場合に生じる寄生容量の増加を、抑制することができる。よって、かかる構成によって、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 With such a configuration, for example, an increase in parasitic capacitance that occurs when the sensor electrode becomes pseudo-large due to adhesion of a dielectric so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation, Can be suppressed. Therefore, with this configuration, it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operation body.
 また、上記スイッチ部は、全ての上記センサ電極と上記基準電位点との間における寄生容量を減少させるための、1つの上記キャンセル電極を有し、上記制御部は、いずれかの上記センサ電極に上記駆動信号が印加されているときには、1つの上記キャンセル電極に対して上記キャンセル制御を行ってもよい。 In addition, the switch unit includes one cancel electrode for reducing parasitic capacitance between all the sensor electrodes and the reference potential point, and the control unit is connected to any one of the sensor electrodes. When the drive signal is applied, the cancel control may be performed on one cancel electrode.
 また、上記スイッチ部は、複数の上記センサ電極それぞれと一対一に対応し、対応する上記センサ電極と上記基準電位点との間における寄生容量を減少させるための、複数の上記キャンセル電極を有し、上記制御部は、いずれかの上記センサ電極に上記駆動信号が印加されているときには、全ての上記キャンセル電極に対して上記キャンセル制御を行ってもよい。 In addition, the switch unit has a plurality of cancel electrodes that correspond to each of the plurality of sensor electrodes on a one-to-one basis and reduce parasitic capacitance between the corresponding sensor electrode and the reference potential point. The control unit may perform the cancel control on all the cancel electrodes when the drive signal is applied to any one of the sensor electrodes.
 また、上記スイッチ部では、複数の上記センサ電極が複数の電極グループに分けられ、上記スイッチ部は、上記電極グループに属する上記センサ電極と上記基準電位点との間における寄生容量を減少させるための上記キャンセル電極を、上記電極グループごとに有し、上記制御部は、いずれかの上記センサ電極に上記駆動信号が印加されているときには、全ての上記キャンセル電極に対して上記キャンセル制御を行ってもよい。 In the switch unit, the plurality of sensor electrodes are divided into a plurality of electrode groups, and the switch unit reduces parasitic capacitance between the sensor electrode belonging to the electrode group and the reference potential point. The cancel electrode is provided for each of the electrode groups, and the control unit may perform the cancel control on all the cancel electrodes when the drive signal is applied to any of the sensor electrodes. Good.
 また、上記制御部は、複数の上記センサ電極に上記駆動信号を印加させていないときには、上記キャンセル電極に対して上記駆動信号を印加させない非キャンセル制御を行ってもよい。 In addition, the control unit may perform non-cancellation control in which the drive signal is not applied to the cancel electrode when the drive signal is not applied to the plurality of sensor electrodes.
 本発明によれば、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 According to the present invention, it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operation body.
複数のセンサ電極を有する入力装置において、センサ電極と基準電位点との間に発生する寄生容量の一例を示す説明図である。It is explanatory drawing which shows an example of the parasitic capacitance which generate | occur | produces between a sensor electrode and a reference electric potential point in the input device which has a some sensor electrode. 複数のセンサ電極とキャンセル電極とを有する入力装置において、センサ電極と基準電位点との間に発生する寄生容量、およびキャンセル電極と基準電位点との間に発生する寄生容量の一例を示す説明図である。Explanatory drawing which shows an example of the parasitic capacitance which generate | occur | produces between a sensor electrode and a reference potential point, and the parasitic capacitance which generate | occur | produces between a cancellation electrode and a reference potential point in the input device which has several sensor electrodes and cancellation electrodes. It is. キャンセル電極を有し、複数のセンサ電極が独立に制御される入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the change of the electrostatic capacitance of a sensor electrode which can be produced with a dielectric material in the input device which has a cancellation electrode and several sensor electrodes are controlled independently. 第1の実施形態に係る入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the change of the electrostatic capacitance of a sensor electrode which may arise with a dielectric material in the input device which concerns on 1st Embodiment. 第2の実施形態に係る入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the change of the electrostatic capacitance of a sensor electrode which may arise with a dielectric material in the input device which concerns on 2nd Embodiment. 本発明の実施形態に係る入力装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the input device which concerns on embodiment of this invention.
 以下、添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 また、以下では、一の物体と他の物体との間に生じる寄生容量を、符号Cpを用いて「寄生容量Cpn」(nは、寄生容量を区別するための番号)と表す。また、寄生容量Cpnを図示する図1~図4では、寄生容量Cpnの大きさの大小関係を、便宜上、キャパシタを示す回路記号の大小2種類の大きさで表す。 In the following, the parasitic capacitance generated between one object and another object is expressed as “parasitic capacitance Cpn” (n is a number for distinguishing the parasitic capacitance) using a symbol Cp. 1 to 4 illustrating the parasitic capacitance Cpn, the magnitude relation of the size of the parasitic capacitance Cpn is represented by two types of sizes of circuit symbols indicating capacitors for convenience.
[1]静電容量式の入力装置において生じうる問題の一例
 上述したように、静電容量式の入力装置(以下、単に「入力装置」と示す。)では、センサ電極と基準電位点との間に寄生容量が発生する。
[1] An example of a problem that may occur in a capacitance-type input device As described above, in a capacitance-type input device (hereinafter simply referred to as “input device”), a sensor electrode and a reference potential point are not connected. Parasitic capacitance is generated between them.
 図1は、複数のセンサ電極を有する入力装置において、センサ電極と基準電位点GNDとの間に発生する寄生容量の一例を示す説明図である。図1では、入力装置が、“センサ1”、“センサ2”で表される2つのセンサ電極を有している例を、示している。 FIG. 1 is an explanatory diagram showing an example of parasitic capacitance generated between a sensor electrode and a reference potential point GND in an input device having a plurality of sensor electrodes. FIG. 1 shows an example in which the input device has two sensor electrodes represented by “sensor 1” and “sensor 2”.
 図1に示す寄生容量Cp1、Cp2は、それぞれ下記の通りである。なお、上述したように、寄生容量Cp1、Cp2の大きさは、センサ電極の面積などに依存する。
  ・寄生容量Cp1:“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp2:“センサ2”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
The parasitic capacitances Cp1 and Cp2 shown in FIG. 1 are as follows. As described above, the parasitic capacitances Cp1 and Cp2 depend on the sensor electrode area and the like.
Parasitic capacitance Cp1: Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND. Parasitic capacitance Cp2: between the sensor electrode represented by “Sensor 2” and the reference potential point GND. Parasitic capacitance generated between
 上述したように、寄生容量Cp1、Cp2は、センサ電極に対応する静電センサに対する操作の判定におけるノイズとなりうる。 As described above, the parasitic capacitances Cp1 and Cp2 can be noise in the determination of the operation on the electrostatic sensor corresponding to the sensor electrode.
 ここで、図1に示すような寄生容量Cp1、Cp2の影響を低減する方法としては、例えば上述したように、“入力装置にキャンセル電極をさらに設け、キャンセル電極に対してキャンセル制御を行う方法”が挙げられる。 Here, as a method of reducing the influence of the parasitic capacitances Cp1 and Cp2 as shown in FIG. 1, for example, as described above, “a method of further providing a cancel electrode in the input device and performing cancel control on the cancel electrode” Is mentioned.
 図2は、複数のセンサ電極とキャンセル電極とを有する入力装置において、センサ電極と基準電位点GNDとの間に発生する寄生容量、およびキャンセル電極と基準電位点GNDとの間に発生する寄生容量の一例を示す説明図である。図2では、入力装置が、“センサ1”、“センサ2”で表される2つのセンサ電極と、“キャンセル1”、“キャンセル2”で表される2つのキャンセル電極とを有している例を、示している。 FIG. 2 illustrates a parasitic capacitance generated between the sensor electrode and the reference potential point GND and a parasitic capacitance generated between the cancellation electrode and the reference potential point GND in an input device having a plurality of sensor electrodes and a cancellation electrode. It is explanatory drawing which shows an example. In FIG. 2, the input device has two sensor electrodes represented by “sensor 1” and “sensor 2”, and two cancel electrodes represented by “cancel 1” and “cancel 2”. An example is shown.
 ここで、“キャンセル1”で表されるキャンセル電極は、“センサ1”で表されるセンサ電極と基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。また、“キャンセル2”で表されるキャンセル電極は、“センサ2”で表されるセンサ電極と基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。 Here, the cancel electrode represented by “cancel 1” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 1” and the reference potential point GND. The cancel electrode represented by “cancel 2” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 2” and the reference potential point GND.
 図2に示す寄生容量Cp1’、Cp2’、Cp3、Cp4は、それぞれ下記の通りである。
  ・寄生容量Cp1’:“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp2’:“センサ2”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp3は、“キャンセル1”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp4:“キャンセル2”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
Parasitic capacitances Cp1 ′, Cp2 ′, Cp3, and Cp4 shown in FIG. 2 are as follows.
Parasitic capacitance Cp1 ′: Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND. Parasitic capacitance Cp2 ′: Sensor electrode represented by “Sensor 2” and the reference potential point GND. The parasitic capacitance Cp3 is generated between the cancel electrode represented by "Cancel 1" and the reference potential point GND. The parasitic capacitance Cp4 is represented by "Cancel 2". Parasitic capacitance generated between the cancel electrode and the reference potential point GND
 “キャンセル1”、“キャンセル2”で表されるキャンセル電極が設けられ、キャンセル電極それぞれに対してキャンセル制御が行われた場合には、上述したように、センサ電極それぞれとセンサ電極それぞれに対応するキャンセル電極との間において、寄生容量は発生しない。 When cancel electrodes represented by “cancel 1” and “cancel 2” are provided and cancel control is performed for each cancel electrode, as described above, each corresponds to each sensor electrode and each sensor electrode. No parasitic capacitance is generated between the cancel electrode.
 また、図2に示すキャンセル電極それぞれに対してキャンセル制御が行われた場合には、キャンセル電極と基準電位点GNDとの間の寄生容量Cp3、Cp4によって、センサ電極と基準電位点GNDとの間の寄生容量Cp1’、Cp2’は、図1に示す寄生容量Cp1、Cp2よりも低減される。 When cancel control is performed on each of the cancel electrodes shown in FIG. 2, parasitic capacitances Cp3 and Cp4 between the cancel electrode and the reference potential point GND cause a gap between the sensor electrode and the reference potential point GND. The parasitic capacitances Cp1 ′ and Cp2 ′ are reduced more than the parasitic capacitances Cp1 and Cp2 shown in FIG.
 よって、図2に示すように、入力装置が、複数のセンサ電極に一対一に対応する複数のキャンセル電極を有し、複数のキャンセル電極それぞれに対してキャンセル制御が行われるときには、静電容量式の入力装置における検出精度の向上を図ることができる場合がある。 Therefore, as shown in FIG. 2, when the input device has a plurality of cancel electrodes corresponding to the plurality of sensor electrodes on a one-to-one basis, and cancel control is performed on each of the plurality of cancel electrodes, a capacitance type In some cases, the detection accuracy of the input device can be improved.
 ここで、図2に示すような、複数のセンサ電極を有する入力装置の中には、上述したように、複数のセンサ電極が独立に制御される入力装置がある。 Here, among the input devices having a plurality of sensor electrodes as shown in FIG. 2, there is an input device in which the plurality of sensor electrodes are independently controlled as described above.
 図2に示す入力装置を例に挙げて、センサ電極が独立に制御される例を示すと、複数のセンサ電極が独立に制御される入力装置では、例えば、“センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化の検出が行われた後に、“センサ2”で表されるセンサ電極に対応する静電センサに対する静電容量の変化の検出が行われる。 Taking the input device shown in FIG. 2 as an example, an example in which the sensor electrodes are independently controlled will be described. In the input device in which a plurality of sensor electrodes are independently controlled, for example, a sensor represented by “sensor 1”. After detecting the change in capacitance with respect to the electrostatic sensor corresponding to the electrode, the change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 2” is detected.
 より具体的には、“センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化を検出する場合には、図2を参照して例示した複数のセンサ電極が独立に制御される入力装置は、各電極を下記のような状態にさせる。
  ・“センサ1”で表されるセンサ電極:駆動信号を印加し、センサ電極が駆動する状態
  ・“キャンセル1”で表されるキャンセル電極:駆動信号と同一波形の信号を印加し、キャンセル電極が駆動する状態(キャンセル制御が行われる状態)
  ・“センサ2”で表されるセンサ電極:駆動信号が印加されず、センサ電極が駆動していない状態
  ・“キャンセル2”で表されるキャンセル電極:駆動信号と同一波形の信号が印加されず、キャンセル電極が駆動していない状態(非キャンセル制御が行われる状態)
More specifically, when detecting a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1”, the plurality of sensor electrodes illustrated with reference to FIG. The controlled input device causes each electrode to be in the following state.
