WO2017082047A1 - Endoscope system - Google Patents

Endoscope system Download PDF

Info

Publication number
WO2017082047A1
WO2017082047A1 PCT/JP2016/081644 JP2016081644W WO2017082047A1 WO 2017082047 A1 WO2017082047 A1 WO 2017082047A1 JP 2016081644 W JP2016081644 W JP 2016081644W WO 2017082047 A1 WO2017082047 A1 WO 2017082047A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
image
arm
unit
imaging unit
Prior art date
Application number
PCT/JP2016/081644
Other languages
French (fr)
Japanese (ja)
Inventor
西澤 幸司
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2017082047A1 publication Critical patent/WO2017082047A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscope system.
  • This application claims priority based on Japanese Patent Application No. 2015-223439 filed in Japan on November 13, 2015, the contents of which are incorporated herein by reference.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an endoscope system in which a time for temporarily suspending treatment is reduced when a plurality of images are switched and observed.
  • An endoscope system is operable to move a first endoscope having a first imaging unit and the first imaging unit, and is arranged in the first endoscope.
  • a second endoscope having a second imaging unit and an irradiation unit that irradiates light to the imaging target site of the second imaging unit, and a light spot generated by irradiating the imaging target site with the light.
  • An image included in the field of view is acquired from the first imaging unit, and the position of the light spot on the image is such that the field of view of the first imaging unit has a predetermined positional relationship with the field of view of the second imaging unit.
  • a control device for operating the arm based on the above.
  • the control device uses an image captured by the first imaging unit as a control procedure for operating the arm.
  • a recognition step for recognizing the light spot, and a movement amount of the arm for moving a predetermined reference position on the image based on the light spot recognized in the recognition step is calculated after the recognition step.
  • a calculation step; and an instruction step for outputting an operation instruction for moving the arm based on the operation amount after the calculation step, and the operation of the arm may be controlled according to the control procedure.
  • the control device measures a first distance that is a distance between the first imaging unit and the imaging target part.
  • a distance step is further included in the control procedure, and in the calculation step, the first distance when the arm reaches the movement target position based on the movement amount is equal to the first distance at the start of movement of the arm. As described above, the movement amount of the arm may be calculated.
  • the control device includes a first distance that is a distance between the first imaging unit and the imaging target part, and the first A distance measuring step for measuring a second distance that is a distance between two imaging units and the imaging target part, and a distance adjusting step for operating the arm so that the first distance is larger than the second distance; May be further included in the control procedure.
  • the control device calculates a distance between the first imaging unit and the light spot.
  • the first distance may be calculated.
  • the endoscope system according to any one of the first to fifth aspects is operable to move the second imaging unit, and the second endoscope A second arm may be further provided, and the control device may control the first endoscope, the second endoscope, and the arm.
  • an endoscope system that has a short time for temporarily suspending a treatment when switching and observing a plurality of images.
  • FIG. 1 is a schematic diagram of an endoscope system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a second endoscope of the endoscope system.
  • FIG. 3 is a block diagram of a main part of the endoscope system.
  • An endoscope system 1 shown in FIG. 1 is an endoscope system that can be used for performing a surgical operation or the like.
  • the endoscope system 1 includes a first endoscope 10, an arm 16, a first image processing device 21, a first sub monitor 22, and a second endoscope 23. , A second image processing device 35, a second sub-monitor 36, a control device 41, and a main monitor 45.
  • the endoscope system 1 according to the present embodiment is used with a known medical instrument that can be used for performing a surgical operation or the like.
  • the endoscope system 1 according to the present embodiment is used for observing, as an imaging target, a range including a region to be treated by a medical instrument inserted into the body through a trocar.
  • the first endoscope 10 acquires an image (wide-angle image) that captures a wide area including a treatment target region and displays it on the first sub-monitor 22 and the main monitor 45. It is an endoscope for making it happen.
  • the first endoscope 10 is connected to the first image processing device 21 by a signal line SL1. Further, the first image processing device 21 and the control device 41 are connected by a signal line SL1 ′. As shown in FIG. 1, the first endoscope 10 includes an insertion unit 11 and an operation unit 15.
  • the insertion part 11 has an elongated rod shape as a whole.
  • the insertion part 11 in this embodiment has a hard property, for example. That is, in the present embodiment, the first endoscope 10 is a rigid endoscope.
  • the insertion portion 11 has a distal end configuration portion 12 and a shaft portion 14.
  • the distal end configuration portion 12 is disposed at an end portion of the insertion portion 11 opposite to the operation portion 15 side (referred to as the distal end portion of the first endoscope 10 in the present embodiment).
  • the distal end configuration unit 12 includes an imaging unit 13 (first imaging unit) that images an imaging target region including a treatment target region.
  • the distal end configuration unit 12 may further include an illuminating unit (not shown) for irradiating illumination light to a region to be imaged by the imaging unit 13.
  • the imaging unit 13 includes, for example, an image sensor and an objective optical system (both not shown) in order to acquire an image of the treatment target region.
  • the image sensor of the imaging unit 13 can acquire, for example, a bright field image of the imaging target part.
  • the imaging unit 13 of the present embodiment can image the laser light emitted from the laser irradiation unit 27 of the second endoscope 23 described later together with the tissue including the treatment target site. That is, in the imaging unit 13 included in the first endoscope 10 of the present embodiment, the laser beam irradiated by the laser irradiation unit 27 of the second endoscope 23 is irradiated to the imaging target site of the first endoscope 10.
  • the sensitivity of the generated light spot A1 is high enough to distinguish the light spot A1 from other parts.
  • the image captured by the imaging unit 13 is transmitted to the first image processing device 21 described later, and further transmitted to the control device 41.
  • the shaft portion 14 has a hard cylindrical shape in order to guide the distal end constituting portion 12 to the vicinity of the treatment target site in the body. Inside the shaft portion 14, a signal line (not shown) from the imaging unit 13 included in the distal end configuration unit 12 is wired.
  • the operation unit 15 is an end of the insertion unit 11 opposite to the distal end component 12 side (the base end of the first endoscope 10 in this embodiment). Arranged). The operation unit 15 is fixed to the shaft unit 14.
  • the insertion portion 11 of the first endoscope 10 of the present embodiment may have a channel for inserting a known endoscope treatment tool.
  • the first endoscope 10 of the present embodiment has a bending portion for bending and deforming a part of the shaft portion 14 in the vicinity of the distal end of the insertion portion 11 in order to move the imaging field of the imaging portion 13. It may be.
  • the first endoscope 10 may be configured to rotate the imaging field of the imaging unit 13 with the center of the field of view as the center of rotation.
  • the rotation of the imaging field of view may be configured to mechanically rotate the imaging unit 13 or may be configured to rotate an image acquired by the image sensor of the imaging unit 13 by image processing.
  • the arm 16 holds the first endoscope 10 in a desired position and posture, or moves the first endoscope 10 in a desired direction.
  • the arm 16 is connected to the control device 41 via the signal line SL2.
  • the arm 16 includes a link portion 17, a plurality of joint portions 18, an actuator 19, and an encoder 20.
  • the link unit 17 includes a distal link unit 17 a having a detachable structure to which the operation unit 15 of the first endoscope 10 can be attached, and a plurality of proximal link units 17 b that connect the plurality of joint units 18. have.
  • the joint portion 18 connects two adjacent link portions 17 so as to be bendable, for example. Further, some of the joint portions 18 constituting the plurality of joint portions 18 may connect the two adjacent link portions 17 so that the respective centerlines are coaxial with each other so as to be rotatable.
  • the upper limit of the degree of freedom of the arm 16 is not particularly limited. The arrangement and number of the joint portions 18 are sufficient if the arm 16 can be provided with the minimum degree of freedom necessary for controlling the position and posture of the first endoscope 10.
  • Actuator 19 is arranged at joint 18.
  • the actuator 19 operates the joint portion 18 according to the operation control by the control device 41.
  • the encoder 20 is disposed at the plurality of joint portions 18. In the present embodiment, encoders 20 are arranged at all joint portions 18 included in the arm 16. The encoder 20 is electrically connected to a control device 41 described later. The encoder 20 can output the movement amount of each joint portion 18 to the control device 41. The encoder 20 may output a signal indicating the absolute angle of each joint 18 to the control device 41.
  • the first image processing device 21 is connected to the imaging unit 13 of the first endoscope 10.
  • the first image processing device 21 receives image information captured by the image capturing unit 13 of the first endoscope 10 from the image capturing unit 13 and outputs the image information to the first sub-monitor 22 as a video signal.
  • the first sub-monitor 22 displays a video based on the video signal output from the first image processing device 21.
  • the first sub-monitor 22 can display a wide-angle image including the treatment target part.
  • the second endoscope 23 is an image (narrow-angle image) in which a narrow region including a treatment target region is an imaging target in the endoscope system 1 according to the present embodiment. It is an endoscope for acquiring and displaying on the second sub-monitor 36 and the main monitor 45.
  • the second endoscope 23 is connected to the second image processing device 35 via the signal line SL3. Further, the second image processing device 35 and the control device 41 are connected via a signal line SL3 ′.
  • the second endoscope 23 has an insertion part 24 and an operation part 33.
  • the insertion portion 24 has an elongated rod shape as a whole.
  • the insertion part 24 in this embodiment has a hard property, for example. That is, in the present embodiment, the second endoscope 23 is a rigid endoscope.
  • the insertion portion 24 has a tip configuration portion 25 and a shaft portion 32.
  • the distal end configuration portion 25 is disposed at an end portion of the insertion portion 24 opposite to the operation portion 33 side (referred to as the distal end portion of the second endoscope 23 in the present embodiment).
  • tip structure part 25 has the imaging part 26 (2nd imaging part) which images the imaging target site
  • the distal end configuration unit 25 may further include an illuminating unit (not illustrated) for irradiating illumination light to a region to be imaged by the imaging unit 26.
  • the imaging unit 26 has, for example, an image sensor and an objective optical system (both not shown) in order to acquire an image of the treatment target region.
  • the image sensor of the imaging unit 26 can acquire, for example, a bright field image of the imaging target part.
  • the imaging unit 26 of the second endoscope 23 may have functions such as zoom and rotation in order to obtain an image that facilitates treatment for the treatment target region.
  • the laser irradiation unit 27 includes a light emitting unit 28 and an emitting unit 31.
  • the light emitting unit 28 includes a laser light source 29 and an optical system 30.
  • a known configuration capable of laser oscillation so as to have brightness and color (wavelength) that can be detected by the imaging unit 13 (see FIG. 1) of the first endoscope 10 may be appropriately selected.
  • Laser light from the laser light source 29 is converted into parallel light through the optical system 30.
  • the optical system 30 of the light emitting unit 28 may include a filter that changes the wavelength of the laser light emitted from the laser light source 29.
  • the emitting unit 31 irradiates the laser beam generated by the light emitting unit 28 toward a predetermined part of the imaging field of the imaging unit 26 of the second endoscope 23.
  • the emitting unit 31 is so close and parallel that the center of the field of view of the imaging unit 26 of the second endoscope 23 and the optical axis of the laser beam can be regarded as substantially coaxial.
  • An optical component for guiding laser light is included. That is, in the present embodiment, the emitting unit 31 emits laser light in parallel with the optical axis of the second endoscope 23 from the vicinity of the imaging unit 26 of the second endoscope 23.
  • the shaft portion 32 has a hard cylindrical shape in order to guide the distal end constituting portion 25 of the second endoscope 23 to the vicinity of the treatment target site in the body.
  • a signal line (not shown) from the imaging unit 26 of the second endoscope 23 is wired inside the shaft portion 32.
  • the axial part 32 may have a treatment tool channel for inserting a treatment tool.
  • the operation portion 33 is an end portion on the opposite side of the distal end component portion 25 side in the insertion portion 24 (in this embodiment, the second inner portion). (Referred to as a proximal end portion of the endoscope 23).
  • the operation part 33 has a grip part 34.
  • the grip part 34 is a part that can be gripped by an operator who operates the second endoscope 23.
  • the operator can move the entire insertion portion 24 by gripping and moving the grip portion 34. That is, in this embodiment, when the second endoscope 23 is used, the operator can move the imaging field of view of the imaging unit 26 of the second endoscope 23 by holding and moving the holding unit 34.
  • An irradiation switch 39 and a viewpoint change switch 40 which will be described later are disposed on the grip portion 34.
  • the second image processing device 35 is connected to the imaging unit 26 of the second endoscope 23.
  • the second image processing device 35 receives image information captured by the image capturing unit 26 of the second endoscope 23 from the image capturing unit 26 and outputs the image information to the second sub-monitor 36 as a video signal.
  • the second sub monitor 36 displays video based on the video signal output from the second image processing device 35.
  • the second sub-monitor 36 can display a narrow-angle image including the treatment target site.
  • the arm input unit 38 is connected to the arm control unit 44 of the control device 41.
  • the arm input unit 38 outputs a predetermined operation signal for operating the arm 16 to the arm control unit 44 by being operated by, for example, a scopist.
  • the irradiation switch 39 is connected to the laser control unit 42 of the control device 41.
  • the irradiation switch 39 is a switch that switches between a state in which laser light is emitted by the laser irradiation unit 27 (on state) and a state in which laser light is not irradiated by the laser irradiation unit 27 (off state).
  • the irradiation switch 39 is disposed on the grip portion 34 of the operation portion 33 of the second endoscope 23. Thereby, an operator who operates the second endoscope 23 can easily operate the irradiation switch 39 when operating the second endoscope 23.
  • the viewpoint change switch 40 is electrically connected to the image control unit 43 of the control device 41.
  • the viewpoint change switch 40 is a change-over switch that selects one desired image from the wide-angle image obtained by the first endoscope 10 and the narrow-angle image obtained by the second endoscope 23.
