WO2017220822A1 - Surgical robotic system and method for handling a surgical robotic system - Google Patents

Surgical robotic system and method for handling a surgical robotic system Download PDF

Info

Publication number
WO2017220822A1
WO2017220822A1 PCT/ES2016/070475 ES2016070475W WO2017220822A1 WO 2017220822 A1 WO2017220822 A1 WO 2017220822A1 ES 2016070475 W ES2016070475 W ES 2016070475W WO 2017220822 A1 WO2017220822 A1 WO 2017220822A1
Authority
WO
WIPO (PCT)
Prior art keywords
robotic
robotic arm
support
tool
surgical
Prior art date
Application number
PCT/ES2016/070475
Other languages
Spanish (es)
French (fr)
Inventor
Rafael Medina Carnicer
Rafael MUÑOZ SALINAS
Enrique Bauzano Núñez
Mª CARMEN LÓPEZ CASADO
Víctor Fernando MUÑOZ MARTÍNEZ
Igone IDÍGORAS LEIBAR
Arantxa RENTERÍA BILBAO
José Miguel AZKOITIA ARTETXE
Alfonso DOMÍNGUEZ GARCÍA
Asier FERNÁNDEZ IRIBAR
María José REQUENA TAPIA
José Eduardo ARJONA BERRAL
Rosa María PAREDES ESTEBAN
Ángel SALVATIERRA VELÁZQUEZ
Ignacio MUÑOZ CARVAJAL
Javier BRICEÑO DELGADO
Original Assignee
Fundación Tecnalia Research & Innovation
Universidad de Córdoba
Servicio Andaluz De Salud
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Tecnalia Research & Innovation, Universidad de Córdoba, Servicio Andaluz De Salud, Universidad De Málaga filed Critical Fundación Tecnalia Research & Innovation
Priority to PCT/ES2016/070475 priority Critical patent/WO2017220822A1/en
Publication of WO2017220822A1 publication Critical patent/WO2017220822A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/742Joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention relates to the field of surgical instruments. More precisely, it refers to robots and robotic systems to perform surgical procedures.
  • surgeon may even remotely control the surgical instruments instead of moving them directly.
  • This remote control could be carried out, for example, through a direct telemanipulator or by computer control.
  • US Patent US8672880B2 discloses a remote controlled surgical insertion system that has a robotic device and a remote control mechanism.
  • the robotic device has a handle controller to receive and maintain the control handle or the proximal end of a medical device.
  • the medical device is capable of moving in up to six ranges of motion.
  • US patent application U S2006 / 0 00810A1 discloses a robotic surgical system for catheter surgery.
  • the system is based on a control station for the operator located at a distance from an operating table, a which is coupled to an instrument control unit and the instrument by means of a mounting bracket of the instrument control unit.
  • a communication link transfers signals between the operator control station and the instrument control unit, which is designed to be placed on top of a patient lying on the table.
  • US Patent US71 18582B1 discloses a medical system that has various robotic arms that can move a corresponding surgical instrument. So that the robotic arms are in the same reference plane as the patient, they are mounted on the operating table. This limits the potential types of surgery to be performed with the system. Additionally, having robotic arms mounted on the operating table makes the approach to the patient difficult in case of emergency. It is not uncommon for an unexpected problem to arise during surgery, which requires immediate intervention by the surgeon or other qualified staff. Having complex robotic arms in a fixed position seriously complicates the approach, even involving irreversible consequences.
  • An object of the invention is to provide a robotic surgical system based on a plurality of independent robotic units that can be easily moved.
  • Each unit comprises a robotic arm configured to carry a surgical tool.
  • surgical tool is used throughout this text in a general way, referring to minimally invasive instruments, including not only the tools themselves, such as a knife or scalpels, but also equipment to assist surgery or equipment diagnostic, such as cameras, endoscopes, and so on.
  • the units are independent of each other because the location and movement of one of them does not affect the location and movement of the others.
  • the units are muitifunctional, since they can be used for different purposes, depending on the tool attached to it.
  • a robotic surgical system comprising: at least three robotic units configured to, during use of the system, be arranged close to an operating table on which a patient is lying, each being robotic unit independent of the other robotic units, each robotic unit comprising a support and a robotic arm assembly extending from said support; said support comprising movement means, said support being configured to change the position and orientation of the support with respect to the operating table; said robotic arm assembly comprising: a robotic arm having 6 degrees of freedom, a surgical tool gathered to the robotic arm through a tool adapter and a 6-axis force sensor configured to receive the measurement of the applied forces and torques by the surgical tool; a control console configured to remotely manage said robotic units from a location close to said operating table, said control console comprising: computing means configured to manage and execute force control and tool positioning control algorithms; a plurality of haptic devices, each providing 7 degrees of freedom, said haptic devices being configured to control the movement, spatial orientation and opening / closing of the distal end of the surgical tool fitted
  • the tool adapter preferably comprises a drive means and a force sensor, said drive means comprising a motor configured to open / close the surgical tool; said force sensor being configured to measure the grip / close force applied by said actuation means. Also preferably, the motor is driven and controlled by one of the degrees of freedom of said haptic devices.
  • the force sensor preferably comprises a degree of freedom to measure the grip / close force applied by said surgical tool and to feed back the measurement information to said haptic devices.
  • the movement means of said support are configured to bring the support closer to the operating table or to move it away from it or to reorient it during an operation.
  • the movement means preferably comprise a plurality of orientable wheels.
  • the support comprises braking means in order to immobilize the robotic unit during operation.
  • the support is L-shaped, with a lower part that is wider than its upper part, which allows the introduction of a lower part of the lower part than the upper part, below the operating table .
  • the support houses inside: at least one battery configured to allow the robotic unit to work wirelessly; a power supply configured to connect to the mains, which allows the robotic unit to work in a wired mode; a battery charger; and at least one current converter or a voltage converter.
  • the support houses inside, a control means configured to control the robotic arm associated with said support.
  • the support houses a communications module inside.
  • the support inside houses means for measuring the charge level of the batteries included in said support.
  • the support inside houses a communication box associated with said force sensor, said communication box being configured to control and process said force sensor.
  • control console comprises an adjustable support.
  • the selection means is a plurality of pedals.
  • a first pedal of said plurality of pedals is configured to activate two sets of robotic arms carrying respective instruments surgical; and a second pedal of said plurality of pedals is configured to activate a robotic arm assembly that carries an endoscope.
  • the configuration monitor is a touch screen.
  • the computing means is configured to receive input signals from said haptic devices, to calculate a corresponding movement of the surgical instruments and to provide corresponding output signals to move the sets of robotic arms (12) and the tools .
  • control console comprises computing means to determine, from the forces measured by said force sensor, what percentage of the contribution to the measurement is due to the interaction with the fulcrum point and what percentage of The contribution to the measurement is due to the interaction with the patient's internal tissue.
  • control console comprises computing means for sending a simulated force to at least one haptic device, where said simulated force is obtained from the contribution to said measurement due to the interaction with the patient's internal tissue, said simulated force becoming said at least one haptic device in a force in the corresponding hand of the surgeon.
  • the control console preferably comprises computing means for estimating the Cartesian position of the fulcrum point from the contribution to said measurement due to the interaction with the fulcrum point and from the modeled coordinates of said robotic arm, said estimation comprising the Cartesian position of the fulcrum point calculating the distance between the near end! of the surgical tool and the fulcrum point.
  • control console further comprises a voice recognition unit.
  • control console further comprises a second monitor configured to display said 3D image captured by said imaging means comprised in said endoscope fitted to a robotic arm.
  • a method for handling a robotic surgical system comprising: arranging at least three robotic units of said robotic surgical system close to an operating table on which a patient is laid, each being robotic unit independent of the other robotic units, each robotic unit comprising a support and a robotic arm assembly extending from said support, wherein said robotic arm assembly comprises a robotic arm having 8 degrees of freedom, a tool surgical cupped to the robotic arm through a tool adapter and an 8-axis force sensor; guiding the end of each robotic arm transporting said surgical tool towards a trocar and inserting the surgical tool into trocar, said trocar having previously been inserted into the patient's skin; controlling said robotic units from a control console from a location close to said operating table, said control comprising: receiving the measurement of the forces and torques applied by the surgical tool within the patient's skin; control with a plurality of haptic devices, each providing 7 degrees of freedom, movement, spatial orientation and opening the closure of the distal end of the surgical tool coupled to a corresponding robotic arm
  • the method preferably comprises receiving input signals from said haptic devices to calculate a corresponding movement of the surgical instruments and to provide corresponding output signals to move the robotic arm assemblies and tools.
  • the method preferably comprises determining, from the forces measured by said force sensor, what percentage of the contribution to the measured forces is due to the interaction with the fulcrum point and what percentage of the contribution to the measured forces is It is due to the interaction with the patient's internal tissue. More particularly, the method comprises sending a simulated force to at least one haptic device, said simulated force being obtained from a contribution to said mediated forces due to interaction with the patient's internal tissue, said simulated force becoming said ai less a haptic device in a force in the corresponding hand of the surgeon.
  • the method preferably comprises estimating the Cartesian position of the fulcrum point from the contribution to said measured forces due to the interaction with the fulcrum point and the coordinates modeled from said robotic arm, said position estimation comprising Cartesian fulcrum point calculate the distance between the near end! of the surgical instrument and the fulcrum point.
  • a computer program product comprising program instructions / codes is provided computer to perform the method described above.
  • a computer-readable memory / medium that stores program instructions / codes to perform the method described above.
  • the system allows its easy integration into an operating room thanks to its compactness and the mobility of its robotic units, which do not interfere with the activity of the surgeon. What's more, an ad-hoc operating room is not required: on the contrary, the system can be used in any conventional operating room.
  • the system of the invention does not force the surgeon to be placed distance during surgical operation. He / she may, on the contrary, be near the operating table.
  • the surgeon is offered a sensation of sensation and touch (in general, tactile information) thanks to the sensors configured to measure the forces applied by the surgical tools attached to the robotic arms.
  • robotic arms Since robotic units are easily transported, the system adapts perfectly to different types of surgery. In an emergency, robotic surgery is immediately converted to traditional surgery simply by moving mobile robotic units away. Last but not least, different surgical tools can be attached to robotic arms. In other words, the surgical tool can be any conventional tool.
  • the robotic arm is not limited to ad-hoc surgical instruments, unlike well-known robotic systems. Additional advantages and features of the invention will be apparent from the detailed description that follows and will be particularly noted in the appended claims.
  • Figure 1 shows a schematic of a robotic surgical system according to an embodiment of the invention.
  • Figure 2 shows a view of a robotic unit according to a possible embodiment of the invention. It comprises a base support or housing and a robotic arm assembly.
  • Figure 3 shows a schematic of the architecture of a base support or housing illustrated in Figure 2.
  • the robotic arm of the robotic arm assembly is also indicated.
  • Figure 4A shows a robotic arm assembly according to a possible embodiment of the invention.
  • Figure 4B shows an exploded view of the robotic arm assembly of Figure 4A.
  • Figure 4C shows a perspective view of an exemplary implementation of a tool adapter for attaching a surgical tool to a robotic arm.
  • FIGS 5A and 5B show two views of a control unit configured to control the robotic surgical system in accordance with a possible embodiment of the invention.
  • the control unit functions as an interface between the robotic arm assemblies and the surgeon.
  • Figure 6 shows a pair of haptic devices according to a possible embodiment of the invention.
  • Figure 7 shows an example of the visual information provided by the configuration monitor.
  • Figure 8 shows an example of the visual information provided on the configuration screen of the configuration monitor.
  • Figure 9 schematically represents the flow of control signals and the units involved in the robotic surgical system according to an embodiment of the invention.
  • the term “approximately” and terms of your family should be understood as indicating values very close to those that accompany the aforementioned term. That is, a deviation within reasonable limits from an exact value should be accepted, because a person skilled in the art will understand that such a deviation from the indicated values is inevitable due to measurement inaccuracies, etc. The same applies to the terms “around” and “around” and “substantially.”
  • FIG 1 shows a diagram of a robotic surgical system 1 that can be used to perform minimally invasive surgery, such as iaparoscopic surgery, hysterectomy, mediastinoscopy or nephrectomy, among other types of minimally invasive surgery.
  • the robotic surgical system 1 is used to perform an operation on a patient 2 that is normally laid on an operating table 3. Near the operating table 3 there are at least two robotic units that each carry a robotic arm. One of the at least two robotic units is configured to carry an endoscope and the other is configured to carry a surgical tool itself.
  • the robotic units 4, 5, 6 are described in detail below, with reference to Figures 2 and 3, together with the devices carried by the robotic unit. In the illustrated embodiment, three robotic units 4, 5, 8 are shown.
  • Each robotic unit 4, 5, 8 can work wirelessly - without requiring any physical cables or wires for connection to other units or parts of the system or to a unit of power supply - or connect with wires.
  • it has a power supply unit integrated in its bottom that allows the robotic unit to work wirelessly.
  • each robotic unit 4, 5, 8 is arranged near the operating table 3 and an instrumentalist or surgical technician (or in general, the person in charge of the surgical tools) guides the end of the robotic arm (of each robotic unit) that carries the surgical tool 18 towards a trocar and inserts the surgical tool 18 into the trocar, which has been inserted previously in the skin of patient 2 through an incision cut.
  • the surgical tools 18, which, as already mentioned, can be a proper tool, such as a knife or scalpel, or a diagnostic element or support element, such as an endoscope, is inserted through cut incisions in the patient's skin 2.
  • the robotic arm is then ready to be used in the operation.
  • the robotic surgical system 1 can be configured with as many units (and therefore with as many robotic arms) as required for different surgical operations.
  • a robotic arm carries an endoscope (or in general, a camera) and two other robotic arms carry the respective surgical instruments necessary for the operation.
  • system 1 uses three robotic units 4, 5, 6. Although three units 4, 5, 6 are shown, it should be understood that system 1 can have any number of units and corresponding robotic arms .
  • FIG. 1 also shows a control console 7.
  • the robotic arms carried by the respective robotic units 4, 5, 6 are operated remotely from the control console 7, Their movement is controlled by a surgeon 9, sitting or standing, from the control console 7.
  • This control console 7 has a monitoring means 701 configured to display a 3D image (from inside the body cavity) captured by a camera (or endoscope) contained in a robotic arm.
  • the monitoring means 701 is, for example, a monitor or screen.
  • the control console 7 can also have several user interfaces, as per example: a pair of haptic devices 8, such as handles or joysticks, each providing 7 degrees of freedom (DOF), configured to control the 8 DOF of each robotic arm that carries a surgical tool at its end and 1 DOF to control the opening / closing of the tool, by means of which the surgeon 9 can remotely control the movement and spatial orientation of the far end! of the equipment (tool or endoscope) collected in a corresponding robotic arm controlled by a haptic device 8 and the opening / closing of the tool.
  • Other possible user interfaces may be a pair of pedals, not shown in Figure 1, so that surgeon 9 selects which two robotic arms should be controlled at all times; and / or a voice recognition unit 52.
  • the system 1 also comprises a configuration monitor 61, preferably a touch screen, which is not shown in Figure 1 (shown in Figure 5A).
  • the robotic unit 4, 5, 8 does not require calibration before its operation, since during the operation each robotic arm (included in each robotic unit, as will be explained later) is calibrated with respect to its corresponding fulcrum point. This is done as follows: Information regarding the forces applied by the tool at the fulcrum point (point in the patient through which the tool is inserted into the body cavity) is used to calculate the distance from that point to The robot axis. In other words, the length of the tool portion that is outside the body is calculated. In this way, the robotic arm is already calibrated and its movements are based on that point. Also during the operation, the relative orientation of each robotic arm that sets the respective tools with respect to the corresponding robots shown on a monitor 701 is set.
  • the movement of the haptic devices corresponds to the movement of the robot shown on the monitor.
  • this is done manually, manually orienting each robotic arm (and the respective tool) with respect to the robot shown on the monitor. In an alternative embodiment, this is done by means of an external positioning system based on the vision and controlled by the control console 7.
  • FIG. 2 shows a robotic unit 4, 5, 6 according to a possible embodiment of the invention.
  • the devices or elements raised in the robotic unit are also illustrated.
  • the robotic unit 4, 5, 6 is formed by a base support or housing 11 and a robotic arm assembly 12 extending from the base support or housing 1 1.
  • Surgical tools 18 are removably coupled at the end of each robotic arm assembly 12.
  • the robotic arm assembly 12 comprises a robotic arm 15, an 8-axis force sensor 18, a tool adapter 19 and a surgical tool 18 coupled to the robotic arm 15 via the adapter of tool 19.
  • Non-limiting examples of surgical tools 18 that can be attached to the robotic arm 15 are scalpels, forceps, endoscopes, additional light probes, etc.
  • the base support or housing 1 is placed near or near the operating table 3, such that the robotic arms 15 and the surgical tools 8 coupled thereto are located next to patient 2 too.
  • the base support or housing 1 preferably has a plurality of wheels gears 21, usually 4 or 8 wheels, although any number of wheels is possible, in order to easily move the robotic unit 4, 5, 8, for example to bring it closer to the operating table or away from it, or to guide it better during the operation.
  • the wheels 21 preferably have brakes, not shown, in order to immobilize the robotic unit during operation.
  • the robotic unit 4, 5, 6 can be moved and relocated at any time during the operation or at any other time, provided that the tool 18 has been removed from the insert made in the patient's skin.
  • Each robotic unit 4, 5, 6 is independent of the others. Therefore, they can be moved independently by independently moving their respective support or base housing 1 1.
  • the base support 1 1 is preferably L-shaped, with a lower part that is wider than its upper part. This allows a closer approximation to the operating table by entering the lower part fraction wider than the upper part below the operating table. This saves space in the operating room.
  • FIG 3 shows a diagram of the architecture of the base support 1 1 in accordance with a possible embodiment of the invention.
  • the robotic arm 15 of the robotic arm assembly 12 is also shown.
  • the base support or housing 11 is made of any suitable material.
  • it can comprise aluminum. It is preferably covered with one or more sheets of a material suitable for use in the operating room.
  • the coating sheets can be made of a suitable plastic, such as ABS plastic (acrylonitriium butadiene styrene) or any other suitable material.
  • the design of the support 1 1 has been selected in order to minimize the space occupied in proximity to the operating table and maximize its stability, mobility and lifespan of the power supply.
  • the support 11 houses, inside, at least one battery that allows the operation of the robotic unit 4, 5, 6 wirelessly, that is, without the need for a physical connection to the network electric
  • It also includes a power supply configured to connect to the mains. This allows both the wired operation of the robotic unit 4, 5, 6 (that is, directly powered by the mains) and the charging of the at least one battery. In other words, the robotic unit 4, 5, 6 can work either wirelessly or wired.
  • Both the at least one battery and the power supply are represented together in Figure 3 and are referred to as number 23.
  • the support 1 1 also contains a battery charger 24 and at least one voltage converter or a current converter 25 .
  • the support 1 1 also houses an industrial computer 26 comprising specific software for robot-assisted surgery: general software for the conversion of movement between the joystick and the robotic arm, position control of the general tool, signal management of input / output, communication management between the robotic arms and the control console, general system management, error management, etc. It is a compact, powerful and low consumption industrial computer. It comprises at least two Ethernet ports and at least 4 USB ports.
  • the industrial computer 26 is the computational core of the robotic unit 4, 5, 6. It is responsible for executing any required algorithm, such as motion control algorithms and force control algorithms. It also manages the communication between the different elements that make up each robotic unit, as well as the communication with other robotic units and with the control console 7.
  • Computer 26 comprises two communication modules, not shown: one wired based on Ethernet and one based on Wi-Fi.
  • a non-limiting example of an industrial computer that can be used is Simatic ⁇ PC427D, from Siemens.
  • the support 11 additionally comprises a control means 27, such as a conventional control unit, configured to control the robotic arm 15. For example, it is responsible for providing means for programming the paths of the robotic arms, controlling the motors on each axis or control the different sensors included in the robotic arm.
  • the support 1 1 further comprises a communications module, which is not shown, comprising Tx / Rx means for transmitting / receiving control signals to / from the control console 7, preferably configured to work under a standard Ethernet based protocol, that can work both wirelessly and wired.
  • the support 1 1 also houses load measurement means 28 for measuring the charge level of the batteries and a communication box 29 associated with the force sensor 16 (see Figure 2) located in the last articulation of the robotic arm.