-Sensor electrode represented by "Sensor 1": A state where the drive signal is applied and the sensor electrode is driven-Cancel electrode represented by "Cancel 1": A signal having the same waveform as the drive signal is applied, and the cancel electrode is Driving state (cancellation control)
・ Sensor electrode represented by “Sensor 2”: No drive signal is applied and the sensor electrode is not driven. ・ Cancel electrode represented by “Cancel 2”: A signal having the same waveform as the drive signal is not applied. The cancel electrode is not driven (non-cancel control is performed)
 また、“センサ2”で表されるセンサ電極に対応する静電センサに対する静電容量の変化を検出する場合には、図2を参照して例示した複数のセンサ電極が独立に制御される入力装置は、各電極を下記のような状態にさせる。
  ・“センサ1”で表されるセンサ電極:駆動信号が印加されず、センサ電極が駆動していない状態
  ・“キャンセル1”で表されるキャンセル電極:駆動信号と同一波形の信号が印加されず、キャンセル電極が駆動していない状態(非キャンセル制御が行われる状態)
  ・“センサ2”で表されるセンサ電極:駆動信号を印加し、センサ電極が駆動する状態
  ・“キャンセル2”で表されるキャンセル電極:駆動信号と同一波形の信号を印加し、キャンセル電極が駆動する状態(キャンセル制御が行われる状態)
In addition, when detecting a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 2”, an input in which a plurality of sensor electrodes illustrated with reference to FIG. 2 are independently controlled. The apparatus causes each electrode to be in the following state.
-Sensor electrode represented by "Sensor 1": No drive signal is applied and the sensor electrode is not driven.-Cancel electrode represented by "Cancel 1": A signal having the same waveform as the drive signal is not applied. The cancel electrode is not driven (non-cancel control is performed)
-Sensor electrode represented by "Sensor 2": A state where the drive signal is applied and the sensor electrode is driven-Cancel electrode represented by "Cancel 2": A signal having the same waveform as the drive signal is applied, and the cancel electrode is Driving state (cancellation control)
 しかしながら、複数のセンサ電極が独立に制御される入力装置において、操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように、操作体以外の誘電体が付着した場合には、キャンセル電極が設けられていたとしても、操作の判定対象のセンサ電極の静電容量の変化を生じさせてしまう。 However, in an input device in which a plurality of sensor electrodes are independently controlled, when a dielectric other than the operating body is attached so as to straddle a plurality of sensor electrodes including the sensor electrode to be operated, the cancel electrode is Even if it is provided, it causes a change in the capacitance of the sensor electrode to be determined for operation.
 図3は、キャンセル電極を有し、複数のセンサ電極が独立に制御される入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。図3は、図2に示す入力装置において“センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出される場合における、誘電体Dによる“センサ1”で表されるセンサ電極の静電容量の変化の一例を示している。 FIG. 3 is an explanatory diagram for explaining an example of a change in capacitance of a sensor electrode that can be caused by a dielectric in an input device having a cancel electrode and in which a plurality of sensor electrodes are independently controlled. FIG. 3 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected in the input device shown in FIG. An example of a change in the capacitance of the sensor electrode is shown.
 誘電体Dとしては、例えば、水や、水分を含んだタオル、鉄やアルミニウムなどの金属などが挙げられる。図3では、便宜上、誘電体Dを直方体で表している。なお、誘電体Dの形状が、直方体に限られないことは、言うまでもない。 Examples of the dielectric D include water, towels containing moisture, and metals such as iron and aluminum. In FIG. 3, for convenience, the dielectric D is represented by a rectangular parallelepiped. Needless to say, the shape of the dielectric D is not limited to a rectangular parallelepiped.
 図3に示す寄生容量Cp1’、Cp2’、Cp3、Cp5、Cp6は、それぞれ下記の通りである。
  ・寄生容量Cp1’:“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp2’:“センサ2”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp3:“キャンセル1”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp5:誘電体Dと“センサ1”で表されるセンサ電極との間に発生する寄生容量
  ・寄生容量Cp6:誘電体Dと基準電位点GNDとの間に発生する寄生容量
Parasitic capacitances Cp1 ′, Cp2 ′, Cp3, Cp5, and Cp6 shown in FIG. 3 are as follows.
Parasitic capacitance Cp1 ′: Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND. Parasitic capacitance Cp2 ′: Sensor electrode represented by “Sensor 2” and the reference potential point GND. -Parasitic capacitance Cp3: Parasitic capacitance Cp3: Parasitic capacitance generated between the cancel electrode represented by "Cancel 1" and the reference potential point GND-Parasitic capacitance Cp5: Dielectric D and "Sensor 1" Parasitic capacitance generated between the sensor electrode and the parasitic capacitance Cp6: Parasitic capacitance generated between the dielectric D and the reference potential point GND
 “センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出されるときにおいて、センサ電極間に跨るように誘電体Dが存在する場合、“センサ1”で表されるセンサ電極と基準電位点GNDとの間には、寄生容量Cp5、Cp6に示すように、誘電体Dを介して新たな寄生容量が発生してしまう。つまり、“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量は、誘電体Dを介して発生した寄生容量分増加する。 When a change in the capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, and the dielectric D exists so as to straddle between the sensor electrodes, it is represented by “sensor 1”. As shown by parasitic capacitances Cp5 and Cp6, a new parasitic capacitance is generated between the sensor electrode and the reference potential point GND via the dielectric D. That is, the parasitic capacitance generated between the sensor electrode represented by “sensor 1” and the reference potential point GND increases by the parasitic capacitance generated via the dielectric D.
 ここで、上記“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量の増加は、誘電体Dによって“センサ1”で表されるセンサ電極が擬似的に大きくなったことによる寄生容量の増加と、捉えることができる。 Here, the increase in the parasitic capacitance generated between the sensor electrode represented by the “sensor 1” and the reference potential point GND is caused by the dielectric D to be large in the sensor electrode represented by the “sensor 1”. This can be seen as an increase in parasitic capacitance.
 よって、図3に示す入力装置では、“センサ1”で表されるセンサ電極に対応する静電センサに対する、操作体による操作が行われていないにも関わらず、当該静電センサに対して操作が行われていると判定される誤判定が、生じる恐れがある。 Therefore, in the input device shown in FIG. 3, the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is operated with respect to the electrostatic sensor even though the operation body is not operated. There is a possibility that a misjudgment in which it is determined that is performed is generated.
[2]本発明の実施形態に係る入力装置の概要
 そこで、本発明の実施形態に係る入力装置は、複数のセンサ電極と、センサ電極それぞれと基準電位点との間における寄生容量を減少させるためのキャンセル電極とを有する。後述するように、本発明の実施形態に係る入力装置は、1つのキャンセル電極を有していてもよいし、2つ以上のキャンセル電極を有していてもよい。
[2] Outline of Input Device According to Embodiment of the Present Invention Therefore, an input device according to an embodiment of the present invention reduces a parasitic capacitance between a plurality of sensor electrodes and each of the sensor electrodes and a reference potential point. Cancellation electrode. As will be described later, the input device according to the embodiment of the present invention may have one cancel electrode, or may have two or more cancel electrodes.
 また、本発明の実施形態に係る入力装置は、複数のセンサ電極、およびキャンセル電極それぞれに対して、下記のような制御を行う。
  ・複数のセンサ電極に対する制御:駆動信号を順次印加させる
  ・キャンセル電極に対する制御:いずれかのセンサ電極に対して駆動信号を印加させているときに、キャンセル制御を行い、全てのセンサ電極と基準電位点との間における寄生容量を減少させる。また、複数のセンサ電極に駆動信号を印加させていないときには、キャンセル制御を行わない(すなわち、複数のセンサ電極に駆動信号を印加させていないときには、非キャンセル制御を行う)
The input device according to the embodiment of the present invention performs the following control for each of the plurality of sensor electrodes and the cancel electrode.
・ Control for multiple sensor electrodes: Apply drive signals sequentially ・ Control for cancel electrodes: When drive signals are applied to any of the sensor electrodes, cancel control is performed, and all sensor electrodes and reference potentials Reduce the parasitic capacitance between points. In addition, cancel control is not performed when drive signals are not applied to the plurality of sensor electrodes (that is, non-cancel control is performed when drive signals are not applied to the plurality of sensor electrodes).
 より具体的には、本発明の実施形態に係る入力装置は、例えば下記の[2-1]~[2-3]に示す実施形態のようなキャンセル電極の構成を有し、キャンセル電極の構成に応じた制御を行う。 More specifically, the input device according to the embodiment of the present invention has a cancel electrode configuration as shown in the following [2-1] to [2-3], for example, and the cancel electrode configuration Control according to.
[2-1]第1の実施形態に係る入力装置におけるキャンセル電極の構成と制御
[2-1-1]第1の実施形態に係るキャンセル電極の構成
 第1の実施形態に係る入力装置は、全てのセンサ電極と基準電位点との間における寄生容量を減少させるための、1つのキャンセル電極を有する。
[2-1] Configuration and control of cancel electrode in input device according to first embodiment [2-1-1] Configuration of cancel electrode according to first embodiment The input device according to the first embodiment One cancel electrode is provided to reduce parasitic capacitance between all sensor electrodes and the reference potential point.
 第1の実施形態に係る入力装置が備える1つのキャンセル電極としては、例えば、配置されている全てのセンサ電極が含まれる大きさを有する電極が挙げられる。上記1つのキャンセル電極は、例えば、仮に当該キャンセル電極と全てのセンサ電極とを重ねた場合に、全てのセンサ電極が当該キャンセル電極に含まれるように、全てのセンサ電極と基準電位点との間に設けられる。 As one cancel electrode provided in the input device according to the first embodiment, for example, an electrode having a size including all the arranged sensor electrodes can be cited. The one cancel electrode is, for example, between all the sensor electrodes and the reference potential point so that all the sensor electrodes are included in the cancel electrode if the cancel electrode and all the sensor electrodes are overlapped. Is provided.
 なお、第1の実施形態に係る入力装置が備える1つのキャンセル電極の形状、大きさは、上記に示す例に限られない。例えば、第1の実施形態に係る入力装置は、キャンセル制御が行われた場合に、全てのセンサ電極と基準電位点との間における寄生容量を減少させることが可能な、任意の形状、および/または、任意の大きさの、1つのキャンセル電極を有することが可能である。 Note that the shape and size of one cancel electrode included in the input device according to the first embodiment is not limited to the example described above. For example, the input device according to the first embodiment has an arbitrary shape that can reduce the parasitic capacitance between all the sensor electrodes and the reference potential point when cancel control is performed, and / or Alternatively, it is possible to have one cancel electrode of any size.
[2-1-2]第1の実施形態に係る制御
 第1の実施形態に係る入力装置は、上述したように、複数のセンサ電極に対して駆動信号を順次印加させる。
[2-1-2] Control According to First Embodiment As described above, the input device according to the first embodiment sequentially applies drive signals to a plurality of sensor electrodes.
 また、第1の実施形態に係る入力装置は、いずれかのセンサ電極に駆動信号が印加されているときには、1つのキャンセル電極に対してキャンセル制御を行う。複数のセンサ電極に駆動信号を印加させていないときには、第1の実施形態に係る入力装置は、1つのキャンセル電極に対して非キャンセル制御を行う。 Further, the input device according to the first embodiment performs cancel control on one cancel electrode when a drive signal is applied to any one of the sensor electrodes. When a drive signal is not applied to the plurality of sensor electrodes, the input device according to the first embodiment performs non-cancel control on one cancel electrode.
 図4は、第1の実施形態に係る入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。図4では、第1の実施形態に係る入力装置が、“センサ1”、“センサ2”で表される2つのセンサ電極と、“キャンセル”で表される1つのキャンセル電極とを有している例を、示している。 FIG. 4 is an explanatory diagram for explaining an example of a change in the capacitance of the sensor electrode that may be caused by a dielectric in the input device according to the first embodiment. In FIG. 4, the input device according to the first embodiment has two sensor electrodes represented by “sensor 1” and “sensor 2” and one cancel electrode represented by “cancel”. An example is shown.
 また、図4は、図3と同様に、“センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出される場合における、誘電体Dによる“センサ1”で表されるセンサ電極の静電容量の変化の一例を示している。なお、図4では、便宜上、誘電体Dを直方体で表しているが、上述したように、誘電体Dの形状が、直方体に限られないことは、言うまでもない。 Further, FIG. 4 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, as in FIG. The example of the change of the electrostatic capacitance of the represented sensor electrode is shown. In FIG. 4, for convenience, the dielectric D is represented by a rectangular parallelepiped. However, as described above, it is needless to say that the shape of the dielectric D is not limited to a rectangular parallelepiped.