  • the viewpoint change switch 40 is a push button switch, and switches the image displayed on the main monitor 45 to a wide-angle image or a narrow-angle image each time the viewpoint change switch 40 is pressed.
  • the viewpoint change switch 40 is easily operated by a person who performs a treatment on the treatment target site (for example, a surgeon) or a person who operates the first endoscope 10 or the second endoscope 23 (for example, a scoopist). Can be placed in position.
  • the viewpoint change switch 40 may be disposed in the vicinity of the grip portion 34 of the second endoscope 23 (see FIG. 1). By changing the viewpoint change switch 40 of the present embodiment at a position that can be easily operated by an operator who operates the second endoscope 23, the viewpoint can be changed during the treatment using the second endoscope 23. Is easy.
  • the control device 41 shown in FIGS. 1 and 3 controls the arm 16 and the second endoscope 23. Further, the control device 41 causes the main monitor 45 to display an image from the first endoscope 10, an image from the second endoscope 23, and the like. As shown in FIG. 3, the control device 41 includes a laser control unit 42, an image control unit 43, and an arm control unit 44.
  • the laser control unit 42 outputs an irradiation control signal for switching on / off of laser light irradiation in the laser irradiation unit 27 of the second endoscope 23 to the laser irradiation unit 27 in accordance with an input state with respect to the irradiation switch 39.
  • the laser control unit 42 outputs irradiation information indicating whether the input state to the irradiation switch 39 is on or off to the image control unit 43.
  • the irradiation information may further include, for example, information such as laser light emission timing and laser light intensity, and information such as the size and shape of the light spot A1 (see FIG. 2) by the laser light.
  • the image control unit 43 is connected to the first image processing device 21, the second image processing device 35, the laser control unit 42, the viewpoint change switch 40, and the main monitor 45. Furthermore, the image control unit 43 uses a predetermined information for operating the arm control unit 44 using the image information output from the first image processing device 21 and the image information output from the second image processing device 35. Information (in this embodiment, movement direction information of the arm 16) is generated and output to the arm control unit 44. Further, the image control unit 43 acquires an image captured by the first endoscope 10 and an image captured by the second endoscope 23, and displays an image corresponding to the switching input by the viewpoint change switch 40 to the main monitor 45. Is output.
  • the main monitor 45 may be composed of two screens including a main screen and a sub screen. The image control unit 43 displays an image designated by the switching input by the viewpoint change switch 40 on the main screen and performs the switching input. An image that has not been selected may be displayed on the sub-screen.
  • the arm control unit 44 is connected to the arm input unit 38 and the image control unit 43. Further, the arm control unit 44 is connected to the actuator 19 and the encoder 20 of the arm 16. The arm control unit 44 outputs a drive signal for driving each actuator 19 of the arm 16 according to the operation signal output by the input operation to the arm input unit 38 and the operation direction information output from the image control unit 43. Output to. The arm control unit 44 controls the operation amount of each actuator 19 with reference to the sensor signal output from each encoder 20 of the arm 16.
  • the main monitor 45 is connected to the control device 41 via a signal line SL4. As illustrated in FIG. 3, the main monitor 45 displays an image captured by the imaging unit 13 of the first endoscope 10 and an image captured by the imaging unit 26 of the second endoscope 23 via the image control unit 43. Can be displayed. In the present embodiment, the main monitor 45 selects one image selected by the switching input by the viewpoint change switch 40 from the image captured by the first endoscope 10 and the image captured by the second endoscope 23. indicate. The display state on the main monitor 45 is controlled by the image control unit 43 of the control device 41.
  • the specific configuration of the main monitor 45 is not particularly limited. For example, as the main monitor 45, a known display system that displays an image based on an analog or digital video signal may be appropriately selected.
  • FIG. 4 is a flowchart for explaining a control procedure by the control device 41 of the endoscope system 1 according to the present embodiment.
  • 5 to 7 are schematic diagrams for explaining the operation of the endoscope system 1.
  • the image control unit 43 shown in FIG. 3 uses the laser light emitted by the laser irradiation unit 27 of the second endoscope 23 from the image picked up by the image pickup unit 13 of the first endoscope 10. Is recognized (see recognition step, step S1, FIG. 4).
  • the image control unit 43 recognizes the light spot A1, for example, by distinguishing and identifying the green light spot A1 by the green laser light from the tissue around the light spot A1.
  • the laser irradiation unit 27 generates the light spot A1 by the laser light blinking according to the predetermined light emission pattern
  • the light spot A1 is recognized by extracting the part where the light and darkness changes according to the above pattern from the image. Also good.
  • step S1 when the image control unit 43 can recognize the light spot A1, the image control unit 43 sets the position of the light spot A1 in the image captured by the imaging unit 13 of the first endoscope 10 to a predetermined value.
  • the coordinate system at this time is, for example, a coordinate system with the center of the field of view of the image as the origin.
  • step S1 ends and the process proceeds to step S2.
  • step S1 if the image control unit 43 cannot recognize the light spot A1, step S1 is repeated until the light spot A1 can be recognized.
  • step S1 when the imaging target region is not irradiated with laser light or when the imaging target region is irradiated with laser light, the light spot A1 is captured by the first endoscope 10.
  • the image control unit 43 repeatedly executes step S1 and stands by until the light spot A1 enters the imaging field of the imaging unit 13 of the first endoscope 10 when the imaging unit 13 is outside the imaging field of the unit 13 or the like. Note that, when the laser light irradiation is stopped according to the intentional operation, step S1 may not be started until the laser light irradiation is started.
  • the image control unit 43 may output to the main monitor 45 a message that prompts the two endoscopes 23 to operate.
  • Step S2 is started when the light spot A1 is recognized in step S1.
  • Step S2 is a collation step for collating the positional relationship between the position of the light spot A1 recognized in step S1 (recognition step) and a predetermined reference position on the image.
  • the “predetermined reference position on the image” in the present embodiment is a position at the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10.
  • the image control unit 43 outputs light within a predetermined minute range D ⁇ b> 1 centering on the field center of the image captured by the imaging unit 13 of the first endoscope 10 (imaging field center C ⁇ b> 1 of the imaging unit 13).
  • the “predetermined minute range D1” is substantially the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10 and the light spot A1 generated by the laser light from the laser irradiation unit 27.
  • a range that can be regarded as matching is set in advance.
  • the image control unit 43 determines whether or not the light spot A1 is positioned within the predetermined minute range D1.
  • the process returns to step S1.
  • the image control unit 43 determines that the light spot A1 is not located within the predetermined minute range D1 (No in step S2, see FIG. 6)
  • the process proceeds to step S3.
  • Step S3 is a calculation step for calculating the operating direction of the arm 16 for moving a predetermined reference position on the image to the position of the light spot A1 recognized in step S1 (recognition step).
  • the image control unit 43 sets the light spot from the center of the visual field based on the coordinates of the light spot A1 on the image captured by the imaging unit 13 of the first endoscope 10 and the coordinates of the visual field center in this image. The direction toward A1 is calculated.
  • Step S3 is complete
  • the movement amount of the arm 16 is not calculated, but only the moving direction of the arm 16 is calculated.
  • the repetitive operations from the above step S1 to the following step S4 are performed, and the state where the position of the visual field center C1 is at the position of the light spot A1 (see FIG. 7) is maintained.
  • Step S4 is an instruction step in which the arm controller 44 outputs an operation instruction for operating the arm 16 in the operation direction calculated in step S3 to the arm 16.
  • the arm control unit 44 drives the actuators 19 of the arms 16 so that the imaging field of view of the imaging unit 13 of the first endoscope 10 moves in the operation direction calculated in step S3. Output a signal.
  • the arm control unit 44 calculates the motion amount of each degree of freedom of the arm 16 using inverse kinematics in order to move the first endoscope 10 in the motion direction calculated in step S3. The control amount of each actuator is determined.
  • the arm control unit 44 outputs a drive signal based on this control amount.
  • step S4 the arm control unit 44 recognizes the movement result of the arm 16 with reference to the movement amount information output from each encoder 20 of the arm 16, and adds it to each actuator 19 if necessary.
  • the drive signal is output.
  • Step S4 ends when the arm 16 is moved by a predetermined minute movement amount in the direction calculated in step S3.
  • the predetermined minute movement amount does not exceed the predetermined minute range D1 by one movement of the arm 16 based on the size of the predetermined minute range D1 described in step S2. It is set in advance as a small amount of movement.
  • the movement of the arm 16 in step S4 may be performed so as to be a swing movement of the shaft portion 14 with the trocar as the swing center, for example.
  • step S3 the shaft portion 14 or the imaging unit 13 of the first endoscope 10 can be translated in a direction orthogonal to the center line of the shaft portion 14 of the first endoscope 10.
  • step S4 the first endoscope The ten imaging units 13 may be translated in the direction calculated in step S3. This ends step S4 and returns to step S1.
  • steps S1 to S4 are repeatedly executed, for example, while the endoscope system 1 is operating. Further, the operator may be able to specify on / off of the control flow from step S1 to step S4.
  • the endoscope system 1 When the endoscope system 1 according to this embodiment shown in FIG. 1 is used, the first endoscope 10 and the second endoscope 23 are inserted into the body. That is, the insertion portion 11 of the first endoscope 10 and the insertion portion 24 of the second endoscope 23 are inserted into the body through, for example, a trocar, and the distal end constituting portion 12 of the first endoscope 10 is a treatment target site in the body. The distal end constituting portion 25 of the second endoscope 23 is guided to a position closer to the treatment target site and closer to the first endoscope 10.
  • the distal end constituting portion 12 of the first endoscope 10 and the distal end constituting portion 25 of the second endoscope 23 are both guided in the vicinity of the treatment target site, the distal end constituting portion 12 of the first endoscope 10 and the treatment are treated.
  • the distance to the target part is longer than the distance between the distal end component 25 of the second endoscope 23 and the treatment target part. Therefore, the imaging unit 13 disposed in the distal end configuration unit 12 of the first endoscope 10 has a wider imaging field of view than the imaging unit 26 disposed in the distal end configuration unit 25 of the second endoscope 23. Yes.
  • the first endoscope 10 and the second endoscope 23 are arranged in the body with the above-described distance relationship, the first endoscope 10 includes a treatment target site. A wide-angle image can be captured, and the second endoscope 23 can capture a narrow-angle image including the treatment target region.
  • the first endoscope 10 and the second endoscope 23 may have optical functions such as zoom and macro, but an explanation in consideration of these optical functions is described in this specification. Omitted.
  • the control device 41 moves the arm 16 according to the control procedure from step S1 to step S4 described above. Make it work. By repeating each step from step S1 to step S4, as shown in FIGS. 5 to 7, the visual field center C2 of the narrow-angle image captured by the imaging unit 26 of the second endoscope 23, and the first The state in which the visual field center C1 of the wide-angle image captured by the imaging unit 13 of the endoscope 10 matches is maintained.
  • the imaging unit 26 of the second endoscope 23 moves and the second endoscope 23
  • the laser irradiation unit 27 of the mirror 23 also moves integrally.
  • the light spot A1 due to the laser light applied to the imaging target region including the treatment target region also moves.
  • the light spot A ⁇ b> 1 that was in the center of the field of view of the image captured by the imaging unit 13 of the first endoscope 10 is the result of the operation by the operator on the second endoscope 23, It moves to a position different from the center of the field of view of the image picked up by the endoscope 10.
  • step S2 it is determined that the light spot A1 has moved out of the predetermined minute range D1 including the visual field center, and the visual field center of the image is located in the inner region of the predetermined minute range D1.
  • steps S1 to S4 are repeatedly executed.
  • the first endoscope 10 operates following the movement of the imaging field of the imaging unit 26 of the second endoscope 23.
  • the amount of movement of the first endoscope 10 by executing each step from step S1 to step S4 once is a minute amount of movement, so the second endoscope 23 is moved while moving the second endoscope 23.
  • the moving direction in step S3 is updated in a short time.
  • the first endoscope 10 always follows the second endoscope 23 with the position closest to the second endoscope 23 as a movement target.
  • the operator can check a wide region including the treatment target region for the purpose of confirming the state of the tissue around the treatment target region, the running of the blood vessel, and the like.
  • the first endoscope 10 can be used for such a bird's-eye view.
  • the operator displays a narrow-angle image captured by the imaging unit 26 of the second endoscope 23 on the main monitor 45 or a wide-angle image captured by the imaging unit 13 of the first endoscope 10.
  • the viewpoint changing switch 40 (see FIG. 1) is appropriately operated.
  • the image newly displayed on the main monitor 45 as a result of switching input to the viewpoint change switch 40 is an image in which the same part as the previously displayed image is captured at the center of the visual field.
  • a wide-angle image in which the treatment target part is located at the center of the visual field is displayed on the main monitor 45.
  • a surgeon performing treatment using the endoscope system 1 according to the present embodiment uses the main monitor 45 to perform treatment while viewing a wide-angle image and a narrow-angle image including a treatment target region. Can do.
  • the scopist who operates the first endoscope 10 and the second endoscope 23 of the endoscope system 1 according to the present embodiment uses the first sub-monitor 22 and the second sub-monitor 36 to perform the treatment by the surgeon. Can adjust the position and posture of each endoscope independently or in cooperation with a surgeon's procedure.
  • the center of the visual field is maintained in a state that is substantially consistent with the visual field center.
  • the operator can easily understand the correspondence between the images before and after the operation of the viewpoint change switch 40, and when switching between a wide-angle image and a narrow-angle image for observation. Treatment downtime can be shortened.
  • the endoscope system 1 according to the present embodiment since the pause time in the operation time is short, the entire operation time can be shortened, and the burden on the patient can be reduced.