  • the communication box 29 controls and processes the force sensor 16.
  • the support 11 comprises means for transport and fixing 21, 22, 30 of the support 11.
  • Figure 4A shows a robotic arm assembly 12 in accordance with a possible embodiment of the invention, configured to extend from a support or base housing 11 as shown in Figures 2 and 3 or configured to engage said support or base housing 1 1.
  • the assembly 12 comprises:
  • robotic arm 15 It is the device that allows interaction with the surgical tool It has 8 degrees of freedom (DOF). It includes a security system capable of blocking in case of collision with human beings.
  • robotic arm 15 can be moved manually.
  • it can be programmed in real time through the Ethernet-based protocol with a sampling frequency of 125 Hz.
  • control means 27 housed inside support 1 1. This control means 27 manages all the movement of low level and planning orders received from the industrial computer 26.
  • a non-limiting example of robotic arm 15 that can be used is Universal Robots UR5.
  • a force sensor 16 It is configured to receive the measurement of forces and torques in 8 axes applied by the surgical tool 18, which is controlled by the robotic arm 15, on the patient's skin and on the internal walls and organs within The patient's cavity. It is located between the last axis of the robotic arm (articulation) and the tool adapter 19, since this situation allows the pure reception of the signals representing said applied forces.
  • the sensor 16 since the sensor 16 only measures the forces applied on its surface, it is ensured that other measurements are not captured (for example, the measurements of the forces applied by the robotic arm), capturing only the measurements generated due to the interaction of surgical tool 18 (whose weight and inertia must be filtered in order to obtain a reliable measurement).
  • robotic arm 15 that can be used is an ATI Gamma. - and a surgical tool 18 configured to, during use of the system, engage the robotic arm 15; Depending on the type of surgical tool 18, it may be required to engage the robotic arm 15 through a tool adapter 19.
  • the tool adapter 19 It is used when the surgical tool 18 cannot be directly coupled to the robotic arm 15, due to its specific design.
  • the tool adapter 19 is located between the robotic arm 15 and the surgical tool 18.
  • the tool adapter 19 is preferably located between the force sensor 16 (located at the far end of the robotic arm 15) and the surgical tool 18. The closer the force sensor 16 is to the surgical tool 18, the more reliable the signal picked up by the force sensor 16.
  • the tool adapter 19 allows any conventional surgical tool 18 to be attached to the robotic arm 15. In others words, unlike other well-known robotic surgical systems, which can only be used with ad-hoc surgical tools, the robotic arm 5 can be attached to almost any surgical tool thanks to the tool adapter 19.
  • the tool adapter 19 comprises a drive medium and a force sensor of 1 DOF (not shown).
  • the drive means or clamp drive means is based on a motor configured to open / close the surgical tool 18 (such as scalpels, forceps, scissors, etc.).
  • the engine is driven and controlled directly by one of the degrees of freedom of the haptic devices 8 located close to the control console 7 and connected thereto.
  • the means for controlling the motor is an axon EPOS2 mod control board. 390003.
  • the force sensor is configured to measure the grip / close force applied by the clamp.
  • the force sensor is an OIVID-2G-FF-800N.
  • Figure 4C illustrates an exemplary embodiment of a tool adapter 19 and a surgical tool 18 for attaching to a robotic arm 15 thanks to the tool adapter 19.
  • the tool adapter 19 is placed at the distal end of the robotic arm 15.
  • a An example of a surgical tool 18 to be coupled is any of the surgical instruments that are marketed under the "ClickLine" brand of Karl Storz (Germany).
  • the tool 18 preferably comprises a first tool piece 181 and a second tool piece 182.
  • the first tool piece 181 is hollow so that the second tool piece 182 can be moved back and forth through a channel in the first piece of tool 181. That is, the second tool piece 182 can be moved relative to the first tool piece 181.
  • the surgical tool 18 further comprises a tool head (not shown) moved by the second tool piece 182.
  • the tool adapter 19 it comprises a first base part 191 for detachably retaining the first tool part 181, and a second base part 192 that can be moved relative to the first base part 191 to detachably retain the second tool part 182.
  • the first base piece 191 comprises the components that retain or hold the first tool piece 181.
  • the second base piece 192 can be moved activated by a motor 193 and can be connected to the second tool piece 82 to move the second piece of tool 182. If the transmitted movement is a reciprocal movement, then the second piece of tool 182 will move from front to back and vic eversa
  • the first base piece 191 comprises a pusher 194 that can be moved relative to the first base piece 191 to separate the first tool piece 181
  • the second base piece 192 comprises a cover 195 that can be moved relative to the second base piece 192 to separate the second tool piece 182.
  • the robotic units 4, 5, 6 are connected to a control console 7 from which the control of the robotic arms 15 is managed / manipulated.
  • the control console 7 acts as the master system.
  • the robotic units 4, 5, 6 act as a slave system.
  • the robotic arms 15 in general, ios robotic arm assemblies 12
  • Figures 5A and 5B show two views of a control console 7 in accordance with a possible embodiment of the invention.
  • the control console 7 is the interface between the surgeon 9 and the sets of robotic arms 12.
  • the main parts or devices included in the control console 7 are:
  • Adjbie column or support 41 allows the system to be used ergonomically, as it adapts to the height of the user 9 and allows the surgeon 9 to work either standing or sitting.
  • the computing medium which for clarity has also been referred to as 42, although it is actually housed inside the housing 42, is the core of the control console 7. It is composed of a personal computer or similar, a data acquisition unit (DAQ) for the capture of signals provided by the pedals, a communications switch and power supplies for the personal computer, haptic devices and screens (monitors).
  • the middle of Computing 42 executes the necessary algorithms, such as force control, and manages the operating parameters.
  • a plurality of control algorithms are executed. These control algorithms manage the communications and operations between each of the haptic devices 8 and their corresponding robotic arm assembly 12 (i.e., their corresponding robotic arm 15 and the surgical tool 18 coupled thereto). It is preferably located within a housing 42 comprising other elements, such as connection means.
  • Haptic devices 8 are one of the user interfaces of the control console 7. They are preferably implemented in the form of handles or joysticks 8. By means of the haptic devices 8, the surgeon 9 it can simultaneously control up to two surgical tools 18.
  • the haptic devices 8 are preferably mounted on a panel configured to install two control levers or handles. In a particular embodiment, the haptic devices 8 are fixed or coupled to the adjustable column 41.
  • the haptic devices 8 are preferably connected to the control console 7, in particular, to the computing medium housed in the housing 42, by means of a cable connection. In a particular embodiment, this connection is a USB interface.
  • each haptic device 8 is associated with a corresponding surgical tool.
  • the movement and positioning of the two surgical tools 18 fixed to a first and a second robotic arm 15 is controlled by the surgeon 9 by the use of a pair of haptic devices 8.
  • the surgeon 9 can select the mode of movement of robotic arm assemblies according to two modes different. In “A” mode, a movement of the haptic devices 8 implies a movement of the far end! of surgical tools 18. In “B" mode, a movement of haptic devices 8 implies a movement of the near end! of the surgical tools 18.
  • FIG. 6 shows a pair of haptic devices 8 according to a possible embodiment of the invention.
  • Haptic devices 8 are conventional and are outside the scope of the present invention.
  • the haptic devices 8 used in system 1 allow to control and detect the forces of 7 degrees of freedom.
  • - selection means 51 They allow the surgeon 9 to activate and deactivate the movement of the robot arm assemblies 12 and select which two robot arm assemblies must be controlled at all times.
  • the selection means are impregnated by pedals.
  • the pedals are one of the user interfaces of the control console 7.
  • the surgeon In order to move a robotic arm, the surgeon must step on the corresponding pedal 51 continuously (pressing continuously with the foot).
  • the pedals 51 work as a means of safety, since they prevent unwanted movement of any of the robot arms under the concept of dead man (dead-man concept). That is, the robot arms only move, in response to the haptic control, if the corresponding pedal is pressed.
  • the pedals are connected to a control board, such as a USB-DUX D DAQ, which has an interface, for example a USB port, with the computing medium housed in the housing 42.
  • a manual mode is activated, in which mode the robotic arm assembly can be moved / manipulated directly (with the hands) by a person .
  • the number of selection means may vary depending on the number of robot arm assemblies to be controlled, and that more than one surgeon (or medical personnel) may be needed to control the pedals (and devices haptics) if the number of sets of robotic arms is high. In the case of a large number of robot arm assemblies, the selection means can be set by means of a switching selector.
  • the voice recognition unit 52 is an optional feature.
  • the voice recognition unit referred to in Figure 1, as a microphone, is an optional user interface of the control console 7. It can be used to control the movement of an endoscope connected to a robotic arm .
  • the voice recognition unit 52 is connected to a control board that has an interface with the computing medium.
  • - monitor 701 It is a 3D screen that shows visual information. In particular, shows images of the patient's internal organs 2 taken by the camera (endoscope).
  • a non-limiting example of the 701 monitor is a Panasonic 26 ", designed to work in surgical environments. It is noted that additional 3D monitors can be used, as illustrated in Figure 1 and referred to like 10, to show the same images in different areas of the surgery room.
  • This additional monitor 61 is an additional user interface that allows the surgeon to access different control parts of the system. It is preferably a touch screen. For example, when the system is started, the status of all items and tools, including the camera, is displayed in a window. Figure 7 shows an example of the information shown in the status window of the configuration monitor 61.
  • the configuration monitor 61 provides menus, openings, system status, configuration options and the like.
  • each of the haptic devices 8 that can be manipulated by the surgeon has a master-slave relationship with one of the corresponding robotic arms 15, so that the movement of a device
  • the haptic 8 produces a corresponding movement of the surgical tool 18 attached to the corresponding robotic arm 15.
  • the computing means (housed in the housing 42) of the control console 7 receives input signals from the haptic devices 8.
  • the control means 27 associated with each robotic unit calculates a corresponding movement of the surgical tools 18 and provides output signals to move the sets of robotic arms 12 and the tools 18. In other paiabras, the surgeon 9 controls the movement and orientation of the tools 18 without actually supporting the extremes of these tools 8.
  • the haptic devices 8 measure the traits yectorias desired for each tool 18 and the control means 27 sends (through the algorithms of the computing medium 42) those paths to the corresponding robotic assembly 12.
  • the haptic devices 8 are further configured to apply forces on the respective hand of the surgeon 9, so that they transmit to the surgeon the forces measured by the tool adapter 19 (in particular, by its force sensor) in order to create in the surgeon a sensation of contact or pressure similar to that exerted by the tool 18 in the patient (for example, in his tissue).
  • Each haptic device 8 has 7 degrees of freedom (DOF), 6 DOF for the robotic arm and 1 DOF for the opening / closing of the tool, by means of which the surgeon 9 can remotely control the movement (position) and the spatial orientation of the distal end of the equipment (tool or endoscope) coupled to a robotic arm controlled by a corresponding haptic device 8 and the opening / closing of the tool.
  • DOF degrees of freedom
  • Each DOF is capable of feedback and strength.
  • the haptic device 8 allows a set of movements similar to those performed by a human hand. They have means to compensate for gravity, which provides fine precision.
  • the haptic devices 8 are Omega 7 of Force Dimension.
  • Each surgical tool 18 is easily controlled not only thanks to the corresponding haptic device 8, but also to the combined synergistic advantages of its robotic arm assembly 12, its corresponding haptic device 8 and the control capabilities provided by the industrial computer 26.
  • the control order to move the surgical tool 18 as desired by the surgeon is transmitted from the haptic device 8 to the computing medium (located in the housing 42) and from this computing means 42 to the industrial computer 28.
  • the connection between the haptic device 8 and the computing medium 42 is preferably performed via USB.
  • His speed of Maximum sampling is preferably 2.5 kHz, enough to perform control by means of haptic force feedback.
  • images 72 of three tools are represented (a first surgical tool “tool_1", an endoscopic camera “camera” and a second surgical tool “tool_2”), corresponding to the three elements collected to three robotic arms.
  • a message 71 about its status is displayed. In this example, all three tools are "stopped.”
  • the images corresponding to a certain state are shown in a specific color. For example, if the tool is stopped, it is represented in red.
  • a configuration button 73 is also shown. In order to start moving a tool, it is necessary to press the corresponding pedal. When the pedal is pressed, if the initial position of the robotic arm is correct, the two tools shown change their status to "in use” and change their color, for example, they turn green. They can then be moved, powered by haptic devices.
  • this interface can display two warning messages: A first message informs about the speed of the haptic device. If the user moves the haptic device so quickly that the robotic arm cannot reach that speed, the user is warned about it, showing a warning in status message 71. The image preferably turns red. When the speed is reduced to an acceptable one, message 71 changes to "in use” and image 72 turns green again. A second message informs about an incorrect position of the tool, for example, a position in which you cannot continue working as planned, of In the same way that a manual movement is required (that is, a movement not controlled through the haptic device, but manually by a person). This warning is shown in status message 71 and the corresponding image 72 preferably turns red. When the problem is overcome (manually), the message 71 is changed back to "in use” and the image preferably turns green again.
  • the endoscopic camera shown 72 changes its state to "in use” and preferably changes its color, for example, it turns green. In this state it is not possible to move the robotic arms that control the surgical tools themselves even if their pedal is pressed. Only when the pedal corresponding to the haptic device that controls the camera is not pressed, can the tools themselves be moved.
  • the configuration button 73 In order to gain access to the system configuration, the configuration button 73 must be pressed in the main window (see Figure 7).
  • a new screen (a configuration window) is shown, as shown in Figure 8.
  • the "Movement speed” section refers to the rate between the speed of the haptic device and the speed of the robotic arm.
  • the "Left controller” and “Right controller” sections allow you to choose the tool that will be controlled through each haptic device. In other words, each robotic arm assembly must be associated with a corresponding haptic device (haptic controller).
  • the robotic arm that carries the endoscopic camera is associated with a desired haptic controller (left or right), but only when the corresponding pedal is pressed. By default, the endoscopic camera is associated with the right controller.
  • the "Tool decoupling” section is required when a tool has to be decoupled from the robotic arm on which it is attached.
  • the corresponding button must be pressed.
  • the "System Reset” button must be pressed in case the robotic arm assemblies do not move correctly.
  • the "Back” button is pressed after a configuration has been selected, saving the selected configuration.
  • Figure 9 schematically represents the flow of control signals exchanged between different units in the robotic surgical system 1 according to an embodiment of the invention.
  • the user (surgeon 9) interacts with the system 1 through the control console 7.
  • the control console 7 comprises an algorithm to determine, from the forces measured by the force sensor 16, what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the fulcrum point and what percentage The contribution to the measurement is due to the interaction (of the surgical tool) with the patient's internal tissue. If the measurement of the forces provides a low value, then it is established that virtually all the measured force is due to the interaction with the fulcrum point. If the measurement of the forces provides a high value, then it is established that practically all the measured force is due to the interaction with the patient's infernal tissue. In an implementation example, which is not to be considered as limiting, the threshold between a "high value” and a "low value” is set at 2 Newtons.
  • the control console 7 receives the position ("P” in Figure 9) of the haptic devices 8 (position reached as a result of manipulation applied by the surgeon's hands).
  • the control console 7 sends a certain force ("F” in Figure 9) to the haptic devices 8 (force to be transferred in turn to the surgeon's hands).
  • This force "F” is the result of modeling the force detected by the robotic arm assembly. It is a simulated force that acts in a direction opposite to the movement of the haptic device 8.
  • This "F” force is simulated by means of an elastic-linear force reaction model that has some dynamic stiffness. This simulation is performed in an algorithm for stiffness estimation.
  • the control console 7 sends the information related to the position of the haptic devices 8 to the industrial computer 26 of the robotic unit.
  • the information is processed.
  • An order obtained as a result of said processing is sent to the control means 27 (which controls a corresponding robotic arm).
  • Haptic feedback is a feedback of 3 degrees of freedom (DOF), performed on the XYZ axis (no feedback on turns).
  • This feedback is calculated in the computing medium comprised in the control console 7 from the position and state of the proximal end of the surgical tool 18 (or from the position of the tool adapter 19, if there is one) and from of the force obtained from the force sensor.
  • the control console 7 also receives and sends the position ("P") and the state ("S") of the robotic arm 15.
  • the control console 7 also receives the force captured by the force sensor 16.
  • the force sensor 16 moves along with the final effector of the robotic arm. For this reason, the position and orientation of the force sensor 16 are determined by the state of the robotic arm joint.
  • the stiffness estimation algorithm which is executed from the control console 7, is responsible for dynamically estimating the stiffness of the tissue in contact with the distal end of the surgical tool 18. This is done by measuring forces and torques. due to the interaction between tool 18 and the patient's internal tissue.
  • the control console 7 comprises an algorithm to determine, from the forces measured by the force sensor 16, what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the fulcrum point and what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the patient's internal tissue.
  • the relationship between force and movement due to the interaction with the tissue is modeled by means of a linear model. Therefore, the stiffness of the patient's internal tissue is estimated and transmitted to the surgeon, so that the surgeon is able to feel through haptic devices 8, discriminating between soft or hard objects, similar to how he would feel With your own hands. From this estimate of stiffness, the simulated reaction force mentioned above is calculated. This simulated reaction force is proportional to the movement of the haptic device performed by the surgeon's hand. The position of the haptic device in which the forces / torques were measured for the first time as a result of the interaction between the tool and the tissue, is considered as a reference. The simulated reaction force is scaled in order to feel the contact in the hands naturally. This force is sent to the actuators of the haptic device.
  • the Cartesian position of the point of fulcrum is also used modeled robotic arm.
  • the outer distance (along an axis of the surgical tool) between the final effector of the robotic arm (proximal end of the surgical instrument) and the fulcrum point is calculated.
  • control console 7 can receive audio instructions from a user through a voice recognition unit 52.
  • the laparoscopic movements of the surgical tool 18 coupled to the robotic arm 15 are controlled by means of the haptic devices (haptic interface) 8.
  • haptic interface haptic interface
  • a group of algorithms has been developed to control the movements of the robotic arm 15 based on the response force.
  • the handling of the robotic surgical system 1 is done as follows:
  • the surgical tool 18 does not touch (or touch to a very limited extent) the tissue / wall of the hole in the patient's body through which the tool enters - through a trocar - in the patient's cavity.
  • the forces captured by force sensor 16 are very small. This means that the fulcrum point is in the expected position. If, on the contrary, the actual fulcrum point is not where it was intended, the movement generated with the robotic arm forces the surgical tool 18 to touch the tissue / wall of the hole in the patient's body through which the tool enters the patient's cavity.
  • the surgical tool 18 touches said tissue (skin, organs ...) forces are applied and those forces are captured by the force sensor 16.
  • Those force captures are used to return to determine the fulcrum point (or better, the distance between the end of the surgical tool 18 and the fulcrum point) and to apply a lateral movement of the tool 18 in a direction opposite to the force vector in order to minimize the magnitude of the force applied by the surgical tool 18.
  • Any movement of the surgical tool 18 (insertion, removal %) and any movement of the patient (breathing %) implies that the distance between the end of the surgical tool 18 and The fulcrum point varies. It is necessary to be aware of this distance in order to provide a correct movement of the tool within the patient's cavity.
  • the distance between the end of the surgical tool 18 and an estimate of the fulcrum point is calculated first. This distance is calculated thanks to the force sensor 16 fitted to the end of the robotic arm 15. Secondly, once this distance is known, an accommodative control or correction is applied, which manages to correct errors in the positioning of the surgical tool 18 with respect to the fulcrum point at which a minimum force is applied. The result of this correction minimizes the force applied at the fulcrum point. Therefore, the surgeon can move the robotic arm assembly by means of the haptic devices 8 while the system is capable of transmitting a sensation of force to the haptic device when the robotic arm assembly (or tool coupled to the robotic arm) collides. against an object.
  • a new robotic surgical system 1 has been provided, which can be easily integrated into an operating room and that does not interfere with the surgeon's movements. It does not require specific surgical rooms or facilities (that is, specific feeding systems). The surgeon can remain within the surgical area, that is, he does not need to remain at a distance from the table of operations.
  • the system offers the surgeon a sensation of touch or tactile information: thanks to its sensors, the force of touch and cut applied by the surgical tools is measured.
  • the system is flexible, which means that different configurations are possible: a different number of robotic arm assemblies (one, two, three or more) and / or different ways of moving / placing them.
  • the system is also flexible in terms of the surgical tool to be attached to the robotic arms: any tool can, in principle, be used, unlike conventional robotic systems, which require ad-hoc tools.