 図4において“キャンセル”で表されるキャンセル電極は、“センサ1”で表されるセンサ電極および“センサ2”で表されるセンサ電極それぞれと、基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。“キャンセル”で表されるキャンセル電極は、例えば図4に示すように、第1の実施形態に係る入力装置を構成する全てのセンサ電極それぞれに対応するように、1つのキャンセル電極で構成される。つまり、“キャンセル”で表されるキャンセル電極は、全てのセンサ電極と基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。 In FIG. 4, the cancel electrode represented by “cancel” reduces the parasitic capacitance between the sensor electrode represented by “sensor 1” and the sensor electrode represented by “sensor 2” and the reference potential point GND. This is a cancel electrode. For example, as shown in FIG. 4, the cancel electrode represented by “cancel” is configured by one cancel electrode so as to correspond to each of all the sensor electrodes configuring the input device according to the first embodiment. . That is, the cancel electrode represented by “cancel” is a cancel electrode for reducing the parasitic capacitance between all the sensor electrodes and the reference potential point GND.
 図4に示す寄生容量Cp1’、Cp2’、Cp5、Cp6’、Cp7は、それぞれ下記の通りである。
  ・寄生容量Cp1’:“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp2’:“センサ2”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp5:誘電体Dと“センサ1”で表されるセンサ電極との間に発生する寄生容量
  ・寄生容量Cp6’:誘電体Dと基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp7:“キャンセル”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
Parasitic capacitances Cp1 ′, Cp2 ′, Cp5, Cp6 ′, and Cp7 shown in FIG. 4 are as follows.
Parasitic capacitance Cp1 ′: Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND. Parasitic capacitance Cp2 ′: Sensor electrode represented by “Sensor 2” and the reference potential point GND. -Parasitic capacitance Cp5: Parasitic capacitance Cp5: Parasitic capacitance generated between the dielectric D and the sensor electrode represented by "Sensor 1"-Parasitic capacitance Cp6 ': Dielectric D and reference potential point GND -Parasitic capacitance Cp7: Parasitic capacitance generated between the cancel electrode represented by "cancel" and the reference potential point GND
 “センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出されるときにおいて、センサ電極間に跨るように誘電体Dが存在する場合、“センサ1”で表されるセンサ電極と基準電位点GNDとの間には、寄生容量Cp5、Cp6’に示すように、誘電体Dを介して新たな寄生容量が発生する。 When a change in the capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, and the dielectric D exists so as to straddle between the sensor electrodes, it is represented by “sensor 1”. As shown by parasitic capacitances Cp5 and Cp6 ′, new parasitic capacitance is generated between the sensor electrode and the reference potential point GND via the dielectric D.
 ここで、第1の実施形態に係る入力装置では、“センサ1”で表されるセンサ電極に対して駆動信号が印加されているときに、“キャンセル”で表されるキャンセル電極に対してキャンセル制御が行われている。よって、誘電体Dと基準電位点GNDとの間に発生する寄生容量Cp6’は、キャンセル電極と基準電位点GNDとの間の寄生容量Cp7によって、図3に示す寄生容量Cp6よりも低減される。 Here, in the input device according to the first embodiment, when the drive signal is applied to the sensor electrode represented by “sensor 1”, the cancel electrode represented by “cancel” is canceled. Control is taking place. Therefore, the parasitic capacitance Cp6 ′ generated between the dielectric D and the reference potential point GND is reduced from the parasitic capacitance Cp6 shown in FIG. 3 by the parasitic capacitance Cp7 between the cancel electrode and the reference potential point GND. .
 つまり、第1の実施形態に係る入力装置は、図3を参照して示したような、誘電体Dによって“センサ1”で表されるセンサ電極が擬似的に大きくなったことによる寄生容量の増加を、“キャンセル”で表されるキャンセル電極に対するキャンセル制御によって、抑制することができる。 That is, the input device according to the first embodiment has a parasitic capacitance due to the pseudo increase in the sensor electrode represented by “sensor 1” by the dielectric D, as shown in FIG. The increase can be suppressed by cancel control for the cancel electrode represented by “cancel”.
 よって、第1の実施形態に係る入力装置では、操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように誘電体Dが付着した場合であっても、誘電体Dに起因する寄生容量の増加により判定対象のセンサ電極に対応する静電センサに対して操作が行われていると判定される誤判定(以下、単に「誤判定」と示す場合がある。)が生じる可能性が、低減される。 Therefore, in the input device according to the first embodiment, even if the dielectric D adheres so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation, the parasitic capacitance caused by the dielectric D There is a possibility that a misjudgment (hereinafter, simply referred to as “misjudgment” in some cases) that it is determined that an operation is performed on the electrostatic sensor corresponding to the sensor electrode to be judged due to the increase in Reduced.
 したがって、第1の実施形態に係る入力装置は、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 Therefore, the input device according to the first embodiment can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
 また、第1の実施形態に係る入力装置は、複数のセンサ電極それぞれに対応する1つのキャンセル電極を有し、当該キャンセル電極に対してキャンセル制御を行う。よって、第1の実施形態に係る入力装置は、図2に示す入力装置と同様に、静電容量式の入力装置における検出精度の向上を図ることができる。 The input device according to the first embodiment has one cancel electrode corresponding to each of the plurality of sensor electrodes, and performs cancel control on the cancel electrode. Therefore, the input device according to the first embodiment can improve the detection accuracy in the capacitance-type input device, similarly to the input device shown in FIG.
[2-2]第2の実施形態に係る入力装置におけるキャンセル電極の構成と制御
[2-2-1]第2の実施形態に係るキャンセル電極の構成
 第2の実施形態に係る入力装置は、複数のセンサ電極それぞれと一対一に対応し、対応するセンサ電極と基準電位点との間における寄生容量を減少させるための、複数のキャンセル電極を有する。つまり、第2の実施形態に係る入力装置は、図3に示す入力装置の例と同様に、センサ電極ごとにキャンセル電極を有する。
[2-2] Configuration and control of cancel electrode in input device according to second embodiment [2-2-1] Configuration of cancel electrode according to second embodiment The input device according to the second embodiment Each of the plurality of sensor electrodes has one-to-one correspondence, and has a plurality of cancel electrodes for reducing the parasitic capacitance between the corresponding sensor electrode and the reference potential point. That is, the input device according to the second embodiment has a cancel electrode for each sensor electrode, as in the example of the input device shown in FIG.
 第2の実施形態に係る入力装置が備えるキャンセル電極としては、例えば、当該キャンセル電極が対応しているセンサ電極が含まれる大きさを有する電極(例えば、対応しているセンサ電極以上の面積を有する電極)が挙げられる。上記キャンセル電極は、例えば、仮に当該キャンセル電極と対応しているセンサ電極とを重ねた場合に、当該センサ電極が当該キャンセル電極に含まれるように、当該センサ電極と基準電位点との間に設けられる。 The cancel electrode included in the input device according to the second embodiment includes, for example, an electrode having a size including a sensor electrode to which the cancel electrode corresponds (for example, an area larger than the corresponding sensor electrode) Electrode). The cancel electrode is provided between the sensor electrode and a reference potential point so that the sensor electrode is included in the cancel electrode, for example, when the sensor electrode corresponding to the cancel electrode is overlapped. It is done.
 なお、第2の実施形態に係る入力装置が備えるキャンセル電極の形状、大きさは、上記に示す例に限られない。例えば、第2の実施形態に係る入力装置は、キャンセル制御が行われた場合に、対応するセンサ電極と基準電位点との間における寄生容量を減少させることが可能な、任意の形状、および/または、任意の大きさの、キャンセル電極を有することが可能である。また、第2の実施形態に係る入力装置が備える複数のキャンセル電極の形状および/または大きさは、全てのキャンセル電極において同一であってもよいし、一部のキャンセル電極または全てのキャンセル電極において異なっていてもよい。 Note that the shape and size of the cancel electrode included in the input device according to the second embodiment are not limited to the example described above. For example, the input device according to the second embodiment has an arbitrary shape that can reduce the parasitic capacitance between the corresponding sensor electrode and the reference potential point when cancel control is performed, and / or Alternatively, a cancel electrode having any size can be provided. In addition, the shape and / or size of the plurality of cancel electrodes included in the input device according to the second embodiment may be the same in all cancel electrodes, or in some cancel electrodes or all cancel electrodes. May be different.
[2-2-2]第2の実施形態に係る制御
 第2の実施形態に係る入力装置は、上述したように、複数のセンサ電極に対して駆動信号を順次印加させる。
[2-2-2] Control According to Second Embodiment As described above, the input device according to the second embodiment sequentially applies drive signals to a plurality of sensor electrodes.
 また、第2の実施形態に係る入力装置は、いずれかのセンサ電極に駆動信号が印加されているときには、全てのキャンセル電極に対してキャンセル制御を行う。複数のセンサ電極に駆動信号を印加させていないときには、第2の実施形態に係る入力装置は、全てのキャンセル電極に対して非キャンセル制御を行う。 Also, the input device according to the second embodiment performs cancel control on all cancel electrodes when a drive signal is applied to any one of the sensor electrodes. When the drive signal is not applied to the plurality of sensor electrodes, the input device according to the second embodiment performs non-cancel control for all the cancel electrodes.
 図5は、第2の実施形態に係る入力装置において誘電体により生じうる、センサ電極の静電容量の変化の一例を説明するための説明図である。図5では、第2の実施形態に係る入力装置が、“センサ1”、“センサ2”で表される2つのセンサ電極と、“キャンセル1”、“キャンセル2”で表される2つのキャンセル電極とを有している例を、示している。 FIG. 5 is an explanatory diagram for explaining an example of a change in the capacitance of the sensor electrode that may be caused by a dielectric in the input device according to the second embodiment. In FIG. 5, the input device according to the second embodiment includes two sensor electrodes represented by “sensor 1” and “sensor 2”, and two cancels represented by “cancel 1” and “cancel 2”. An example having electrodes is shown.
 また、図5は、図3と同様に、“センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出される場合における、誘電体Dによる“センサ1”で表されるセンサ電極の静電容量の変化の一例を示している。なお、図5では、便宜上、誘電体Dを直方体で表しているが、上述したように、誘電体Dの形状が、直方体に限られないことは、言うまでもない。 Further, FIG. 5 shows “sensor 1” by the dielectric D when a change in capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, as in FIG. The example of the change of the electrostatic capacitance of the represented sensor electrode is shown. In FIG. 5, for convenience, the dielectric D is represented by a rectangular parallelepiped. However, as described above, it is needless to say that the shape of the dielectric D is not limited to a rectangular parallelepiped.
 図5において“キャンセル1”で表されるキャンセル電極は、“センサ1”で表されるセンサ電極と基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。また、“キャンセル2”で表されるキャンセル電極は、“センサ2”で表されるセンサ電極と基準電位点GNDとの間における寄生容量を減少させるためのキャンセル電極である。 In FIG. 5, the cancel electrode represented by “cancel 1” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 1” and the reference potential point GND. The cancel electrode represented by “cancel 2” is a cancel electrode for reducing the parasitic capacitance between the sensor electrode represented by “sensor 2” and the reference potential point GND.
 図5に示す寄生容量Cp1’、Cp2’、Cp3、CP4、Cp5、Cp6’は、それぞれ下記の通りである。
  ・寄生容量Cp1’:“センサ1”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp2’:“センサ2”で表されるセンサ電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp3:“キャンセル1”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp4:“キャンセル2”で表されるキャンセル電極と基準電位点GNDとの間に発生する寄生容量
  ・寄生容量Cp5:誘電体Dと“センサ1”で表されるセンサ電極との間に発生する寄生容量
  ・寄生容量Cp6’:誘電体Dと基準電位点GNDとの間に発生する寄生容量
The parasitic capacitances Cp1 ′, Cp2 ′, Cp3, CP4, Cp5, and Cp6 ′ shown in FIG. 5 are as follows.
Parasitic capacitance Cp1 ′: Parasitic capacitance generated between the sensor electrode represented by “Sensor 1” and the reference potential point GND. Parasitic capacitance Cp2 ′: Sensor electrode represented by “Sensor 2” and the reference potential point GND. -Parasitic capacitance Cp3: Parasitic capacitance Cp3: Parasitic capacitance generated between the cancel electrode represented by "Cancel 1" and the reference potential point GND-Parasitic capacitance Cp4: Cancellation represented by "Cancel 2" Parasitic capacitance generated between the electrode and the reference potential point GND Parasitic capacitance Cp5: Parasitic capacitance generated between the dielectric D and the sensor electrode represented by "Sensor 1" Parasitic capacitance Cp6 ': Dielectric D Parasitic capacitance generated between the reference potential point GND and the reference potential point GND
 “センサ1”で表されるセンサ電極に対応する静電センサに対する静電容量の変化が検出されるときにおいて、センサ電極間に跨るように誘電体Dが存在する場合、“センサ1”で表されるセンサ電極と基準電位点GNDとの間には、寄生容量Cp5、Cp6’に示すように、誘電体Dを介して新たな寄生容量が発生する。 When a change in the capacitance with respect to the electrostatic sensor corresponding to the sensor electrode represented by “sensor 1” is detected, and the dielectric D exists so as to straddle between the sensor electrodes, it is represented by “sensor 1”. As shown by parasitic capacitances Cp5 and Cp6 ′, new parasitic capacitance is generated between the sensor electrode and the reference potential point GND via the dielectric D.