  • a narrow-angle image and a wide-angle image are appropriately switched in a process in which an operator operating the endoscope system 1 is performing treatment on a treatment target region.
  • the treatment can be advanced while performing a bird's-eye view and a local observation of the treatment target region.
  • the first endoscope 10 automatically follows the second endoscope 23 and moves. The operator does not have to perform an operation of moving the center of the field of view of the wide-angle image to a new treatment target site.
  • a close visual field In a case where treatment is performed using a single endoscope in a conventional laparoscopic operation, during a procedure such as a peeling operation or blood vessel exposure in a close visual field (narrow angle visual field) In some cases, it is necessary to check the state of surrounding tissue or to check the running of the blood vessel currently being treated. In this case, the endoscope that has been brought close to is pulled and observed at a position where the whole can be seen, and the operation of returning the endoscope to the original position is performed after confirming the running of surrounding tissues and blood vessels. .
  • the first close visual field was the operative field (visual field) created by instructing the scopist to be easy to treat. However, by observing the whole, the field of view created first has been destroyed.
  • the surgeon In order to reproduce the condition (field of view) that is easy to treat after the overall observation, the surgeon must repeat the instructions to the scopist, and it takes a long time to be able to return to the treatment. Accumulate. For this reason, in order to avoid this stress and fatigue, the surgeon wants to avoid losing his field of vision with a small amount of confirmation, and may give up even if he wants to confirm the whole.
  • the surrounding tissue can be appropriately confirmed using the wide-angle image, so there is a possibility that safer surgery can be performed.
  • FIG. 8 is a schematic diagram of an endoscope system according to the second embodiment of the present invention.
  • the endoscope system 2 shown in FIG. 8 includes the first endoscope 10, the arm 16, and the main monitor 45 disclosed in the first embodiment.
  • the endoscope system 2 is replaced with the second endoscope 23 disclosed in the first embodiment, instead of the second endoscope 23 and the control device 41 (see FIG. 1) disclosed in the first embodiment.
  • a second endoscope 50 and a control device 53 having different configurations from the control device 41.
  • the second endoscope 50 has a light spot A2 having a circular shape or an annular shape (in FIG. 8, an annular light spot). Is schematically shown.) Has a laser irradiation unit 51 that irradiates a laser beam so as to be generated in the imaging target region.
  • the second endoscope 50 of the present embodiment may be the same as the second endoscope 23 (see FIGS. 1 and 2) disclosed in the first embodiment with respect to the configuration other than the laser irradiation unit 51. .
  • the laser irradiation unit 51 includes a light emitting unit 28 as in the laser irradiation unit 27 of the first embodiment.
  • the optical system 30 includes a lens (not shown) that refracts the laser light so that the laser light emitted from the laser light source 29 is irradiated in a circular shape or an annular shape. ing.
  • the laser light emitted from the laser light source 29 passes through the optical system 30 and becomes circular or annular diffused light.
  • the laser irradiation unit 51 generates a circular or annular light spot A2 having a constant size regardless of the distance to the object irradiated with the laser light (for example, a region to be imaged by the second endoscope 50).
  • the emitting unit 52 for generating the irradiation object is provided in place of the emitting unit 31 (see FIG. 2) disclosed in the first embodiment.
  • the emitting unit 52 irradiates laser light toward a predetermined part within the imaging field of the imaging unit 26 of the second endoscope 50.
  • the emission unit 52 is in a parallel state in which the center of the field of view of the imaging unit 26 of the second endoscope 50 and the optical axis of the laser light are coaxial or close enough to be considered to be substantially coaxial.
  • An optical component for guiding laser light is included.
  • the emitting unit 52 includes a collimator lens (not shown).
  • the laser light is incident on the emission part 52 as circular or annular diffused light from one point in the optical path from the laser light source 29 to the emission part 52, and the cross section perpendicular to the optical axis is circular or
  • the irradiation object is irradiated from the emitting part 52 as parallel light having an annular shape.
  • the laser light emitted from the emitting unit 52 irradiates a circular or annular light spot A2 having a constant size regardless of the distance between the emitting unit 52 and the irradiation object. It can be generated in an object.
  • the irradiation object to which the laser irradiation unit 51 of the present embodiment irradiates laser light is a tissue or the like included in a region to be imaged by the imaging unit 26 of the second endoscope 50 as in the first embodiment.
  • the control device 53 of the endoscope system 2 is similar to the control device 41 disclosed in the first embodiment, in which a laser control unit 42, an image control unit 43, and an arm control unit 44 (see FIG. 3). However, it operates according to a control procedure different from that of the control device 41 disclosed in the first embodiment.
  • control device 53 is one or both of an image captured by the imaging unit 13 of the first endoscope 10 and an image captured by the imaging unit 26 of the second endoscope 50. Are displayed on the main monitor 45 in accordance with a switching input to the viewpoint change switch 40 disposed on the operation unit 33 of the second endoscope 50.
  • the control apparatus 53 controls the 1st endoscope 10 and the arm 16 based on the control procedure different from each step from step S1 to step S4 in said 1st Embodiment.
  • the endoscope system 2 according to the present embodiment has the arm control unit 44 configured so that the first endoscope 10 moves following the movement of the second endoscope 50. One endoscope 10 is moved.
  • the image control unit 43 of the control device 53 of the present embodiment determines the first inner point based on the size of the light spot A2 included in the image captured by the imaging unit 13 of the first endoscope 10.
  • FIG. 9 is a flowchart for explaining a control procedure by the control device 53 of the endoscope system.
  • FIG. 10 is a schematic diagram for explaining the operation of the endoscope system.
  • FIG. 11 is a schematic diagram for explaining the operation of the endoscope system.
  • the image control unit 43 of the control device 53 uses the laser light emitted by the laser irradiating unit 51 of the second endoscope 50 from the image captured by the imaging unit 13 of the first endoscope 10 to the imaging target region.
  • the resulting circular or annular light spot A2 (see, for example, FIG. 8) is recognized (recognition step, step S11, see FIG. 9).
  • step S11 the image control unit 43 performs light based on the shape corresponding to the shape of the light spot A2 generated by the laser irradiated by the laser irradiation unit 51 and the wavelength peculiar to the laser light or the blinking state similar to the first embodiment. Recognize point A2.
  • the image control unit 43 In order for the image control unit 43 to identify the shape, wavelength, and blinking state of the light spot A2, the irradiation information output to the image control unit 43 by the laser control unit 42 is referred to.
  • the image control unit 43 sets the center position of the light spot A2 in the image captured by the imaging unit 13 of the first endoscope 10 to a predetermined value. Is stored as two-dimensional coordinate information. Further, the image control unit 43 stores the diameter of the light spot A2 in association with the coordinate information.
  • the coordinate system at this time is, for example, a coordinate system with the center of the field of view of the image as the origin.
  • step S11 ends and the process proceeds to step S12. If the image control unit 43 cannot recognize the light spot A2 in step S11, step S11 is repeated until the light spot A2 can be recognized.
  • the second endoscope 50 When the image includes an incomplete light spot A2 that has a wavelength unique to the laser light but cannot be recognized as a circle or an annulus, the second endoscope 50 is moved.
  • the image control unit 43 may cause the main monitor 45 to display a message prompting the user.
  • the position of the light spot A2 in the imaging target region moves. If the movement destination of the light spot A2 is substantially planar, the light spot A2 is substantially circular or annular.
  • a light spot A2 that can be recognized by the image control unit 43 as a circle or an annular shape is generated in the imaging field of view of the imaging unit 13 of the first endoscope 10, and the light spot A2 can be recognized in step S11. .
  • Step S12 is a collation step for collating the positional relationship between the position of the light spot A2 recognized in step S11 (recognition step) and a predetermined reference position on the image.
  • the “predetermined reference position on the image” in the present embodiment is a position at the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10.
  • Specific control in step S12 may be the same as step S2 in the first embodiment (see FIGS. 4, 5, and 6).
  • Step S13 shown in FIG. 9 is a distance measuring step for measuring the distance between the imaging unit 13 of the first endoscope 10 and the imaging target part.
  • the image control unit 43 first calculates the distance between the first endoscope 10 and the light spot A2 based on the diameter of the light spot A2 stored in step S11.
  • the actual size of the light spot A2 is a constant size regardless of the distance of the second endoscope 50 with respect to the imaging target site, so that the imaging unit 13 of the first endoscope 10 captures an image.
  • the size of the light spot A2 on the obtained image is inversely proportional to the distance between the first endoscope 10 and the light spot A2.
  • the image control unit 43 uses the information on the diameter of the light spot A2 stored in step S11, and the distance between the first endoscope 10 and the light spot A2, that is, the first endoscope 10 and The distance from the imaging target part can be calculated. Step S13 is completed now and it progresses to Step S14.
  • Step S14 is a calculation step in which the image control unit 43 calculates the operation direction and the operation amount of the arm 16 for moving the predetermined reference position on the image to the position of the light spot A2 recognized in the above step S11. is there.
  • the image control unit 43 starts from the center of the visual field based on the coordinates of the center of the light spot A2 on the image captured by the imaging unit 13 of the first endoscope 10 and the coordinates of the visual field center in this image. The direction toward the light spot A2 is calculated. Further, the image control unit 43 determines the amount of movement of the first endoscope 10 in the above direction based on the information on the distance between the first endoscope 10 and the imaging target part calculated in step S13. calculate.
  • step S14 for example, when moving the field of view of the first endoscope 10 by swinging the first endoscope 10 with the trocar as the swing center, the first endoscope with the trocar as the swing center is used. 10 is calculated by the image control unit 43, and the insertion amount of the shaft unit 14 with respect to the trocar is set so that the distance between the first endoscope 10 and the light spot A2 is equal before and after the movement. 43 is calculated. Thereafter, the image control unit 43 outputs information indicating the movement direction and movement amount of the arm 16 to the arm control unit 44. Step S14 is completed now and it progresses to Step S15.
  • Step S15 is an instruction step for outputting, to the arm 16, an operation instruction for operating the arm 16 based on the operation direction and the operation amount calculated in step S14.
  • the arm posture is controlled toward the target position and posture by a control method using inverse kinematics or the like.
  • the arm control unit 44 converts the swing angle and insertion amount of the shaft portion 14 into an operation amount of each actuator 19 of the arm 16.
  • the arm control unit 44 drives the actuator 19 of the arm 16 so that the imaging field of the imaging unit 13 of the first endoscope 10 moves in the operation direction calculated in step S14 by the above movement amount. Output a signal.
  • step S15 the arm controller 44 refers to the information on the amount of movement output by each encoder 20 of the arm 16, recognizes the movement result of the arm 16, and adds it to each actuator 19 if necessary.
  • the drive signal is output.
  • step S15 when the first endoscope 10 is moved in the movement direction by the movement amount, that is, when each actuator 19 moves the first endoscope 10 until the movement direction and the movement amount are satisfied. , And ends (see FIG. 11). Step S15 is completed now and it progresses to Step S11.
  • steps S11 to S15 are repeatedly executed, for example, while the endoscope system 2 is operating.
  • the endoscope system 2 When the endoscope system 2 according to the present embodiment shown in FIG. 8 is used, the first endoscope 10 and the second endoscope 50 are guided to the treatment target site in the body as in the first embodiment.
  • the first endoscope 10 captures a wide-angle image including the treatment target part
  • the second endoscope 50 captures a narrow-angle image including the treatment target part.
  • the first endoscope 10 performs the control procedure from the above-described steps S11 to S15.
  • the second endoscope 50 automatically moves following the movement of the imaging field of view.
  • the distance between the first endoscope 10 and the light spot A2 is the first endoscope. It is equal to each other before and after 10 movements. As a result, the relationship that the second endoscope 50 captures a narrow-angle image and the first endoscope 10 captures a wide-angle image is maintained (see FIG. 11).
  • the endoscope system 2 according to the present embodiment also has the same effects as the endoscope system 1 according to the first embodiment. Furthermore, according to the endoscope system 2 according to the present embodiment, when the first endoscope 10 is automatically controlled by the control device 53, before and after the movement of the first endoscope 10, the first endoscope The distance between the mirror 10 and the treatment target site is kept constant. As a result, since the size of the tissue or the like included in the wide-angle image does not change substantially before and after the movement of the first endoscope 10, the wide-angle image is changed after the field of view is switched from the wide-angle image to the narrow-angle image. The correspondence between images is easy to understand even when switching to images.
  • FIG. 12 is a schematic diagram showing the configuration of this modification.
  • the second endoscope 50 has an optical system 54 having a configuration different from that of the optical system 30 disclosed in the second embodiment.
  • the optical system 54 irradiates laser light emitted from the laser light source 29 to the imaging target region in two straight lines parallel to each other.
  • the light spot A3 generated by irradiating the imaging target site with the laser light is in the form of two dots separated from each other by a certain distance.
  • the control devices 53 are separated from each other by a certain distance instead of storing the coordinates of the center of the circular or annular light spot A2 in the second embodiment.
  • the coordinates of the intermediate position between the two points constituting one point-like light spot A3 are stored as the coordinates of the center of the light spot A3. Furthermore, instead of storing the diameter of the circular or annular light spot A2 in the second embodiment, the distance between two points constituting the light spot A3 is stored. Even with such a configuration, the same effects as those of the second embodiment can be obtained.
  • FIG. 13 is a schematic diagram showing the operation of the first endoscope in the present modification.
  • the visual field direction of the imaging unit 26 of the second endoscope 50 and the first direction are determined based on the shape of the light spot A ⁇ b> 2 generated when the imaging target site is irradiated with laser light.