Abstract

A surgical robotic system (1) comprising: robotic units, each one being independent from the others, each comprising a support (11) and a robotic arm assembly (12); said support (11) comprising motion means and configured to change position and orientation of the support (11) with respect to the table (3); said robotic arm assembly (12) comprising: a robotic arm (15), a surgical tool (18) coupled thereto and a force sensor (16) configured to receive measurement of forces and torques applied by the tool (18). The system also comprises a control console (7) configured to remotely operate said robotic units, comprising: computing means (42); haptic devices (8) configured to control the movement, spatial orientation and aperture/ closure of the distal end of the tool (18), each haptic device (8) being configured to control one robotic arm (15); selection means (51) configured to activate/deactivate the robotic arms (15); a monitor (701) configured to show a 3D image.

Description

CAIV1PO TÉCNICO  TECHNICAL CAIV1PO
La presente invención se refiere ai campo de ios instrumentos quirúrgicos. Más precisamente, se refiere a robots y sistemas robóticos para realizar procedimientos quirúrgicos.  The present invention relates to the field of surgical instruments. More precisely, it refers to robots and robotic systems to perform surgical procedures.
ESTADO DE LA TÉCNICA  STATE OF THE TECHNIQUE
En los últimos años, ios sistemas robóticos quirúrgicos han proporcionado una contribución significativa a las operaciones quirúrgicas. Se espera que la cirugía asistida por robot no solo ayude a los cirujanos, sino que también mejore sus capacidades durante los procedimientos quirúrgicos.  In recent years, robotic surgical systems have provided a significant contribution to surgical operations. It is expected that robot-assisted surgery will not only help surgeons, but also improve their capabilities during surgical procedures.
En determinadas circunstancias, como en la cirugía mínimamente invasiva, el cirujano podría incluso controlar a distancia los instrumentos quirúrgicos en lugar de moverlos directamente. Este control a distancia se podría realizar, por ejemplo, a través de un telemanipulador directo o por medio de control por ordenador.  In certain circumstances, such as minimally invasive surgery, the surgeon may even remotely control the surgical instruments instead of moving them directly. This remote control could be carried out, for example, through a direct telemanipulator or by computer control.
Por ejemplo, la patente de Estados Unidos US8672880B2 divulga un sistema de inserción quirúrgico controlado a distancia que tiene un dispositivo robótico y un mecanismo de control a distancia. El dispositivo robótico tiene un controiador de mango para recibir y mantener el mango de control o el extremo proximal de un dispositivo médico. El dispositivo médico es capaz de moverse en hasta seis rangos de movimiento.  For example, US Patent US8672880B2 discloses a remote controlled surgical insertion system that has a robotic device and a remote control mechanism. The robotic device has a handle controller to receive and maintain the control handle or the proximal end of a medical device. The medical device is capable of moving in up to six ranges of motion.
La solicitud de patente de Estados Unidos U S2006/0 00810A1 divulga un sistema quirúrgico robótico para cirugía con catéter. El sistema se basa en una estación de control para el operario situada a distancia de una mesa de operaciones, a la que se acoplan una unidad de control del instrumento y el instrumento mediante una abrazadera de montaje de la unidad de control del instrumento. Un enlace de comunicación transfiere señales entre la estación de control para el operario y la unidad de control del instrumento, que se diseña para situarse encima de un paciente tendido sobre la mesa. US patent application U S2006 / 0 00810A1 discloses a robotic surgical system for catheter surgery. The system is based on a control station for the operator located at a distance from an operating table, a which is coupled to an instrument control unit and the instrument by means of a mounting bracket of the instrument control unit. A communication link transfers signals between the operator control station and the instrument control unit, which is designed to be placed on top of a patient lying on the table.
A su vez, la patente de Estados Unidos US71 18582B1 divulga un sistema médico que tiene diversos brazos robóticos que pueden mover un instrumento quirúrgico correspondiente. Para que los brazos robóticos se encuentren en el mismo plano de referencia que el paciente, ios mismos se montan en la mesa de operaciones. Esto limita los tipos potenciales de cirugía a realizarse con el sistema. Adicionalmente, tener los brazos robóticos montados en la mesa de operaciones dificulta la aproximación al paciente en caso de emergencia. No es raro que durante la cirugía surja un problema inesperado, lo que requiere la intervención inmediata del cirujano u otros miembros del personal cualificado. Tener brazos robóticos complejos en una posición fija complica gravemente la aproximación, implicando incluso consecuencias irreversibles.  In turn, US Patent US71 18582B1 discloses a medical system that has various robotic arms that can move a corresponding surgical instrument. So that the robotic arms are in the same reference plane as the patient, they are mounted on the operating table. This limits the potential types of surgery to be performed with the system. Additionally, having robotic arms mounted on the operating table makes the approach to the patient difficult in case of emergency. It is not uncommon for an unexpected problem to arise during surgery, which requires immediate intervention by the surgeon or other qualified staff. Having complex robotic arms in a fixed position seriously complicates the approach, even involving irreversible consequences.
Por lo tanto, existe la necesidad de un nuevo sistema robótico para realizar procedimientos quirúrgicos de forma completamente segura, en la que el cirujano es plenamente consciente de la evolución de la operación, incluyendo tanto sensibilidad visual como ai tacto, asegurando al mismo tiempo una rápida aproximación al paciente en caso de emergencia.  Therefore, there is a need for a new robotic system to perform surgical procedures in a completely safe way, in which the surgeon is fully aware of the evolution of the operation, including both visual sensitivity and touch, while ensuring rapid approach to the patient in case of emergency.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Un objetivo de la invención es proporcionar un sistema robótico quirúrgico basado en una pluralidad de unidades robóticas independientes que se pueden mover fácilmente. Cada unidad comprende un brazo robótico configurado para transportar una herramienta quirúrgica. La expresión "herramienta quirúrgica" se emplea a lo largo de este texto de una manera general, haciendo referencia a instrumentos mínimamente invasivos, incluyendo no solamente las propias herramientas, tales como una cuchilla o bisturíes, sino también equipos para asistir a la cirugía o equipos de diagnóstico, tales como cámaras, endoscopios, y así sucesivamente. Las unidades son independientes unas de otras debido a que la ubicación y el movimiento de una de las mismas no afecta a la ubicación y movimiento de las demás. Las unidades son muitifuncionales, puesto que se pueden utilizar para diferentes finalidades, dependiendo de la herramienta acoplada a la misma. An object of the invention is to provide a robotic surgical system based on a plurality of independent robotic units that can be easily moved. Each unit comprises a robotic arm configured to carry a surgical tool The term "surgical tool" is used throughout this text in a general way, referring to minimally invasive instruments, including not only the tools themselves, such as a knife or scalpels, but also equipment to assist surgery or equipment diagnostic, such as cameras, endoscopes, and so on. The units are independent of each other because the location and movement of one of them does not affect the location and movement of the others. The units are muitifunctional, since they can be used for different purposes, depending on the tool attached to it.
De acuerdo con un aspecto de la presente invención, se proporciona un sistema robótíco quirúrgico que comprende: al menos tres unidades robóticas configuradas para, durante el uso del sistema, disponerse próximas a una mesa de operaciones sobre la que está tendido un paciente, siendo cada unidad robótica independiente de las otras unidades robóticas, comprendiendo cada unidad robótica un soporte y un conjunto de brazo robótico que se extiende desde dicho soporte; comprendiendo dicho soporte medios de movimiento, estando dicho soporte configurado para cambiar la posición y orientación del soporte con respecto a la mesa de operaciones; comprendiendo dicho conjunto de brazo robótico: un brazo robótico que tiene 6 grados de libertad, una herramienta quirúrgica acopiada ai brazo robótico a través de un adaptador de herramienta y un sensor de fuerza de 6 ejes configurado para recibir la medición de las fuerzas y pares aplicados por la herramienta quirúrgica; una consola de control configurada para manejar a distancia dichas unidades robóticas desde una ubicación próxima a dicha mesa de operaciones, comprendiendo dicha consola de control: medios de computación configurados para gestionar y ejecutar algoritmos de control de fuerza y de control de posicionamiento de la herramienta; una pluralidad de dispositivos hápticos, proporcionando cada uno 7 grados de libertad, estando dichos dispositivos hápticos configurados para controlar el movimiento, la orientación espacial y la apertura/el cierre del extremo distal de la herramienta quirúrgica acopiada a un brazo robótico correspondiente, configurándose cada dispositivo háptico para el control de un brazo robótico, produciendo el movimiento de un dispositivo háptico un movimiento correspondiente de la herramienta quirúrgica acoplada a un brazo robótico correspondiente; medios de selección configurados para activar/desactivar los brazos robóticos a ser controlados en todo momento; un primer monitor configurado para mostrar una imagen en 3D capturada por un medio de captura de imágenes comprendido en un endoscopio acopiado a un brazo robótico; un monitor de configuración configurado para proporcionar menús, alertas, estado y/u opciones de configuración del sistema. In accordance with one aspect of the present invention, a robotic surgical system is provided comprising: at least three robotic units configured to, during use of the system, be arranged close to an operating table on which a patient is lying, each being robotic unit independent of the other robotic units, each robotic unit comprising a support and a robotic arm assembly extending from said support; said support comprising movement means, said support being configured to change the position and orientation of the support with respect to the operating table; said robotic arm assembly comprising: a robotic arm having 6 degrees of freedom, a surgical tool gathered to the robotic arm through a tool adapter and a 6-axis force sensor configured to receive the measurement of the applied forces and torques by the surgical tool; a control console configured to remotely manage said robotic units from a location close to said operating table, said control console comprising: computing means configured to manage and execute force control and tool positioning control algorithms; a plurality of haptic devices, each providing 7 degrees of freedom, said haptic devices being configured to control the movement, spatial orientation and opening / closing of the distal end of the surgical tool fitted to a corresponding robotic arm, each haptic device being configured for control of a robotic arm, the movement of a haptic device producing a corresponding movement of the surgical tool coupled to a corresponding robotic arm; selection means configured to activate / deactivate the robotic arms to be controlled at all times; a first monitor configured to display a 3D image captured by means of image capture comprised in an endoscope fitted to a robotic arm; a configuration monitor configured to provide menus, alerts, status and / or system configuration options.
El adaptador de herramienta comprende preferentemente un medio de accionamiento y un sensor de fuerza, comprendiendo dicho medio de accionamiento un motor configurado para abrir/cerrar la herramienta quirúrgica; estando dicho sensor de fuerza configurado para medir la fuerza de agarre/cierre aplicada por dicho medio de accionamiento. También preferentemente, el motor se acciona y controla por uno de ios grados de libertad de dichos dispositivos hápticos.  The tool adapter preferably comprises a drive means and a force sensor, said drive means comprising a motor configured to open / close the surgical tool; said force sensor being configured to measure the grip / close force applied by said actuation means. Also preferably, the motor is driven and controlled by one of the degrees of freedom of said haptic devices.
El sensor de fuerza comprende preferentemente un grado de libertad para medir la fuerza de agarre/cierre aplicada por dicha herramienta quirúrgica y para retroaiimentar la información de medición a dichos dispositivos hápticos.  The force sensor preferably comprises a degree of freedom to measure the grip / close force applied by said surgical tool and to feed back the measurement information to said haptic devices.
En una realización particular, ios medios de movimiento de dicho soporte se configuran para llevar el soporte más cerca de la mesa de operaciones o para alejarlo de la misma o para reorientarlo durante una operación. Los medios de movimiento comprenden preferentemente una pluralidad de ruedas orientabies. En una realización particular, el soporte comprende medios de frenado con el fin de inmovilizar la unidad robótica durante la operación. In a particular embodiment, the movement means of said support are configured to bring the support closer to the operating table or to move it away from it or to reorient it during an operation. The movement means preferably comprise a plurality of orientable wheels. In a particular embodiment, the support comprises braking means in order to immobilize the robotic unit during operation.
En una realización particular, el soporte tiene forma de L, con una parte inferior que es más ancha que su parte superior, lo que permite la introducción de una fracción de la parte inferior más ancha que la parte superior, debajo de la mesa de operaciones.  In a particular embodiment, the support is L-shaped, with a lower part that is wider than its upper part, which allows the introduction of a lower part of the lower part than the upper part, below the operating table .
En una realización particular, el soporte aloja en su interior: ai menos una batería configurada para permitir que la unidad robótica trabaje de manera inalámbrica; una fuente de alimentación configurada para conectarse a la red eléctrica, lo que permite que la unidad robótica trabaje en un modo conectado con cable; un cargador de batería; y ai menos un convertidor de corriente o un convertidor de tensión.  In a particular embodiment, the support houses inside: at least one battery configured to allow the robotic unit to work wirelessly; a power supply configured to connect to the mains, which allows the robotic unit to work in a wired mode; a battery charger; and at least one current converter or a voltage converter.
En una realización particular, el soporte aloja en su interior, un medio de control configurado para controlar el brazo robótico asociado a dicho soporte.  In a particular embodiment, the support houses inside, a control means configured to control the robotic arm associated with said support.
En una realización particular, el soporte aloja en su interior, un módulo de comunicaciones.  In a particular embodiment, the support houses a communications module inside.
En una realización particular, el soporte aloja en su interior medios para medir el nivel de carga de las baterías comprendidas en dicho soporte.  In a particular embodiment, the support inside houses means for measuring the charge level of the batteries included in said support.
En una realización particular, el soporte aloja en su interior una caja de comunicaciones asociada a dicho sensor de fuerza, estando dicha caja de comunicaciones configurada para controlar y procesar de dicho sensor de fuerza.  In a particular embodiment, the support inside houses a communication box associated with said force sensor, said communication box being configured to control and process said force sensor.
En una realización particular, la consola de control comprende un soporte ajustable.  In a particular embodiment, the control console comprises an adjustable support.
En una realización particular, los medios de selección son una pluralidad de pedales. Preferentemente, un primer pedal de dicha pluralidad de pedales se configura para activar dos conjuntos de brazos robóticos que llevan respectivos instrumentos quirúrgicos; y un segundo pedal de dicha pluralidad de pedales se configura para activar un conjunto de brazo robótico que lleva un endoscopio. In a particular embodiment, the selection means is a plurality of pedals. Preferably, a first pedal of said plurality of pedals is configured to activate two sets of robotic arms carrying respective instruments surgical; and a second pedal of said plurality of pedals is configured to activate a robotic arm assembly that carries an endoscope.
En una realización particular, el monitor de configuración es una pantalla táctil. In a particular embodiment, the configuration monitor is a touch screen.
En una realización particular, el medio de computación se configura para recibir señales de entrada desde dichos dispositivos hápticos, para calcular un movimiento correspondiente de ios instrumentos quirúrgicos y para proporcionar señales de salida correspondientes para mover ios conjuntos de brazos robóticos (12) y las herramientas. In a particular embodiment, the computing means is configured to receive input signals from said haptic devices, to calculate a corresponding movement of the surgical instruments and to provide corresponding output signals to move the sets of robotic arms (12) and the tools .
En una realización particular, la consola de control comprende medios de computación para determinar, a partir de las fuerzas medidas por dicho sensor de fuerza, qué porcentaje de la contribución a la medición se debe a la interacción con el punto de fulcro y qué porcentaje de la contribución a la medición se debe a la interacción con el tejido interno del paciente. Preferentemente, la consola de control comprende medios de computación para enviar una fuerza simulada a al menos un dispositivo háptico, donde dicha fuerza simulada se obtiene de la contribución a dicha medición debido a la interacción con el tejido interno del paciente, convirtiéndose dicha fuerza simulada en dicho al menos un dispositivo háptico en una fuerza en la mano correspondiente del cirujano.  In a particular embodiment, the control console comprises computing means to determine, from the forces measured by said force sensor, what percentage of the contribution to the measurement is due to the interaction with the fulcrum point and what percentage of The contribution to the measurement is due to the interaction with the patient's internal tissue. Preferably, the control console comprises computing means for sending a simulated force to at least one haptic device, where said simulated force is obtained from the contribution to said measurement due to the interaction with the patient's internal tissue, said simulated force becoming said at least one haptic device in a force in the corresponding hand of the surgeon.
La consola de control comprende preferentemente medios de computación para estimar la posición cartesiana del punto de fulcro a partir de la contribución a dicha medición debida a la interacción con el punto de fulcro y a partir de las coordenadas modeladas de dicho brazo robótico, comprendiendo dicha estimación de la posición cartesiana del punto de fulcro el cálculo de la distancia entre el extremo próxima! de la herramienta quirúrgica y el punto de fulcro.  The control console preferably comprises computing means for estimating the Cartesian position of the fulcrum point from the contribution to said measurement due to the interaction with the fulcrum point and from the modeled coordinates of said robotic arm, said estimation comprising the Cartesian position of the fulcrum point calculating the distance between the near end! of the surgical tool and the fulcrum point.
En una realización particular, la consola de control comprende además una unidad de reconocimiento de voz. In a particular embodiment, the control console further comprises a voice recognition unit.
En una realización particular, la consola de control comprende además un segundo monitor configurado para mostrar dicha imagen en 3D capturada por dichos medios de formación de imágenes comprendidos en dicho endoscopio acopiado a un brazo robótico.  In a particular embodiment, the control console further comprises a second monitor configured to display said 3D image captured by said imaging means comprised in said endoscope fitted to a robotic arm.
De acuerdo con otro aspecto de ¡a presente invención, se proporciona un método para manejar un sistema robótico quirúrgico que comprende: disponer al menos tres unidades robóticas de dicho sistema robótico quirúrgico próximas a una mesa de operaciones sobre la está tendido un paciente, siendo cada unidad robótica independiente de ¡as otras unidades robóticas, comprendiendo cada unidad robótica un soporte y un conjunto de brazo robótico que se extiende desde dicho soporte, en el que dicho conjunto de brazo robótico comprende un brazo robótico que tiene 8 grados de libertad, una herramienta quirúrgica acopiada al brazo robótico a través un adaptador de herramienta y un sensor de fuerza de 8 ejes; guiar el extremo de cada brazo robótico que transporta dicha herramienta quirúrgica hacia un trocar e insertar la herramienta quirúrgica en e¡ trocar, habiéndose insertado previamente dicho trocar en la piel del paciente; controlar desde una consola de control dichas unidades robóticas desde una ubicación próxima a dicha mesa de operaciones, comprendiendo dicho control: recibir ¡a medición de las fuerzas y pares aplicados por la herramienta quirúrgica dentro de la piel del paciente; controlar con una pluralidad de dispositivos hápticos, proporcionando cada uno de ellos 7 grados de libertad, el movimiento, la orientación espacial y la apertura el cierre del extremo distal de la herramienta quirúrgica acoplada a un brazo robótico correspondiente, configurándose cada dispositivo háptico para controlar un brazo robótico, produciendo el movimiento de un dispositivo háptico un movimiento correspondiente de la herramienta quirúrgica acoplada a un brazo robótico correspondiente; activar/desactivar a través de medios de selección ¡os brazos robóticos que hay que controlar en todo momento; mostrar en un primer monitor una imagen en 3D capturada por un medio de formación de Imágenes comprendido en un endoscopio acoplado a un brazo robótico. According to another aspect of the present invention, there is provided a method for handling a robotic surgical system comprising: arranging at least three robotic units of said robotic surgical system close to an operating table on which a patient is laid, each being robotic unit independent of the other robotic units, each robotic unit comprising a support and a robotic arm assembly extending from said support, wherein said robotic arm assembly comprises a robotic arm having 8 degrees of freedom, a tool surgical cupped to the robotic arm through a tool adapter and an 8-axis force sensor; guiding the end of each robotic arm transporting said surgical tool towards a trocar and inserting the surgical tool into trocar, said trocar having previously been inserted into the patient's skin; controlling said robotic units from a control console from a location close to said operating table, said control comprising: receiving the measurement of the forces and torques applied by the surgical tool within the patient's skin; control with a plurality of haptic devices, each providing 7 degrees of freedom, movement, spatial orientation and opening the closure of the distal end of the surgical tool coupled to a corresponding robotic arm, each haptic device being configured to control a robotic arm, producing the movement of a haptic device a corresponding movement of the surgical tool coupled to a corresponding robotic arm; activate / deactivate through selection means the robotic arms that must be controlled at all times; show on a first monitor a 3D image captured by an imaging medium comprised in an endoscope coupled to a robotic arm.
El método comprende preferentemente recibir señales de entrada de dichos dispositivos hápticos para calcular un movimiento correspondiente de los instrumentos quirúrgicos y para proporcionar señales de salida correspondientes para mover los conjuntos de brazo robótico y herramientas.  The method preferably comprises receiving input signals from said haptic devices to calculate a corresponding movement of the surgical instruments and to provide corresponding output signals to move the robotic arm assemblies and tools.