 ここで、第2の実施形態に係る入力装置では、“センサ1”で表されるセンサ電極に対して駆動信号が印加されているときに、“キャンセル1”で表されるキャンセル電極および“キャンセル2”で表されるキャンセル電極それぞれに対してキャンセル制御が行われている。よって、誘電体Dと基準電位点GNDとの間に発生する寄生容量Cp6’は、キャンセル電極と基準電位点GNDとの間の寄生容量Cp3、Cp4によって、図3に示す寄生容量Cp6よりも低減される。 Here, in the input device according to the second embodiment, when a drive signal is applied to the sensor electrode represented by “sensor 1”, the cancel electrode represented by “cancel 1” and “cancel” Cancel control is performed for each cancel electrode represented by 2 ″. Therefore, the parasitic capacitance Cp6 ′ generated between the dielectric D and the reference potential point GND is reduced from the parasitic capacitance Cp6 shown in FIG. 3 by the parasitic capacitances Cp3 and Cp4 between the cancel electrode and the reference potential point GND. Is done.
 つまり、第2の実施形態に係る入力装置は、図3を参照して示したような、誘電体Dによって“センサ1”で表されるセンサ電極が擬似的に大きくなったことによる寄生容量の増加を、“キャンセル”で表されるキャンセル電極に対するキャンセル制御によって、抑制することができる。 That is, the input device according to the second embodiment has a parasitic capacitance due to the fact that the sensor electrode represented by “sensor 1” is artificially enlarged by the dielectric D as shown in FIG. The increase can be suppressed by cancel control for the cancel electrode represented by “cancel”.
 よって、第2の実施形態に係る入力装置では、操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように誘電体Dが付着した場合であっても、誘電体Dに起因する寄生容量の増加によって誤判定が生じる可能性が、低減される。 Therefore, in the input device according to the second embodiment, even if the dielectric D adheres so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation, the parasitic capacitance caused by the dielectric D The possibility of misjudgment due to an increase in the number is reduced.
 したがって、第2の実施形態に係る入力装置は、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 Therefore, the input device according to the second embodiment can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
 また、第2の実施形態に係る入力装置は、複数のセンサ電極それぞれに一対一に対応する複数のキャンセル電極を有し、当該キャンセル電極それぞれに対してキャンセル制御を行う。よって、第2の実施形態に係る入力装置は、図2に示す入力装置と同様に、静電容量式の入力装置における検出精度の向上を図ることができる。 Further, the input device according to the second embodiment has a plurality of cancel electrodes corresponding to each of the plurality of sensor electrodes, and performs cancel control on each of the cancel electrodes. Therefore, the input device according to the second embodiment can improve the detection accuracy of the capacitance-type input device, similarly to the input device shown in FIG.
[2-3]第3の実施形態に係る入力装置におけるキャンセル電極の構成と制御
 上記第2の実施形態では、複数のセンサ電極それぞれと一対一に対応する複数のキャンセル電極を有する入力装置を示した。しかしながら、本発明の実施形態に係る複数のキャンセル電極を有する入力装置の構成は、上記第2の実施形態に係る構成に限られない。そこで、次に、第3の実施形態に係る入力装置として、複数のキャンセル電極を有する他の構成の入力装置について、説明する。
[2-3] Configuration and Control of Cancel Electrode in Input Device According to Third Embodiment In the second embodiment, an input device having a plurality of cancel electrodes corresponding to each of the plurality of sensor electrodes is shown. It was. However, the configuration of the input device having a plurality of cancel electrodes according to the embodiment of the present invention is not limited to the configuration according to the second embodiment. Therefore, next, an input device having another configuration having a plurality of cancel electrodes will be described as an input device according to the third embodiment.
[2-3-1]第3の実施形態に係るキャンセル電極の構成
 第3の実施形態に係る入力装置では、複数のセンサ電極が複数の電極グループに分けられる。ここで、電極グループそれぞれには、1つのセンサ電極、または、複数のセンサ電極が属する。
[2-3-1] Configuration of Cancel Electrode According to Third Embodiment In the input device according to the third embodiment, a plurality of sensor electrodes are divided into a plurality of electrode groups. Here, one electrode or a plurality of sensor electrodes belong to each electrode group.
 なお、全ての電極グループに1つのセンサ電極が属する場合、第3の実施形態に係る入力装置におけるキャンセル電極の構成は、上記第2の実施形態に係る入力装置におけるキャンセル電極の構成と同様の構成となる。また、少なくとも1つの電極グループに複数のセンサ電極が属する場合、第3の実施形態に係る入力装置におけるキャンセル電極の構成は、上記第2の実施形態に係る入力装置におけるキャンセル電極の構成と異なることとなる。 When one sensor electrode belongs to all electrode groups, the configuration of the cancel electrode in the input device according to the third embodiment is the same as the configuration of the cancel electrode in the input device according to the second embodiment. It becomes. When a plurality of sensor electrodes belong to at least one electrode group, the configuration of the cancel electrode in the input device according to the third embodiment is different from the configuration of the cancel electrode in the input device according to the second embodiment. It becomes.
 また、第3の実施形態に係る入力装置は、電極グループに属するセンサ電極と基準電位点との間における寄生容量を減少させるためのキャンセル電極を、電極グループごとに有する。 Also, the input device according to the third embodiment has a cancel electrode for each electrode group for reducing the parasitic capacitance between the sensor electrode belonging to the electrode group and the reference potential point.
 第3の実施形態に係る入力装置が備えるキャンセル電極としては、例えば、当該キャンセル電極が対応している電極グループに属する、全てのセンサ電極が含まれる大きさを有する電極が挙げられる。上記キャンセル電極は、例えば、仮に当該キャンセル電極と対応する電極グループに属する全てのセンサ電極とを重ねた場合に、当該全てのセンサ電極が当該キャンセル電極に含まれるように、対応する電極グループに属する全てのセンサ電極と基準電位点との間に設けられる。 Examples of the cancel electrode included in the input device according to the third embodiment include an electrode having a size including all sensor electrodes belonging to the electrode group to which the cancel electrode corresponds. The cancel electrode belongs to the corresponding electrode group so that, for example, when all the sensor electrodes belonging to the electrode group corresponding to the cancel electrode are overlapped with each other, the sensor electrode is included in the cancel electrode. Provided between all sensor electrodes and a reference potential point.
 なお、第3の実施形態に係る入力装置が備えるキャンセル電極の形状、大きさは、上記に示す例に限られない。例えば、第3の実施形態に係る入力装置は、キャンセル制御が行われた場合に、対応する電極グループに属する全てのセンサ電極と基準電位点との間における寄生容量を減少させることが可能な、任意の形状、および/または、任意の大きさの、キャンセル電極を有することが可能である。また、第3の実施形態に係る入力装置が備える複数のキャンセル電極の形状および/または大きさは、全てのキャンセル電極において同一であってもよいし、一部のキャンセル電極または全てのキャンセル電極において異なっていてもよい。 Note that the shape and size of the cancel electrode included in the input device according to the third embodiment are not limited to the examples described above. For example, the input device according to the third embodiment can reduce the parasitic capacitance between all sensor electrodes belonging to the corresponding electrode group and the reference potential point when cancel control is performed. It is possible to have cancel electrodes of any shape and / or any size. In addition, the shape and / or size of the plurality of cancel electrodes included in the input device according to the third embodiment may be the same in all cancel electrodes, or in some cancel electrodes or all cancel electrodes. May be different.
[2-3-2]第3の実施形態に係る制御
 第3の実施形態に係る入力装置は、上述したように、複数のセンサ電極に対して駆動信号を順次印加させる。
[2-3-2] Control According to Third Embodiment As described above, the input device according to the third embodiment sequentially applies drive signals to a plurality of sensor electrodes.
 また、第3の実施形態に係る入力装置は、第2の実施形態に係る入力装置と同様に、いずれかのセンサ電極に駆動信号が印加されているときには、全てのキャンセル電極に対してキャンセル制御を行う。複数のセンサ電極に駆動信号を印加させていないときには、第3の実施形態に係る入力装置は、全てのキャンセル電極に対して非キャンセル制御を行う。 Further, the input device according to the third embodiment, like the input device according to the second embodiment, cancels control for all the cancel electrodes when a drive signal is applied to any one of the sensor electrodes. I do. When the drive signal is not applied to the plurality of sensor electrodes, the input device according to the third embodiment performs non-cancel control for all the cancel electrodes.
 上記のように、電極グループに属するセンサ電極の数によって、第3の実施形態に係る入力装置と第2の実施形態に係る入力装置とは、キャンセル電極それぞれとセンサ電極との対応関係が異なる場合がある。しかしながら、第3の実施形態に係る入力装置では、第2の実施形態に係る入力装置と同様に、全てのセンサ電極が、いずれかのキャンセル電極に対応している。 As described above, the input device according to the third embodiment and the input device according to the second embodiment have different correspondences between the cancel electrode and the sensor electrode depending on the number of sensor electrodes belonging to the electrode group. There is. However, in the input device according to the third embodiment, as in the input device according to the second embodiment, all sensor electrodes correspond to one of the cancel electrodes.
 また、第3の実施形態に係る入力装置では、第2の実施形態に係る入力装置と同様に各電極に対する制御が行われる。 Further, in the input device according to the third embodiment, control is performed on each electrode similarly to the input device according to the second embodiment.
 よって、第3の実施形態に係る入力装置では、第2の実施形態に係る入力装置と同様に、操作の判定対象のセンサ電極を含む複数のセンサ電極に跨るように誘電体Dが付着した場合であっても、誘電体Dに起因する寄生容量の増加によって誤判定が生じる可能性が、低減される。 Therefore, in the input device according to the third embodiment, similarly to the input device according to the second embodiment, when the dielectric D adheres so as to straddle a plurality of sensor electrodes including the sensor electrode to be determined for operation. Even so, the possibility of erroneous determination due to an increase in parasitic capacitance caused by the dielectric D is reduced.
 したがって、第3の実施形態に係る入力装置は、第2の実施形態に係る入力装置と同様に、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 Therefore, similarly to the input device according to the second embodiment, the input device according to the third embodiment can prevent erroneous determination of an operation caused by a dielectric other than the operation body.
 また、第3の実施形態に係る入力装置は、電極グループそれぞれに一対一に対応する複数のキャンセル電極を有し、当該キャンセル電極それぞれに対してキャンセル制御を行う。よって、第3の実施形態に係る入力装置は、図2に示す入力装置と同様に、静電容量式の入力装置における検出精度の向上を図ることができる。 In addition, the input device according to the third embodiment has a plurality of cancel electrodes corresponding one-to-one to each electrode group, and performs cancel control on each cancel electrode. Therefore, the input device according to the third embodiment can improve the detection accuracy of the capacitance-type input device, similarly to the input device shown in FIG.
 本発明の実施形態に係る入力装置は、例えば上記[2-1]~上記[2-3]に示す実施形態のようなキャンセル電極の構成を有し、キャンセル電極の構成に応じた制御を行う。 The input device according to the embodiment of the present invention has a cancel electrode configuration as in the embodiments described in [2-1] to [2-3], for example, and performs control according to the cancel electrode configuration. .
 なお、上記[2-1]~上記[2-3]では、2つのセンサ電極を有する例を主に示したが、本発明の実施形態に係る入力装置が有するセンサ電極の数は、2つに限られず、3つ以上のセンサ電極を有していてもよい。3つ以上のセンサ電極を有する構成であっても、本発明の実施形態に係る入力装置は、上記[2-1]~上記[2-3]に示す実施形態のようなキャンセル電極の構成を有し、上記[2-1]~上記[2-3]に示す実施形態のような制御が行われることによって、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。また、3つ以上のセンサ電極を有する構成であっても、本発明の実施形態に係る入力装置は、静電容量式の入力装置における検出精度の向上を図ることができる。 In the above [2-1] to [2-3], the example having two sensor electrodes is mainly shown, but the number of sensor electrodes included in the input device according to the embodiment of the present invention is two. It is not restricted to, You may have three or more sensor electrodes. Even in the configuration having three or more sensor electrodes, the input device according to the embodiment of the present invention has the configuration of the cancel electrode as in the embodiments shown in [2-1] to [2-3]. By performing the control as in the embodiments shown in the above [2-1] to [2-3], it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operating body. . Moreover, even if it is the structure which has three or more sensor electrodes, the input device which concerns on embodiment of this invention can aim at the improvement of the detection accuracy in an electrostatic capacitance type input device.