  • the control device 53 (see FIG. 8) follows the movement of the second endoscope 50 so that the visual field direction of the imaging unit 13 of the endoscope 10 is substantially coaxial or parallel within a predetermined range. The first endoscope 10 is moved.
  • the control device 53 performs the first operation based on the length and direction of the major axis and minor axis of the ellipse.
  • the first endoscope 10 is moved so that the light spot A2 in the image by the imaging unit 13 of the endoscope 10 is substantially circular or annular.
  • the distance between the light spot A2 and the first endoscope 10 is maintained longer than the distance between the light spot A2 and the second endoscope 50.
  • the first endoscope 10 is automatically moved by the control device 53.
  • the imaging unit 13 of the first endoscope 10 captures a wide-angle image obtained by zooming out the narrow-angle image obtained by the imaging unit 26 of the second endoscope 50 as it is, the main monitor In 45 (see FIG. 8), the correspondence when switching between the narrow-angle image and the wide-angle image is easier to understand.
  • the viewing direction of the wide-angle image by the first endoscope 10 and the second endoscope In some cases, the first endoscope 10 may follow the movement of the second endoscope 50 as much as possible.
  • FIG. 14 is a schematic diagram illustrating a configuration of a main part of an endoscope system according to the third embodiment of the present invention.
  • the endoscope system 3 shown in FIG. 14 includes a second endoscope 23 similar to that of the first embodiment. Further, the endoscope system 3 according to the present embodiment is different from the first endoscope 10 and the control device 41 (see FIG. 1) disclosed in the first embodiment, and the first endoscope 60 and the control. The device 64 is provided in place of the first endoscope 10 and the control device 41 disclosed in the first embodiment.
  • the first endoscope 60 is different in configuration from the first endoscope disclosed in each of the above embodiments in that it can acquire three-dimensional information of the imaging target part.
  • the first endoscope 60 includes two imaging units (a left imaging unit 62 and a right imaging unit 63) instead of the distal end configuration unit 12 (see FIG. 1) disclosed in the first embodiment. It has the front-end
  • the first endoscope 60 of the present embodiment may have the same configuration as the first endoscope 10 disclosed in the first embodiment except for the distal end configuration portion 61.
  • the left imaging unit 62 and the right imaging unit 63 included in the tip configuration unit 61 capture a pair of images having parallax with respect to the same imaging target region.
  • the left imaging unit 62 and the right imaging unit 63 each independently have an image sensor and an objective optical system.
  • the image captured by the left image capturing unit 62 and the image captured by the right image capturing unit 63 are transmitted to the image control unit 66 of the control device 64 through a signal line (not shown) as in the first embodiment.
  • the left imaging unit 62 and the right imaging unit 63 share one image sensor, and an image from the objective optical system viewing the imaging field from the right side and an image from the objective optical system viewing the imaging field from the left side are one.
  • the image sensor may alternately take an image.
  • the arm 16 (see FIG. 1) is attached to the first endoscope 60 as in the first embodiment.
  • the control device 64 includes a laser control unit 65, an image control unit 66, and an arm control unit 67 as in the first embodiment, but according to a control procedure that is partially different from the control device 41 of the first embodiment. Operate.
  • the image control unit 66 determines the distance from the first endoscope 60 to the light spot A1 based on the images acquired by the left imaging unit 62 and the right imaging unit 63 arranged in the distal end configuration unit 61 of the present embodiment. Has the function to measure. As an example, the image control unit 66 measures the distance to the light spot A1 using the parallax of the images acquired by the left imaging unit 62 and the right imaging unit 63. That is, in the present embodiment, the image control unit 66 measures the distance between the first endoscope 60 and the light spot A2 by using the diameter of the light spot A2 in the second embodiment. Regardless of the shape of the points, the distance between the first endoscope 60 and the light spot A1 is measured based on the parallax information of the images captured in pairs.
  • the configuration for measuring the distance between the first endoscope 60 and the light spot A1 is not limited to the above configuration.
  • the distal end configuration portion 61 of the first endoscope 60 may appropriately have a configuration such as a known laser range finder or infrared range finder.
  • FIG. 15 is a flowchart for explaining a control procedure by the control device of the endoscope system.
  • the image control unit 66 of the control device 64 is based on the control by the laser control unit 65 from a predetermined one of the images captured by the left imaging unit 62 and the right imaging unit 63 of the first endoscope 60.
  • the light spot A1 generated in the region to be imaged is recognized by the laser light emitted by the laser irradiation unit 27 of the second endoscope 23 (see the recognition step, step S21, FIG. 15).
  • step S ⁇ b> 21 the image control unit 66 sets a wavelength specific to the laser beam or a blinking state similar to that in the first embodiment for either the image from the left imaging unit 62 or the image from the right imaging unit 63. Based on the above, the light spot A1 is recognized.
  • step S21 when the image control unit 66 can recognize the light spot A1, the image control unit 66 sets the position of the light spot A1 in the image captured by the imaging unit 13 of the first endoscope 60 to a predetermined value. Store as two-dimensional coordinate information.
  • the coordinate system at this time is, for example, a coordinate system having the origin at the center of the visual field in the image used for recognizing the light spot A1 out of the image from the left imaging unit 62 and the image from the right imaging unit 63.
  • the coordinate system on the image used in the steps after step S21 is all the coordinate system in the image used for the recognition of the light spot A1.
  • step S21 ends and the process proceeds to step S22. If the image control unit 66 cannot recognize the light spot A1 in step S21, step S21 is repeated until the light spot A1 can be recognized.
  • Other specific control in step S21 may be the same as step S1 in the first embodiment.
  • Step S22 is a collation step for collating the positional relationship between the position of the light spot A1 recognized in step S21 (recognition step) and a predetermined reference position on the image.
  • the “predetermined reference position on the image” in the present embodiment refers to the image used for recognizing the light spot A1 in step S21 out of the image captured by the left imaging unit 62 and the image captured by the right imaging unit 63. It is the position of the center of the visual field.
  • the image controller 66 determines that the light spot A1 is located within the predetermined minute range D1 described in the first embodiment in the image used for recognition of the light spot A1 in step S21. Or whether the light spot A1 is located outside the predetermined minute range D1.
  • step S22 the image control unit 66 determines whether or not the light spot A1 is located within the predetermined minute range D1.
  • the process proceeds to step S21.
  • the image control unit 66 determines that the light spot A1 is not located within the predetermined minute range D1, the process proceeds to step S23.
  • Step S23 is a calculation step for calculating the distance between the imaging unit 13 of the first endoscope 60 and the imaging target part.
  • the image control unit 66 uses the parallax between the images acquired by the right imaging unit 63 and the left imaging unit 62 arranged in the distal end configuration unit 61, and performs the first endoscope 60 and the light spot A ⁇ b> 1. Measure distance.
  • Step S23 is ended now and it progresses to Step S24.
  • Step S24 is a calculation step for calculating an operation direction and an operation amount of the arm 16 for moving a predetermined reference position on the image to the position of the light spot A1 recognized in the above step S21 (recognition step). .
  • step S24 the position of the light spot A1 in the coordinate system of the image used for recognizing the light spot A1 in step S21 and the distance between the first endoscope 60 and the light spot A1 are used. Similar to step S14 in the second embodiment, the operation amount of each actuator 19 (see FIG. 1) of the arm 16 is calculated. Step S24 is completed now and it progresses to Step S25.
  • Step S25 is an instruction step in which the arm control unit 67 outputs a drive signal for operating the arm 16 to the arm 16 (see FIG. 1) in the same manner as Step S15 in the second embodiment. If the movement of the arm 16 in step S25 is completed, step S25 will be complete
  • step S21 to step S25 are repeatedly executed as in the first embodiment.
  • the distance between the first endoscope 60 and the light spot A1 at the imaging target site can be measured.
  • the diameter of the light spot A1 is not used for measuring the distance between the first endoscope 60 and the light spot A1. That is, in the present embodiment, the image control unit 66 can measure the distance between the first endoscope 60 and the light spot A1 regardless of the shape of the light spot A1.
  • the distance between the first endoscope 60 and the imaging target region is set as in the endoscope system 2 according to the second embodiment.
  • the first endoscope 60 can be automatically moved following the movement of the field of view of the second endoscope 23 while maintaining a constant state.
  • the endoscope system 3 according to the present embodiment also has the same effects as the endoscope system 2 according to the second embodiment.
  • the left imaging unit 62 disposed on the distal end constituting unit 61 of the first endoscope 60 and the shape of the light spot A1 generated in the imaging target region, and The distance between the first endoscope 60 and the light spot A1 can be measured using a set of two images captured by the right imaging unit 63.
  • the image The control unit 66 can recognize the light spot A1 and can measure the distance between the first endoscope 60 and the light spot A1.
  • FIG. 16 is a schematic diagram of an endoscope system according to the fourth embodiment of the present invention.
  • the endoscope system 4 according to the present embodiment shown in FIG. 16 is greatly different from the above embodiments in that a flexible endoscope is provided instead of a rigid endoscope.
  • the endoscope system 4 includes a soft first endoscope 70, a soft second endoscope 80, and a control device 90 connected to the first endoscope 70 and the second endoscope 80. is doing.
  • the endoscope system 4 according to the present embodiment includes a main monitor 45 similar to that of the first embodiment.
  • the first endoscope 70 has an insertion portion 71, a drive portion 75, and a power transmission portion 79.
  • the insertion portion 71 is a flexible elongated member as a whole.
  • the insertion portion 71 has a distal end configuration portion 72, a bending portion 73, and a flexible tube portion 74.
  • the distal end configuration portion 72 may have the same configuration as the distal end configuration portion 12 (see FIG. 1) of the first endoscope 10 disclosed in the first embodiment.
  • the tip configuration unit 72 includes the imaging unit 13 including an image sensor, an objective optical system, and the like, as in the first embodiment.
  • the bending portion 73 is formed in a cylindrical shape as a whole by arranging a plurality of bending pieces (not shown) connected so as to be bendable in the longitudinal axis direction of the insertion portion 71.
  • the bending portion 73 can be actively deformed into a curved shape by power generated by a driving unit 75 described later.
  • the tip constituting portion 72 is connected to the tip of the bending portion 73.
  • the distal end of a flexible tube portion 74 to be described later is connected to the proximal end of the bending portion 73. Since the distal end constituting portion 72 disposed at the distal end of the bending portion 73 is moved by the operation of deforming the bending portion 73 into the curved shape, the imaging field of view of the imaging portion 13 can be moved.
  • the flexible tube portion 74 is a flexible tubular member that can be freely bent. Inside the flexible tube 74, a signal line (not shown) for transmitting an image captured by the imaging unit 13 to the control device 90, an angle wire of a power transmission unit 79 described later, and the like are arranged.
  • the angle wire of the power transmission unit 79 is provided corresponding to the active bending direction in the bending unit 73. For example, in an aspect in which the bending portion 73 bends in the four directions of up, down, left, and right, an angle wire for making a bending operation in the up and down direction and an angle wire for making a bending operation in the left and right direction are in the flexible tube portion 74 It is inserted.
  • the drive unit 75 is connected to the proximal end of the flexible tube unit 74.
  • the drive unit 75 includes an actuator 76 and an encoder 77.
  • the actuator 76 of the drive unit 75 generates power for bending the bending unit 73 via an angle wire of the power transmission unit 79 described later.
  • the actuator 76 of the drive unit 75 can operate according to a drive signal from the arm control unit 93 of the control device 90, for example.
  • the encoder 77 is disposed in the drive unit 75 in order to detect the operation amount of the actuator 76.
  • the encoder 77 is electrically connected to the arm control unit 93 of the control device 90. That is, in the present embodiment, the operation amount of the actuator 76 can be detected by the arm control unit 93.
  • the actuator 76 and the encoder 77 are not particularly limited.
  • the actuator 76 includes a motor that operates according to a drive signal from the arm control unit 93 and a pulley that rotates by power generated by the motor.
  • the actuator 76 includes a number of motors and pulleys corresponding to the number of angle wires.
  • the encoder 77 is provided for each motor, for example, so that the operation amount of each motor can be detected.
  • the power transmission part 79 has an angle wire inserted into the insertion part 71 in order to transmit the power generated by the actuator 76 to the bending part 73.
  • the distal end of the angle wire is connected to the most distal bending piece among the plurality of bending pieces constituting the bending portion 73.
  • the proximal end of the angle wire is connected to the actuator 76 in the drive unit 75.
  • the second endoscope 80 has an insertion portion 81, an operation portion 85, and a power transmission portion 88.
  • the insertion portion 81 is a flexible elongated member as a whole.
  • the insertion portion 81 includes a distal end configuration portion 82, a bending portion 83, and a flexible tube portion 84.
  • the distal end configuration portion 82 may have the same configuration as the distal end configuration portion 25 (see FIGS. 1 and 2) of the second endoscope 23 disclosed in the first embodiment.
  • the tip constituting unit 82 includes the imaging unit 26 including an image sensor, an objective optical system, and the like as in the first embodiment, and the laser irradiation unit 27 as in the first embodiment.
  • the configuration of the bending portion 83 and the flexible tube portion 84 may be the same as that of the bending portion 73 and the flexible tube portion 74 of the first endoscope 70 of the present embodiment.
  • the operation unit 85 is connected to the proximal end of the flexible tube unit 84 of the second endoscope 80 in order for the operator to operate the bending unit 83, the laser irradiation unit 27, and the like.
  • the operation unit 85 has a bending operation input unit 86. Further, the operation unit 85 is provided with the irradiation switch 39 and the viewpoint change switch 40 similar to those in the first embodiment.
  • the bending operation input unit 86 is disposed on the operation unit 85 in order to advance and retract an angle wire of a power transmission unit 88 described later.
  • the configuration of the bending operation input unit 86 may be appropriately selected from configurations applicable to known flexible endoscopes.