El método comprende preferentemente determinar, a partir de ¡as fuerzas medidas por dicho sensor de fuerza, qué porcentaje de la contribución a ¡as fuerzas medidas se debe a la interacción con el punto de fulcro y qué porcentaje de la contribución a las fuerzas medidas se debe a la interacción con el tejido interno de¡ paciente. Más particularmente, el método comprende enviar una fuerza simulada a ai menos un dispositivo háptico, obteniéndose dicha fuerza simulada a partir de ¡a contribución a dichas fuerzas mediadas debido a ¡a interacción con el tejido Interno del paciente, convirtiéndose dicha fuerza simulada en dicho ai menos un dispositivo háptico en una fuerza en ¡a mano correspondiente de¡ cirujano.  The method preferably comprises determining, from the forces measured by said force sensor, what percentage of the contribution to the measured forces is due to the interaction with the fulcrum point and what percentage of the contribution to the measured forces is It is due to the interaction with the patient's internal tissue. More particularly, the method comprises sending a simulated force to at least one haptic device, said simulated force being obtained from a contribution to said mediated forces due to interaction with the patient's internal tissue, said simulated force becoming said ai less a haptic device in a force in the corresponding hand of the surgeon.
El método comprende preferentemente estimar ¡a posición cartesiana del punto de fulcro a partir de la contribución a dichas fuerzas medidas debido a la interacción con el punto de fulcro y de ¡as coordenadas modeladas a partir de dicho brazo robótico, comprendiendo dicha estimación de la posición cartesiana del punto de fulcro calcular la distancia entre el extremo próxima! del instrumento quirúrgico y el punto de fulcro.  The method preferably comprises estimating the Cartesian position of the fulcrum point from the contribution to said measured forces due to the interaction with the fulcrum point and the coordinates modeled from said robotic arm, said position estimation comprising Cartesian fulcrum point calculate the distance between the near end! of the surgical instrument and the fulcrum point.
De acuerdo con otro aspecto de la presente invención, se proporciona un producto de programa informático que comprende instrucciones/códigos del programa informático para realizar el método descrito anteriormente. In accordance with another aspect of the present invention, a computer program product comprising program instructions / codes is provided computer to perform the method described above.
De acuerdo con otro aspecto de la presente invención, se proporciona una memoria/medio legible por ordenador que almacena instrucciones/códigos del programa para realizar el método descrito anteriormente.  In accordance with another aspect of the present invention, a computer-readable memory / medium is provided that stores program instructions / codes to perform the method described above.
El sistema permite su fácil integración en un quirófano gracias a su compacidad y a la movilidad de sus unidades robóticas, que no interfieren con la actividad del cirujano. Lo que es más, no se requiere un quirófano ad-hoc: por el contrario, el sistema se puede utilizar en cualquier quirófano convencional. Además, a diferencia de ios sistemas robóticos convencionales, en los que, debido a la complejidad del equipo robótico y equipos auxiliares/periféricos, el cirujano se debe colocar a distancia durante la operación, el sistema de la invención no obliga al cirujano a colocarse a distancia durante la operación quirúrgica. Él/ella puede, por el contrario, estar cerca de la mesa de operaciones. Además, se ofrece al cirujano una sensación sensibilidad y tacto (en general, información táctil) gracias a los sensores configurados para medir las fuerzas aplicadas por las herramientas quirúrgicas acopladas a los brazos robóticos. También permite diferentes configuraciones robóticas, que tengan un número diferente de brazos robóticos, lo que hace que el sistema sea multifuncionai. Puesto que las unidades robóticas se transportan fácilmente, el sistema se adapta perfectamente a los diferentes tipos de cirugía. En caso de emergencia, la cirugía robófica se reconvierte inmediatamente en cirugía tradicional simplemente alejando las unidades robóticas móviles. Por último, pero no menos importante, diferentes herramientas quirúrgicas se pueden acoplar a los brazos robóticos. En otras palabras, la herramienta quirúrgica puede ser cualquier herramienta convencional. En particular, el brazo robótico no se limita a instrumentos quirúrgicos ad-hoc, a diferencia de ios sistemas robóticos bien conocidos. Ventajas y características adicionales de la invención serán evidentes a partir de la descripción detallada que sigue y se señalarán particularmente en las reivindicaciones adjuntas. The system allows its easy integration into an operating room thanks to its compactness and the mobility of its robotic units, which do not interfere with the activity of the surgeon. What's more, an ad-hoc operating room is not required: on the contrary, the system can be used in any conventional operating room. In addition, unlike conventional robotic systems, in which, due to the complexity of the robotic equipment and auxiliary / peripheral equipment, the surgeon must be placed at a distance during the operation, the system of the invention does not force the surgeon to be placed distance during surgical operation. He / she may, on the contrary, be near the operating table. In addition, the surgeon is offered a sensation of sensation and touch (in general, tactile information) thanks to the sensors configured to measure the forces applied by the surgical tools attached to the robotic arms. It also allows different robotic configurations, which have a different number of robotic arms, which makes the system multifunctional. Since robotic units are easily transported, the system adapts perfectly to different types of surgery. In an emergency, robotic surgery is immediately converted to traditional surgery simply by moving mobile robotic units away. Last but not least, different surgical tools can be attached to robotic arms. In other words, the surgical tool can be any conventional tool. In particular, the robotic arm is not limited to ad-hoc surgical instruments, unlike well-known robotic systems. Additional advantages and features of the invention will be apparent from the detailed description that follows and will be particularly noted in the appended claims.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
Para completar la descripción y con el fin de proporcionar una mejor comprensión de la invención, se proporciona un conjunto de dibujos. Dichos dibujos forman una parte integral de la descripción e ilustran una realización de la invención, que no debe interpretarse como una restricción del alcance de la invención, sino solo como un ejemplo de cómo la invención se puede impiementar. Los dibujos comprenden las siguientes figuras:  To complete the description and in order to provide a better understanding of the invention, a set of drawings is provided. Said drawings form an integral part of the description and illustrate an embodiment of the invention, which should not be construed as a restriction on the scope of the invention, but only as an example of how the invention can be imposed. The drawings comprise the following figures:
La Figura 1 muestra un esquema de un sistema robótico quirúrgico de acuerdo con una realización de la invención.  Figure 1 shows a schematic of a robotic surgical system according to an embodiment of the invention.
La Figura 2 muestra una vista de una unidad robótica de acuerdo con una posible realización de la invención. Comprende un soporte o carcasa de base y un conjunto de brazo robótico.  Figure 2 shows a view of a robotic unit according to a possible embodiment of the invention. It comprises a base support or housing and a robotic arm assembly.
La Figura 3 muestra un esquema de la arquitectura de un soporte o carcasa de base ilustrada en la Figura 2. El brazo robótico del conjunto de brazo robótico se indica también.  Figure 3 shows a schematic of the architecture of a base support or housing illustrated in Figure 2. The robotic arm of the robotic arm assembly is also indicated.
La Figura 4A muestra un conjunto de brazo robótico de acuerdo con una posible realización de la invención. La Figura 4B muestra un despiece del conjunto del brazo robótico de la Figura 4A. La Figura 4C muestra una vista en perspectiva de una implementación ejemplar de un adaptador de herramientas para acoplar una herramienta quirúrgica a un brazo robótico.  Figure 4A shows a robotic arm assembly according to a possible embodiment of the invention. Figure 4B shows an exploded view of the robotic arm assembly of Figure 4A. Figure 4C shows a perspective view of an exemplary implementation of a tool adapter for attaching a surgical tool to a robotic arm.
Las Figuras 5A y 5B muestran dos vistas de una unidad de control configurada para controlar el sistema robótico quirúrgico de acuerdo con una posible realización de la invención. La unidad de control funciona como interfaz entre los conjuntos de brazo robótico y el cirujano. Figures 5A and 5B show two views of a control unit configured to control the robotic surgical system in accordance with a possible embodiment of the invention. The control unit functions as an interface between the robotic arm assemblies and the surgeon.
La Figura 6 muestra un par de dispositivos hápticos acuerdo con una posible realización de la invención.  Figure 6 shows a pair of haptic devices according to a possible embodiment of the invention.
La Figura 7 muestra un ejemplo de la información visual proporcionada por el monitor de configuración.  Figure 7 shows an example of the visual information provided by the configuration monitor.
La Figura 8 muestra un ejemplo de la información visual proporcionada en la pantalla de configuración del monitor de configuración.  Figure 8 shows an example of the visual information provided on the configuration screen of the configuration monitor.
La Figura 9 representa esquemáticamente el flujo de señales de control y las unidades implicadas del sistema robótico quirúrgico de acuerdo con una realización de la invención.  Figure 9 schematically represents the flow of control signals and the units involved in the robotic surgical system according to an embodiment of the invention.
DESCRIPCIÓN DE UNA REALIZACIÓN DE LA INVENCIÓN  DESCRIPTION OF AN EMBODIMENT OF THE INVENTION
En este texto, el término "comprende" y sus derivaciones (tales como "comprendiendo", etc.) no debe entenderse en un sentido exciuyente, es decir, estos términos no se deben interpretar como excluyendo la posibilidad de que lo que se describe y define pueda incluir elementos, etapas, etc. , adicionales.  In this text, the term "comprises" and its derivations (such as "understanding", etc.) should not be understood in an exciting sense, that is, these terms should not be construed as excluding the possibility that what is described and define may include elements, stages, etc. , additional.
En el contexto de la presente invención, el término "aproximadamente" y términos de su familia (tai como "aproximado", etc.) se deben entender como indicando valores muy cerca de aquellos que acompañan el termino mencionado. Es decir, una desviación dentro de límites razonables a partir de un valor exacto debería ser aceptada, porque una persona experta en la materia comprenderá que tai desviación de ios valores indicados es inevitable debido a las imprecisiones de medición, etc. Lo mismo se aplica a los términos "en torno a" y "alrededor de" y "sustancialmente".  In the context of the present invention, the term "approximately" and terms of your family (tai as "approximate", etc.) should be understood as indicating values very close to those that accompany the aforementioned term. That is, a deviation within reasonable limits from an exact value should be accepted, because a person skilled in the art will understand that such a deviation from the indicated values is inevitable due to measurement inaccuracies, etc. The same applies to the terms "around" and "around" and "substantially."
La siguiente descripción no se debe tomar en un sentido limitativo sino que se proporciona únicamente con ia finalidad de describir los principios generales de la invención. Las siguientes realizaciones de ia invención se describirán a modo de ejemplo, con referencia a los dibujos antes mencionados que muestran aparatos y resultados de acuerdo con la invención. The following description should not be taken in a limiting sense but rather provides solely for the purpose of describing the general principles of the invention. The following embodiments of the invention will be described by way of example, with reference to the aforementioned drawings showing apparatus and results according to the invention.
La Figura 1 muestra un esquema de un sistema robótico quirúrgico 1 que se puede utilizar para realizar cirugía mínimamente invasiva, tai como cirugía iaparoscópíca, histerectomía, mediastinoscopia o nefrectomía, entre otros tipos de cirugía mínimamente invasiva. El sistema robótico quirúrgico 1 se utiliza para realizar una operación en un paciente 2 que normalmente está tendido sobre una mesa de operaciones 3. Próximas a ia mesa de operaciones 3 hay ai menos dos unidades robótícas que llevan, cada una, un brazo robótico. Una de las ai menos dos unidades robóticas se configura para llevar a un endoscopio y la otra se configura para llevar a una herramienta quirúrgica propiamente dicha. Las unidades robóticas 4, 5, 6 se describen en detalle más adelante, con referencia a las Figuras 2 y 3, junto con ios dispositivos llevados por la unidad robótica. En ia realización ilustrada se muestran tres unidades robóticas 4, 5, 8. Cada unidad robótica 4, 5, 8 puede trabajar de forma inalámbrica - sin requerir ningún cable o hilo físicos para su conexión a otras unidades o partes del sistema o a una unidad de fuente de alimentación - o conectarse con cables. En particular, tiene una unidad de fuente de alimentación integrada en su inferior que permite que ia unidad robótica trabaje de forma inalámbrica.  Figure 1 shows a diagram of a robotic surgical system 1 that can be used to perform minimally invasive surgery, such as iaparoscopic surgery, hysterectomy, mediastinoscopy or nephrectomy, among other types of minimally invasive surgery. The robotic surgical system 1 is used to perform an operation on a patient 2 that is normally laid on an operating table 3. Near the operating table 3 there are at least two robotic units that each carry a robotic arm. One of the at least two robotic units is configured to carry an endoscope and the other is configured to carry a surgical tool itself. The robotic units 4, 5, 6 are described in detail below, with reference to Figures 2 and 3, together with the devices carried by the robotic unit. In the illustrated embodiment, three robotic units 4, 5, 8 are shown. Each robotic unit 4, 5, 8 can work wirelessly - without requiring any physical cables or wires for connection to other units or parts of the system or to a unit of power supply - or connect with wires. In particular, it has a power supply unit integrated in its bottom that allows the robotic unit to work wirelessly.
Durante el uso del sistema 1 , cada unidad robótica 4, 5, 8 se dispone cerca de ia mesa de operaciones 3 y una enfermera instrumentista o técnico quirúrgico (o en general, la persona a cargo de las herramientas quirúrgicas), guía el extremo del brazo robótico (de cada unidad robótica) que lleva ia herramienta quirúrgica 18 hacia un trocar e inserta ia herramienta quirúrgica 18 en el trocar, que se ha insertado previamente en ¡a piel del paciente 2 a través de un corte de incisión. Es decir, las herramientas quirúrgicas 18, que, como ya se ha mencionado, pueden ser una herramienta propiamente dicha, tai como una cuchilla o bisturí, o un elemento de diagnóstico o elemento de apoyo, tal como un endoscopio, se insertan a través de incisiones cortadas en la piel del paciente 2. El brazo robótico está entonces listo para ser utilizado en la operación. Cuando, por cualquier razón, una de estas unidades 4, 5, 8 necesita alejarse, la herramienta quirúrgica acoplada al brazo robótico e insertada dentro de un trocar simplemente se extrae del trocar manualmente y el brazo robótico se aleja. Las diferentes unidades robóticas 4, 5, 6 son independientes entre sí. Gracias a estas unidades multifuncionaies, el sistema robótico quirúrgico 1 se puede configurar con tantas unidades (y por lo tanto, con tantos brazos robóticos) como se requiera para diferentes operaciones quirúrgicas. Por lo general, un brazo robótico lleva un endoscopio (o en general, una cámara) y otros dos brazos robóticos llevan ios instrumentos quirúrgicos respectivos necesarios para la operación. En otras palabras, en una realización particular, el sistema 1 utiliza tres unidades robóticas 4, 5, 6. Aunque se muestran tres unidades 4, 5, 6, se debe entender que el sistema 1 puede tener cualquier número de unidades y brazos robóticos correspondientes. During the use of the system 1, each robotic unit 4, 5, 8 is arranged near the operating table 3 and an instrumentalist or surgical technician (or in general, the person in charge of the surgical tools) guides the end of the robotic arm (of each robotic unit) that carries the surgical tool 18 towards a trocar and inserts the surgical tool 18 into the trocar, which has been inserted previously in the skin of patient 2 through an incision cut. That is, the surgical tools 18, which, as already mentioned, can be a proper tool, such as a knife or scalpel, or a diagnostic element or support element, such as an endoscope, is inserted through cut incisions in the patient's skin 2. The robotic arm is then ready to be used in the operation. When, for any reason, one of these units 4, 5, 8 needs to move away, the surgical tool coupled to the robotic arm and inserted into a trocar is simply removed from the trocar manually and the robotic arm moves away. The different robotic units 4, 5, 6 are independent of each other. Thanks to these multifunctional units, the robotic surgical system 1 can be configured with as many units (and therefore with as many robotic arms) as required for different surgical operations. Usually, a robotic arm carries an endoscope (or in general, a camera) and two other robotic arms carry the respective surgical instruments necessary for the operation. In other words, in a particular embodiment, system 1 uses three robotic units 4, 5, 6. Although three units 4, 5, 6 are shown, it should be understood that system 1 can have any number of units and corresponding robotic arms .
La Figura 1 muestra también una consola de control 7. Los brazos robóticos llevados por las unidades robóticas 4, 5, 6 respectivas se operan a distancia desde la consola de control 7, Su movimiento se controla por un cirujano 9, sentado o de pie, desde la consola de control 7. Esta consola de control 7 tiene un medio de monitorización 701 configurado para mostrar una imagen en 3D (del interior de la cavidad del cuerpo) capturada por una cámara (o endoscopio) contenida en un brazo robótico. El medio de monitorización 701 es, por ejemplo, un monitor o pantalla. La consola de control 7 puede tener también varias interfaces de usuario, como por ejemplo: un par de dispositivos hápticos 8, tales como mangos o palancas de mando, proporcionando cada uno 7 grados de libertad (DOF), configurados para controlar los 8 DOF de cada brazo robótico que lleva una herramienta quirúrgica en su extremo y 1 DOF para controlar la apertura/el cierre de la herramienta, por medio de ios que el cirujano 9 puede controlar a distancia el movimiento y la orientación espacial del extremo dista! del equipo (herramienta o endoscopio) acopiado en un brazo robótico correspondiente controlado por un dispositivo háptico 8 y la apertura/el cierre de la herramienta. Otras interfaces de usuario posibles pueden ser un par de pedales, no mostrados en la Figura 1 , para que el cirujano 9 seleccione qué dos brazos robóticos se deben controlar en todo momento; y/o una unidad de reconocimiento de voz 52. Puede haber un monitor adicional 10, también referido como el monitor global, para proporcionar información visual adicional, por ejemplo, cuando se configura para mostrar imágenes de los órganos internos del paciente 2 captadas por la cámara (endoscopio). El sistema 1 comprende también un monitor de configuración 61 , preferentemente una pantalla táctil, que no se muestra en la Figura 1 (que se muestra en la Figura 5A). Figure 1 also shows a control console 7. The robotic arms carried by the respective robotic units 4, 5, 6 are operated remotely from the control console 7, Their movement is controlled by a surgeon 9, sitting or standing, from the control console 7. This control console 7 has a monitoring means 701 configured to display a 3D image (from inside the body cavity) captured by a camera (or endoscope) contained in a robotic arm. The monitoring means 701 is, for example, a monitor or screen. The control console 7 can also have several user interfaces, as per example: a pair of haptic devices 8, such as handles or joysticks, each providing 7 degrees of freedom (DOF), configured to control the 8 DOF of each robotic arm that carries a surgical tool at its end and 1 DOF to control the opening / closing of the tool, by means of which the surgeon 9 can remotely control the movement and spatial orientation of the far end! of the equipment (tool or endoscope) collected in a corresponding robotic arm controlled by a haptic device 8 and the opening / closing of the tool. Other possible user interfaces may be a pair of pedals, not shown in Figure 1, so that surgeon 9 selects which two robotic arms should be controlled at all times; and / or a voice recognition unit 52. There may be an additional monitor 10, also referred to as the global monitor, to provide additional visual information, for example, when configured to display images of the patient's internal organs 2 captured by the camera (endoscope). The system 1 also comprises a configuration monitor 61, preferably a touch screen, which is not shown in Figure 1 (shown in Figure 5A).
La unidad robótica 4, 5, 8 no requiere de calibración antes de su operación, puesto que durante la operación cada brazo robótico (comprendido en cada unidad robótica, como se explicará más adelante) se calibra con respecto a su punto de fulcro correspondiente. Esto se hace como sigue: La información con respecto a las fuerzas aplicadas por la herramienta en el punto de fulcro (punto en el paciente a través del que se inserta la herramienta en la cavidad corporal) se utiliza para calcular la distancia desde ese punto hasta el eje de robot. En otras palabras, se calcula la longitud de la porción de herramienta que se encuentra fuera del cuerpo. De este modo, el brazo robótico ya está calibrado y sus movimientos se basan en ese punto. También durante la operación, se fija la orientación relativa de cada brazo robótico que ¡leva las herramientas respectivas con respecto a los robots correspondientes que se muestran en un monitor 701. Esto se hace para que el movimiento de ¡os dispositivos hápticos (gestionados por el cirujano) se corresponda con el movimiento del robot que se muestra en el monitor. En una realización particular, esto se hace manualmente, orientando manualmente cada brazo robótico (y la herramienta respectiva) con respecto ai robot que se muestra en el monitor. En una realización alternativa, esto se hace por medio de un sistema de posicionamiento externo basado en la visión y controlado por la consola de control 7. The robotic unit 4, 5, 8 does not require calibration before its operation, since during the operation each robotic arm (included in each robotic unit, as will be explained later) is calibrated with respect to its corresponding fulcrum point. This is done as follows: Information regarding the forces applied by the tool at the fulcrum point (point in the patient through which the tool is inserted into the body cavity) is used to calculate the distance from that point to The robot axis. In other words, the length of the tool portion that is outside the body is calculated. In this way, the robotic arm is already calibrated and its movements are based on that point. Also during the operation, the relative orientation of each robotic arm that sets the respective tools with respect to the corresponding robots shown on a monitor 701 is set. This is done so that the movement of the haptic devices (managed by the surgeon) corresponds to the movement of the robot shown on the monitor. In a particular embodiment, this is done manually, manually orienting each robotic arm (and the respective tool) with respect to the robot shown on the monitor. In an alternative embodiment, this is done by means of an external positioning system based on the vision and controlled by the control console 7.