[3]本発明の実施形態に係る入力装置の構成例
 以下、本発明の実施形態に係る入力装置の構成の一例を説明しつつ、本発明の実施形態に係る入力装置における処理について、より具体的に説明する。
[3] Configuration Example of Input Device According to Embodiment of the Present Invention Hereinafter, an example of the configuration of the input device according to the embodiment of the present invention will be described, and processing in the input device according to the embodiment of the present invention will be described more specifically. I will explain it.
 以下では、便宜上、上記[2-1]に示す第1の実施形態に係る入力装置を主に例に挙げて、本発明の実施形態に係る入力装置の構成の一例を説明する。 Hereinafter, for the sake of convenience, an example of the configuration of the input device according to the embodiment of the present invention will be described mainly using the input device according to the first embodiment shown in [2-1] as an example.
 また、以下では、便宜上、本発明の実施形態に係る入力装置が有するセンサ電極の数が2つである場合を例に挙げる。なお、上述したように、本発明の実施形態に係る入力装置は、3つ以上のセンサ電極を有していてもよい。 In the following, for the sake of convenience, the case where the input device according to the embodiment of the present invention has two sensor electrodes is taken as an example. As described above, the input device according to the embodiment of the present invention may have three or more sensor electrodes.
 図6は、本発明の実施形態に係る入力装置100の構成の一例を示すブロック図である。入力装置100は、例えば、スイッチ部102と、検出部104と、切替部106と、制御部108とを備える。 FIG. 6 is a block diagram showing an example of the configuration of the input device 100 according to the embodiment of the present invention. The input device 100 includes, for example, a switch unit 102, a detection unit 104, a switching unit 106, and a control unit 108.
 また、入力装置100は、例えば、ROM(Read Only Memory。図示せず)や、RAM(Random Access Memory。図示せず)、記憶部(図示せず)などを備えていてもよい。入力装置100は、例えば、データの伝送路としてのバスにより上記各構成要素間を接続する。入力装置100は、例えば、入力装置100が備えているバッテリなどの内部電源から供給される電力、または、接続されている外部電源から供給される電力などによって、駆動する。 Further, the input device 100 may include, for example, a ROM (Read Only Memory, not shown), a RAM (Random Access Memory, not shown), a storage unit (not shown), and the like. For example, the input device 100 connects the above-described components by a bus as a data transmission path. The input device 100 is driven by, for example, power supplied from an internal power source such as a battery provided in the input device 100 or power supplied from a connected external power source.
 ROM(図示せず)は、例えば、制御部108や後述する処理回路114などが使用する、プログラムや演算パラメータなどのデータを記憶する。RAM(図示せず)は、制御部108や処理回路114などにより実行されるプログラムや、処理データなどを一時的に記憶する。 The ROM (not shown) stores data such as programs and calculation parameters used by the control unit 108, the processing circuit 114 described later, and the like. A RAM (not shown) temporarily stores programs executed by the control unit 108, the processing circuit 114, processing data, and the like.
 記憶部(図示せず)は、入力装置100が備える記憶手段である。記憶部(図示せず)には、例えばアプリケーションソフトウェアなどの様々なデータが記憶される。 The storage unit (not shown) is a storage unit included in the input device 100. The storage unit (not shown) stores various data such as application software.
 ここで、記憶部(図示せず)としては、例えば、ハードディスクなどの磁気記録媒体や、フラッシュメモリなどの不揮発性メモリなどが挙げられる。また、記憶部(図示せず)は、入力装置100から着脱可能であってもよい。 Here, examples of the storage unit (not shown) include a magnetic recording medium such as a hard disk and a nonvolatile memory such as a flash memory. The storage unit (not shown) may be detachable from the input device 100.
[3-1]スイッチ部102
 スイッチ部102は、複数のセンサ電極E1、E2と、1つのキャンセル電極CCとを有する。
[3-1] Switch unit 102
The switch unit 102 includes a plurality of sensor electrodes E1 and E2 and one cancel electrode CC.
 センサ電極E1、E2は、検出部104における静電容量の検出対象の電極である。センサ電極E1、E2それぞれには、例えば後述する電圧源110から駆動信号が印加される。 The sensor electrodes E1 and E2 are electrodes for which the detection unit 104 detects capacitance. For example, a drive signal is applied to each of the sensor electrodes E1 and E2 from a voltage source 110 described later.
 キャンセル電極CCは、センサ電極E1、E2それぞれと基準電位点との間における寄生容量を減少させるために設けられる。キャンセル電極CCは、上記[2-1]に示す第1の実施形態に係る1つのキャンセル電極に該当する。キャンセル電極CCは、例えば、基盤を介してセンサ電極E1、E2と並列に設けられる The cancel electrode CC is provided to reduce the parasitic capacitance between the sensor electrodes E1 and E2 and the reference potential point. The cancel electrode CC corresponds to one cancel electrode according to the first embodiment shown in [2-1] above. The cancel electrode CC is provided in parallel with, for example, the sensor electrodes E1 and E2 via a base.
 上述したように、キャンセル電極CCに、センサ電極E1、E2に印加される駆動信号と同一波形の信号が印加されることによって、センサ電極E1、E2それぞれと基準電位点との間における寄生容量は、減少する。 As described above, when a signal having the same waveform as the drive signal applied to the sensor electrodes E1 and E2 is applied to the cancel electrode CC, the parasitic capacitance between each of the sensor electrodes E1 and E2 and the reference potential point is reduced. ,Decrease.
 図6は、“後述する切替部106によってキャンセル電極CCが電圧源110と電気的に接続され、駆動信号と同一波形の信号として、駆動信号そのものがキャンセル電極CCに印加される構成”の一例を示している。また、図6は、“後述する切替部106によってキャンセル電極CCが基準電位点と電気的に接続される構成”の一例を示している。つまり、図6に示すキャンセル電極CCは、例えば、センサ電極E1、E2と基準電位点との間における寄生容量を減少させるために設けられる電極、または、基準電位点に接続される基準電極として機能する。 FIG. 6 shows an example of “a configuration in which the cancel electrode CC is electrically connected to the voltage source 110 by the switching unit 106 described later, and the drive signal itself is applied to the cancel electrode CC as a signal having the same waveform as the drive signal”. Show. FIG. 6 shows an example of “a configuration in which the cancel electrode CC is electrically connected to the reference potential point by the switching unit 106 described later”. That is, the cancel electrode CC shown in FIG. 6 functions as, for example, an electrode provided to reduce parasitic capacitance between the sensor electrodes E1, E2 and the reference potential point, or a reference electrode connected to the reference potential point. To do.
 なお、本発明の実施形態に係る入力装置100が備えるスイッチ部102の構成は、図6に示す例に限られない。 In addition, the structure of the switch part 102 with which the input device 100 which concerns on embodiment of this invention is provided is not restricted to the example shown in FIG.
 例えば、スイッチ部102では、キャンセル電極と基準電極とが、別体の電極であってもよい。 For example, in the switch unit 102, the cancel electrode and the reference electrode may be separate electrodes.
 また、図6では、スイッチ部102が上記[2-1]に示す第1の実施形態に係る1つのキャンセル電極を有する構成を示しているが、スイッチ部102は、上記[2-2]に示す第2の実施形態に係る複数のキャンセル電極、または、上記[2-3]に示す第3の実施形態に係る複数のキャンセル電極を、有していてもよい。 FIG. 6 shows a configuration in which the switch unit 102 has one cancel electrode according to the first embodiment shown in [2-1]. However, the switch unit 102 is shown in [2-2]. A plurality of cancel electrodes according to the second embodiment shown, or a plurality of cancel electrodes according to the third embodiment shown in [2-3] may be included.
[3-2]検出部104
 検出部104は、センサ電極E1、E2それぞれの静電容量の変化に基づきスイッチ部102に対する操作を検出する。
[3-2] Detection unit 104
The detection unit 104 detects an operation on the switch unit 102 based on a change in capacitance of each of the sensor electrodes E1 and E2.
 検出部104は、自己容量方式によってセンサ電極E1、E2それぞれの静電容量値を検出する。検出部104は、例えば、駆動信号を印加しているセンサ電極、すなわち、操作の判定対象のセンサ電極を、静電容量値の検出対象とする。そして、検出部104は、検出された静電容量値と設定されている所定の閾値とを比較することによって、スイッチ部102が有するセンサ電極に対応する静電センサに対して、操作が行われたことを検出する。なお、以下では、検出部104が検出する“スイッチ部102が有するセンサ電極に対応する静電センサに対して、操作が行われたこと”を、「スイッチ部102に対して操作が行われたこと」と表す場合がある。 The detection unit 104 detects the capacitance values of the sensor electrodes E1 and E2 by the self-capacitance method. The detection unit 104 uses, for example, a sensor electrode to which a drive signal is applied, that is, a sensor electrode that is an operation determination target, as a capacitance value detection target. Then, the detection unit 104 performs an operation on the electrostatic sensor corresponding to the sensor electrode included in the switch unit 102 by comparing the detected capacitance value with a predetermined threshold value. Detect that. In the following, “the operation has been performed on the electrostatic sensor corresponding to the sensor electrode included in the switch unit 102” detected by the detection unit 104, “the operation has been performed on the switch unit 102. Sometimes ".
 ここで、本発明の実施形態に係る所定の閾値は、予め設定されている固定の閾値であってもよいし、検出部104における操作の検出結果などに基づいて変わる可変の閾値であってもよい。操作の検出結果に基づく可変の閾値の例としては、例えば、“検出部104において操作が検出された場合に、閾値として、検出部104において操作が検出される前に設定されている閾値よりも、より小さな値が設定されること”などが、挙げられる。 Here, the predetermined threshold value according to the embodiment of the present invention may be a fixed threshold value that is set in advance, or may be a variable threshold value that changes based on an operation detection result in the detection unit 104. Good. As an example of the variable threshold value based on the operation detection result, for example, “when an operation is detected by the detection unit 104, the threshold value is set to be higher than the threshold value set before the operation is detected by the detection unit 104. “A smaller value is set”.
 センサ電極E1、E2の静電容量は、例えば指などの操作体がセンサ電極E1、E2に近づくことなどによって変化する。検出部104は、上記のように所定の閾値を用いた閾値処理によって、センサ電極E1、E2それぞれの静電容量の変化を捉え、スイッチ部102に対する操作を検出する。 The electrostatic capacitances of the sensor electrodes E1 and E2 change, for example, when an operating body such as a finger approaches the sensor electrodes E1 and E2. The detection unit 104 detects changes in the capacitances of the sensor electrodes E1 and E2 by threshold processing using a predetermined threshold as described above, and detects an operation on the switch unit 102.
 具体的には、検出部104は、例えば、検出された静電容量値が所定の閾値以上である場合(または、当該静電容量値が当該所定の閾値より大きい場合)に、スイッチ部102に対して操作が行われたことを検出する。 Specifically, for example, when the detected capacitance value is greater than or equal to a predetermined threshold (or when the capacitance value is greater than the predetermined threshold), the detection unit 104 causes the switch unit 102 to It is detected that an operation has been performed on the device.
 また、検出部104は、例えば、スイッチ部102に対する操作が検出された場合に、スイッチ部102に対して操作が行われたと判定する。 Further, the detection unit 104 determines that an operation has been performed on the switch unit 102 when an operation on the switch unit 102 is detected, for example.
 なお、検出部104における、スイッチ部102に対する操作の判定方法は、上記に限られない。例えば、検出部104は、所定の回数操作が検出された場合に、スイッチ部102に対する操作が行われたと判定することも可能である。本発明の実施形態に係る所定の回数は、予め設定されている固定の回数であってもよいし、制御部108や外部のコントローラからの命令に基づき変更可能な可変の回数であってもよい。 In addition, the determination method of operation with respect to the switch part 102 in the detection part 104 is not restricted above. For example, the detection unit 104 can determine that an operation on the switch unit 102 has been performed when an operation is detected a predetermined number of times. The predetermined number of times according to the embodiment of the present invention may be a fixed number set in advance, or may be a variable number that can be changed based on a command from the control unit 108 or an external controller. .
 上記のように、検出部104が、所定の回数操作が検出された場合にスイッチ部102に対する操作が行われたと判定することによって、スイッチ部102に対する操作の誤判定が生じる可能性を、より低減することができる。 As described above, when the detection unit 104 determines that an operation has been performed on the switch unit 102 when an operation is detected a predetermined number of times, the possibility of erroneous determination of the operation on the switch unit 102 is further reduced. can do.