  • the bending operation input unit 86 includes an input member (not shown) such as a knob, a dial, or a lever, and a rotating member (not shown) such as a pulley or a drum fixed to the input member and connected to an angle wire. have.
  • the irradiation switch 39 in the present embodiment is arranged on the operation unit 85 of the second endoscope 80 in order to switch the laser irradiation unit 27 to the on state or the off state, as in the first embodiment.
  • the power transmission unit 88 has an angle wire similar to that of the first endoscope 70 of the present embodiment, and is inserted into the insertion unit 81 of the second endoscope 80.
  • the distal end of the angle wire of the second endoscope 80 is connected to a bending piece (not shown) constituting the bending portion 83 of the second endoscope 80, and the proximal end of the angle wire of the second endoscope 80 is bent.
  • the operation input unit 86 is connected.
  • the control device 90 includes a laser control unit 91, an image control unit 92, and an arm control unit 93 as in the first embodiment.
  • the controller 90 is electrically connected to the first endoscope 70, the second endoscope 80, and the main monitor 45, and controls the first endoscope 70, the laser irradiation unit 27, and the main monitor 45.
  • the arm control unit 93 of the control device 90 operates the bending portion 73 of the first endoscope 70.
  • the curved portion 73 of the first endoscope 70 corresponds to the arm 16 (see FIG. 1) of the first endoscope.
  • the control device 90 automatically controls the imaging field of the imaging unit 13 of the first endoscope 70.
  • the control device 90 of the present embodiment follows the movement of the light spot A1 of the laser beam from the laser irradiation unit 27 as the operator moves the imaging unit 26 of the second endoscope 80. This is similar to the first embodiment in that the field of view of one endoscope 70 is moved.
  • the control device 90 bends and deforms the bending portion 73 by controlling the operation of the driving portion 75 of the first endoscope 70, and as a result, moves the imaging portion 13 of the first endoscope 70.
  • the control procedure in the control device 90 may be the same as that in the first embodiment except that the output destination of the operation instruction in step S4 in the first embodiment is the drive unit 75 of the first endoscope 70. .
  • the endoscope system 4 according to the present embodiment has the same effects as the endoscope system 1 according to the first embodiment.
  • the first endoscope 70 and the second endoscope 80 are flexible endoscopes, for example, the first endoscope is applied to the treatment target site through the digestive tract.
  • the mirror 70 and the second endoscope 80 can be easily guided for observation and treatment.
  • the control device 90 does not control the advance / retreat operation of the insertion portion 71 of the first endoscope 70.
  • the endoscope system 4 includes an unillustrated advance / retreat mechanism for moving the insertion portion 71 of the first endoscope 70 forward and backward, for example, and the control device 90 controls the advance / retreat mechanism.
  • the second endoscope 80 follows the movement of the second endoscope 80 while keeping the distance between the first endoscope 70 and the imaging target portion constant, as in the second embodiment.
  • One endoscope 70 can be moved.
  • the first endoscope 70 and the second endoscope 80 in the present embodiment have the left imaging unit 62 and the right imaging unit 63 (see FIG. 14) as in the third embodiment, and have a distance. Measurement may be possible.
  • FIG. 17 is a schematic diagram of an endoscope system according to the fifth embodiment of the present invention.
  • the endoscope system 5 shown in FIG. 17 includes the first endoscope 10, the arm 16, the control device 41, and the main monitor 45 disclosed in the first embodiment.
  • the endoscope system 5 according to the present embodiment replaces the endoscope laser irradiation apparatus 100 that can be inserted into a flexible treatment instrument channel of a known flexible endoscope with the second endoscope 23. Prepared.
  • the configuration of the endoscope to which the endoscope laser irradiation apparatus 100 is attached is not particularly limited. That is, the endoscope system 5 according to the present embodiment may be a system that is used together with the above-described known flexible endoscope, and does not need to include the above-described known flexible endoscope as a component. .
  • the endoscope laser irradiation apparatus 100 includes an insertion part 101 and a main body part 103.
  • the insertion unit 101 includes a laser irradiation unit 27 similar to that in the first embodiment, and a flexible sheath 102 that can be inserted into the flexible treatment instrument channel of the flexible endoscope.
  • the laser irradiation unit 27 in the present embodiment has substantially the same configuration as that of the first embodiment, but has a configuration that is downsized to be smaller than the inner diameter of the flexible treatment instrument channel. Further, the laser irradiation unit 27 can be positioned by locking or coupling with the flexible treatment instrument channel so that the optical axis direction of the laser beam is parallel to the optical axis of the flexible endoscope. In the present embodiment, the optical axis of the laser light emitted by the laser irradiation unit 27 may not be strictly coaxial with or strictly parallel to the visual field center direction of the imaging unit 26 of the flexible endoscope. . However, when the endoscope system 5 according to the present embodiment is used, the optical axis of the laser beam is substantially parallel to the visual field center of the imaging unit 26 of the flexible endoscope. In contrast, it can be considered substantially coaxial.
  • the sheath portion 102 is a flexible cylindrical portion through which a signal line, a power line, and the like that connect the laser irradiation portion 27 and the main body portion 103 are inserted.
  • the outer diameter of the sheath part 102 is smaller than the inner diameter of the flexible treatment instrument channel.
  • the main body unit 103 is disposed outside the body together with the operation unit of the flexible endoscope during use.
  • the main body 103 can be attached to the operation part of the flexible endoscope.
  • the main body 103 includes a connection mechanism (not shown) for connecting the main body 103 to a proximal end base (not shown) of the soft treatment instrument channel of the flexible endoscope, and the irradiation switch 39 disclosed in the first embodiment. And have.
  • the control device 41 has the same configuration as that of the first embodiment, but differs from the first embodiment in the following points.
  • the above-described known flexible endoscope can be connected to the control device 41 of the present embodiment.
  • the control device 41 of the present embodiment displays an image captured by the imaging unit of the known flexible endoscope on the main monitor 45 as a narrow-angle image in the first embodiment.
  • the endoscope laser irradiation apparatus 100 of this embodiment can be connected to the laser control unit 42 of the control apparatus 41.
  • the image control unit 43 of the control device 41 recognizes the light spot A ⁇ b> 1 generated by the laser light irradiated to the imaging target region by the endoscope laser irradiation device 100.
  • the configuration in which the endoscope laser irradiation apparatus 100 is combined with the above-described known flexible endoscope is the second endoscope 23 (see FIG. 1) in the first embodiment. It has a corresponding function.
  • a configuration in which the endoscope laser irradiation apparatus 100 is combined with the flexible endoscope is illustrated, but the endoscope to which the endoscope laser irradiation apparatus 100 is attached is rigid. It can be a mirror.
  • the configuration in which the endoscope laser irradiation apparatus 100 and the rigid endoscope are combined is substantially the same as the second endoscope 23 of the first embodiment in terms of function.
  • the endoscope system 5 is a flexible internal device in a state where the endoscope laser irradiation device 100 is attached to the flexible treatment instrument channel.
  • the control device 41 executes each step from step S1 to step S4 in the first embodiment, so that the first endoscope 10 is a flexible endoscope as in the first embodiment.
  • the endoscope system 5 according to the present embodiment uses a known endoscope instead of the second endoscope 23, the same effects as those of the first embodiment can be obtained.
  • the endoscope laser irradiation apparatus (not shown) of this modification is not provided with a laser light source 29 at the distal end of the insertion portion 101 of the endoscope laser irradiation apparatus 100 of the above embodiment, but outside the body.
  • a laser beam emitted from a known laser device is transmitted to the tip of the insertion portion 101.
  • the endoscope laser irradiation apparatus according to the present embodiment includes an optical fiber disposed in the sheath portion 102, an optical connector that is connected to the optical fiber in the main body portion 103 and can be connected to the laser device, and have. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained.
  • FIG. 18 is a schematic diagram of an endoscope system according to the sixth embodiment of the present invention.
  • FIG. 19 is a schematic diagram for explaining the operation of the endoscope system.
  • An endoscope system 6 shown in FIG. 18 includes a first endoscope 110, an arm 16 (first arm) disclosed in the first embodiment, and a second endoscope similar to the first endoscope 110. It has the endoscope 120, the second arm 130 similar to the first arm 16, and the main monitor 45 similar to the first embodiment.
  • the endoscope system 6 according to the present embodiment replaces the control device 41 disclosed in the first embodiment with the first endoscope 110, the first arm 16, the second endoscope 120, A control device 140 for controlling the second arm 130 and the main monitor 45 is provided.
  • the first endoscope 110 switches the laser irradiation unit 111 similar to the laser irradiation unit 27 included in the second endoscope 23 in the first embodiment and the on / off state of the laser irradiation unit 111. Therefore, the configuration is different from that of the first embodiment. Further, the first endoscope 110 is provided with a viewpoint change switch 131 similar to the viewpoint change switch 40 (see FIG. 1) arranged in the operation unit 33 of the second endoscope 23 in the first embodiment. Has been.
  • the laser irradiation unit 111 of the first endoscope 110 generates a light spot A4 having a wavelength or shape that is distinguishable from the laser irradiation unit 27 of the second endoscope 120 at the imaging target site. That is, the light spot A4 generated by the laser light emitted from the laser irradiation unit 111 of the first endoscope 110 is the laser of the second endoscope 120 in the image captured by the imaging unit 26 of the second endoscope 120. It can be distinguished from the light spot A1 generated by the laser light irradiated by the irradiation unit 27.
  • the light spot A1 generated by the laser light irradiated from the laser irradiation unit 27 of the second endoscope 120 is the image of the first endoscope 110 in the image captured by the imaging unit 13 of the first endoscope 110. It can be distinguished from the light spot A4 generated by the laser beam irradiated by the laser irradiation unit 111.
  • the first endoscope 110 is the same as the first endoscope 10 of the first embodiment except that the first endoscope 110 includes a laser irradiation unit 111 and an irradiation switch 112 and a viewpoint change switch 131 is arranged. I do not care.
  • the first arm 16 of the present embodiment moves the first endoscope 110 of the present embodiment, similarly to the first embodiment described above.
  • the second endoscope 120 is connected to the second arm 130 described later and operates in accordance with the control of the control device 140, as compared with the second endoscope 23 (see FIG. 1) disclosed in the first embodiment. The difference is that it is possible.
  • the second endoscope 120 includes an imaging unit 26, a laser irradiation unit 27, and an irradiation switch 39, similarly to the second endoscope 23 of the first embodiment.
  • the second endoscope 120 may be an endoscope of the same type as the first endoscope 110 as an example.
  • the second endoscope 120 can operate independently of the first endoscope 110 and can also operate in cooperation with the first endoscope 110 under the control of the control device 140 described later. .
  • a description of the specific configuration of the second endoscope 120 is omitted.
  • the second arm 130 is an arm of the same type as the first arm 16 as an example.
  • the second arm 130 can be operated independently of the first arm 16 and can also operate in cooperation with the first arm 16 under the control of the control device 140 described later. A description of the specific configuration of the second arm 130 is omitted.
  • the endoscope system 6 includes a first viewpoint change switch 131 that can be attached to the first endoscope 110 and a second viewpoint that can be attached to the second endoscope 120 as operation input means. And a change switch 132.
  • the configurations and functions of the viewpoint change switches 131 and 132 may be the same as those of the viewpoint change switch 40 (see FIGS. 1 and 3) of the first embodiment.
  • a switching input between a wide-angle image and a narrow-angle image can be performed by operating either of the two viewpoint change switches 131 and 132.
  • the control device 140 is electrically connected to the first endoscope 110, the first arm 16, the second endoscope 120, the second arm 130, and the main monitor 45.
  • the image control unit 43 of the control device 140 is electrically connected to the first endoscope 110 and the second endoscope 120.
  • the image captured by the imaging unit 13 of the first endoscope 110 and the image captured by the imaging unit 26 of the second endoscope 120 are transmitted to the first image processing device 21 and the second image processing device 35. To the image control unit 43.
  • the control device 140 moves the first endoscope 110 following the movement of the second endoscope 120 as in the first embodiment. Furthermore, the control device 140 of the present embodiment can move the second endoscope 120 following the movement of the first endoscope 110.
  • the control procedure of the control device 140 when causing the second endoscope 120 to follow the movement of the first endoscope 110 is the first endoscope in the description of each step from step S1 to step S4 in the first embodiment. 110 and the second endoscope 120 may be replaced.
  • the endoscope system 6 since the first endoscope 110 and the second endoscope 120 have the same type or the same configuration, either the first endoscope 110 or the second endoscope 120 is used. Can be used for wide-angle images and the remaining one can be used for narrow-angle images. For example, as shown in FIGS. 18 and 19, the first endoscope 110 is used to capture a wide-angle image and the second endoscope 120 is used to capture a narrow-angle image, as in the first embodiment. be able to. In this case, the operator previously sets which of the two endoscopes is operated by the operator and which is automatically controlled by the control device 140.
  • first endoscope 110 and the second endoscope 120 may be controlled by the control device 140 in a completely equal relationship. That is, the first endoscope 110 is configured so that the endoscope and the arm that are not operated by the operator follow the endoscope and the arm that are operated by the operator without prior setting by the operator. Alternatively, the control device 140 may automatically control the second endoscope 120.
  • the same effects as those of the first embodiment can be obtained. Furthermore, according to the endoscope system 6 according to the present embodiment, the master-slave relationship between the first endoscope 110 and the second endoscope 120 (the endoscope operated by the operator is the main, the control device 140 The automatically controlled endoscope can be easily replaced.
  • the first endoscope 110 and the second endoscope 120 have a configuration in which exclusive control is performed so as not to irradiate laser light at the same time, the first endoscope 110 can be used.