La Figura 2 muestra una unidad robótica 4, 5, 6 de acuerdo con una posible realización de la invención. Los dispositivos o elementos ¡levados en la unidad robótica se ¡lustran también. La unidad robótica 4, 5, 6 está formada por un soporte o carcasa base 11 y un conjunto de brazo robótico 12 que se extiende desde el soporte o carcasa base 1 1. Las herramientas quirúrgicas 18 se acopian de forma desmontable en el extremo de cada conjunto de brazo robótico 12. En una realización particular, el conjunto de brazo robótico 12 comprende un brazo robótico 15, un sensor de fuerza de 8 ejes 18, un adaptador de herramienta 19 y una herramienta quirúrgica 18 acoplada al brazo robótico 15 mediante el adaptador de herramienta 19. Ejemplos no limitativos de herramientas quirúrgicas 18 que se pueden acopiar al brazo robótico 15 son bisturíes, fórceps, endoscopios, sondas de luz adicionales, etc. Durante el uso del sistema robótico quirúrgico 1 , elsoporte o carcasa base 1 se sitúa cerca de la mesa de operaciones 3 o en proximidad a la misma, de tal manera que ¡os brazos robóticos 15 y las herramientas quirúrgicas 8 acopladas a los mismos se encuentran próximos al paciente 2 también.  Figure 2 shows a robotic unit 4, 5, 6 according to a possible embodiment of the invention. The devices or elements raised in the robotic unit are also illustrated. The robotic unit 4, 5, 6 is formed by a base support or housing 11 and a robotic arm assembly 12 extending from the base support or housing 1 1. Surgical tools 18 are removably coupled at the end of each robotic arm assembly 12. In a particular embodiment, the robotic arm assembly 12 comprises a robotic arm 15, an 8-axis force sensor 18, a tool adapter 19 and a surgical tool 18 coupled to the robotic arm 15 via the adapter of tool 19. Non-limiting examples of surgical tools 18 that can be attached to the robotic arm 15 are scalpels, forceps, endoscopes, additional light probes, etc. During use of the robotic surgical system 1, the base support or housing 1 is placed near or near the operating table 3, such that the robotic arms 15 and the surgical tools 8 coupled thereto are located next to patient 2 too.
El soporte o carcasa base 1 tiene preferentemente una pluralidad de ruedas orientables 21 , normalmente 4 o 8 ruedas, aunque cualquier número de ruedas es posible, con el fin de mover fácilmente la unidad robótica 4, 5, 8, por ejemplo para llevarla más cerca de la mesa de operaciones o para alejarla de la misma, o para orientarla mejor durante la operación. Las ruedas 21 tienen preferentemente frenos, no mostrados, con el fin de inmovilizar la unidad robótica durante la operación. Obviamente, la unidad robótica 4, 5, 6 se puede mover y reubicarse en cualquier momento durante la operación o en cualquier otro momento, siempre que la herramienta 18 se haya extraído de la inserción realizada en la piel del paciente. Cada unidad robótica 4, 5, 6 es independiente de las demás. Por lo tanto, se pueden mover independientemente moviendo de forma independiente su soporte o carcasa de base 1 1 respectiva. Como se muestra en la realización ilustrada en la Figura 2, el soporte o carcasa base 1 1 tiene preferentemente forma de L, con una parte inferior que es más ancha que su parte superior. Esto permite una aproximación más cercana a la mesa de operaciones mediante la introducción de la fracción de la parte inferior más ancha que la parte superior debajo de la mesa de operaciones. De este modo, se ahorra espacio en el quirófano. The base support or housing 1 preferably has a plurality of wheels gears 21, usually 4 or 8 wheels, although any number of wheels is possible, in order to easily move the robotic unit 4, 5, 8, for example to bring it closer to the operating table or away from it, or to guide it better during the operation. The wheels 21 preferably have brakes, not shown, in order to immobilize the robotic unit during operation. Obviously, the robotic unit 4, 5, 6 can be moved and relocated at any time during the operation or at any other time, provided that the tool 18 has been removed from the insert made in the patient's skin. Each robotic unit 4, 5, 6 is independent of the others. Therefore, they can be moved independently by independently moving their respective support or base housing 1 1. As shown in the embodiment illustrated in Figure 2, the base support 1 1 is preferably L-shaped, with a lower part that is wider than its upper part. This allows a closer approximation to the operating table by entering the lower part fraction wider than the upper part below the operating table. This saves space in the operating room.
La Figura 3 muestra un esquema de la arquitectura del soporte o carcasa base 1 1 de acuerdo con una posible realización de la invención. También se muestra el brazo robótico 15 del conjunto del brazo robótico 12. El soporte o carcasa base 11 se fabrica de cualquier material adecuado. Por ejemplo, puede comprender aluminio. Se cubre preferentemente con una o más láminas de un material adecuado para utilizarse en quirófano. Las láminas de recubrimiento se pueden fabricar de un plástico adecuado, tal como plástico ABS (acrilonitriio butadieno estireno) o de cualquier otro material adecuado. El diseño del soporte 1 1 se ha seleccionado con el fin de minimizar el espacio ocupado en la proximidad a la mesa de operaciones y aumentar al máximo su estabilidad, movilidad y vida útil de la fuente de alimentación. Figure 3 shows a diagram of the architecture of the base support 1 1 in accordance with a possible embodiment of the invention. The robotic arm 15 of the robotic arm assembly 12 is also shown. The base support or housing 11 is made of any suitable material. For example, it can comprise aluminum. It is preferably covered with one or more sheets of a material suitable for use in the operating room. The coating sheets can be made of a suitable plastic, such as ABS plastic (acrylonitriium butadiene styrene) or any other suitable material. The design of the support 1 1 has been selected in order to minimize the space occupied in proximity to the operating table and maximize its stability, mobility and lifespan of the power supply.
Como se esquematiza en la Figura 3, el soporte 11 aloja, en su interior, al menos una batería que permite el funcionamiento de la unidad robótica 4, 5, 6 de manera inalámbrica, es decir, sin necesidad de una conexión física a la red eléctrica. En una realización particular, hay dos baterías, pero dependiendo de diferentes factores, tal como en el tipo de operación en que se tiene que utilizar, puede haber más baterías. También comprende una fuente de alimentación configurada para conectarse a la red eléctrica. Esto permite tanto el funcionamiento cableado de la unidad robótica 4, 5, 6 (es decir, directamente alimentada por la red eléctrica) como la carga de la al menos una batería. En otras palabras, la unidad robótica 4, 5, 6 puede trabajar ya sea inalámbrica o de forma cableada. Tanto la ai menos una batería como la fuente de alimentación se representan juntas en la Figura 3 y son referidas con el número 23. El soporte 1 1 contiene también un cargador de batería 24 y al menos un convertidor de tensión o un convertidor de corriente 25.  As shown in Figure 3, the support 11 houses, inside, at least one battery that allows the operation of the robotic unit 4, 5, 6 wirelessly, that is, without the need for a physical connection to the network electric In a particular embodiment, there are two batteries, but depending on different factors, such as in the type of operation in which it is to be used, there may be more batteries. It also includes a power supply configured to connect to the mains. This allows both the wired operation of the robotic unit 4, 5, 6 (that is, directly powered by the mains) and the charging of the at least one battery. In other words, the robotic unit 4, 5, 6 can work either wirelessly or wired. Both the at least one battery and the power supply are represented together in Figure 3 and are referred to as number 23. The support 1 1 also contains a battery charger 24 and at least one voltage converter or a current converter 25 .
El soporte 1 1 aloja también un ordenador industrial 26 que comprende un software específico para cirugía asistida por robot: software general para la conversión de movimiento entre la palanca de mando y el brazo robótico, control de posición de la herramienta general, gestión de señales de entrada/salida, gestión de las comunicaciones entre los brazos robóticos y la consola de control, gestión general del sistema, gestión de errores, etc. Es un ordenador industrial compacto, potente y de bajo consumo. Comprende al menos dos puertos Ethernet y al menos 4 puertos USB. El ordenador industrial 26 es el núcleo computacional de la unidad robótica 4, 5, 6. Es el encargado de ejecutar cualquier algoritmo requerido, tai como algoritmos de control de movimiento y algoritmos de control de fuerza. También gestiona la comunicación entre los diferentes elementos que forman cada unidad robótica, así como la comunicación con otras unidades robóticas y con la consola de control 7. El ordenador 26 comprende dos módulos de comunicaciones, no mostrados: uno cableado basado en Ethernet y uno basado en wifi. Un ejempio no limitativo de un ordenador industrial que se puede utilizar es Simatic ¡PC427D, de Siemens. El soporte 11 comprende adicionalmente un medio de control 27, tal como una unidad de control convencional, configurado para controlar el brazo robótico 15. Por ejemplo, es responsable de proporcionar medios para la programación de las trayectorias de los brazos robóticos, controlar ¡os motores en cada eje o controlar los diferentes sensores comprendidos en el brazo robótico. El soporte 1 1 comprende adicionalmente un módulo de comunicaciones, que no se muestra, que comprende medios Tx/Rx para transmitir/recibir señales de control a/desde la consola de control 7, preferentemente configurados para trabajar bajo un protocolo basado en Ethernet estándar, que pueden trabajar tanto inalámbrica como de forma cableada. El soporte 1 1 aloja también medios de medición de carga 28 para medir el nivel de carga de ¡as baterías y una caja de comunicaciones 29 asociada al sensor de fuerza 16 (véase la Figura 2) ubicado en la última articulación del brazo robótico. La caja de comunicaciones 29 controla y procesa el sensor de fuerza 16. Opcionalmente, el soporte 11 comprende medios para el transporte y ¡a fijación 21 , 22, 30 de¡ soporte 11. The support 1 1 also houses an industrial computer 26 comprising specific software for robot-assisted surgery: general software for the conversion of movement between the joystick and the robotic arm, position control of the general tool, signal management of input / output, communication management between the robotic arms and the control console, general system management, error management, etc. It is a compact, powerful and low consumption industrial computer. It comprises at least two Ethernet ports and at least 4 USB ports. The industrial computer 26 is the computational core of the robotic unit 4, 5, 6. It is responsible for executing any required algorithm, such as motion control algorithms and force control algorithms. It also manages the communication between the different elements that make up each robotic unit, as well as the communication with other robotic units and with the control console 7. Computer 26 comprises two communication modules, not shown: one wired based on Ethernet and one based on Wi-Fi. A non-limiting example of an industrial computer that can be used is Simatic ¡PC427D, from Siemens. The support 11 additionally comprises a control means 27, such as a conventional control unit, configured to control the robotic arm 15. For example, it is responsible for providing means for programming the paths of the robotic arms, controlling the motors on each axis or control the different sensors included in the robotic arm. The support 1 1 further comprises a communications module, which is not shown, comprising Tx / Rx means for transmitting / receiving control signals to / from the control console 7, preferably configured to work under a standard Ethernet based protocol, that can work both wirelessly and wired. The support 1 1 also houses load measurement means 28 for measuring the charge level of the batteries and a communication box 29 associated with the force sensor 16 (see Figure 2) located in the last articulation of the robotic arm. The communication box 29 controls and processes the force sensor 16. Optionally, the support 11 comprises means for transport and fixing 21, 22, 30 of the support 11.
La Figura 4A muestra un conjunto de brazo robótico 12 de acuerdo con una posible realización de la invención, configurado para extenderse desde un soporte o carcasa base 11 como se muestra en las Figuras 2 y 3 o configurado para acoplarse a dicho soporte o carcasa base 1 1. En otras palabras, hay un conjunto 12 de dispositivos sobre el soporte o carcasa base 11. En esta realización, el conjunto 12 comprende:  Figure 4A shows a robotic arm assembly 12 in accordance with a possible embodiment of the invention, configured to extend from a support or base housing 11 as shown in Figures 2 and 3 or configured to engage said support or base housing 1 1. In other words, there is a set 12 of devices on the base support or housing 11. In this embodiment, the assembly 12 comprises:
-un brazo robótico 15: Es ei dispositivo que permite ia interacción con la herramienta quirúrgica. Cuenta con 8 grados de libertad (DOF). Comprende un sistema de seguridad capaz de bloquearse en caso de colisión con los seres humanos. Además, el brazo robótico 15 se puede mover manualmente. Además, se puede programar en tiempo real a través del protocolo basado en Ethernet con una frecuencia de muestreo de 125 Hz. Se controla a través del medio de control 27 alojado dentro del soporte 1 1. Este medio de control 27 gestiona todo el movimiento de bajo nivel y las órdenes de planificación recibidas del ordenador industrial 26. Un ejemplo no limitativo de brazo robótico 15 que se puede utilizar es UR5 de Universal Robots. -a robotic arm 15: It is the device that allows interaction with the surgical tool It has 8 degrees of freedom (DOF). It includes a security system capable of blocking in case of collision with human beings. In addition, robotic arm 15 can be moved manually. In addition, it can be programmed in real time through the Ethernet-based protocol with a sampling frequency of 125 Hz. It is controlled through control means 27 housed inside support 1 1. This control means 27 manages all the movement of low level and planning orders received from the industrial computer 26. A non-limiting example of robotic arm 15 that can be used is Universal Robots UR5.
- un sensor de fuerza 16: Se configura para recibir la medición de fuerzas y pares en 8 ejes aplicados por la herramienta quirúrgica 18, que es controlada por el brazo robótico 15, en la piel del paciente y en las paredes internas y órganos dentro de la cavidad del paciente. Se encuentra entre el último eje del brazo robótico (articulación) y el adaptador de herramienta 19, ya que esta situación permite la recepción ciara de las señales que representan dichas fuerzas aplicadas. Además, puesto que el sensor 16 solo mide las fuerzas aplicadas sobre su superficie, se garantiza que otras mediciones no sean capturadas (por ejemplo, las mediciones de las fuerzas aplicadas por el brazo robótico), capturando solo las mediciones generadas debido a la interacción de la herramienta quirúrgica 18 (cuyo peso e inercia se debe filtrar con el fin de obtener una medición fiable). Estas mediciones son extremadamente importantes con el fin de controlar correctamente el punto de fulcro y la retroalimentación háptica. Cuenta con 6 DOF (fuerzas y pares). Se comunica con el ordenador industrial 26 a través de la caja de comunicaciones 29, a través del protocolo basado en Ethernet ya mencionado. Un ejemplo no limitativo de brazo robótico 15 que se puede utilizar es un ATI Gamma. -y una herramienta quirúrgica 18 configurada para, durante el uso del sistema, acoplarse al brazo robótico 15; dependiendo del tipo de herramienta quirúrgica 18, puede requerir acoplarse al brazo robótico 15 a través de un adaptador de herramienta 19. - a force sensor 16: It is configured to receive the measurement of forces and torques in 8 axes applied by the surgical tool 18, which is controlled by the robotic arm 15, on the patient's skin and on the internal walls and organs within The patient's cavity. It is located between the last axis of the robotic arm (articulation) and the tool adapter 19, since this situation allows the pure reception of the signals representing said applied forces. In addition, since the sensor 16 only measures the forces applied on its surface, it is ensured that other measurements are not captured (for example, the measurements of the forces applied by the robotic arm), capturing only the measurements generated due to the interaction of surgical tool 18 (whose weight and inertia must be filtered in order to obtain a reliable measurement). These measurements are extremely important in order to correctly control the fulcrum point and haptic feedback. It has 6 DOF (forces and pairs). It communicates with the industrial computer 26 through the communication box 29, through the Ethernet-based protocol already mentioned. A non-limiting example of robotic arm 15 that can be used is an ATI Gamma. - and a surgical tool 18 configured to, during use of the system, engage the robotic arm 15; Depending on the type of surgical tool 18, it may be required to engage the robotic arm 15 through a tool adapter 19.
- un adaptador de herramienta 19: Se utiliza cuando la herramienta quirúrgica 18 no se puede acoplar directamente ai brazo robótico 15, debido a su diseño específico. El adaptador de herramienta 19 se sitúa entre el brazo robótico 15 y la herramienta quirúrgica 18. El adaptador de herramienta 19 se sitúa preferentemente entre el sensor de fuerza 16 (situado en el extremo dista! del brazo robótico 15) y la herramienta quirúrgica 18. Cuanto más cerca se encuentre el sensor de fuerza 16 con respecto a la herramienta quirúrgica 18, más fiable será la señal captada por el sensor de fuerza 16. El adaptador de herramienta 19 permite acoplar cualquier herramienta quirúrgica convencional 18 al brazo robótico 15. En otras palabras, a diferencia de otros sistemas quirúrgicos robóticos bien conocidos, que solo se pueden utilizar con herramientas quirúrgicas ad-hoc, el brazo robótico 5 se puede acopiar a casi cualquier herramienta quirúrgica gracias ai adaptador de herramienta 19. El adaptador de herramienta 19 comprende un medio de accionamiento y un sensor de fuerza de 1 DOF (no mostrado). El medio de accionamiento o medio de accionamiento de pinza se basa en un motor configurado para abrir/cerrar la herramienta quirúrgica 18 (tales como bisturíes, fórceps, tijeras, etc.). El motor se acciona y controla directamente por uno de ios grados de libertad de los dispositivos hápticos 8 situados próximos a la consola de control 7 y conectados a la misma. En una realización no limitativa, el medio para controlar el motor es un tablero de control (control board) axon EPOS2 mod. 390003. El sensor de fuerza se configura para medir la fuerza de agarre/cierre aplicada por la pinza. Comprende un DOF para medir la fuerza de agarre/cierre aplicada por la herramienta quirúrgica 18 y para retroalimentar esta información (fuerza de agarre o corte aplicada sobre un tejido o un objeto...) al dispositivo háptico 8. En una realización no limitativa, el sensor de fuerza es un OIVID-2G-FF-800N. La Figura 4C ilustra una realización ejemplar de un adaptador de herramienta 19 y de una herramienta quirúrgica 18 para acoplarse a un brazo robótico 15 gracias al adaptador de herramienta 19. El adaptador de herramienta 19 se coloca en el extremo distal del brazo robótico 15. Un ejemplo de una herramienta quirúrgica 18 a acoplarse es cualquiera de ios instrumentos quirúrgicos que se comercializan bajo la marca "ClickLine" de Karl Storz (Alemania). La herramienta 18 comprende preferentemente una primera pieza de herramienta 181 y una segunda pieza de herramienta 182. La primera pieza de herramienta 181 es hueca de modo que la segunda pieza de herramienta 182 se puede mover hacia atrás y hacia delante a través de un canal en la primera pieza de herramienta 181 . Es decir, el segunda pieza de herramienta 182 se puede mover en relación con la primera pieza de herramienta 181. La herramienta quirúrgica 18 comprende además un cabezal de herramienta (no mostrado) movido por la segunda pieza de herramienta 182. El adaptador de herramienta 19 comprende una primera pieza base 191 para retener de forma desmontable la primera pieza de herramienta 181 , y una segunda pieza base 192 que se puede mover en relación con la primera pieza base 191 para retener de forma desmontable la segunda pieza de herramienta 182. En otras palabras, la primera pieza base 191 comprende ios componentes que retienen o sujetan la primera pieza de herramienta 181. La segunda pieza base 192 se puede mover activada por un motor 193 y se puede conectar a la segunda pieza de herramienta 82 para mover la segunda pieza de herramienta 182. Si el movimiento transmitido es un movimiento recíproco, entonces la segunda pieza de herramienta 182 se moverá de adelante hacia atrás y viceversa. En una implementación particular, la primera pieza base 191 comprende un empujador 194 que se puede mover en relación con la primera pieza base 191 para separar la primera pieza de herramienta 181 y la segunda pieza base 192 comprende una tapa 195 que se puede mover en relación con la segunda pieza base 192 para separar la segunda pieza de herramienta 182. - a tool adapter 19: It is used when the surgical tool 18 cannot be directly coupled to the robotic arm 15, due to its specific design. The tool adapter 19 is located between the robotic arm 15 and the surgical tool 18. The tool adapter 19 is preferably located between the force sensor 16 (located at the far end of the robotic arm 15) and the surgical tool 18. The closer the force sensor 16 is to the surgical tool 18, the more reliable the signal picked up by the force sensor 16. The tool adapter 19 allows any conventional surgical tool 18 to be attached to the robotic arm 15. In others words, unlike other well-known robotic surgical systems, which can only be used with ad-hoc surgical tools, the robotic arm 5 can be attached to almost any surgical tool thanks to the tool adapter 19. The tool adapter 19 comprises a drive medium and a force sensor of 1 DOF (not shown). The drive means or clamp drive means is based on a motor configured to open / close the surgical tool 18 (such as scalpels, forceps, scissors, etc.). The engine is driven and controlled directly by one of the degrees of freedom of the haptic devices 8 located close to the control console 7 and connected thereto. In a non-limiting embodiment, the means for controlling the motor is an axon EPOS2 mod control board. 390003. The force sensor is configured to measure the grip / close force applied by the clamp. It comprises a DOF to measure the grip / close force applied by the Surgical tool 18 and to feed back this information (grip or cut force applied on a tissue or an object ...) to the haptic device 8. In a non-limiting embodiment, the force sensor is an OIVID-2G-FF-800N. Figure 4C illustrates an exemplary embodiment of a tool adapter 19 and a surgical tool 18 for attaching to a robotic arm 15 thanks to the tool adapter 19. The tool adapter 19 is placed at the distal end of the robotic arm 15. A An example of a surgical tool 18 to be coupled is any of the surgical instruments that are marketed under the "ClickLine" brand of Karl Storz (Germany). The tool 18 preferably comprises a first tool piece 181 and a second tool piece 182. The first tool piece 181 is hollow so that the second tool piece 182 can be moved back and forth through a channel in the first piece of tool 181. That is, the second tool piece 182 can be moved relative to the first tool piece 181. The surgical tool 18 further comprises a tool head (not shown) moved by the second tool piece 182. The tool adapter 19 it comprises a first base part 191 for detachably retaining the first tool part 181, and a second base part 192 that can be moved relative to the first base part 191 to detachably retain the second tool part 182. In others In other words, the first base piece 191 comprises the components that retain or hold the first tool piece 181. The second base piece 192 can be moved activated by a motor 193 and can be connected to the second tool piece 82 to move the second piece of tool 182. If the transmitted movement is a reciprocal movement, then the second piece of tool 182 will move from front to back and vic eversa In a particular implementation, the first base piece 191 comprises a pusher 194 that can be moved relative to the first base piece 191 to separate the first tool piece 181 and the second base piece 192 comprises a cover 195 that can be moved relative to the second base piece 192 to separate the second tool piece 182.
Como ya se ha mencionado, las unidades robóticas 4, 5, 6 se conectan a una consola de control 7 desde la que se gestiona/manipula el control de los brazos robóticos 15. La consola de control 7 actúa como sistema maestro. Las unidades robóticas 4, 5, 6 actúan como sistema esclavo. Como ya se ha explicado, los brazos robóticos 15 (en general, ios conjuntos de brazos robóticos 12) se pueden conectar a la consola de control 7 ya sea a través de hilos o de forma cableada o por medio de un sistema transmisor/receptor inalámbrico. Las Figuras 5A y 5B muestran dos vistas de una consola de control 7 de acuerdo con una posible realización de la invención. La consola de control 7 es la interfaz entre el cirujano 9 y ios conjuntos de brazos robóticos 12. Las partes o dispositivos principales comprendidos en la consola de control 7 son:  As already mentioned, the robotic units 4, 5, 6 are connected to a control console 7 from which the control of the robotic arms 15 is managed / manipulated. The control console 7 acts as the master system. The robotic units 4, 5, 6 act as a slave system. As already explained, the robotic arms 15 (in general, ios robotic arm assemblies 12) can be connected to the control console 7 either through wires or wired form or by means of a wireless transmitter / receiver system . Figures 5A and 5B show two views of a control console 7 in accordance with a possible embodiment of the invention. The control console 7 is the interface between the surgeon 9 and the sets of robotic arms 12. The main parts or devices included in the control console 7 are:
- columna o soporte ajustabie 41 : permite utilizar el sistema de forma ergonómica, ya que se adapta a la altura del usuario 9 y permite que el cirujano 9 trabaje ya sea de pie o sentado.  - Adjbie column or support 41: allows the system to be used ergonomically, as it adapts to the height of the user 9 and allows the surgeon 9 to work either standing or sitting.
- carcasa 42 para el medio de computación: el medio de computación, que para mayor claridad también se ha referido como 42, aunque en realidad se aloja dentro de la carcasa 42, es el núcleo de la consola de control 7. Se compone de un ordenador personal o similar, una unidad adquisición de datos (DAQ) para la captura de señales proporcionadas por los pedales, un conmutador de comunicaciones y alimentadores para el ordenador personal, dispositivos hápticos y pantallas (monitores). El medio de computación 42 ejecuta ¡os algoritmos necesarios, tales como el control de la fuerza, y gestiona los parámetros de operación. En el medio de computación 42, se ejecuta una pluralidad de algoritmos de control. Estos algoritmos de control gestionan las comunicaciones y ¡as operaciones entre cada uno de ios dispositivos hápticos 8 y su conjunto de brazo robótico correspondiente 12 (es decir, su brazo robótico correspondiente 15 y ¡a herramienta quirúrgica 18 acopiada al mismo). Se encuentra preferentemente dentro de una carcasa 42 que comprende otros elementos, tales como medios de conexión. - housing 42 for the computing medium: the computing medium, which for clarity has also been referred to as 42, although it is actually housed inside the housing 42, is the core of the control console 7. It is composed of a personal computer or similar, a data acquisition unit (DAQ) for the capture of signals provided by the pedals, a communications switch and power supplies for the personal computer, haptic devices and screens (monitors). The middle of Computing 42 executes the necessary algorithms, such as force control, and manages the operating parameters. In the computing medium 42, a plurality of control algorithms are executed. These control algorithms manage the communications and operations between each of the haptic devices 8 and their corresponding robotic arm assembly 12 (i.e., their corresponding robotic arm 15 and the surgical tool 18 coupled thereto). It is preferably located within a housing 42 comprising other elements, such as connection means.
- una pluralidad de dispositivos hápticos 8: Los dispositivos hápticos 8 son una de las interfaces de usuario de la consola de control 7. Se implementan preferentemente en forma de mangos o palancas de mando 8. Por medio de ios dispositivos hápticos 8, el cirujano 9 puede controlar simultáneamente hasta dos herramientas quirúrgicas 18. Los dispositivos hápticos 8 se montan preferentemente en un panel configurado para instalar dos palancas de mando o mangos. En una realización particular, los dispositivos hápticos 8 se fijan o acopian a la columna ajustable 41. Los dispositivos hápticos 8 se conectan preferentemente a ¡a consola de control 7, en particular, al medio de computación alojado en la carcasa 42, por medio de una conexión por cable. En una realización particular, esta conexión es una interfaz USB. En una realización particular, en la que hay dos brazos robóticos 15 que llevan cada uno una herramienta quirúrgica, hay dos dispositivos hápticos 8. Cada dispositivo háptico 8 se asocia a una herramienta quirúrgica correspondiente. En otras palabras, el movimiento y posicionamiento de las dos herramientas quirúrgicas 18 fijadas a un primer y un segundo brazo robótico 15 se controla por el cirujano 9 mediante el uso de un par de dispositivos hápticos 8. El cirujano 9 puede seleccionar el modo de movimiento de los conjuntos de brazos robóticos de acuerdo con dos modos diferentes. En el modo "A", un movimiento de ios dispositivos hápticos 8 implica un movimiento del extremo dista! de las herramientas quirúrgicas 18. En el modo "B", un movimiento de los dispositivos hápticos 8 implica un movimiento del extremo próxima! de las herramientas quirúrgicas 18. Además, el movimiento y posicionamiento de un endoscopio conectado a un tercer brazo robótico 15 se controla a través de los dispositivos hápticos 8. Otras realizaciones pueden comprender más de dos dispositivos hápticos (por ejemplo, si se utilizan más de dos brazos roboticos 15 cada uno con una herramienta quirúrgica diferente de un endoscopio). En esta situación, se puede necesitar más de un cirujano para una manipulación óptima y segura de más de dos dispositivos hápticos. La Figura 6 muestra un par de dispositivos hápticos 8 de acuerdo con una posible realización de la invención. Los dispositivos hápticos 8 son convencionales y están fuera del alcance de la presente invención. Los dispositivos hápticos 8 utilizados en el sistema 1 permiten controlar y detectar las fuerzas de 7 grados de libertad. - a plurality of haptic devices 8: Haptic devices 8 are one of the user interfaces of the control console 7. They are preferably implemented in the form of handles or joysticks 8. By means of the haptic devices 8, the surgeon 9 it can simultaneously control up to two surgical tools 18. The haptic devices 8 are preferably mounted on a panel configured to install two control levers or handles. In a particular embodiment, the haptic devices 8 are fixed or coupled to the adjustable column 41. The haptic devices 8 are preferably connected to the control console 7, in particular, to the computing medium housed in the housing 42, by means of a cable connection. In a particular embodiment, this connection is a USB interface. In a particular embodiment, in which there are two robotic arms 15 each carrying a surgical tool, there are two haptic devices 8. Each haptic device 8 is associated with a corresponding surgical tool. In other words, the movement and positioning of the two surgical tools 18 fixed to a first and a second robotic arm 15 is controlled by the surgeon 9 by the use of a pair of haptic devices 8. The surgeon 9 can select the mode of movement of robotic arm assemblies according to two modes different. In "A" mode, a movement of the haptic devices 8 implies a movement of the far end! of surgical tools 18. In "B" mode, a movement of haptic devices 8 implies a movement of the near end! of the surgical tools 18. In addition, the movement and positioning of an endoscope connected to a third robotic arm 15 is controlled through the haptic devices 8. Other embodiments may comprise more than two haptic devices (for example, if more than two robotic arms 15 each with a different surgical tool from an endoscope). In this situation, more than one surgeon may be needed for optimal and safe handling of more than two haptic devices. Figure 6 shows a pair of haptic devices 8 according to a possible embodiment of the invention. Haptic devices 8 are conventional and are outside the scope of the present invention. The haptic devices 8 used in system 1 allow to control and detect the forces of 7 degrees of freedom.
- medios de selección 51 : Permiten ai cirujano 9 activar y desactivar el movimiento de los conjuntos de brazos roboticos 12 y seleccionar qué dos conjuntos de brazos roboticos se deben controlar en todo momento. En una realización preferida, ios medios de selección se impiementan mediante pedales. Los pedales son una de las interfaces de usuario de la consola de control 7. En una realización particular, en la que hay tres conjuntos de brazos roboticos, hay dos pedales: uno de los pedales 51 activa/desactiva ios dos conjuntos de brazos roboticos que llevan respectivas herramientas quirúrgicas; y el otro pedal 51 activa/desactiva el conjunto del brazo robótico que lleva la cámara (endoscopio o cámara iaparoscópica). Con el fin de mover un brazo robótico, el cirujano debe pisar el pedal correspondiente 51 de forma continua (presionando con el pie de un modo continuo). Así, se evitan movimientos involuntarios. En una realización particular, o se activan los dos conjuntos de brazos roboticos que llevan las herramientas propiamente dichas, o se activa el conjunto de brazo robótico que lleva la cámara. Los pedales 51 trabajan como un medio de seguridad, ya que impiden el movimiento indeseado de cualquiera de los brazos roboticos bajo el concepto de hombre muerto (dead-man concept). Es decir, los brazos roboticos solo se mueven, en respuesta ai control háptico, si se presiona el pedal correspondiente. Con el fin de aplicar este control a través de los pedales 51 , ios pedales se conectan a una placa de control (control board), tal como una DAQ USB- DUX D, que tiene una interfaz, por ejemplo un puerto USB, con el medio de computación alojado en la carcasa 42. Cuando el medio de selección 51 (pedal) no está presionado, se activa un modo manual, en cuyo modo el conjunto de brazo robótico se puede mover/manipular directamente (con las manos) por una persona. Un experto en la técnica entenderá que el número de medios de selección puede variar en función del número de conjuntos de brazos roboticos a ser controlado, y que más de un cirujano (o personas del personal médico) pueden necesitarse para controlar ios pedales (y dispositivos hápticos) si el número de conjuntos de brazos roboticos es elevado. En caso de un gran número de conjuntos de brazos roboticos, losmedios de selección se pueden impiementar por medio de un selector conmutador. - selection means 51: They allow the surgeon 9 to activate and deactivate the movement of the robot arm assemblies 12 and select which two robot arm assemblies must be controlled at all times. In a preferred embodiment, the selection means are impregnated by pedals. The pedals are one of the user interfaces of the control console 7. In a particular embodiment, in which there are three sets of robotic arms, there are two pedals: one of the pedals 51 activates / deactivates the two sets of robotic arms that they carry respective surgical tools; and the other pedal 51 activates / deactivates the robotic arm assembly carried by the camera (endoscope or iaparoscopic camera). In order to move a robotic arm, the surgeon must step on the corresponding pedal 51 continuously (pressing continuously with the foot). Thus, movements are avoided involuntary In a particular embodiment, either the two sets of robotic arms that carry the tools themselves are activated, or the robotic arm assembly that carries the camera is activated. The pedals 51 work as a means of safety, since they prevent unwanted movement of any of the robot arms under the concept of dead man (dead-man concept). That is, the robot arms only move, in response to the haptic control, if the corresponding pedal is pressed. In order to apply this control through the pedals 51, the pedals are connected to a control board, such as a USB-DUX D DAQ, which has an interface, for example a USB port, with the computing medium housed in the housing 42. When the selection means 51 (pedal) is not pressed, a manual mode is activated, in which mode the robotic arm assembly can be moved / manipulated directly (with the hands) by a person . One skilled in the art will understand that the number of selection means may vary depending on the number of robot arm assemblies to be controlled, and that more than one surgeon (or medical personnel) may be needed to control the pedals (and devices haptics) if the number of sets of robotic arms is high. In the case of a large number of robot arm assemblies, the selection means can be set by means of a switching selector.
- unidad de reconocimiento de voz 52: Esta es una característica opcional. La unidad de reconocimiento de voz, a la que se hace referencia en la Figura 1 , como un micrófono, es una interfaz de usuario opcional de la consola de control 7. Se puede utilizar para controlar el movimiento de un endoscopio conectado a un brazo robótico. La unidad de reconocimiento de voz 52 se conecta a un tablero de control (control board) que tiene una interfaz con el medio de computación.  - voice recognition unit 52: This is an optional feature. The voice recognition unit, referred to in Figure 1, as a microphone, is an optional user interface of the control console 7. It can be used to control the movement of an endoscope connected to a robotic arm . The voice recognition unit 52 is connected to a control board that has an interface with the computing medium.
- monitor 701 : Es una pantalla 3D que muestra información visual. En particular, muestra imágenes de ¡os órganos ¡nternos del paciente 2 tomadas por la cámara (endoscopio). Un ejemplo no limitativo del monitor 701 es una Panasonic 26", diseñada para trabajar en entornos quirúrgicos. Se destaca que se pueden utilizar monitores 3D adic¡ona¡es, como ¡os que se ilustran en ¡a F¡gura 1 y se refieren como 10, para mostrar ¡as mismas imágenes en diferentes áreas de la sala de cirugías. - monitor 701: It is a 3D screen that shows visual information. In particular, shows images of the patient's internal organs 2 taken by the camera (endoscope). A non-limiting example of the 701 monitor is a Panasonic 26 ", designed to work in surgical environments. It is noted that additional 3D monitors can be used, as illustrated in Figure 1 and referred to like 10, to show the same images in different areas of the surgery room.
- monitor de configuración 61 : Este monitor adicional 61 es una interfaz de usuario adicional que permite al cirujano acceder a diferentes partes de control del sistema. Es preferentemente una pantalla táctil. Por ejemplo, cuando se inicia el sistema, el estado de todos ¡os elementos y herramientas, incluyendo ¡a cámara, se muestra en una ventana. La Figura 7 muestra un ejemplo de ¡a información mostrada en ¡a ventana de estado de¡ monitor de configuración 61. El monitor de configuración 61 proporciona menús, aiertas, estado del sistema, opciones de configuración y similares.  - configuration monitor 61: This additional monitor 61 is an additional user interface that allows the surgeon to access different control parts of the system. It is preferably a touch screen. For example, when the system is started, the status of all items and tools, including the camera, is displayed in a window. Figure 7 shows an example of the information shown in the status window of the configuration monitor 61. The configuration monitor 61 provides menus, openings, system status, configuration options and the like.
Volviendo de nuevo a los dispositivos hápticos 8, cada uno de ¡os d¡spositivos hápticos 8 que se pueden manipuiar por el cirujano tiene una relación maestro-esclavo con uno de ¡os brazos robóticos 15 correspondiente, de modo que el movimiento de un dispositivo háptico 8 produce un movimiento correspondiente de ¡a herramienta quirúrgica 18 unida al brazo robótico correspondiente 15. El medio de computación (alojado en ¡a carcasa 42) de ¡a consola de control 7 recibe señales de entrada procedentes de los dispositivos hápticos 8. El medio de control 27 asociado a cada unidad robótica calcula un movimiento correspondiente de ¡as herramientas quirúrgicas 18 y proporciona señales de salida para mover ¡os conjuntos de brazos robóticos 12 y las herramientas 18. En otras paiabras, el cirujano 9 controla el movimiento y la orientación de ¡as herramientas 18 sin ¡legar a sostener en realidad ¡os extremos de estas herramientas 8. Los dispositivos hápticos 8 miden las trayectorias deseadas para cada herramienta 18 y el medio de control 27 envía (a través de los algoritmos del medio de computación 42) esas trayectorias al conjunto robótico correspondiente 12. Los dispositivos hápticos 8 se configuran, además, para aplicar fuerzas en la mano respectiva del cirujano 9, de tai manera que transmiten al cirujano las fuerzas medidas por el adaptador de herramienta 19 (en particular, por su sensor de fuerza) con el fin de crear en el cirujano una sensación de contacto o presión similar a la ejercida por la herramienta 18 en el paciente (por ejemplo, en su tejido). Cada dispositivo háptico 8 tiene 7 grados de libertad (DOF), 6 DOF para el brazo robótico y 1 DOF para la apertura/ei cierre de la herramienta, por medio de los que el cirujano 9 puede controlar a distancia el movimiento (posición) y la orientación espacial del extremo distal del equipo (herramienta o endoscopio) acoplado a un brazo robótico controlado por un dispositivo háptico correspondiente 8 y la apertura/el cierre de la herramienta. Cada DOF es capaz de retroai i mentar fuerzas. El dispositivo háptico 8 permite un conjunto de movimientos similares a los realizados por una mano humana. Tienen medios para compensar la gravedad, lo que proporciona una precisión fina. En una realización no limitativa, los dispositivos hápticos 8 son Omega 7 de Forcé Dimensión. Cada herramienta quirúrgica 18 se controla fácilmente no solo gracias ai dispositivo háptico correspondiente 8, sino también a las ventajas combinadas sinérgicas de su conjunto de brazo robótico 12, su dispositivo háptico correspondiente 8 y las capacidades de control proporcionadas por el ordenador industrial 26. Por ejemplo, la orden de control para mover la herramienta quirúrgica 18 según lo deseado por el cirujano se transmite desde el dispositivo háptico 8 hasta el medio de computación (situado en la carcasa 42) y desde este medio de computación 42 al ordenador industrial 28. La conexión entre el dispositivo háptico 8 y el medio de computación 42 se realiza preferentemente a través de USB. Su velocidad de muestreo máxima es preferentemente 2,5 kHz, lo suficiente para realizar el control por medio de retroalimentación háptica de fuerzas. Returning again to the haptic devices 8, each of the haptic devices 8 that can be manipulated by the surgeon has a master-slave relationship with one of the corresponding robotic arms 15, so that the movement of a device The haptic 8 produces a corresponding movement of the surgical tool 18 attached to the corresponding robotic arm 15. The computing means (housed in the housing 42) of the control console 7 receives input signals from the haptic devices 8. The control means 27 associated with each robotic unit calculates a corresponding movement of the surgical tools 18 and provides output signals to move the sets of robotic arms 12 and the tools 18. In other paiabras, the surgeon 9 controls the movement and orientation of the tools 18 without actually supporting the extremes of these tools 8. The haptic devices 8 measure the traits yectorias desired for each tool 18 and the control means 27 sends (through the algorithms of the computing medium 42) those paths to the corresponding robotic assembly 12. The haptic devices 8 are further configured to apply forces on the respective hand of the surgeon 9, so that they transmit to the surgeon the forces measured by the tool adapter 19 (in particular, by its force sensor) in order to create in the surgeon a sensation of contact or pressure similar to that exerted by the tool 18 in the patient (for example, in his tissue). Each haptic device 8 has 7 degrees of freedom (DOF), 6 DOF for the robotic arm and 1 DOF for the opening / closing of the tool, by means of which the surgeon 9 can remotely control the movement (position) and the spatial orientation of the distal end of the equipment (tool or endoscope) coupled to a robotic arm controlled by a corresponding haptic device 8 and the opening / closing of the tool. Each DOF is capable of feedback and strength. The haptic device 8 allows a set of movements similar to those performed by a human hand. They have means to compensate for gravity, which provides fine precision. In a non-limiting embodiment, the haptic devices 8 are Omega 7 of Force Dimension. Each surgical tool 18 is easily controlled not only thanks to the corresponding haptic device 8, but also to the combined synergistic advantages of its robotic arm assembly 12, its corresponding haptic device 8 and the control capabilities provided by the industrial computer 26. For example , the control order to move the surgical tool 18 as desired by the surgeon is transmitted from the haptic device 8 to the computing medium (located in the housing 42) and from this computing means 42 to the industrial computer 28. The connection between the haptic device 8 and the computing medium 42 is preferably performed via USB. His speed of Maximum sampling is preferably 2.5 kHz, enough to perform control by means of haptic force feedback.
Volviendo de nuevo a la Figura 7, en la pantalla, se representan imágenes 72 de tres herramientas (una primera herramienta quirúrgica "herramienta_1 ", una cámara endoscópica "cámara" y una segunda herramienta quirúrgica "herramienta_2"), correspondientes a los tres elementos acopiados a tres brazos robóticos. Sobre cada imagen, se muestra un mensaje 71 sobre su estado. En este ejemplo, las tres herramientas están "detenidas". Las imágenes correspondientes a un cierto estado se muestran en un color específico. Por ejemplo, si la herramienta está detenida, se representa en rojo. También se muestra un botón de configuración 73. Con el fin de comenzar a mover una herramienta, es necesario presionar el pedal correspondiente. Cuando se presiona el pedal, si la posición inicial del brazo robótico es correcta, las dos herramientas mostradas cambian su estado a "en uso" y cambian su color, por ejemplo, se vuelven de color verde. A continuación se pueden mover, accionados por ios dispositivos hápticos.  Returning again to Figure 7, on the screen, images 72 of three tools are represented (a first surgical tool "tool_1", an endoscopic camera "camera" and a second surgical tool "tool_2"), corresponding to the three elements collected to three robotic arms. On each image, a message 71 about its status is displayed. In this example, all three tools are "stopped." The images corresponding to a certain state are shown in a specific color. For example, if the tool is stopped, it is represented in red. A configuration button 73 is also shown. In order to start moving a tool, it is necessary to press the corresponding pedal. When the pedal is pressed, if the initial position of the robotic arm is correct, the two tools shown change their status to "in use" and change their color, for example, they turn green. They can then be moved, powered by haptic devices.
Durante el uso y la manipulación de los conjuntos de brazos robóticos (y por tanto, de las herramientas acopladas a ios mismos), esta interfaz (monitor 81 ) puede mostrar dos mensajes de advertencia: Un primer mensaje informa sobre la velocidad del dispositivo háptico. Si el usuario mueve el dispositivo háptico con tanta rapidez que el brazo robótico no puede llegar a esa velocidad, se advierte al usuario sobre ello, mostrando una advertencia en el mensaje de estado 71. La imagen se vuelve preferentemente de color rojo. Cuando la velocidad se reduce a uno aceptable, el mensaje 71 cambia a "en uso" y la imagen 72 se vuelve de color verde de nuevo. Un segundo mensaje informa acerca de una posición incorrecta de la herramienta, por ejemplo, una posición en la que no se puede seguir trabajando según lo previsto, de íal manera que se requiere un movimiento manual (es decir, un movimiento no controlado a través del dispositivo háptico, sino de forma manual por una persona). Esta advertencia se muestra en el mensaje de estado 71 y la imagen correspondiente 72 se vuelve preferentemente de color rojo. Cuando se supera el problema (manualmente), el mensaje 71 se cambia de nuevo a "en uso" y la imagen se vuelve preferentemente de color verde de nuevo. During the use and handling of robotic arm assemblies (and therefore of the tools attached to them), this interface (monitor 81) can display two warning messages: A first message informs about the speed of the haptic device. If the user moves the haptic device so quickly that the robotic arm cannot reach that speed, the user is warned about it, showing a warning in status message 71. The image preferably turns red. When the speed is reduced to an acceptable one, message 71 changes to "in use" and image 72 turns green again. A second message informs about an incorrect position of the tool, for example, a position in which you cannot continue working as planned, of In the same way that a manual movement is required (that is, a movement not controlled through the haptic device, but manually by a person). This warning is shown in status message 71 and the corresponding image 72 preferably turns red. When the problem is overcome (manually), the message 71 is changed back to "in use" and the image preferably turns green again.
Con el fin de controlar la cámara endoscópica, es necesario presionar el pedal correspondiente, mientras se mueve el dispositivo háptico de la mano que se define en una ventana de configuración. Cuando se presiona el pedal, si la posición inicial del brazo robótico es correcta, la cámara endoscópica mostrada 72 cambia su estado a "en uso" y preferentemente cambia su color, por ejemplo, se vuelve de color verde. En este estado no es posible mover los brazos robóticos que controlan las herramientas quirúrgicas propiamente dichas incluso si se presiona su pedal. Solo cuando el pedal correspondiente ai dispositivo háptico que controla la cámara no se presiona, se pueden mover las herramientas propiamente dichas.  In order to control the endoscopic camera, it is necessary to press the corresponding pedal, while moving the haptic device from the hand defined in a configuration window. When the pedal is pressed, if the initial position of the robotic arm is correct, the endoscopic camera shown 72 changes its state to "in use" and preferably changes its color, for example, it turns green. In this state it is not possible to move the robotic arms that control the surgical tools themselves even if their pedal is pressed. Only when the pedal corresponding to the haptic device that controls the camera is not pressed, can the tools themselves be moved.