 検出部104は、例えば、電圧源110と、測定回路112A、112Bと、処理回路114と、スイッチング回路SW1、SW2、SW3、SW4、SW5、SW6と、接地容量C1、C2とを有する。 The detection unit 104 includes, for example, a voltage source 110, measurement circuits 112A and 112B, a processing circuit 114, switching circuits SW1, SW2, SW3, SW4, SW5, and SW6, and ground capacitors C1 and C2.
 電圧源110は、センサ電極E1、E2を駆動させるための駆動信号(電圧信号)を出力する。なお、電圧源110は、入力装置100の外部の電圧源であってもよい。 The voltage source 110 outputs a drive signal (voltage signal) for driving the sensor electrodes E1 and E2. Note that the voltage source 110 may be a voltage source external to the input device 100.
 測定回路112A、112Bは、例えば、容量の充電時間を測定することによって、静電容量値(自己容量値)を検出する。測定回路112Aは、スイッチング回路SW2を介してセンサ電極E1と電気的に接続され、センサ電極E1の静電容量値を検出する。また、測定回路112Bは、スイッチング回路SW5を介してセンサ電極E2と電気的に接続され、センサ電極E2の静電容量値を検出する。 The measurement circuits 112A and 112B detect the capacitance value (self-capacitance value) by measuring the charging time of the capacity, for example. The measurement circuit 112A is electrically connected to the sensor electrode E1 via the switching circuit SW2, and detects the capacitance value of the sensor electrode E1. The measurement circuit 112B is electrically connected to the sensor electrode E2 via the switching circuit SW5 and detects the capacitance value of the sensor electrode E2.
 測定回路112A、112Bは、例えば、1または2以上のコンパレータなどを用いて容量の充電時間を測定し、測定された充電時間から容量値を求めることによって、静電容量値を検出する。 The measurement circuits 112A and 112B measure the capacitance charging time using, for example, one or more comparators, and detect the capacitance value by obtaining the capacitance value from the measured charging time.
 なお、測定回路112A、112Bは、上記に示す例に限られない。測定回路112A、112Bは、静電容量値を測定することが可能な任意の方法に対応する構成をとることが可能である。 Note that the measurement circuits 112A and 112B are not limited to the example shown above. The measurement circuits 112A and 112B can take a configuration corresponding to an arbitrary method capable of measuring the capacitance value.
 処理回路114は、測定回路112A、112Bそれぞれにおいて検出されたセンサ電極E1、E2の静電容量値に基づいて、スイッチ部102に対する操作を検出する。処理回路114は、例えば、検出されたセンサ電極E1の静電容量値と所定の閾値とを比較することによって、センサ電極E1に対応する静電センサに対する操作を検出する。また、処理回路114は、例えば、検出されたセンサ電極E2の静電容量値と所定の閾値とを比較することによって、センサ電極E2に対応する静電センサに対する操作を検出する。 The processing circuit 114 detects an operation on the switch unit 102 based on the capacitance values of the sensor electrodes E1 and E2 detected in the measurement circuits 112A and 112B, respectively. For example, the processing circuit 114 detects an operation on the electrostatic sensor corresponding to the sensor electrode E1 by comparing the detected capacitance value of the sensor electrode E1 with a predetermined threshold value. Further, the processing circuit 114 detects an operation on the electrostatic sensor corresponding to the sensor electrode E2, for example, by comparing the detected capacitance value of the sensor electrode E2 with a predetermined threshold value.
 また、処理回路114は、上述したように、スイッチ部102に対する操作の検出結果と所定の回数とに基づいて、スイッチ部102に対して操作が行われたか否かを判定してもよい。 Further, as described above, the processing circuit 114 may determine whether or not an operation has been performed on the switch unit 102 based on a detection result of the operation on the switch unit 102 and a predetermined number of times.
 処理回路114としては、例えば、CPU(Central Processing Unit)などの演算回路で構成される、1または2以上のプロセッサなどが挙げられる。 Examples of the processing circuit 114 include one or two or more processors configured by an arithmetic circuit such as a CPU (Central Processing Unit).
 スイッチング回路SW1、SW2、SW3、SW4、SW5、SW6は、例えば、スイッチングトランジスタで構成され、印加される信号の信号レベル(電圧レベル)に応じてオン状態(導通状態)またはオフ状態(非導通状態)となる。 The switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 are constituted by, for example, switching transistors, and are turned on (conductive state) or off (non-conductive state) according to the signal level (voltage level) of the applied signal. )
 スイッチングトランジスタとしては、例えば、バイポーラトランジスタや、TFT(Thin Film Transistor)やMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)などのFET(Field-Effect Transistor)が挙げられる。 Examples of switching transistors include bipolar transistors, and FETs (Field-Effect Transistors) such as TFTs (Thin Film Transistors) and MOSFETs (Metal-Oxide-Semiconductor-Field Effect Transistors).
 スイッチング回路SW1、SW2、SW3、SW4、SW5、SW6それぞれのオン状態、オフ状態の切り替えの制御は、例えば、後述する制御部108により行われる。 Switching control of each of the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 between the on state and the off state is performed by, for example, the control unit 108 described later.
 なお、スイッチング回路SW1、SW2、SW3、SW4、SW5、SW6は、スイッチングトランジスタに限られず、オン状態とオフ状態とを切り替えることが可能な任意の素子(または回路)であってもよい。 Note that the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 are not limited to switching transistors, and may be any elements (or circuits) that can be switched between an on state and an off state.
 検出部104では、例えば下記の(a)、(b)に示すようにスイッチング回路SW1、SW2、SW3、SW4、SW5、SW6それぞれのオン状態、オフ状態が切り替えられることによって、センサ電極E1の静電容量値の検出と、センサ電極E2の静電容量値の検出とが、順次に行われる。 In the detection unit 104, for example, as shown in the following (a) and (b), the switching circuit SW1, SW2, SW3, SW4, SW5, and SW6 are switched between the on state and the off state, whereby the sensor electrode E1 is statically switched. The detection of the capacitance value and the detection of the capacitance value of the sensor electrode E2 are sequentially performed.
(a)センサ電極E1の静電容量値を検出する場合
  ・スイッチング回路SW1、SW2:オン状態
  ・スイッチング回路SW3、SW4、SW5、SW6:オフ状態
(A) When detecting capacitance value of sensor electrode E1 Switching circuit SW1, SW2: ON state Switching circuit SW3, SW4, SW5, SW6: OFF state
(b)センサ電極E2の静電容量値を検出する場合
  ・スイッチング回路SW4、SW5:オン状態
  ・スイッチング回路SW1、SW2、SW3、SW6:オフ状態
(B) When detecting capacitance value of sensor electrode E2 Switching circuit SW4, SW5: ON state Switching circuit SW1, SW2, SW3, SW6: OFF state
 例えば、上記(a)、(b)に示すようなスイッチング回路SW1、SW2、SW3、SW4、SW5、SW6のオン・オフ制御が行われることによって、検出部104では、センサ電極E1、E2それぞれに対して駆動信号が順次印加され、測定回路112A、112Bにおいてセンサ電極E1、E2それぞれの静電容量値(自己容量値)が順次検出される。 For example, on / off control of the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 as shown in the above (a) and (b) is performed, so that the detection unit 104 applies each to the sensor electrodes E1 and E2. The drive signals are sequentially applied to the measurement circuits 112A and 112B, and the capacitance values (self-capacitance values) of the sensor electrodes E1 and E2 are sequentially detected.
 また、スイッチング回路SW3、SW6は、静電容量値の測定の初期化を行うためのスイッチング回路である。 The switching circuits SW3 and SW6 are switching circuits for initializing the measurement of the capacitance value.
 例えば下記の(c)に示すようにスイッチング回路SW1、SW2、SW3それぞれのオン状態、オフ状態が切り替えられることによって、センサ電極E1の静電容量値の測定の初期化が行われる。ここで、下記の(c)に示すスイッチング回路SW1、SW2、SW3のオン・オフ制御は、例えばセンサ電極E2の静電容量値を検出するときなど、センサ電極E1の静電容量値を検出していないときに、行われる。 For example, as shown in (c) below, the measurement of the capacitance value of the sensor electrode E1 is initialized by switching the switching circuits SW1, SW2, and SW3 between on and off states. Here, the ON / OFF control of the switching circuits SW1, SW2, and SW3 shown in (c) below detects the capacitance value of the sensor electrode E1, for example, when detecting the capacitance value of the sensor electrode E2. When not done.
(c)センサ電極E1の測定の初期化を行う場合
  ・スイッチング回路SW2、SW3:オン状態
  ・スイッチング回路SW1:オフ状態
(C) When initializing measurement of sensor electrode E1 • Switching circuit SW2, SW3: ON state • Switching circuit SW1: OFF state
 また、例えば下記の(d)に示すようにスイッチング回路SW4、SW5、SW6それぞれのオン状態、オフ状態が切り替えられることによって、センサ電極E2の静電容量値の測定の初期化が行われる。ここで、下記の(d)に示すスイッチング回路SW4、SW5、SW6のオン・オフ制御は、例えばセンサ電極E1の静電容量値を検出するときなど、センサ電極E2の静電容量値を検出していないときに、行われる。 Further, for example, as shown in (d) below, the switching circuit SW4, SW5, SW6 is switched between the on state and the off state, whereby the measurement of the capacitance value of the sensor electrode E2 is performed. Here, the on / off control of the switching circuits SW4, SW5, and SW6 shown in (d) below detects the capacitance value of the sensor electrode E2, for example, when detecting the capacitance value of the sensor electrode E1. When not done.
(d)センサ電極E2の測定の初期化を行う場合
  ・スイッチング回路SW5、SW6:オン状態
  ・スイッチング回路SW4:オフ状態
(D) When initializing measurement of sensor electrode E2 • Switching circuit SW5, SW6: ON state • Switching circuit SW4: OFF state
 接地容量C1は、例えば、センサ電極E1とスイッチング回路SW2との間に接続される。接地容量C1は、寄生容量であってもよいし、キャパシタなどの回路素子であってもよい。 The grounding capacitor C1 is connected between the sensor electrode E1 and the switching circuit SW2, for example. The grounding capacitor C1 may be a parasitic capacitor or a circuit element such as a capacitor.
 接地容量C2は、例えば、センサ電極E2とスイッチング回路SW5との間に接続される。接地容量C2は、寄生容量であってもよいし、キャパシタなどの回路素子であってもよい。 The grounding capacitor C2 is connected between the sensor electrode E2 and the switching circuit SW5, for example. The ground capacitance C2 may be a parasitic capacitance or a circuit element such as a capacitor.
 検出部104は、例えば図6に示す構成によって、センサ電極E1、E2それぞれの静電容量値(自己容量値)を検出し、センサ電極E1、E2の静電容量の変化に基づきスイッチ部102に対する操作を検出する。 The detection unit 104 detects the electrostatic capacitance values (self-capacitance values) of the sensor electrodes E1 and E2 with the configuration shown in FIG. 6, for example, and detects the capacitance with respect to the switch unit 102 based on changes in the electrostatic capacitances of the sensor electrodes E1 and E2. Detect operations.
 なお、検出部104の構成は、図6に示す例に限られない。 Note that the configuration of the detection unit 104 is not limited to the example shown in FIG.
 例えば、検出部104は、センサ電極E1、E2それぞれの静電容量値(自己容量値)を測定することが可能な、任意の構成をとることが可能である。 For example, the detection unit 104 can take any configuration that can measure the capacitance values (self-capacitance values) of the sensor electrodes E1 and E2.
 また、例えば、後述する制御部108が処理回路114と同様の処理を行う機能を有する場合には、検出部104は、処理回路114を備えていなくてもよい。 For example, when the control unit 108 described later has a function of performing the same processing as the processing circuit 114, the detection unit 104 may not include the processing circuit 114.
 また、検出部104では、複数のセンサ電極E1、E2それぞれの静電容量値が順次検出される。よって、検出部104は、複数のセンサ電極E1、E2に対応する1つの測定回路を備える構成であってもよい。 Further, the detection unit 104 sequentially detects the capacitance values of the plurality of sensor electrodes E1 and E2. Therefore, the detection unit 104 may be configured to include one measurement circuit corresponding to the plurality of sensor electrodes E1 and E2.
[3-3]切替部106
 切替部106は、スイッチング回路SW7、SW8を含む切替回路で構成され、切替回路は、キャンセル電極CCと電気的に接続される。
[3-3] Switching unit 106
The switching unit 106 includes a switching circuit including switching circuits SW7 and SW8, and the switching circuit is electrically connected to the cancel electrode CC.
 スイッチング回路SW7、SW8は、例えば、スイッチングトランジスタで構成され、印加される信号の信号レベル(電圧レベル)に応じてオン状態(導通状態)またはオフ状態(非導通状態)となる。 The switching circuits SW7 and SW8 are constituted by, for example, switching transistors, and are turned on (conductive state) or off (non-conductive state) according to the signal level (voltage level) of the applied signal.