  • the light spot A4 due to the laser light and the light spot A1 due to the laser light from the second endoscope 120 need not have different wavelengths or shapes.
  • FIG. 20 is a schematic diagram of an endoscope system according to the seventh embodiment of the present invention.
  • the other follows the one of the two endoscopes similarly to the endoscope system 6 disclosed in the sixth embodiment.
  • This system has a master-slave relationship, and this master-slave relationship can be appropriately replaced.
  • the endoscope system 7 according to the present embodiment is characterized in that each of the two endoscopes can move while maintaining a certain distance with respect to the imaging target region.
  • the endoscope system 7 according to the present embodiment is partially different in configuration from the endoscope system 6 disclosed in the sixth embodiment.
  • the endoscope system 7 according to the present embodiment is different from the first endoscope 110 and the second endoscope 120 disclosed in the above sixth embodiment in a part of the first endoscope 150.
  • a second endoscope 160 that is, the first endoscope 150 and the second endoscope 160 have both the left imaging unit 62 and the right imaging unit 63 disclosed in the third embodiment.
  • Both the first endoscope 150 and the second endoscope 160 in the present embodiment can measure the distance to the imaging target part.
  • a configuration for distance measurement in the first endoscope 150 and the second endoscope 160 a configuration such as a known laser range finder or an infrared range finder is applied instead of a distance measurement based on an image. May be.
  • the endoscope system 7 includes the first arm 16 and the second arm 130 disclosed in the sixth embodiment in addition to the first endoscope 150 and the second endoscope 160 described above. , And a main monitor 45, and further includes a control device 170 having a configuration different from that of the control device 140 disclosed in the sixth embodiment.
  • the endoscope system 7 according to the present embodiment further includes an attitude detection device 180 for causing the control device 170 to detect the relative positional relationship between the first arm 16 and the second arm 130.
  • the first arm 16 and the second arm 130 in the endoscope system 7 according to the present embodiment are placed on, for example, the floor. And a coordinate system unique to the second arm 130.
  • Each arm 16, 130 may be movable with respect to the floor or the like.
  • the position of the first endoscope 150 attached to the first arm 16 can be specified using a coordinate system unique to the first arm 16.
  • the position of the second endoscope 160 attached to the second arm 130 can be specified using a coordinate system unique to the second arm 130.
  • the posture detection device 180 of the endoscope system 7 includes, for example, each of the first arm 16 and the second arm 130 in a space such as an operating room in which the endoscope system 7 according to the present embodiment is installed. Detect the position and posture.
  • the posture detection device 180 includes a plurality of markers 181 disposed on each joint portion 18 of the first arm 16 and the second arm 130, and a plurality of cameras 182 that capture the plurality of markers 181 from two or more different directions. have.
  • the plurality of cameras 182 of the posture detection device 180 are connected to the control device 170 of this embodiment.
  • the plurality of markers 181 may be arranged only at positions that define the origin of the coordinate system of each arm 16, 130.
  • the plurality of markers 181 may be arranged on the first endoscope 150 and the second endoscope 160. In these cases, based on the positions and postures of the plurality of markers 181 and the postures of the arms 16 and 130 based on the encoder 20 of the arms 16 and 130, the first arm 16 and the second arm 16 in a space such as an operating room. The position and posture of the arm 130 can be detected.
  • the image control unit 43 uses the first arm 16 and the first arm 16 based on the positions of the plurality of markers 181 captured by the plurality of cameras 182 of the posture detection device 180. A relative positional relationship with the two arms 130 is detected. Further, the control device 170 controls the first arm 16 and the second arm by the arm control unit 44 while referring to the information on the movement amount detected by each encoder 20 of the first arm 16 and each encoder 20 of the second arm 130. 130 actuators 19 are operated.
  • control device 170 measures the distance between the first endoscope 150 and the imaging target region, so that the measured distance matches before and after the movement of the first endoscope 150. 150 positions are controlled. The control device 170 also measures the distance between the second endoscope 23 and the imaging target site for the second endoscope 160 as well as the first endoscope 150, and the measured distance is the first endoscope 160. The position of the second endoscope 160 is controlled so as to match before and after the movement of the second endoscope 160.
  • the first endoscope 150 for capturing a wide-angle image is located farther from the imaging target site than the second endoscope 160 for capturing a narrow-angle image.
  • the control device 170 adjusts the position of each endoscope.
  • the first endoscope 150 is automatically controlled so that the first endoscope 150 follows the movement of the second endoscope 160, the second endoscope 160 is separated from the imaging target region.
  • the control device 170 moves the first endoscope 150 so as to be further away from the imaging target region.
  • the endoscope system 7 according to the present embodiment can maintain the relationship in which the first endoscope 150 always has a wide-angle imaging field of view with respect to the imaging field of the second endoscope 160.
  • the roles of the first endoscope 150 and the second endoscope 160 are shared (for example, the first endoscope 150 captures a wide-angle image, the second endoscope If the setting for changing the above-described role sharing is intentionally performed, the first endoscope 150 and the second endoscope 160 may be No matter how the operator moves, the relationship that each endoscope captures a wide-angle image and a narrow-angle image based on the above-described role sharing is maintained unchanged. In the present embodiment, the first endoscope 150 captures a narrow-angle image and the second endoscope 160 captures a wide-angle image when the operator or the like performs the setting for changing the above-described role assignment. Operation based on the division of roles is also possible.
  • control device 170 in the endoscope system 7 An example of specific control by the control device 170 in the endoscope system 7 according to the present embodiment will be described below.
  • the master-slave relationship between the first endoscope 150 and the second endoscope 160 can be appropriately selected as in the sixth embodiment.
  • the second endoscope 160 is the main endoscope and the first endoscope so that the first endoscope 150 operates depending on the operation of the second endoscope 160.
  • the mirror 150 is a slave endoscope.
  • the first endoscope 150 and the second endoscope 160 are guided to the vicinity of the treatment target site by an operator or the like.
  • the first endoscope 150 and the second endoscope 160 each perform imaging using an area including the treatment target part as an imaging target part.
  • the first endoscope 150 captures a wide-angle image including the treatment target part
  • the second endoscope 160 captures a narrow-angle image including the treatment target part.
  • the operator of the endoscope system 7 according to the present embodiment may mainly operate either the first endoscope 150 or the second endoscope 160, but in the following description, the operator Assume that the second endoscope 160 is operated.
  • the operator sets the first endoscope 150 and the second endoscope 160 so that the treatment target region and its peripheral region are in an appropriate state in the image from each endoscope. Set as follows. That is, the distance between the treatment target site and the first endoscope 150 and the distance between the treatment target site and the second endoscope 160 are set to suitable distances.
  • the operator mainly operates the second endoscope 160 to proceed with observation and treatment of the treatment target site.
  • the control device 170 performs the first control based on the same control procedure as each step from step S21 to step S25 disclosed in the third embodiment. It operates following the movement of the second endoscope 160 while keeping the distance between the one endoscope 150 and the treatment target portion constant.
  • the state where the visual field center of the image captured by the imaging unit 26 of the second endoscope 160 and the visual field center of the image captured by the imaging unit 13 of the first endoscope 150 coincide with each other. Maintained.
  • the control device 170 of the endoscope system 7 follows the change in the distance between the imaging target site and the second endoscope 160 and the distance between the imaging target site and the first endoscope 150. To change. That is, the first endoscope 150 is automatically controlled so that the imaging unit 13 of the first endoscope 150 captures a wide-angle image having a constant magnification with respect to the image captured by the second endoscope 160.
  • the control device 170 in the present modification first measures the distance (first distance) between the imaging target region (light spot A1 in the present embodiment) and the first endoscope 150, and also the imaging target region ( In this embodiment, the distance (second distance) between the light spot A1) and the second endoscope 160 is measured (ranging step).
  • the main endoscope an endoscope operated by the operator
  • the main endoscope is subordinate to the main endoscope so that the ratio between the first distance and the second distance measured in the ranging step is always maintained.
  • the following endoscope an endoscope automatically controlled by the control device 170 is caused to follow (distance adjustment step).
  • the operator widens the imaging field of view of the second endoscope 160 by separating the imaging unit 26 of the second endoscope 160 from the imaging target part. It is conceivable to perform treatment under a wide-angle image.
  • the control device 170 having the distance measurement step and the distance adjustment step the slave first endoscope 150 follows that the imaging field of view of the second endoscope 160 is widened, The imaging field of the imaging unit 13 of the first endoscope 150 is further widened.
  • the endoscope system 7 can perform the same control as described above by switching the master-slave relationship between the first endoscope 150 and the second endoscope 160.
  • the master-slave relationship setting may be linked with control by the viewpoint change switch (viewpoint change switch 40, viewpoint change switch 131).
  • viewpoint change switch viewpoint change switch 40, viewpoint change switch 131.
  • an endoscope that captures an image displayed on the main monitor 45 by the above-described viewpoint change switch is mainly used.
  • the displayed image endoscope visual field
  • the non-displayed endoscope is always maintained in the main monitor. The position is automatically adjusted according to 45 images.
  • the master-slave relationship is automatically switched, so that the field center of the image always matches. It can keep the state to do. It is also possible to make settings mainly for narrow-angle images with the wide-angle side as the slave. In this case, it is the same as in the above-described example that the center of the visual field coincides when a treatment such as peeling is performed on the narrow-angle image on the main side and the image on the main monitor 45 is occasionally switched to the wide-angle image on the slave side. Further, the periphery can be observed here by moving the slave visual field.
  • the endoscope that provides the narrow-angle image on the main side is maintained in a fixed state.
  • the image on the main monitor 45 is switched to the main-side narrow-angle image, the field of view before switching the image is maintained as it is, so that the treatment can be easily restarted.
  • the secondary endoscope matches the visual field center of the primary endoscope at the timing when the main monitor 45 is switched to display the image by the primary endoscope. As described above, the position and orientation are automatically controlled by the method described so far.
  • each endoscope is automatically controlled so as to maintain the distance determined before the treatment is started. Further, the distance between each endoscope and the imaging target part may be changed and determined again during the treatment. In this case, each endoscope is automatically controlled while maintaining the newly determined distance.
  • the master-slave relationship can be dynamically replaced, It is possible to automatically control the visual field without impairing the continuity of treatment while increasing the degree of freedom of visual field operation. As a result, the surgeon can more freely observe the surroundings, can always change the field of view without stress, and can reduce the stress and fatigue associated with the change of field of view.
  • the imaging unit of the first endoscope that captures a wide-angle image with respect to the imaging target part including the treatment target part is irradiated with the second endoscope that captures the narrow-angle image with respect to the imaging target part including the treatment target part.
  • light having a wavelength other than visible light for example, infrared light or ultraviolet light
  • visible light for example, infrared light or ultraviolet light
  • the laser irradiation unit of the second endoscope can also irradiate laser light other than visible light, and the treatment target site is determined by the color of the laser light emitted to the treatment target site included in the imaging target site. It is possible to prevent the detailed state of the information from being obfuscated.
  • the control device is arranged so that the center of the visual field of the image captured by the imaging unit of the first endoscope and the image captured by the imaging unit of the second endoscope coincide with each other.
  • the correspondence between the image by the first endoscope and the image by the second endoscope is that the visual field centers coincide with each other Not limited. That is, the light spot on the image by the imaging unit of the first endoscope is set so that the field of view of the imaging unit of the first endoscope has a predetermined positional relationship with the field of view of the imaging unit of the second endoscope.
  • the arm controller 44 may operate the arm based on the position.
  • the predetermined positional relationship in this case is a relationship in which at least a part of the imaging field of view of the imaging unit of the second endoscope is included in the image by the imaging unit of the first endoscope.
  • the above-mentioned predetermined positional relationship is the second internal relationship. This is a relationship in which at least part of the imaging field of view of the imaging unit of the first endoscope is included in the image by the imaging unit of the endoscope.
  • the endoscope system in each of the above embodiments may control the display of images so that the light spot is not noticeable on the main monitor 45.
  • the image control unit 43 detects the position of the light spot, and then the illuminance of the portion where the light spot is located on the image is light.
  • the luminance of the portion of the main monitor 45 where the light spot is displayed may be reduced so as to be substantially the same as the portion other than the point.
  • the laser control unit 42 emits pulse light that repeatedly turns on and off the laser light at a predetermined cycle, and the image control unit 43 uses the laser light from the image information output from the imaging units 13 and 26. Only frames in which no dots are shown may be output to the main monitor 45.
  • each image processing apparatus may similarly perform control so that the light spot is not noticeable.
  • an irradiation unit that irradiates light that is not laser light may be provided.

Abstract

This endoscope system includes: a first endoscope that has a first imaging unit; an arm that is operable in order to move the first imaging unit and is disposed to the first endoscope; a second endoscope that has an illumination unit which applies light to a second imaging unit and a site to be imaged by the second imaging unit; and a control device that obtains, from the first imaging unit, an image that includes, in a field of vision thereof, a light spot that is generated by the light being applied onto the site to be imaged, and causes the arm to be operated on the basis of the position of the light spot on the image such that the field of vision of the first imaging unit has a predetermined relationship relative to the field of vision of the second imaging unit.

Description

内視鏡システムEndoscope system
 本発明は、内視鏡システムに関する。本願は、2015年11月13日に、日本国に出願された特願2015-223439号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an endoscope system. This application claims priority based on Japanese Patent Application No. 2015-223439 filed in Japan on November 13, 2015, the contents of which are incorporated herein by reference.