Con el fin de obtener acceso a la configuración del sistema, se debe presionar el botón de configuración 73 en la ventana principal (véase Figura 7). Después, se muestra una nueva pantalla (una ventana de configuración), como se representa en la Figura 8. La sección "Velocidad de movimiento" se refiere a la tasa entre la velocidad del dispositivo háptico y la velocidad del brazo robótico. Las secciones "Controlador izquierdo" y "Controlador derecho" permiten elegir la herramienta que será controlada a través de cada dispositivo háptico. En otras palabras, cada conjunto de brazo robótico se tiene que asociar a un dispositivo háptico correspondiente (controlador háptico). Además, a través de esta pantalla, el brazo robótico que lleva la cámara endoscópica se asocia a un controlador háptico deseado (izquierdo o derecho), pero solo cuando se presiona el pedal correspondiente. Por defecto, la cámara endoscópica se asocia al controiador derecho. La sección "Desacoplamiento de la herramienta" se requiere cuando una herramienta se tiene que desacoplar del brazo robótico en el que está acoplada. El botón correspondiente se tiene que presionar. El botón de "Reinicio del sistema" se debe presionar en caso de que los conjuntos de brazos robóticos no se muevan correctamente. Por último, el botón "Volver" se presiona después de que se ha seleccionado una configuración, guardando así la configuración seleccionada. In order to gain access to the system configuration, the configuration button 73 must be pressed in the main window (see Figure 7). Next, a new screen (a configuration window) is shown, as shown in Figure 8. The "Movement speed" section refers to the rate between the speed of the haptic device and the speed of the robotic arm. The "Left controller" and "Right controller" sections allow you to choose the tool that will be controlled through each haptic device. In other words, each robotic arm assembly must be associated with a corresponding haptic device (haptic controller). In addition, through this screen, the robotic arm that carries the endoscopic camera is associated with a desired haptic controller (left or right), but only when the corresponding pedal is pressed. By default, the endoscopic camera is associated with the right controller. The "Tool decoupling" section is required when a tool has to be decoupled from the robotic arm on which it is attached. The corresponding button must be pressed. The "System Reset" button must be pressed in case the robotic arm assemblies do not move correctly. Finally, the "Back" button is pressed after a configuration has been selected, saving the selected configuration.
La Figura 9 representa esquemáticamente el flujo de señales de control intercambiadas entre diferentes unidades en el sistema robótico quirúrgico 1 de acuerdo con una realización de la invención. El usuario (cirujano 9) interactúa con el sistema 1 a través de la consola de control 7.  Figure 9 schematically represents the flow of control signals exchanged between different units in the robotic surgical system 1 according to an embodiment of the invention. The user (surgeon 9) interacts with the system 1 through the control console 7.
La consola de control 7 comprende un algoritmo para determinar, a partir de las fuerzas medidas por el sensor de fuerza 16, qué porcentaje de la contribución a la medición se debe a la interacción (de la herramienta quirúrgica) con el punto fulcro y qué porcentaje de la contribución a la medición se debe a la interacción (de la herramienta quirúrgica) con el tejido interno del paciente. Si la medición de las fuerzas proporciona un valor bajo, entonces se establece que prácticamente toda la fuerza medida se debe a la interacción con el punto de fulcro. Si la medición de las fuerzas proporciona un valor alto, entonces se establece que prácticamente toda la fuerza medida se debe a la interacción con el tejido inferno del paciente. En un ejemplo de implementación, que no se va a considerar como limitativo, el umbral entre un "valor alto" y un "valor bajo" se fija en 2 Newtons.  The control console 7 comprises an algorithm to determine, from the forces measured by the force sensor 16, what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the fulcrum point and what percentage The contribution to the measurement is due to the interaction (of the surgical tool) with the patient's internal tissue. If the measurement of the forces provides a low value, then it is established that virtually all the measured force is due to the interaction with the fulcrum point. If the measurement of the forces provides a high value, then it is established that practically all the measured force is due to the interaction with the patient's infernal tissue. In an implementation example, which is not to be considered as limiting, the threshold between a "high value" and a "low value" is set at 2 Newtons.
En cuanto a la comunicación entre la consola de control 7 y un dispositivo háptico 8: La consola de control 7 recibe la posición ("P" en la Figura 9) de ios dispositivos hápticos 8 (posición alcanzada como resultado de la manipulación aplicada por las manos del cirujano). La consola de control 7 envía una cierta fuerza ("F" en la Figura 9) a los dispositivos hápticos 8 (fuerza que se va a transferir a su vez a ¡as manos del cirujano). Esta fuerza "F" es el resultado de modelar ¡a fuerza detectada por el conjunto del brazo robótico. Es una fuerza simulada que actúa en una dirección opuesta al movimiento del dispositivo háptico 8. Esta fuerza "F" se simula por medio de un modelo de reacción de fuerza elástico-lineal que tiene cierta rigidez dinámica. Esta simulación se realiza en un algoritmo para la estimación de la rigidez. Regarding the communication between the control console 7 and a haptic device 8: The control console 7 receives the position ("P" in Figure 9) of the haptic devices 8 (position reached as a result of manipulation applied by the surgeon's hands). The control console 7 sends a certain force ("F" in Figure 9) to the haptic devices 8 (force to be transferred in turn to the surgeon's hands). This force "F" is the result of modeling the force detected by the robotic arm assembly. It is a simulated force that acts in a direction opposite to the movement of the haptic device 8. This "F" force is simulated by means of an elastic-linear force reaction model that has some dynamic stiffness. This simulation is performed in an algorithm for stiffness estimation.
La consola de control 7 envía la información relativa a la posición de los dispositivos hápticos 8 al ordenador industrial 26 de la unidad robótica. En este ordenador industrial 28 se procesa la información. Una orden obtenida como resultado de dicho procesamiento se envía al medio de control 27 (que controla un brazo robótico correspondiente).  The control console 7 sends the information related to the position of the haptic devices 8 to the industrial computer 26 of the robotic unit. In this industrial computer 28 the information is processed. An order obtained as a result of said processing is sent to the control means 27 (which controls a corresponding robotic arm).
La retroalimentación háptica es una retroalimentación de 3 grados de libertad (DOF), realizada en el eje XYZ (no hay retroalimentación en cuanto a los giros). Esta retroalimentación se calcula en el medio de computación comprendido en la consola de control 7 a partir de la posición y el estado del extremo proximal de la herramienta quirúrgica 18 (o a partir de la posición del adaptador de herramienta 19, si hay uno) y a partir de la fuerza obtenida del sensor de fuerza. La consola de control 7 también recibe y envía la posición ("P") y el estado ("S") del brazo robótico 15. La consola de control 7 recibe también la fuerza capturada por el sensor de fuerza 16. El sensor de fuerza 16 se mueve junto con el efector final del brazo robótico. Por esta razón, la posición y orientación del sensor de fuerza 16 se determinan por el estado de la articulación del brazo robótico.  Haptic feedback is a feedback of 3 degrees of freedom (DOF), performed on the XYZ axis (no feedback on turns). This feedback is calculated in the computing medium comprised in the control console 7 from the position and state of the proximal end of the surgical tool 18 (or from the position of the tool adapter 19, if there is one) and from of the force obtained from the force sensor. The control console 7 also receives and sends the position ("P") and the state ("S") of the robotic arm 15. The control console 7 also receives the force captured by the force sensor 16. The force sensor 16 moves along with the final effector of the robotic arm. For this reason, the position and orientation of the force sensor 16 are determined by the state of the robotic arm joint.
Este feedback se calcula a partir de la posición ("P") y el estado ("S") del brazo robótico 15 y a partir de la fuerza ("F") obtenida desde el sensor de fuerza 16. Un algoritmo para la estimación de la rigidez, que se ejecuta desde la consola de control 7, es el encargado de estimar dinámicamente la rigidez del tejido en contacto con el extremo distal de la herramienta quirúrgica 18. Esto se hace mediante la medición de fuerzas y pares debido a la interacción entre la herramienta 18 y el tejido interno del paciente. Como ya se ha explicado, la consola de control 7 comprende un algoritmo para determinar, a partir de las fuerzas medidas por el sensor de fuerza 16, qué porcentaje de la contribución a la medición se debe a la interacción (de la herramienta quirúrgica) con el punto de fulcro y qué porcentaje de la contribución a la medición se debe a la interacción (de la herramienta quirúrgica) con el tejido interno del paciente. De esta manera, la relación entre la fuerza y el movimiento debido a la interacción con el tejido se modela por medio de un modelo lineal. Por tanto, se estima la rigidez del tejido interno del paciente y se transmite al cirujano, de tai manera que el cirujano es capaz de sentir a través de ios dispositivos hápticos 8, discriminando entre objetos blandos o duros, de forma similar a como lo sentiría con su propias manos. A partir de esta estimación de la rigidez, se calcula la fuerza de reacción simulada ya mencionada. Esta fuerza de reacción simulada es proporcional ai movimiento del dispositivo háptico realizado por la mano del cirujano. La posición del dispositivo háptico en el que se midieron las fuerzas/pares por primera vez como consecuencia de la interacción entre la herramienta y el tejido, se considera como una referencia. La fuerza de reacción simulada se escala con el fin de sentir el contacto en las manos de manera natural. Esta fuerza se envía a los accionadores del dispositivo háptico. This feedback is calculated from the position ("P") and the state ("S") of the robotic arm 15 and from the force ("F") obtained from the force sensor 16. A The stiffness estimation algorithm, which is executed from the control console 7, is responsible for dynamically estimating the stiffness of the tissue in contact with the distal end of the surgical tool 18. This is done by measuring forces and torques. due to the interaction between tool 18 and the patient's internal tissue. As already explained, the control console 7 comprises an algorithm to determine, from the forces measured by the force sensor 16, what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the fulcrum point and what percentage of the contribution to the measurement is due to the interaction (of the surgical tool) with the patient's internal tissue. In this way, the relationship between force and movement due to the interaction with the tissue is modeled by means of a linear model. Therefore, the stiffness of the patient's internal tissue is estimated and transmitted to the surgeon, so that the surgeon is able to feel through haptic devices 8, discriminating between soft or hard objects, similar to how he would feel With your own hands. From this estimate of stiffness, the simulated reaction force mentioned above is calculated. This simulated reaction force is proportional to the movement of the haptic device performed by the surgeon's hand. The position of the haptic device in which the forces / torques were measured for the first time as a result of the interaction between the tool and the tissue, is considered as a reference. The simulated reaction force is scaled in order to feel the contact in the hands naturally. This force is sent to the actuators of the haptic device.
Y debido a que se puede establecer el porcentaje de la contribución a la medición de la fuerza (realizado por el sensor de fuerza 16) debido a la interacción de la herramienta quirúrgica con el punto de fulcro, se puede estimar la posición cartesiana del punto de fulcro. Para esta estimación, también se utilizan coordenadas modeladas del brazo robótico. Con el fin de realizar tai estimación, se calcula la distancia exterior (a lo largo de un eje de la herramienta quirúrgica) entre el efector final del brazo robótico (extremo próxima! del instrumento quirúrgico) y el punto de fulcro. And because the percentage of the contribution to the force measurement (made by the force sensor 16) can be established due to the interaction of the surgical tool with the fulcrum point, the Cartesian position of the point of fulcrum. For this estimate, coordinates are also used modeled robotic arm. In order to make such an estimate, the outer distance (along an axis of the surgical tool) between the final effector of the robotic arm (proximal end of the surgical instrument) and the fulcrum point is calculated.
Opcionaimente, la consola de control 7 puede recibir instrucciones de audio de un usuario a través de una unidad de reconocimiento de voz 52.  Optionally, the control console 7 can receive audio instructions from a user through a voice recognition unit 52.
Como se ha explicado, los movimientos de laparoscopia de la herramienta quirúrgica 18 acoplada ai brazo robótico 15 se controlan por medio de ios dispositivos hápticos (interfaz háptica) 8. Con el fin de gestionar estos movimientos (desde la consola de control 7 o, más precisamente, desde el ordenador industrial 28), se ha desarrollado un grupo de algoritmos para controlar ios movimientos del brazo robótico 15 basados en la fuerza de respuesta. En particular, el manejo del sistema robótico quirúrgico 1 se hace como sigue:  As explained, the laparoscopic movements of the surgical tool 18 coupled to the robotic arm 15 are controlled by means of the haptic devices (haptic interface) 8. In order to manage these movements (from the control console 7 or more) precisely, from the industrial computer 28), a group of algorithms has been developed to control the movements of the robotic arm 15 based on the response force. In particular, the handling of the robotic surgical system 1 is done as follows:
- Planificar una posición y orientación esférica del efector final (es decir, el extremo proximal de la herramienta quirúrgica). Esto se hace a partir de los siguientes datos: un movimiento relativo del dispositivo háptico 8; coordenadas de referencia del efector final (o extremo proximal de la herramienta quirúrgica); coordenadas modeladas del efector final (o extremo proximal de la herramienta quirúrgica); y la estimación del punto de fulcro.  - Plan a position and spherical orientation of the final effector (that is, the proximal end of the surgical tool). This is done from the following data: a relative movement of the haptic device 8; reference coordinates of the final effector (or proximal end of the surgical tool); modeled coordinates of the final effector (or proximal end of the surgical tool); and the fulcrum point estimate.
- Obtener las posiciones y velocidades requeridas por cada grado de libertad del brazo robótico, movido por accionadores, para calcular la posición y orientación esférica ya planificadas. Esto se hace a partir de las coordenadas modeladas del efector final (o extremo proximal de la herramienta quirúrgica) y a partir de la posición y orientación esférica planificada.  - Obtain the positions and speeds required for each degree of freedom of the robotic arm, moved by actuators, to calculate the position and spherical orientation already planned. This is done from the modeled coordinates of the final effector (or proximal end of the surgical tool) and from the planned spherical position and orientation.
- Mover el efector final (o extremo próxima! de la herramienta quirúrgica) por medios de accionamiento de acuerdo con las posiciones y velocidades obtenidas.- Move the end effector (or near end! Of the surgical tool) by drive means according to the positions and speeds obtained.
- Medir con al menos un sensor de fuerza 16 ¡as fuerzas y pares aplicados por el efector final y por la herramienta quirúrgica acoplada al mismo cuando se realiza el movimiento anterior. - Measure with at least one force sensor 16 the forces and torques applied by the final effector and by the surgical tool attached to it when the previous movement is performed.
- Determinar el porcentaje de contribución a las fuerzas y pares de torsión medidos correspondiente a la interacción con el punto de fulcro y a ¡a interacción con el tejido interno del paciente.  - Determine the percentage of contribution to the measured forces and torques corresponding to the interaction with the fulcrum point and to the interaction with the patient's internal tissue.
- Estimar un nuevo punto de fulcro a partir de dicha contribución de fuerzas debido a ¡a interacción con el punto de fulcro.  - Estimate a new fulcrum point from this contribution of forces due to the interaction with the fulcrum point.
- Estimar la rigidez del tejido en contacto con el extremo distal de la herramienta quirúrgica a partir de dicha contribución a las fuerzas debido a la interacción con el tejido interno del paciente; y calcular una fuerza de reacción simulada.  - Estimate the stiffness of the tissue in contact with the distal end of the surgical tool from said contribution to the forces due to the interaction with the patient's internal tissue; and calculate a simulated reaction force.
- Enviar ¡a fuerza de reacción simulada a al menos un accionador del dispositivo háptico 8 con el fin de proporcionar esa fuerza en la mano del cirujano.  - Send the simulated reaction force to at least one actuator of the haptic device 8 in order to provide that force in the surgeon's hand.
En una situación ideal, en la que se calcula correctamente el punto de fulcro, la herramienta quirúrgica 18 no toca (o toca en un grado muy limitado) el tejido/pared del orificio en el cuerpo del paciente a través del que la herramienta entra - a través de un trocar - en la cavidad del paciente. En esta situación, las fuerzas captadas por el sensor de fuerza 16 son muy pequeñas. Esto significa que el punto de fulcro está en la posición que se había previsto. Si, por el contrario, el punto de fulcro real no está donde se había previsto, el movimiento generado con el brazo robótico obliga a la herramienta quirúrgica 18 a tocar el tejido/pared del orificio en el cuerpo del paciente a través del que la herramienta entra en la cavidad de paciente. Cuando la herramienta quirúrgica 18 toca dicho tejido (piel, órganos...) se aplican fuerzas y esas fuerzas se capturan por el sensor de fuerza 16. Esas capturas de la fuerza se utilizan para volver a caícuiar el punto de fulcro (o mejor, la distancia entre el extremo de la herramienta quirúrgica 18 y el punto de fulcro) y para aplicar un movimiento lateral de la herramienta 18 en una dirección opuesta ai vector de fuerza con el fin de minimizar la magnitud de la fuerza aplicada por la herramienta quirúrgica 18. Cualquier movimiento de la herramienta quirúrgica 18 (inserción, extracción...) y cualquier movimiento del paciente (respiración...) implica que la distancia entre el extremo de la herramienta quirúrgica 18 y el punto de fulcro varía. Es necesario ser conscientes de esta distancia con el fin de proporcionar un movimiento correcto de la herramienta dentro de la cavidad del paciente. In an ideal situation, in which the fulcrum point is correctly calculated, the surgical tool 18 does not touch (or touch to a very limited extent) the tissue / wall of the hole in the patient's body through which the tool enters - through a trocar - in the patient's cavity. In this situation, the forces captured by force sensor 16 are very small. This means that the fulcrum point is in the expected position. If, on the contrary, the actual fulcrum point is not where it was intended, the movement generated with the robotic arm forces the surgical tool 18 to touch the tissue / wall of the hole in the patient's body through which the tool enters the patient's cavity. When the surgical tool 18 touches said tissue (skin, organs ...) forces are applied and those forces are captured by the force sensor 16. Those force captures are used to return to determine the fulcrum point (or better, the distance between the end of the surgical tool 18 and the fulcrum point) and to apply a lateral movement of the tool 18 in a direction opposite to the force vector in order to minimize the magnitude of the force applied by the surgical tool 18. Any movement of the surgical tool 18 (insertion, removal ...) and any movement of the patient (breathing ...) implies that the distance between the end of the surgical tool 18 and The fulcrum point varies. It is necessary to be aware of this distance in order to provide a correct movement of the tool within the patient's cavity.
En otras palabras, se calcula primero la distancia entre el extremo de la herramienta quirúrgica 18 y una estimación del punto de fulcro (no conocida). Esta distancia se calcula gracias ai sensor de fuerza 16 acopiado al extremo del brazo robótico 15. En segundo lugar, una vez que se conoce a esta distancia, se aplica un control o corrección acomodativo, que consigue corregir errores en el posicionamiento de la herramienta quirúrgica 18 con respecto ai punto de fulcro en el que se aplica una fuerza mínima. El resultado de esta corrección permite minimizar la fuerza aplicada en el punto de fulcro. Por lo tanto, el cirujano puede mover el conjunto de brazo robótico por medio de ios dispositivos hápticos 8 mientras que el sistema es capaz de transmitir al dispositivo háptico una sensación de fuerza cuando el conjunto de brazo robótico (o herramienta acoplada al brazo robótico) choca contra un objeto.  In other words, the distance between the end of the surgical tool 18 and an estimate of the fulcrum point (not known) is calculated first. This distance is calculated thanks to the force sensor 16 fitted to the end of the robotic arm 15. Secondly, once this distance is known, an accommodative control or correction is applied, which manages to correct errors in the positioning of the surgical tool 18 with respect to the fulcrum point at which a minimum force is applied. The result of this correction minimizes the force applied at the fulcrum point. Therefore, the surgeon can move the robotic arm assembly by means of the haptic devices 8 while the system is capable of transmitting a sensation of force to the haptic device when the robotic arm assembly (or tool coupled to the robotic arm) collides. against an object.
En conclusión, se ha proporcionado un nuevo sistema robótico quirúrgico 1 , que se puede integrar fácilmente en un quirófano y que no interfiere con los movimientos del cirujano. No requiere de salas quirúrgicas o instalaciones (es decir, sistemas de alimentación específicos) específicas. El cirujano puede permanecer dentro del área quirúrgica, es decir, no necesita permanecer a distancia con respecto a la mesa de operaciones. El sistema ofrece ai cirujano una sensación de tacto o información táctil: gracias a sus sensores, se mide la fuerza de tacto y corte aplicada por las herramientas quirúrgicas. El sistema es flexible, lo que significa que diferentes configuraciones son posibles: un número diferente de conjuntos de brazos robóticos (uno, dos, tres o más) y/o diferentes formas de moverlos/situarlos. El sistema también es flexible en términos de la herramienta quirúrgica a acoplarse a ios brazos robóticos: cualquier herramienta puede, en principio, utilizarse, a diferencia de los sistemas robóticos convencionales, que requieren herramientas ad-hoc. In conclusion, a new robotic surgical system 1 has been provided, which can be easily integrated into an operating room and that does not interfere with the surgeon's movements. It does not require specific surgical rooms or facilities (that is, specific feeding systems). The surgeon can remain within the surgical area, that is, he does not need to remain at a distance from the table of operations. The system offers the surgeon a sensation of touch or tactile information: thanks to its sensors, the force of touch and cut applied by the surgical tools is measured. The system is flexible, which means that different configurations are possible: a different number of robotic arm assemblies (one, two, three or more) and / or different ways of moving / placing them. The system is also flexible in terms of the surgical tool to be attached to the robotic arms: any tool can, in principle, be used, unlike conventional robotic systems, which require ad-hoc tools.
Por otra parte, la invención, obviamente, no se limita a la realización o realizaciones específicas que se describen en la presente memoria, sino que abarca también cualquier variación que se pueda considerar por cualquier persona experta en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro del alcance general de la invención tal como se define en las reivindicaciones.  On the other hand, the invention is obviously not limited to the specific embodiment or embodiments described herein, but also encompasses any variation that may be considered by any person skilled in the art (for example, in terms of the choice of materials, dimensions, components, configuration, etc.), within the general scope of the invention as defined in the claims.