 なお、スイッチング回路SW7、SW8は、スイッチングトランジスタに限られず、オン状態とオフ状態とを切り替えることが可能な任意の素子(または回路)であってもよい。 Note that the switching circuits SW7 and SW8 are not limited to switching transistors, and may be arbitrary elements (or circuits) capable of switching between an on state and an off state.
 スイッチング回路SW7、SW8それぞれがオン状態(導通状態)またはオフ状態(非導通状態)となることによって、キャンセル電極CCは、電圧源110、または、基準電位点と接続される。 When each of the switching circuits SW7 and SW8 is turned on (conductive state) or turned off (non-conductive state), the cancel electrode CC is connected to the voltage source 110 or the reference potential point.
 切替部106では、例えば下記のようにスイッチング回路SW7、SW8それぞれのオン状態、オフ状態が切り替えられることによって、キャンセル電極CCは、電圧源110と接続され、基準電位点とは接続されない。ここで、キャンセル電極CCが電圧源110と接続されている状態が、キャンセル電極CCに対してキャンセル制御が行われる状態に該当する。
  ・スイッチング回路SW7:オン状態
  ・スイッチング回路SW8:オフ状態
In the switching unit 106, the cancel electrode CC is connected to the voltage source 110 and not connected to the reference potential point, for example, by switching the on state and the off state of the switching circuits SW7 and SW8 as described below. Here, the state where the cancel electrode CC is connected to the voltage source 110 corresponds to a state where cancel control is performed on the cancel electrode CC.
・ Switching circuit SW7: ON state ・ Switching circuit SW8: OFF state
 また、切替部106では、例えば下記のようにスイッチング回路SW7、SW8それぞれのオン状態、オフ状態が切り替えられることによって、キャンセル電極CCは、基準電位点と接続され、電圧源110とは接続されない。ここで、キャンセル電極CCが電圧源110と接続されていない状態が、キャンセル電極CCに対して非キャンセル制御が行われる状態に該当する。
  ・スイッチング回路SW7:オフ状態
  ・スイッチング回路SW8:オン状態
Further, in the switching unit 106, the cancel electrode CC is connected to the reference potential point and is not connected to the voltage source 110, for example, by switching between the ON state and the OFF state of the switching circuits SW7 and SW8 as described below. Here, the state where the cancel electrode CC is not connected to the voltage source 110 corresponds to a state where non-cancel control is performed on the cancel electrode CC.
・ Switching circuit SW7: OFF state ・ Switching circuit SW8: ON state
 スイッチング回路SW7、SW8それぞれのオン状態、オフ状態の切り替えは、例えば制御部108により行われる。 Switching between the ON state and the OFF state of each of the switching circuits SW7 and SW8 is performed by the control unit 108, for example.
 なお、切替部106の構成は、図6に示す例に限られない。例えば、切替部106は、キャンセル電極CCを、電圧源110または基準電位点の一方に接続させることが可能な、任意の構成をとることが可能である。 Note that the configuration of the switching unit 106 is not limited to the example shown in FIG. For example, the switching unit 106 can have any configuration that can connect the cancel electrode CC to one of the voltage source 110 and the reference potential point.
[3-4]制御部108
 制御部108は、センサ電極に対する制御と、キャンセル電極に対する制御を行う。
[3-4] Control unit 108
The control unit 108 performs control on the sensor electrode and control on the cancel electrode.
[3-4-1]制御部108におけるセンサ電極に対する制御
 制御部108は、上述したように、複数のセンサ電極に対する制御として、駆動信号を順次印加させる制御を行う。
[3-4-1] Control of Sensor Electrode in Control Unit 108 As described above, the control unit 108 performs control for sequentially applying drive signals as control for a plurality of sensor electrodes.
 制御部108は、例えば、検出部104を構成するスイッチング回路SW1、SW2、SW3、SW4、SW5、SW6それぞれに対して、オン状態・オフ状態を切り替えるための信号を伝達することによって、複数のセンサ電極に対して駆動信号を順次印加させる。 For example, the control unit 108 transmits a signal for switching between an on state and an off state to each of the switching circuits SW1, SW2, SW3, SW4, SW5, and SW6 included in the detection unit 104, thereby a plurality of sensors. Driving signals are sequentially applied to the electrodes.
 また、制御部108は、例えば、検出部104を構成する処理回路114に対して、各スイッチング回路のオン状態・オフ状態を切り替えさせる命令を含む制御信号を伝達することによって、複数のセンサ電極に対して駆動信号を順次印加させてもよい。制御部108が制御信号を処理回路114に伝達する場合、検出部104では、“処理回路114が、伝達される制御信号に基づいて、スイッチング回路SW1、SW2、SW3、SW4、SW5、SW6それぞれに対して、オン状態・オフ状態を切り替えるための信号を伝達すること”によって、複数のセンサ電極に対する駆動信号の順次の印加が、実現される。 In addition, the control unit 108 transmits, for example, a control signal including a command to switch the on state / off state of each switching circuit to the processing circuit 114 configuring the detection unit 104, thereby transmitting the control signal to the plurality of sensor electrodes. On the other hand, drive signals may be sequentially applied. When the control unit 108 transmits the control signal to the processing circuit 114, the detection unit 104 causes the “processing circuit 114 to send to the switching circuits SW 1, SW 2, SW 3, SW 4, SW 5, SW 6 based on the transmitted control signal. On the other hand, by transmitting a signal for switching between the on state and the off state, sequential application of drive signals to a plurality of sensor electrodes is realized.
[3-4-2]制御部108におけるキャンセル電極に対する制御
 制御部108は、上述したように、いずれかのセンサ電極に対して駆動信号を印加させているときに、キャンセル電極CCに対してキャンセル制御を行い、全てのセンサ電極E1、E2と基準電位点との間における寄生容量を減少させる。
[3-4-2] Control on Cancel Electrode in Control Unit 108 As described above, the control unit 108 cancels the cancel electrode CC when a drive signal is applied to any one of the sensor electrodes. Control is performed to reduce the parasitic capacitance between all the sensor electrodes E1, E2 and the reference potential point.
 また、制御部108は、上述したように、複数のセンサ電極E1、E2に駆動信号を印加させていないときには、非キャンセル制御を行う。 Further, as described above, the control unit 108 performs non-cancellation control when the drive signals are not applied to the plurality of sensor electrodes E1 and E2.
 制御部108は、例えば、切替部106を構成するスイッチング回路SW7、SW8それぞれに対して、オン状態・オフ状態を切り替えるための信号を伝達することによって、キャンセル電極CCに対するキャンセル制御、または、キャンセル電極CCに対する非キャンセル制御とを行う。ここで、上記に示す制御部108における制御の例は、例えば上記[2-1]に示す第1の実施形態に係る制御の一例に該当する。 For example, the control unit 108 transmits a signal for switching between the on state and the off state to the switching circuits SW7 and SW8 included in the switching unit 106, thereby canceling the cancel electrode CC or canceling the cancel electrode CC. Non-cancellation control for CC is performed. Here, the example of the control in the control unit 108 described above corresponds to an example of the control according to the first embodiment described in [2-1], for example.
 なお、制御部108における制御は、上記に示す例に限られない。例えば、例えば上記[2-2]および上記[2-3]に示す実施形態のように、制御部108は、スイッチ部102を構成するキャンセル電極の構成に応じた制御を行うことが、可能である。 The control in the control unit 108 is not limited to the example shown above. For example, as in the embodiments shown in [2-2] and [2-3], for example, the control unit 108 can perform control according to the configuration of the cancel electrode that configures the switch unit 102. is there.
 また、制御部108は、入力装置100全体を制御する役目を果たしてもよい。 Further, the control unit 108 may play a role of controlling the entire input device 100.
 制御部108は、例えば、CPUなどの演算回路で構成される、1または2以上のプロセッサや各種処理回路などで構成される。 The control unit 108 includes, for example, one or two or more processors and various processing circuits configured by an arithmetic circuit such as a CPU.
 入力装置100は、例えば図6に示す構成を有する。 The input device 100 has a configuration shown in FIG. 6, for example.
 図6に示すスイッチ部102は、2つのセンサ電極E1、E2と、全てのセンサ電極E1、E2と基準電位点との間における寄生容量を減少させるための、1つのキャンセル電極CCを有する。また、図6に示す制御部108は、いずれかのセンサ電極に駆動信号が印加されているときには、1つのキャンセル電極CCに対してキャンセル制御を行う。 6 includes two sensor electrodes E1 and E2 and one cancel electrode CC for reducing the parasitic capacitance between all the sensor electrodes E1 and E2 and the reference potential point. Further, the control unit 108 shown in FIG. 6 performs cancel control on one cancel electrode CC when a drive signal is applied to any one of the sensor electrodes.
 よって、図6に示す入力装置100では、図4を参照して示したように、複数のセンサ電極E1、E2(上述した操作の判定対象のセンサ電極を含む複数のセンサ電極の一例)に跨るように操作体以外の誘電体が付着した場合であっても、当該誘電体によりセンサ電極が擬似的に大きくなったような場合に生じる容量を、キャンセル電極CCによって抑制することができる。つまり、入力装置100では、操作体以外の誘電体に起因する寄生容量の増加によって誤判定が生じる可能性は、低い。 Therefore, in the input device 100 illustrated in FIG. 6, as illustrated with reference to FIG. 4, the plurality of sensor electrodes E <b> 1 and E <b> 2 (an example of the plurality of sensor electrodes including the above-described operation determination target sensor electrodes) are straddled. Thus, even when a dielectric other than the operating body adheres, the capacitance that occurs when the sensor electrode becomes pseudo large due to the dielectric can be suppressed by the cancel electrode CC. In other words, in the input device 100, there is a low possibility that an erroneous determination is caused by an increase in parasitic capacitance caused by a dielectric other than the operating body.
 したがって、入力装置100は、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。 Therefore, the input device 100 can prevent an erroneous determination of an operation caused by a dielectric other than the operation body.
 また、入力装置100は、複数のセンサ電極E1、E2それぞれに対応する1つのキャンセル電極CCを有し、当該キャンセル電極CCに対してキャンセル制御を行う。よって、入力装置100は、図2に示す入力装置と同様に、静電容量式の入力装置における検出精度の向上を図ることができる。 In addition, the input device 100 has one cancel electrode CC corresponding to each of the plurality of sensor electrodes E1 and E2, and performs cancel control on the cancel electrode CC. Therefore, the input device 100 can improve the detection accuracy in the capacitance-type input device, similarly to the input device shown in FIG.
 なお、本発明の実施形態に係る入力装置の構成は、図6に示す構成に限られない。 The configuration of the input device according to the embodiment of the present invention is not limited to the configuration shown in FIG.
 例えば、外部の切替回路によって、キャンセル電極CCと電圧源110との接続、またはキャンセル電極CCと基準電位点との接続が切り替えられる場合には、本発明の実施形態に係る入力装置は、切替部106を備えていなくてもよい。上記の場合、本発明の実施形態に係る入力装置では、制御部108が、図6に示す切替部106を構成する切替回路に対する制御と同様に、上記外部の切替回路を制御することによって、図6に示す入力装置100と同様の効果が奏される。 For example, when the connection between the cancel electrode CC and the voltage source 110 or the connection between the cancel electrode CC and the reference potential point is switched by an external switching circuit, the input device according to the embodiment of the present invention includes a switching unit. 106 may not be provided. In the above case, in the input device according to the embodiment of the present invention, the control unit 108 controls the external switching circuit similarly to the control for the switching circuit constituting the switching unit 106 shown in FIG. The same effect as the input device 100 shown in FIG.
 また、図6では、電圧源110から出力される駆動信号が、センサ電極E1、E2とキャンセル電極CCとに印加される例を示しているが、本発明の実施形態に係る入力装置は、電圧源110と異なる電圧源からキャンセル電極CCに対して、駆動信号と同一波形の信号が印加される構成であってもよい。 6 shows an example in which the drive signal output from the voltage source 110 is applied to the sensor electrodes E1 and E2 and the cancel electrode CC. However, the input device according to the embodiment of the present invention is The configuration may be such that a signal having the same waveform as the drive signal is applied to the cancel electrode CC from a voltage source different from the source 110.