 従来、内視鏡を用いた外科手術において、処置対象部位の狭角画像と広角画像とを切り替えながら処置をすることが知られている(たとえば特許文献1参照)。また、処置対象部位を複数の角度から同時に撮像するために複数の撮像部を体内に配することが知られている(たとえば特許文献2参照)。また、処置対象部位の狭角画像を取得するための撮像部と、処置対象部位の広角画像を取得するための別の撮像部とを、それぞれ体内に配することが知られている(たとえば特許文献3参照)。 Conventionally, in a surgical operation using an endoscope, it is known to perform treatment while switching between a narrow-angle image and a wide-angle image of a treatment target region (see, for example, Patent Document 1). In addition, it is known that a plurality of imaging units are arranged in the body in order to simultaneously image a treatment target region from a plurality of angles (see, for example, Patent Document 2). In addition, it is known that an imaging unit for acquiring a narrow-angle image of a treatment target region and another imaging unit for acquiring a wide-angle image of the treatment target region are arranged in the body (for example, patents). Reference 3).
日本国特開平8-336497号公報Japanese Laid-Open Patent Publication No. 8-336497 国際公開第2011/142189号International Publication No. 2011/142189 日本国特開2000-32442号公報Japanese Unexamined Patent Publication No. 2000-32442
 1つの処置対象部位に対して狭角画像や広角画像などの複数の画像を切り替えて観察する場合、各画像の対応関係を容易に把握できることが望ましい。しかしながら、特許文献1,2,3に開示された技術では、複数の画像の視野中心を自動的に一致させる機能を有していないので、各画像の対応関係を操作者が把握するために一旦処置の手を止める場合があり、手術時間の長時間化につながることがある。 When switching and observing a plurality of images such as a narrow-angle image and a wide-angle image for one treatment target site, it is desirable that the correspondence between the images can be easily grasped. However, since the techniques disclosed in Patent Documents 1, 2, and 3 do not have a function of automatically matching the centers of the visual fields of a plurality of images, in order for the operator to grasp the correspondence between the images, The procedure may be stopped, and the operation time may be prolonged.
 本発明は、上述した事情に鑑みてなされたものであって、複数の画像を切り替えて観察する際に処置を一時的に休止する時間が少ない内視鏡システムを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an endoscope system in which a time for temporarily suspending treatment is reduced when a plurality of images are switched and observed.
 本発明の第一の態様に係る内視鏡システムは、第一撮像部を有する第一内視鏡と、前記第一撮像部を移動させるために動作可能であり前記第一内視鏡に配されたアームと、第二撮像部及び前記第二撮像部の撮像対象部位に光を照射する照射部を有する第二内視鏡と、前記光が前記撮像対象部位に照射されて生じる光点を視野内に含む画像を前記第一撮像部から取得し、前記第一撮像部の視野が前記第二撮像部の視野に対して所定の位置関係を有するように前記画像上の前記光点の位置に基づいて前記アームを動作させる制御装置と、を備える。 An endoscope system according to a first aspect of the present invention is operable to move a first endoscope having a first imaging unit and the first imaging unit, and is arranged in the first endoscope. And a second endoscope having a second imaging unit and an irradiation unit that irradiates light to the imaging target site of the second imaging unit, and a light spot generated by irradiating the imaging target site with the light. An image included in the field of view is acquired from the first imaging unit, and the position of the light spot on the image is such that the field of view of the first imaging unit has a predetermined positional relationship with the field of view of the second imaging unit. And a control device for operating the arm based on the above.
 本発明の第二の態様によれば、第一の態様に係る内視鏡システムでは、前記制御装置は、前記アームを動作させるための制御手順として、前記第一撮像部が撮像した画像を用いて前記光点を認識する認識ステップと、前記認識ステップにおいて認識された光点を基準に、前記画像上の所定の基準位置を移動させるための前記アームの動作量を前記認識ステップの後に算出する算出ステップと、前記動作量に基づいて前記アームを移動させるための動作指示を前記算出ステップの後に出力する指示ステップと、を含み、前記制御手順に従って前記アームの動作を制御してもよい。 According to the second aspect of the present invention, in the endoscope system according to the first aspect, the control device uses an image captured by the first imaging unit as a control procedure for operating the arm. A recognition step for recognizing the light spot, and a movement amount of the arm for moving a predetermined reference position on the image based on the light spot recognized in the recognition step is calculated after the recognition step. A calculation step; and an instruction step for outputting an operation instruction for moving the arm based on the operation amount after the calculation step, and the operation of the arm may be controlled according to the control procedure.
 本発明の第三の態様によれば、第二の態様に係る内視鏡システムでは、前記制御装置は、前記第一撮像部と前記撮像対象部位との距離である第一距離を測定する測距ステップを前記制御手順にさらに含み、前記算出ステップにおいて、前記動作量に基づいた移動目標位置に前記アームが到達した時点における前記第一距離が前記アームの移動開始時における第一距離と等しくなるように、前記アームの動作量を算出してもよい。 According to a third aspect of the present invention, in the endoscope system according to the second aspect, the control device measures a first distance that is a distance between the first imaging unit and the imaging target part. A distance step is further included in the control procedure, and in the calculation step, the first distance when the arm reaches the movement target position based on the movement amount is equal to the first distance at the start of movement of the arm. As described above, the movement amount of the arm may be calculated.
 本発明の第四の態様によれば、第二の態様に係る内視鏡システムでは、前記制御装置は、前記第一撮像部と前記撮像対象部位との距離である第一距離と、前記第二撮像部と前記撮像対象部位との距離である第二距離とをそれぞれ測定する測距ステップと、前記第一距離が前記第二距離よりも大きくなるように前記アームを動作させる距離調整ステップとを前記制御手順にさらに含んでいてもよい。 According to a fourth aspect of the present invention, in the endoscope system according to the second aspect, the control device includes a first distance that is a distance between the first imaging unit and the imaging target part, and the first A distance measuring step for measuring a second distance that is a distance between two imaging units and the imaging target part, and a distance adjusting step for operating the arm so that the first distance is larger than the second distance; May be further included in the control procedure.
 本発明の第五の態様によれば、第三または第四の態様に係る内視鏡システムでは、前記制御装置は、前記測距ステップにおいて、前記第一撮像部と前記光点との距離を前記第一距離として算出してもよい。 According to a fifth aspect of the present invention, in the endoscope system according to the third or fourth aspect, in the distance measuring step, the control device calculates a distance between the first imaging unit and the light spot. The first distance may be calculated.
 本発明の第六の態様によれば、第一から第五のいずれかの態様に係る内視鏡システムは、前記第二撮像部を移動させるために動作可能であり前記第二内視鏡に配された第二アームをさらに備え、前記制御装置は、前記第一内視鏡、前記第二内視鏡、及び前記アームを制御してもよい。 According to the sixth aspect of the present invention, the endoscope system according to any one of the first to fifth aspects is operable to move the second imaging unit, and the second endoscope A second arm may be further provided, and the control device may control the first endoscope, the second endoscope, and the arm.
 本発明によれば、複数の画像を切り替えて観察する際の処置を一時的に休止する時間が少ない内視鏡システムを提供することができる。 According to the present invention, it is possible to provide an endoscope system that has a short time for temporarily suspending a treatment when switching and observing a plurality of images.
本発明の第1実施形態に係る内視鏡システムの模式図である。It is a mimetic diagram of an endoscope system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る内視鏡システムの第二内視鏡の模式的な断面図である。It is a typical sectional view of the 2nd endoscope of the endoscope system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る内視鏡システムの要部のブロック図である。It is a block diagram of the principal part of the endoscope system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る内視鏡システムの制御装置による制御手順を説明するためのフローチャートである。It is a flowchart for demonstrating the control procedure by the control apparatus of the endoscope system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the endoscope system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the endoscope system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the endoscope system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る内視鏡システムの模式図である。It is a mimetic diagram of an endoscope system concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る内視鏡システムの制御装置による制御手順を説明するためのフローチャートである。It is a flowchart for demonstrating the control procedure by the control apparatus of the endoscope system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the endoscope system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the endoscope system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る実施形態の変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of embodiment which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る実施形態の他の変形例における第一内視鏡の動作を示す模式図である。It is a mimetic diagram showing operation of the 1st endoscope in other modifications of an embodiment concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る内視鏡システムの要部の構成を示す模式図である。It is a schematic diagram which shows the structure of the principal part of the endoscope system which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る内視鏡システムの制御装置による制御手順を説明するためのフローチャートである。It is a flowchart for demonstrating the control procedure by the control apparatus of the endoscope system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る内視鏡システムの模式図である。It is a schematic diagram of an endoscope system according to a fourth embodiment of the present invention. 本発明の第5実施形態に係る内視鏡システムの模式図である。It is a schematic diagram of an endoscope system according to a fifth embodiment of the present invention. 本発明の第6実施形態に係る内視鏡システムの模式図である。It is a schematic diagram of an endoscope system according to a sixth embodiment of the present invention. 本発明の第6実施形態に係る内視鏡システムの作用を説明するための模式図である。It is a schematic diagram for demonstrating an effect | action of the endoscope system which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る内視鏡システムの模式図である。It is a schematic diagram of an endoscope system according to a seventh embodiment of the present invention.
(第1実施形態)
 本発明の第1実施形態について説明する。図1は、本発明の第1実施形態に係る内視鏡システムの模式図である。図2は、同内視鏡システムの第二内視鏡の模式的な断面図である。
図3は、同内視鏡システムの要部のブロック図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a schematic diagram of an endoscope system according to the first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a second endoscope of the endoscope system.
FIG. 3 is a block diagram of a main part of the endoscope system.
 図1に示す内視鏡システム1は、外科手術等をするために使用することができる内視鏡システムである。
 図1及び図3に示すように、内視鏡システム1は、第一内視鏡10と、アーム16と、第一画像処理装置21と、第一サブモニタ22と、第二内視鏡23と、第二画像処理装置35と、第二サブモニタ36と、制御装置41と、メインモニタ45とを備えている。
 本実施形態に係る内視鏡システム1は、外科手術等をするために使用可能な公知の医療器具とともに使用される。たとえば、本実施形態に係る内視鏡システム1は、トロッカを通じて体内に挿入される医療器具による処置の対象となる部位を含んだ範囲を、撮像対象として観察するために使用される。
An endoscope system 1 shown in FIG. 1 is an endoscope system that can be used for performing a surgical operation or the like.
As shown in FIGS. 1 and 3, the endoscope system 1 includes a first endoscope 10, an arm 16, a first image processing device 21, a first sub monitor 22, and a second endoscope 23. , A second image processing device 35, a second sub-monitor 36, a control device 41, and a main monitor 45.
The endoscope system 1 according to the present embodiment is used with a known medical instrument that can be used for performing a surgical operation or the like. For example, the endoscope system 1 according to the present embodiment is used for observing, as an imaging target, a range including a region to be treated by a medical instrument inserted into the body through a trocar.
 第一内視鏡10は、本実施形態の内視鏡システム1において、処置対象部位を含む広い領域を撮像対象とする画像(広角画像)を取得して第一サブモニタ22及びメインモニタ45に表示させるための内視鏡である。第一内視鏡10は、信号線SL1によって第一画像処理装置21に接続されている。さらに、信号線SL1´によって、第一画像処理装置21と制御装置41とが接続されている。
 図1に示すように、第一内視鏡10は、挿入部11と、操作部15とを有している。
In the endoscope system 1 of the present embodiment, the first endoscope 10 acquires an image (wide-angle image) that captures a wide area including a treatment target region and displays it on the first sub-monitor 22 and the main monitor 45. It is an endoscope for making it happen. The first endoscope 10 is connected to the first image processing device 21 by a signal line SL1. Further, the first image processing device 21 and the control device 41 are connected by a signal line SL1 ′.
As shown in FIG. 1, the first endoscope 10 includes an insertion unit 11 and an operation unit 15.
 挿入部11は、全体として細長の棒状である。本実施形態における挿入部11は、たとえば硬性の性質を有する。すなわち、本実施形態において、第一内視鏡10は硬性鏡である。
 挿入部11は、先端構成部12と、軸部14とを有している。
The insertion part 11 has an elongated rod shape as a whole. The insertion part 11 in this embodiment has a hard property, for example. That is, in the present embodiment, the first endoscope 10 is a rigid endoscope.
The insertion portion 11 has a distal end configuration portion 12 and a shaft portion 14.
 先端構成部12は、挿入部11における操作部15側とは反対側の端部(本実施形態において第一内視鏡10の先端部という)に配置されている。先端構成部12は、処置対象部位を含んだ撮像対象部位を撮像する撮像部13(第一撮像部)を有している。また、先端構成部12は、撮像部13に加えて、撮像部13による撮像対象部位に照明光を照射するための不図示の照明部をさらに有していてもよい。 The distal end configuration portion 12 is disposed at an end portion of the insertion portion 11 opposite to the operation portion 15 side (referred to as the distal end portion of the first endoscope 10 in the present embodiment). The distal end configuration unit 12 includes an imaging unit 13 (first imaging unit) that images an imaging target region including a treatment target region. In addition to the imaging unit 13, the distal end configuration unit 12 may further include an illuminating unit (not shown) for irradiating illumination light to a region to be imaged by the imaging unit 13.