Claims

REIVINDICACIONES
1. Un sistema robótico quirúrgico (1) que comprende: 1. A robotic surgical system (1) comprising:
- al menos tres unidades robóticas (4, 5, 8) configuradas para, durante el uso del sistema (1), disponerse próximas a una mesa de operaciones (3) sobre la que está tendido un paciente (2), siendo cada unidad robótica (4, 5, 6) independiente de las otras unidades robóticas, comprendiendo cada unidad robótica (4, 5, 6) un soporte (11) y un conjunto de brazo robótico (12) que se extiende desde dicho soporte (1 1); comprendiendo dicho soporte (1 1) medios de movimiento, estando dicho soporte (11) configurado para cambiar la posición y la orientación del soporte (11) con respecto a la mesa de operaciones (3); comprendiendo dicho conjunto de brazo robótico (12): un brazo robótico (15) que tiene 6 grados de libertad, una herramienta quirúrgica (18) acopiada al brazo robótico (15) a través de un adaptador de herramienta (19) y un sensor de fuerza de 6 ejes (18) configurado para recibir la medición de fuerzas y pares aplicados por la herramienta quirúrgica (18);  - at least three robotic units (4, 5, 8) configured to, during the use of the system (1), be arranged close to an operating table (3) on which a patient is lying (2), each robotic unit being (4, 5, 6) independent of the other robotic units, each robotic unit (4, 5, 6) comprising a support (11) and a robotic arm assembly (12) extending from said support (1 1); said support (1 1) comprising movement means, said support (11) being configured to change the position and orientation of the support (11) with respect to the operating table (3); said robotic arm assembly (12) comprising: a robotic arm (15) having 6 degrees of freedom, a surgical tool (18) coupled to the robotic arm (15) through a tool adapter (19) and a sensor 6-axis force (18) configured to receive the measurement of forces and torques applied by the surgical tool (18);
- una consola de control (7) configurada para manejar a distancia dichas unidades robóticas (4, 5, 8) desde una ubicación próxima a dicha mesa de operaciones (3), comprendiendo dicha consola de control (7):  - a control console (7) configured to remotely manage said robotic units (4, 5, 8) from a location close to said operating table (3), said control console (7) comprising:
- un medio de computación (42) configurado para gestionar y ejecutar algoritmos de control de fuerza y algoritmos de control de posicionamiento de la herramienta;  - a computing means (42) configured to manage and execute force control algorithms and tool positioning control algorithms;
- una pluralidad de dispositivos hápticos (8), proporcionando cada uno 7 grados de libertad, configurados para controlar el movimiento, la orientación espacial y la apertura/el cierre del extremo distal de la herramienta quirúrgica (18) acopiada a un brazo robótico correspondiente (15), en los que cada dispositivo háptico (8) está configurado para controlar un brazo robótico (15), en ios que el movimiento de un dispositivo háptico (8) produce un movimiento correspondiente de ¡a herramienta quirúrgica (18) acoplada a un brazo robótico correspondiente (15); - a plurality of haptic devices (8), each providing 7 degrees of freedom, configured to control the movement, spatial orientation and opening / closing of the distal end of the surgical tool (18) coupled to a corresponding robotic arm ( 15), in which each Haptic device (8) is configured to control a robotic arm (15), in which the movement of a haptic device (8) produces a corresponding movement of the surgical tool (18) coupled to a corresponding robotic arm (15);
- medios de selección (51) configurados para activar/desactivar los brazos robóticos (15) que hay que controlar en todo momento;  - selection means (51) configured to activate / deactivate the robotic arms (15) to be controlled at all times;
- un primer monitor (701) configurado para mostrar una imagen en 3D capturada por un medio de captación de imágenes comprendido en un endoscopio acoplado a un brazo robótico (15);  - a first monitor (701) configured to display a 3D image captured by an image capture means comprised in an endoscope coupled to a robotic arm (15);
- un monitor de configuración (81 ) configurado para ofrecer menús, alertas, estados y/o opciones de configuración del sistema (1).  - a configuration monitor (81) configured to offer menus, alerts, status and / or system configuration options (1).
2. El sistema (1) de la reivindicación 1 , en el que dicho adaptador de herramienta (19) comprende un medio de accionamiento y un sensor de fuerza, comprendiendo dicho medio de accionamiento un motor configurado para abrir/cerrar la herramienta quirúrgica (18); estando dicho sensor de fuerza configurado para medir la fuerza de agarre/cierre aplicada por dicho medio de accionamiento. 2. The system (1) of claim 1, wherein said tool adapter (19) comprises a drive means and a force sensor, said drive means comprising a motor configured to open / close the surgical tool (18 ); said force sensor being configured to measure the grip / close force applied by said actuation means.
3. El sistema (1) de la reivindicación 2, en el que dicho motor es accionado y controlado por uno de los grados de libertad de dichos dispositivos hápticos (8). 3. The system (1) of claim 2, wherein said motor is driven and controlled by one of the degrees of freedom of said haptic devices (8).
4. El sistema (1) de cualquiera de las reivindicaciones 2 o 3, en el que dicho sensor de fuerza comprende un grado de libertad para medir la fuerza de agarre/cierre aplicada por dicha herramienta quirúrgica (18) y para retroalimentar la información medida a dichos dispositivos hápticos (8), 4. The system (1) of any of claims 2 or 3, wherein said force sensor comprises a degree of freedom to measure the grip / closure force applied by said surgical tool (18) and to feed back the measured information to said haptic devices (8),
5. El sistema (1) de cualquiera de las reivindicaciones anteriores, donde ¡os medios de movimiento de dicho soporte (1 1) están configurados para ¡levar el soporte (11) más cerca de la mesa de operaciones o para alejarlo de la misma o para reorientarlo durante una operación. 5. The system (1) of any of the preceding claims, wherein the means of movement of said support (1 1) are configured to lift the support (11) closer to the operating table or to move it away from it. or to redirect it during an operation.
8. El sistema (1) de ¡a reivindicación 5, en el que dicho medio de movimiento comprende una pluralidad de ruedas orientabies (21). 8. The system (1) of claim 5, wherein said movement means comprises a plurality of orientable wheels (21).
7. El sistema (1) de cualquier reivindicación anterior, en el que dicho soporte (11) comprende medios de frenado con el fin de inmovilizar ¡a unidad robótica (4, 5, 8) durante ¡a operación. 7. The system (1) of any preceding claim, wherein said support (11) comprises braking means in order to immobilize the robotic unit (4, 5, 8) during operation.
8. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (1 1) tiene forma de L, con una parte inferior que es más ancha que su parte superior, ¡o que permite introducir debajo de la mesa de operaciones una fracción de ¡a parte inferior más ancha que ¡a parte superior. 8. The system (1) of any one of the preceding claims, wherein said support (1 1) is L-shaped, with a lower part that is wider than its upper part, or that allows to introduce under the table of operations a fraction of ¡a inferior part wider than ¡a superior part.
9. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (11) aloja en su interior: 9. The system (1) of any of the preceding claims, wherein said support (11) houses inside:
- al menos una batería configurada para permitir que ¡a unidad robótica (4, 5, 8) funcione de manera inaiámbrica;  - at least one battery configured to allow the robotic unit (4, 5, 8) to operate wirelessly;
- una fuente de alimentación configurada para ser conectada a la red eléctrica, ¡o que permite que la unidad robótica (4, 5, 8) funcione de manera cableada;  - a power supply configured to be connected to the mains, or that allows the robotic unit (4, 5, 8) to function in a wired manner;
- un cargador de batería (24); y - al menos un convertidor de corriente o un convertidor de tensión (25). - a battery charger (24); Y - at least one current converter or one voltage converter (25).
10. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (11) aloja en su interior un medio de control (27) configurado para controlar el brazo robótico (15) asociado a dicho soporte (1 1). 10. The system (1) of any of the preceding claims, wherein said support (11) houses inside a control means (27) configured to control the robotic arm (15) associated with said support (1 1) .
1 1. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (11) aloja en su interior un módulo de comunicaciones. 1 1. The system (1) of any of the preceding claims, wherein said support (11) houses a communications module inside.
12. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (1 1 ) aloja en su interior medios de medición (28) para medir el nivel de carga de las baterías comprendidas en dicho soporte (1 1 ). 12. The system (1) of any one of the preceding claims, wherein said support (1 1) houses inside measuring means (28) for measuring the charge level of the batteries included in said support (1 1) .
13. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho soporte (11) aloja en su interior una caja de comunicaciones (29) asociada a dicho sensor de fuerza (16), estando dicha caja de comunicaciones (29) configurada para controlar y procesar dicho sensor de fuerza (29). 13. The system (1) of any of the preceding claims, wherein said support (11) inside houses a communication box (29) associated with said force sensor (16), said communication box (29) being ) configured to control and process said force sensor (29).
14. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicha consola de control (7) comprende un soporte ajustabie (41). 14. The system (1) of any of the preceding claims, wherein said control console (7) comprises an adjustable bracket (41).
15. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dichos medios de selección (51) son una pluralidad de pedales. 15. The system (1) of any of the preceding claims, wherein said selection means (51) are a plurality of pedals.
16. El sistema (1) de la reivindicación 15, en el que un primer pedal de dicha pluralidad de pedales (51) está configurado para activar dos conjuntos de brazos robóticos (12) que llevan herramientas quirúrgicas respectivas; y un segundo pedal de dicha pluralidad de pedales (51) está configurado para activar un conjunto de brazo robótico (12) que lleva un endoscopio. 16. The system (1) of claim 15, wherein a first pedal of said plurality of pedals (51) is configured to activate two sets of robotic arms (12) that carry respective surgical tools; and a second pedal of said plurality of pedals (51) is configured to activate a robotic arm assembly (12) that carries an endoscope.
17. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho monitor de configuración (81) es una pantalla táctil. 17. The system (1) of any of the preceding claims, wherein said configuration monitor (81) is a touch screen.
18. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicho medio de computación (42) está configurado para recibir señales de entrada desde dichos dispositivos hápticos (8), para calcular un movimiento correspondiente de las herramientas quirúrgicas (18) y proporcionar señales de salida correspondientes para mover ios conjuntos de brazos robóticos (12) y herramientas (18). 18. The system (1) of any of the preceding claims, wherein said computing means (42) is configured to receive input signals from said haptic devices (8), to calculate a corresponding movement of the surgical tools (18 ) and provide corresponding output signals to move the sets of robotic arms (12) and tools (18).
19. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicha consola de control (7) comprende medios de computación para determinar, a partir de las fuerzas medidas por dicho sensor de fuerza (18), qué porcentaje de la contribución a la medición se debe a la interacción con el punto de fulcro y qué porcentaje de la contribución a la medición se debe a la interacción con el tejido interno del paciente. 19. The system (1) of any of the preceding claims, wherein said control console (7) comprises computing means for determining, from the forces measured by said force sensor (18), what percentage of the The contribution to the measurement is due to the interaction with the fulcrum point and what percentage of the contribution to the measurement is due to the interaction with the patient's internal tissue.
20. El sistema (1) de la reivindicación 19, en el que dicha consola de control (7) comprende un medio de computación para enviar una fuerza simulada a al menos un dispositivo háptico (8), en el que dicha fuerza simulada se obtiene a partir de la contribución a dicha medición debido a la interacción con el tejido interno del paciente, convirtiéndose dicha fuerza simulada en dicho al menos un dispositivo háptico (8) en una fuerza en la mano correspondiente del cirujano (9). 20. The system (1) of claim 19, wherein said control console (7) comprises a computing means for sending a simulated force to at least one haptic device (8), wherein said simulated force is obtained from the contribution to said measurement due to the interaction with the patient's internal tissue, said simulated force becoming said at least one haptic device (8) in a force in the corresponding hand of the surgeon (9).
21. El sistema (1) de cualquiera de las reivindicaciones 19 o 20, en el que dicha consola de control (7) comprende un medio de computación para la estimación de la posición cartesiana del punto de fulcro a partir de la contribución a dicha medición debido a la interacción con el punto de fulcro y de las coordenadas modeladas a partir de dicho brazo robótico, comprendiendo dicha estimación de la posición cartesiana del punto de fulcro el cálculo de la distancia entre el extremo proximal de la herramienta quirúrgica y el punto de fulcro. 21. The system (1) of any of claims 19 or 20, wherein said control console (7) comprises a computing means for estimating the Cartesian position of the fulcrum point from the contribution to said measurement due to the interaction with the fulcrum point and the coordinates modeled from said robotic arm, said estimation comprising the Cartesian position of the fulcrum point calculating the distance between the proximal end of the surgical tool and the fulcrum point .
22. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicha consola de control (7) comprende además una unidad de reconocimiento de voz (52). 22. The system (1) of any of the preceding claims, wherein said control console (7) further comprises a voice recognition unit (52).
23. El sistema (1) de cualquiera de las reivindicaciones anteriores, en el que dicha consola de control (7) comprende además un segundo monitor (10) configurado para mostrar dicha imagen 3D capturada por dicho medio de captura de imágenes comprendido en dicho endoscopio acoplado a un brazo robótico (15). 23. The system (1) of any of the preceding claims, wherein said control console (7) further comprises a second monitor (10) configured to display said 3D image captured by said image capture means comprised in said endoscope coupled to a robotic arm (15).
24. Un método para manejar un sistema robótico quirúrgico (1) que comprende: 24. A method of handling a robotic surgical system (1) comprising:
- disponer al menos fres unidades robóticas (4, 5, 8) de dicho sistema robótico quirúrgico (1) próximas a una mesa de operaciones (3) sobre la que está tendido un paciente (2), siendo cada unidad robótica (4, 5, 6) independiente de las otras unidades robóticas, comprendiendo cada unidad robótica (4, 5, 6) un soporte (1 ) y un conjunto de brazo robótico (12) que se extiende desde dicho soporte ( 1), comprendiendo dicho conjunto de brazo robótico (12) un brazo robótico (15) que tiene 8 grados de libertad, una herramienta quirúrgica (18) acopiada ai brazo robótico (15) a través de un adaptador de herramienta (19) y un sensor de fuerza de 6 ejes (16); - having at least fres robotic units (4, 5, 8) of said robotic surgical system (1) close to an operating table (3) on which a patient is lying (2), each robotic unit (4, 5 , 6) independent of the other robotic units, each robotic unit (4, 5, 6) comprising a support (1) and a robotic arm assembly (12) extending from said support (1), said arm assembly comprising robotic (12) a robotic arm (15) that has 8 degrees of freedom, a surgical tool (18) coupled to the robotic arm (15) through a tool adapter (19) and a 6-axis force sensor (16);
- guiar el extremo de cada brazo robótico (15) que ¡ieva dicha herramienta quirúrgica (18) hacia un trocar e insertar ¡a herramienta quirúrgica (18) en el trocar, en donde dicho trocar se ha insertado previamente en ia piel dei paciente (2);  - guide the end of each robotic arm (15) that said surgical tool (18) towards a trocar and insert the surgical tool (18) into the trocar, where said trocar has previously been inserted into the patient's skin ( 2);
- controlar desde una consoia de control (7) dichas unidades reboticas (4, 5, 6) desde una ubicación próxima a dicha mesa de operaciones (3), comprendiendo dicho control:  - controlling from said control console (7) said bounce units (4, 5, 6) from a location close to said operating table (3), said control comprising:
- recibir la medición de fuerzas y pares aplicados por ia herramienta quirúrgica (18) dentro de la piel del paciente (2);  - receive the measurement of forces and torques applied by the surgical tool (18) inside the patient's skin (2);
- controlar mediante una pluralidad de dispositivos hápticos (8), proporcionando cada uno de ellos 7 grados de libertad, el movimiento, ia orientación espacial y la apertura/el cierre del extremo distal de la herramienta quirúrgica (18) acoplada a un brazo robótico correspondiente (15), estando cada dispositivo háptico (8) configurado para controlar un brazo robótico (15), en donde el movimiento de un dispositivo háptico (8) produce un movimiento correspondiente de ia herramienta quirúrgica (18) acopiada a un brazo robótico correspondiente (15);  - control by means of a plurality of haptic devices (8), each providing 7 degrees of freedom, movement, spatial orientation and opening / closing of the distal end of the surgical tool (18) coupled to a corresponding robotic arm (15), each haptic device (8) being configured to control a robotic arm (15), wherein the movement of a haptic device (8) produces a corresponding movement of the surgical tool (18) coupled to a corresponding robotic arm ( fifteen);
- activar/desactivar mediante los medios de selección (51) los brazos robóticos (15) que hay que controlar en cada momento;  - activate / deactivate the robotic arms (15) that must be controlled at any time by means of selection (51);
- mostrar en un primer monitor (701) una imagen en 3D capturada por un medio de captura de imágenes comprendido en un endoscopio acoplado a un brazo robótico (15).  - showing on a first monitor (701) a 3D image captured by means of image capture comprised in an endoscope coupled to a robotic arm (15).
El método de la reivindicación 24, que comprende además recibir señales de entrada procedentes de dichos dispositivos hápticos (8) para calcular un movimiento correspondiente de las herramientas quirúrgicas (18) y para proporcionar señales de salida correspondientes para mover los conjuntos de brazos robóticos (12) y las herramientas (18). The method of claim 24, further comprising receiving signals from input from said haptic devices (8) to calculate a corresponding movement of the surgical tools (18) and to provide corresponding output signals to move the robotic arm assemblies (12) and the tools (18).
26. El método de cualquiera de ¡as reivindicaciones 24 o 25, que comprende además determinar, a partir de las fuerzas medidas por dicho sensor de fuerza (16), qué porcentaje de la contribución a ¡as fuerzas medidas se debe a la interacción con el punto de fulcro y qué porcentaje de contribución a las fuerzas medidas se debe a la interacción con el tejido interno del paciente. 26. The method of any of claims 24 or 25, further comprising determining, from the forces measured by said force sensor (16), what percentage of the contribution to the measured forces is due to the interaction with the fulcrum point and what percentage of contribution to the measured forces is due to the interaction with the patient's internal tissue.
27. El método de la reivindicación 26, que comprende además enviar una fuerza simulada a al menos un dispositivo háptico (8), en el que dicha fuerza simulada se obtiene a partir de la contribución a dichas fuerzas medidas debido a la interacción con el tejido interno del paciente, convirtiéndose dicha fuerza simulada en dicho al menos un dispositivo háptico (8) en una fuerza en ¡a mano correspondiente de¡ cirujano (9).  27. The method of claim 26, further comprising sending a simulated force to at least one haptic device (8), wherein said simulated force is obtained from the contribution to said measured forces due to the interaction with the tissue internal to the patient, said simulated force in said at least one haptic device (8) becoming a force in the corresponding hand of the surgeon (9).
28. El método de cualquiera de la reivindicación 26 o 27, que comprende además estimar ¡a posición cartesiana del punto de fulcro a partir de la contribución a dichas fuerzas medidas debido a la interacción con el punto de fulcro y a partir de coordenadas modeladas de dicho brazo robótico, comprendiendo dicha estimación de la posición cartesiana del punto de fulcro el cálculo de ¡a distancia entre el extremo próxima! de la herramienta quirúrgica y el punto de fulcro. 28. The method of any one of claim 26 or 27, further comprising estimating the Cartesian position of the fulcrum point from the contribution to said measured forces due to the interaction with the fulcrum point and from modeled coordinates of said robotic arm, said estimation of the Cartesian position of the fulcrum comprising the calculation of distance between the proximal end! of the surgical tool and the fulcrum point.
29. Un producto de programa informático que comprende instrucciones/códigos del programa informático para realizar el método de acuerdo con cualquiera de las reivindicaciones 24-28. 29. A computer program product comprising instructions / codes of the computer program for performing the method in accordance with any of the claims 24-28.
30. Una memoria/medio legible por ordenador que almacena instrucciones/códigos del programa para realizar el procedimiento de acuerdo con cualquiera de ¡as reivindicaciones 24-28. 30. A computer-readable memory / medium that stores instructions / program codes for performing the procedure according to any of claims 24-28.
PCT/ES2016/070475 2016-06-23 2016-06-23 Surgical robotic system and method for handling a surgical robotic system WO2017220822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070475 WO2017220822A1 (en) 2016-06-23 2016-06-23 Surgical robotic system and method for handling a surgical robotic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070475 WO2017220822A1 (en) 2016-06-23 2016-06-23 Surgical robotic system and method for handling a surgical robotic system

Publications (1)

Publication Number Publication Date
WO2017220822A1 true WO2017220822A1 (en) 2017-12-28

Family

ID=56497797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070475 WO2017220822A1 (en) 2016-06-23 2016-06-23 Surgical robotic system and method for handling a surgical robotic system

Country Status (1)

Country Link
WO (1) WO2017220822A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971150A (en) * 2018-04-20 2020-11-20 柯惠Lp公司 System and method for surgical robot cart placement
CN113456229A (en) * 2020-03-31 2021-10-01 北京图灵微创医疗科技有限公司 Robot system for abdominal cavity operation
US11148297B2 (en) * 2017-12-31 2021-10-19 Asensus Surgical Us, Inc. Force based gesture control of a robotic surgical manipulator
EP3782573A4 (en) * 2018-04-17 2022-01-26 Chengdu Borns Medical Robotics Inc. Laparoscope-holding robot system for laparoscopic surgery
US11534254B2 (en) 2017-07-31 2022-12-27 Chengdu Borns Medical Robotics Inc. Console for operating actuating mechanism
US11547505B2 (en) 2020-10-23 2023-01-10 Chengdu Borns Medical Robotics Inc. Method for controlling a mechanical arm of a surgical robot following the movement of a surgical bed and a device therefor
WO2023283457A1 (en) * 2021-07-08 2023-01-12 Mendaera, Inc. Real time image guided portable robotic intervention system
US11717969B1 (en) * 2022-07-28 2023-08-08 Altec Industries, Inc. Cooperative high-capacity and high-dexterity manipulators
US11918307B1 (en) * 2019-11-15 2024-03-05 Verily Life Sciences Llc Integrating applications in a surgeon console user interface of a robotic surgical system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US7118582B1 (en) 1996-02-20 2006-10-10 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US20090088774A1 (en) * 2007-09-30 2009-04-02 Nitish Swarup Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US20100225209A1 (en) * 2009-03-09 2010-09-09 Intuitive Surgical, Inc. Ergonomic surgeon control console in robotic surgical systems
US8672880B2 (en) 2005-07-11 2014-03-18 Catheter Robotics Inc. Remotely controlled catheter insertion system
WO2014151621A1 (en) * 2013-03-15 2014-09-25 Sri International Hyperdexterous surgical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118582B1 (en) 1996-02-20 2006-10-10 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US8672880B2 (en) 2005-07-11 2014-03-18 Catheter Robotics Inc. Remotely controlled catheter insertion system
US20090088774A1 (en) * 2007-09-30 2009-04-02 Nitish Swarup Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US20100225209A1 (en) * 2009-03-09 2010-09-09 Intuitive Surgical, Inc. Ergonomic surgeon control console in robotic surgical systems
WO2014151621A1 (en) * 2013-03-15 2014-09-25 Sri International Hyperdexterous surgical system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534254B2 (en) 2017-07-31 2022-12-27 Chengdu Borns Medical Robotics Inc. Console for operating actuating mechanism
US11872687B2 (en) 2017-12-31 2024-01-16 Asensus Surgical Us, Inc. Force based gesture control of a robotic surgical manipulator
US11148297B2 (en) * 2017-12-31 2021-10-19 Asensus Surgical Us, Inc. Force based gesture control of a robotic surgical manipulator
EP3782573A4 (en) * 2018-04-17 2022-01-26 Chengdu Borns Medical Robotics Inc. Laparoscope-holding robot system for laparoscopic surgery
US11357583B2 (en) 2018-04-17 2022-06-14 Chengdu Borns Medical Robotics Inc. Laparoscope-holding robot system for laparoscopic surgery
AU2018419295B2 (en) * 2018-04-17 2023-04-13 Chengdu Borns Medical Robotics Inc. Laparoscope-holding robot system for laparoscopic surgery
CN111971150A (en) * 2018-04-20 2020-11-20 柯惠Lp公司 System and method for surgical robot cart placement
US11918307B1 (en) * 2019-11-15 2024-03-05 Verily Life Sciences Llc Integrating applications in a surgeon console user interface of a robotic surgical system
CN113456229A (en) * 2020-03-31 2021-10-01 北京图灵微创医疗科技有限公司 Robot system for abdominal cavity operation
US11547505B2 (en) 2020-10-23 2023-01-10 Chengdu Borns Medical Robotics Inc. Method for controlling a mechanical arm of a surgical robot following the movement of a surgical bed and a device therefor
US11648070B2 (en) 2021-07-08 2023-05-16 Mendaera, Inc. Real time image guided portable robotic intervention system
WO2023283457A1 (en) * 2021-07-08 2023-01-12 Mendaera, Inc. Real time image guided portable robotic intervention system
US11717969B1 (en) * 2022-07-28 2023-08-08 Altec Industries, Inc. Cooperative high-capacity and high-dexterity manipulators

Similar Documents

Publication Publication Date Title
WO2017220822A1 (en) Surgical robotic system and method for handling a surgical robotic system
KR102414405B1 (en) Computer-assisted teleoperated surgical systems and methods
US20220313379A1 (en) Ungrounded master control devices and methods of use
CN109069215B (en) System and method for controlling a surgical instrument
US9179979B2 (en) Medical robot system
KR102171873B1 (en) Haptic glove and Surgical robot system
ES2381975T5 (en) Highly configurable robotic systems for surgery and other uses
KR20170139655A (en) Super Orthopedic Surgical System User Interface Device
KR20160052626A (en) Control unit for a medical device
JP2012005557A (en) Medical robot system
WO2008012386A1 (en) Robotic system for assisting in minimally-invasive surgery, which can position a surgical instrument in response to orders from a surgeon, is not attached to the operating table and does not require pre-calibration of the insertion point
US20150245876A1 (en) Surgical robot control apparatus
ES2965135T3 (en) surgical system
KR20220004994A (en) Robot anatomical manipulation system and method
KR101267914B1 (en) Contol Apparatus for surgical robot
CA2978771A1 (en) Methods for exchanging instruments using a surgical port assembly
US11857285B2 (en) Surgeon input device for minimally invasive surgery
EP3662859A1 (en) Master operation input device and master-slave manipulator
KR102221090B1 (en) User interface device, master console for surgical robot apparatus and operating method of master console
CN113573852A (en) Surgical instrument and medical manipulator system
CN115151214A (en) Controlling movement of surgical robotic arm
KR20220029314A (en) Laparoscopic surgery system with assist robot
CN113194870B (en) User interface device, main control console of surgical robot device, and operation method thereof
WO2004032752A1 (en) Robotic assistant for laparoscopic surgery
ES2200679B1 (en) TELEOPERATION SYSTEM OF ROBOTS FOR TRANSURETRAL RESECTION OF THE PROSTATE.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16741350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16741350

Country of ref document: EP

Kind code of ref document: A1