 また、例えば上述したように、スイッチ部102は、上記[2-2]に示す第2の実施形態に係る複数のキャンセル電極、または、上記[2-3]に示す第3の実施形態に係る複数のキャンセル電極を、有していてもよい。また、スイッチ部102が、上記[2-2]に示す第2の実施形態に係る複数のキャンセル電極、または、上記[2-3]に示す第3の実施形態に係る複数のキャンセル電極を、有する場合、制御部108は、上記[2-2]、および上記[2-3]に示す実施形態のように、スイッチ部102を構成するキャンセル電極の構成に応じた制御を行う。 For example, as described above, the switch unit 102 includes a plurality of cancel electrodes according to the second embodiment shown in [2-2], or a third embodiment shown in [2-3]. A plurality of cancel electrodes may be provided. The switch unit 102 includes a plurality of cancel electrodes according to the second embodiment shown in [2-2] or a plurality of cancel electrodes according to the third embodiment shown in [2-3]. If so, the control unit 108 performs control according to the configuration of the cancel electrode constituting the switch unit 102 as in the embodiments described in [2-2] and [2-3].
 また、例えば上述したように、スイッチ部102を構成するセンサ電極の数は、図6に示すような2つに限られず、スイッチ部102は、3つ以上のセンサ電極を有していてもよい。 For example, as described above, the number of sensor electrodes constituting the switch unit 102 is not limited to two as illustrated in FIG. 6, and the switch unit 102 may include three or more sensor electrodes. .
 また、例えば、図6に示すスイッチ部102、検出部104、および切替部106と同様の機能を有する入力装置と、制御部108と同様の機能を有する処理装置(例えば、入力装置の外部のマイクロコンピュータなど)とによって、図6に示す入力装置100と同様の機能を有するシステムが、実現される。 Further, for example, an input device having the same function as the switch unit 102, the detection unit 104, and the switching unit 106 illustrated in FIG. 6 and a processing device having the same function as the control unit 108 (for example, a micro device outside the input device). A system having a function similar to that of the input device 100 shown in FIG.
[4]本発明の実施形態に係る入力装置の適用例
 本発明の実施形態に係る入力装置は、例えば、車などの車両(または、車両システムを構成するUI(User Interface)部分など車両システムの一部)や、携帯電話やスマートフォンなどの通信装置、タブレット型の装置、テレビ受像機、PC(Personal Computer)などのコンピュータなど、様々なシステムや機器に適用することができる。
[4] Application Example of Input Device According to Embodiment of the Present Invention An input device according to an embodiment of the present invention is, for example, a vehicle such as a vehicle (or a UI (User Interface) part constituting a vehicle system). It can be applied to various systems and devices such as communication devices such as mobile phones and smartphones, tablet devices, television receivers, and computers such as PCs (Personal Computers).
[5]本発明の実施形態に係るプログラム
 コンピュータを、本発明の実施形態に係る入力装置として機能させるためのプログラム(例えば、図6に示す制御部108として機能させるためのプログラム)が、コンピュータにおいてプロセッサなどにより実行されることによって、操作体以外の誘電体に起因する操作の誤判定の防止を図ることができる。
[5] Program according to the embodiment of the present invention A program for causing a computer to function as the input device according to the embodiment of the present invention (for example, a program for causing the computer to function as the control unit 108 illustrated in FIG. 6) By being executed by the processor or the like, it is possible to prevent erroneous determination of an operation caused by a dielectric other than the operation body.
 また、コンピュータを、本発明の実施形態に係る入力装置として機能させるためのプログラムが、コンピュータにおいてプロセッサなどにより実行されることによって、上述した本発明の実施形態に係る入力装置における各電極の制御(例えば、図6に示す制御部108における制御)によって奏される効果を、奏することができる。 In addition, a program for causing a computer to function as the input device according to the embodiment of the present invention is executed by a processor or the like in the computer, thereby controlling each electrode in the input device according to the above-described embodiment of the present invention ( For example, the effect produced by the control in the control unit 108 shown in FIG. 6 can be produced.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
 例えば、上記では、コンピュータを、本発明の実施形態に係る入力装置として機能させるためのプログラム(コンピュータプログラム)が提供されることを示したが、本発明の実施形態は、さらに、上記プログラムを記憶させた記録媒体も併せて提供することができる。 For example, in the above description, it is shown that a program (computer program) for causing a computer to function as an input device according to the embodiment of the present invention is provided. However, the embodiment of the present invention further stores the program. The recorded recording medium can also be provided.
 100  入力装置
 102  スイッチ部
 104  検出部
 106  切替部
 108  制御部
 E1、E2  センサ電極
 CC  キャンセル電極
 GND  基準電位点
 
DESCRIPTION OF SYMBOLS 100 Input device 102 Switch part 104 Detection part 106 Switching part 108 Control part E1, E2 Sensor electrode CC Cancel electrode GND Reference potential point

Claims (5)

  1.  駆動信号がそれぞれ印加される複数のセンサ電極、および前記センサ電極それぞれと基準電位点との間における寄生容量を減少させるためのキャンセル電極を有するスイッチ部と、
     前記センサ電極それぞれの静電容量の変化に基づき前記スイッチ部に対する操作を検出する検出部と、
     前記センサ電極それぞれに対して前記駆動信号を印加させる制御と、前記キャンセル電極に対して前記駆動信号と同一波形の信号を印加させるキャンセル制御とを行う制御部と、
     を備え、
     前記制御部は、
     前記センサ電極それぞれに対して前記駆動信号を順次印加させ、
     いずれかの前記センサ電極に対して前記駆動信号を印加させているときには、前記キャンセル電極に対する前記キャンセル制御を行い、全ての前記センサ電極と前記基準電位点との間における寄生容量を減少させることを特徴とする、入力装置。
    A plurality of sensor electrodes to which drive signals are respectively applied, and a switch unit having cancel electrodes for reducing parasitic capacitance between each of the sensor electrodes and a reference potential point;
    A detection unit that detects an operation on the switch unit based on a change in capacitance of each of the sensor electrodes;
    A control unit that performs control to apply the drive signal to each of the sensor electrodes and cancel control to apply a signal having the same waveform as the drive signal to the cancel electrode;
    With
    The controller is
    The drive signal is sequentially applied to each of the sensor electrodes,
    When the drive signal is applied to any one of the sensor electrodes, the cancel control is performed on the cancel electrode, and the parasitic capacitance between all the sensor electrodes and the reference potential point is reduced. Characteristic input device.
  2.  前記スイッチ部は、全ての前記センサ電極と前記基準電位点との間における寄生容量を減少させるための、1つの前記キャンセル電極を有し、
     前記制御部は、いずれかの前記センサ電極に前記駆動信号が印加されているときには、1つの前記キャンセル電極に対して前記キャンセル制御を行うことを特徴とする、請求項1に記載の入力装置。
    The switch unit includes one cancel electrode for reducing parasitic capacitance between all the sensor electrodes and the reference potential point,
    The input device according to claim 1, wherein the control unit performs the cancel control on one of the cancel electrodes when the drive signal is applied to any one of the sensor electrodes.
  3.  前記スイッチ部は、複数の前記センサ電極それぞれと一対一に対応し、対応する前記センサ電極と前記基準電位点との間における寄生容量を減少させるための、複数の前記キャンセル電極を有し、
     前記制御部は、いずれかの前記センサ電極に前記駆動信号が印加されているときには、全ての前記キャンセル電極に対して前記キャンセル制御を行うことを特徴とする、請求項1に記載の入力装置。
    The switch unit has a plurality of the cancel electrodes, which correspond to each of the plurality of sensor electrodes on a one-to-one basis, and reduce a parasitic capacitance between the corresponding sensor electrode and the reference potential point,
    The input device according to claim 1, wherein the control unit performs the cancel control on all the cancel electrodes when the drive signal is applied to any one of the sensor electrodes.
  4.  前記スイッチ部では、複数の前記センサ電極が複数の電極グループに分けられ、
     前記スイッチ部は、前記電極グループに属する前記センサ電極と前記基準電位点との間における寄生容量を減少させるための前記キャンセル電極を、前記電極グループごとに有し、
     前記制御部は、いずれかの前記センサ電極に前記駆動信号が印加されているときには、全ての前記キャンセル電極に対して前記キャンセル制御を行うことを特徴とする、請求項1に記載の入力装置。
    In the switch unit, the plurality of sensor electrodes are divided into a plurality of electrode groups,
    The switch unit includes the cancel electrode for reducing the parasitic capacitance between the sensor electrode belonging to the electrode group and the reference potential point for each electrode group,
    The input device according to claim 1, wherein the control unit performs the cancel control on all the cancel electrodes when the drive signal is applied to any one of the sensor electrodes.
  5.  前記制御部は、複数の前記センサ電極に前記駆動信号を印加させていないときには、前記キャンセル電極に対して前記駆動信号を印加させない非キャンセル制御を行うことを特徴とする、請求項1~4のいずれか1項に記載の入力装置。
     
    The control unit according to claim 1, wherein the control unit performs non-cancel control in which the drive signal is not applied to the cancel electrode when the drive signal is not applied to the plurality of sensor electrodes. The input device according to any one of the above.
PCT/JP2017/021162 2016-09-01 2017-06-07 Input device WO2018042806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016171091A JP6655506B2 (en) 2016-09-01 2016-09-01 Input device
JP2016-171091 2016-09-01

Publications (1)

Publication Number Publication Date
WO2018042806A1 true WO2018042806A1 (en) 2018-03-08

Family

ID=61300411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021162 WO2018042806A1 (en) 2016-09-01 2017-06-07 Input device

Country Status (2)

Country Link
JP (1) JP6655506B2 (en)
WO (1) WO2018042806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614161A (en) * 2018-07-27 2018-10-02 青岛澳科仪器有限责任公司 A kind of capacitance measurement system
CN111208914A (en) * 2018-11-21 2020-05-29 罗姆股份有限公司 Touch detection circuit, input device, and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010198A (en) * 2018-07-09 2020-01-16 株式会社東海理化電機製作所 Detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190404A (en) * 2012-03-15 2013-09-26 Nippon Soken Inc Capacitance type sensor
JP2014163885A (en) * 2013-02-27 2014-09-08 Denso Corp Capacitance type occupant detection sensor
JP2015184182A (en) * 2014-03-25 2015-10-22 株式会社日本自動車部品総合研究所 capacitive occupant detection apparatus
JP2016051587A (en) * 2014-08-29 2016-04-11 株式会社東海理化電機製作所 Capacitance detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190404A (en) * 2012-03-15 2013-09-26 Nippon Soken Inc Capacitance type sensor
JP2014163885A (en) * 2013-02-27 2014-09-08 Denso Corp Capacitance type occupant detection sensor
JP2015184182A (en) * 2014-03-25 2015-10-22 株式会社日本自動車部品総合研究所 capacitive occupant detection apparatus
JP2016051587A (en) * 2014-08-29 2016-04-11 株式会社東海理化電機製作所 Capacitance detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614161A (en) * 2018-07-27 2018-10-02 青岛澳科仪器有限责任公司 A kind of capacitance measurement system
CN108614161B (en) * 2018-07-27 2024-04-16 青岛澳科仪器有限责任公司 Capacitance measuring system
CN111208914A (en) * 2018-11-21 2020-05-29 罗姆股份有限公司 Touch detection circuit, input device, and electronic apparatus
CN111208914B (en) * 2018-11-21 2024-04-02 罗姆股份有限公司 Touch detection circuit, input device, and electronic apparatus

Also Published As

Publication number Publication date
JP2018037348A (en) 2018-03-08
JP6655506B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP5411670B2 (en) Capacitive touch panel signal processing circuit
US9830018B2 (en) Touch control apparatus and noise compensating circuit and method thereof
US8618818B2 (en) Electrostatic capacity type touch sensor
US9261545B2 (en) Capacitance voltage conversion circuit, input apparatus using the same, electronic instrument, and capacitance voltage conversion method
CN111208914B (en) Touch detection circuit, input device, and electronic apparatus
CN107449810B (en) Capacitance measuring circuit, input device using the same, and electronic apparatus
WO2018042806A1 (en) Input device
JP2020166656A (en) Touch detection circuit, input device and electronic device
US20200387249A1 (en) Touch detection circuit
JP6715155B2 (en) Input device
JP2011113186A (en) Signal processing circuit for electrostatic capacity type touch panel
JP2018060502A (en) Input device
JP6752050B2 (en) Input device
US20180239462A1 (en) Input device and method for driving input device
JP7337742B2 (en) Capacitance detection circuit, input device
JP2019204662A (en) Detection device
JP2020010198A (en) Detection device
WO2020001283A1 (en) Active pen, touch input system, and driving method
JP2017174718A (en) Control device and input device
JP2019204663A (en) Detection device
JP2017010375A (en) Input device, processing device, and operation determination method
KR101366227B1 (en) Stylus pen, method thereof and system including the same
CN111488070A (en) Sensing circuit configured to be connected to a touch sensor and method of improving touch detection in a capacitive touch sensor
JP2021157545A (en) Capacitance detection circuit and input device
US20160328003A1 (en) Power saving apparatus of capacitive pointer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845817

Country of ref document: EP

Kind code of ref document: A1