 撮像部13は、処置対象部位の画像を取得するために、たとえばイメージセンサ及び対物光学系(いずれも不図示)を有している。撮像部13のイメージセンサは、たとえば、撮像対象部位の明視野画像を取得することができる。さらに、本実施形態の撮像部13は、後述する第二内視鏡23のレーザー照射部27から照射されるレーザー光を、処置対象部位を含む組織と一緒に撮像することができる。すなわち、本実施形態の第一内視鏡10が備える撮像部13は、第二内視鏡23のレーザー照射部27が照射したレーザー光が第一内視鏡10の撮像対象部位に照射されて生じる光点A1の波長に対して、光点A1を他の部位と区別することができる程度の感度を有している。撮像部13が撮像した画像は、後述する第一画像処理装置21へ送信され、さらに制御装置41へ送信される。 The imaging unit 13 includes, for example, an image sensor and an objective optical system (both not shown) in order to acquire an image of the treatment target region. The image sensor of the imaging unit 13 can acquire, for example, a bright field image of the imaging target part. Furthermore, the imaging unit 13 of the present embodiment can image the laser light emitted from the laser irradiation unit 27 of the second endoscope 23 described later together with the tissue including the treatment target site. That is, in the imaging unit 13 included in the first endoscope 10 of the present embodiment, the laser beam irradiated by the laser irradiation unit 27 of the second endoscope 23 is irradiated to the imaging target site of the first endoscope 10. The sensitivity of the generated light spot A1 is high enough to distinguish the light spot A1 from other parts. The image captured by the imaging unit 13 is transmitted to the first image processing device 21 described later, and further transmitted to the control device 41.
 軸部14は、先端構成部12を体内の処置対象部位の近傍まで案内するために、硬質な筒状の形状を有する。軸部14の内部には、先端構成部12が有する撮像部13からの不図示の信号線などが配線されている。 The shaft portion 14 has a hard cylindrical shape in order to guide the distal end constituting portion 12 to the vicinity of the treatment target site in the body. Inside the shaft portion 14, a signal line (not shown) from the imaging unit 13 included in the distal end configuration unit 12 is wired.
 操作部15は、第一内視鏡10をアーム16に取り付けるために、挿入部11における先端構成部12側とは反対側の端部(本実施形態において第一内視鏡10の基端部という)に配置されている。操作部15は、軸部14に固定されている。 In order to attach the first endoscope 10 to the arm 16, the operation unit 15 is an end of the insertion unit 11 opposite to the distal end component 12 side (the base end of the first endoscope 10 in this embodiment). Arranged). The operation unit 15 is fixed to the shaft unit 14.
 本実施形態の第一内視鏡10の挿入部11は、公知の内視鏡用処置具を挿通するためのチャンネルを有していてもよい。 The insertion portion 11 of the first endoscope 10 of the present embodiment may have a channel for inserting a known endoscope treatment tool.
 また、本実施形態の第一内視鏡10は、撮像部13の撮像視野を移動させるために、挿入部11の先端近傍において軸部14の一部を湾曲変形させるための湾曲部を有していてもよい。また、第一内視鏡10は、撮像部13の撮像視野を、視野中心を回転中心として回転させることができるようになっていてもよい。撮像視野の回転は、撮像部13を機械的に回転させる構成であってもよいし、撮像部13のイメージセンサが取得した画像を画像処理により回転させる構成であってもよい。これらのような撮像視野の移動や回転を可能とすることにより、後述する第二内視鏡23の撮像部26が撮像した画像と第一内視鏡10の撮像部13による画像との対応付けを容易にすることができる。 In addition, the first endoscope 10 of the present embodiment has a bending portion for bending and deforming a part of the shaft portion 14 in the vicinity of the distal end of the insertion portion 11 in order to move the imaging field of the imaging portion 13. It may be. The first endoscope 10 may be configured to rotate the imaging field of the imaging unit 13 with the center of the field of view as the center of rotation. The rotation of the imaging field of view may be configured to mechanically rotate the imaging unit 13 or may be configured to rotate an image acquired by the image sensor of the imaging unit 13 by image processing. By enabling the movement and rotation of the imaging field as described above, the image captured by the imaging unit 26 of the second endoscope 23 described later and the image captured by the imaging unit 13 of the first endoscope 10 are associated with each other. Can be made easier.
 アーム16は、例えば、第一内視鏡10を所望の位置及び姿勢で保持したり、第一内視鏡10を所望の方向へ移動させたりする。アーム16は、信号線SL2を介して制御装置41に接続されている。
 アーム16は、リンク部17と、複数の関節部18と、アクチュエータ19と、エンコーダ20と、を有している。
For example, the arm 16 holds the first endoscope 10 in a desired position and posture, or moves the first endoscope 10 in a desired direction. The arm 16 is connected to the control device 41 via the signal line SL2.
The arm 16 includes a link portion 17, a plurality of joint portions 18, an actuator 19, and an encoder 20.
 リンク部17は、第一内視鏡10の操作部15を取り付けることができる着脱構造を有する遠位側のリンク部17aと、複数の関節部18をつなぐ近位側の複数のリンク部17bとを有している。 The link unit 17 includes a distal link unit 17 a having a detachable structure to which the operation unit 15 of the first endoscope 10 can be attached, and a plurality of proximal link units 17 b that connect the plurality of joint units 18. have.
 関節部18は、隣り合う2つのリンク部17をたとえば屈曲可能に連結する。また、複数の関節部18を構成する各関節部18のうちのいくつかは、隣り合う2つのリンク部17を各々の中心線が同軸となるように回転可能に連結してもよい。
 アーム16の自由度の上限は特に限定されない。関節部18の配置や数等は、第一内視鏡10の位置及び姿勢を制御するために必要最低限の自由度をアーム16に提供できるようになっていれば十分である。
The joint portion 18 connects two adjacent link portions 17 so as to be bendable, for example. Further, some of the joint portions 18 constituting the plurality of joint portions 18 may connect the two adjacent link portions 17 so that the respective centerlines are coaxial with each other so as to be rotatable.
The upper limit of the degree of freedom of the arm 16 is not particularly limited. The arrangement and number of the joint portions 18 are sufficient if the arm 16 can be provided with the minimum degree of freedom necessary for controlling the position and posture of the first endoscope 10.
 アクチュエータ19は、関節部18に配されている。アクチュエータ19は、制御装置41による動作制御に従って関節部18を動作させる。 Actuator 19 is arranged at joint 18. The actuator 19 operates the joint portion 18 according to the operation control by the control device 41.
 エンコーダ20は、複数の関節部18に配置されている。本実施形態では、アーム16に含まれるすべての関節部18にエンコーダ20が配置されている。
 エンコーダ20は、後述する制御装置41に電気的に接続されている。エンコーダ20は、各関節部18の移動量を制御装置41に出力することができる。なお、エンコーダ20は、各関節部18の絶対角度を示す信号を制御装置41に出力するものであってもよい。
The encoder 20 is disposed at the plurality of joint portions 18. In the present embodiment, encoders 20 are arranged at all joint portions 18 included in the arm 16.
The encoder 20 is electrically connected to a control device 41 described later. The encoder 20 can output the movement amount of each joint portion 18 to the control device 41. The encoder 20 may output a signal indicating the absolute angle of each joint 18 to the control device 41.
 図3に示すように、第一画像処理装置21は、第一内視鏡10の撮像部13と接続される。第一画像処理装置21は、第一内視鏡10の撮像部13が撮像した画像情報を撮像部13から受信して第一サブモニタ22に映像信号として出力するとともに、この画像情報を制御装置41の画像制御部43へ出力する。 As shown in FIG. 3, the first image processing device 21 is connected to the imaging unit 13 of the first endoscope 10. The first image processing device 21 receives image information captured by the image capturing unit 13 of the first endoscope 10 from the image capturing unit 13 and outputs the image information to the first sub-monitor 22 as a video signal. To the image control unit 43.
 第一サブモニタ22は、第一画像処理装置21から出力された映像信号に基づいて映像を表示する。第一サブモニタ22は、処置対象部位を含む広角画像を表示することができる。 The first sub-monitor 22 displays a video based on the video signal output from the first image processing device 21. The first sub-monitor 22 can display a wide-angle image including the treatment target part.
 図1から図3までに示すように、第二内視鏡23は、本実施形態に係る内視鏡システム1において、処置対象部位を含む狭い領域を撮像対象とする画像(狭角画像)を取得して第二サブモニタ36及びメインモニタ45に表示させるための内視鏡である。第二内視鏡23は、信号線SL3を介して第二画像処理装置35に接続されている。さらに、信号線SL3´を介して、第二画像処理装置35と制御装置41とが接続されている。
 第二内視鏡23は、挿入部24と、操作部33とを有している。
As shown in FIGS. 1 to 3, the second endoscope 23 is an image (narrow-angle image) in which a narrow region including a treatment target region is an imaging target in the endoscope system 1 according to the present embodiment. It is an endoscope for acquiring and displaying on the second sub-monitor 36 and the main monitor 45. The second endoscope 23 is connected to the second image processing device 35 via the signal line SL3. Further, the second image processing device 35 and the control device 41 are connected via a signal line SL3 ′.
The second endoscope 23 has an insertion part 24 and an operation part 33.
 挿入部24は、全体として細長の棒状である。本実施形態における挿入部24は、たとえば硬性の性質を有する。すなわち、本実施形態において、第二内視鏡23は硬性鏡である。
 挿入部24は、先端構成部25と、軸部32とを有している。
The insertion portion 24 has an elongated rod shape as a whole. The insertion part 24 in this embodiment has a hard property, for example. That is, in the present embodiment, the second endoscope 23 is a rigid endoscope.
The insertion portion 24 has a tip configuration portion 25 and a shaft portion 32.
 先端構成部25は、挿入部24における操作部33側とは反対側の端部(本実施形態において第二内視鏡23の先端部という)に配置されている。先端構成部25は、処置対象部位を含んだ撮像対象部位を撮像する撮像部26(第二撮像部)と、撮像対象部位に対してレーザー光を照射するためのレーザー照射部27とを有している。また、先端構成部25は、撮像部26及びレーザー照射部27に加えて、撮像部26による撮像対象部位に照明光を照射するための不図示の照明部をさらに有していてもよい。 The distal end configuration portion 25 is disposed at an end portion of the insertion portion 24 opposite to the operation portion 33 side (referred to as the distal end portion of the second endoscope 23 in the present embodiment). The front-end | tip structure part 25 has the imaging part 26 (2nd imaging part) which images the imaging target site | part containing the treatment target site | part, and the laser irradiation part 27 for irradiating a laser beam with respect to an imaging target site | part. ing. In addition to the imaging unit 26 and the laser irradiation unit 27, the distal end configuration unit 25 may further include an illuminating unit (not illustrated) for irradiating illumination light to a region to be imaged by the imaging unit 26.
 撮像部26は、処置対象部位の画像を取得するために、たとえばイメージセンサ及び対物光学系(いずれも不図示)を有している。撮像部26のイメージセンサは、たとえば、撮像対象部位の明視野画像を取得することができる。第二内視鏡23の撮像部26は、処置対象部位に対する処置をしやすい画像を取得するために、ズームや回転などの機能を有していてもよい。 The imaging unit 26 has, for example, an image sensor and an objective optical system (both not shown) in order to acquire an image of the treatment target region. The image sensor of the imaging unit 26 can acquire, for example, a bright field image of the imaging target part. The imaging unit 26 of the second endoscope 23 may have functions such as zoom and rotation in order to obtain an image that facilitates treatment for the treatment target region.
 図2に示すように、レーザー照射部27は、発光部28と、出射部31とを有している。 As shown in FIG. 2, the laser irradiation unit 27 includes a light emitting unit 28 and an emitting unit 31.
 発光部28は、レーザー光源29と、光学系30とを有している。レーザー光源29の構成として、第一内視鏡10の撮像部13(図1参照)によって検出可能な明るさ及び色(波長)を有するようにレーザー発振可能な公知の構成が適宜選択されてよい。レーザー光源29からのレーザー光は、光学系30を通じて平行光とされる。なお、発光部28の光学系30は、レーザー光源29が発するレーザー光の波長を変えるフィルタを有していてもよい。 The light emitting unit 28 includes a laser light source 29 and an optical system 30. As the configuration of the laser light source 29, a known configuration capable of laser oscillation so as to have brightness and color (wavelength) that can be detected by the imaging unit 13 (see FIG. 1) of the first endoscope 10 may be appropriately selected. . Laser light from the laser light source 29 is converted into parallel light through the optical system 30. Note that the optical system 30 of the light emitting unit 28 may include a filter that changes the wavelength of the laser light emitted from the laser light source 29.
 出射部31は、発光部28が発生させたレーザー光を、第二内視鏡23の撮像部26の撮像視野内の所定の一部に向けて照射する。たとえば、出射部31は、第二内視鏡23の撮像部26の視野中心とレーザー光の光軸とが実質的に同軸であるとみなすことができる程度に近接して、かつ平行するようにレーザー光を導光するための光学部品を有している。すなわち、本実施形態では、出射部31は、第二内視鏡23の撮像部26近傍から、第二内視鏡23の光軸と平行にレーザー光を出射させる。 The emitting unit 31 irradiates the laser beam generated by the light emitting unit 28 toward a predetermined part of the imaging field of the imaging unit 26 of the second endoscope 23. For example, the emitting unit 31 is so close and parallel that the center of the field of view of the imaging unit 26 of the second endoscope 23 and the optical axis of the laser beam can be regarded as substantially coaxial. An optical component for guiding laser light is included. That is, in the present embodiment, the emitting unit 31 emits laser light in parallel with the optical axis of the second endoscope 23 from the vicinity of the imaging unit 26 of the second endoscope 23.
 軸部32は、第二内視鏡23の先端構成部25を体内の処置対象部位の近傍まで案内するために、硬質な筒状の形状を有する。軸部32の内部には、第二内視鏡23の撮像部26からの不図示の信号線などが配線されている。また、軸部32は、処置具を挿通するための処置具チャンネルを有していてもよい。 The shaft portion 32 has a hard cylindrical shape in order to guide the distal end constituting portion 25 of the second endoscope 23 to the vicinity of the treatment target site in the body. A signal line (not shown) from the imaging unit 26 of the second endoscope 23 is wired inside the shaft portion 32. Moreover, the axial part 32 may have a treatment tool channel for inserting a treatment tool.
 図1に示すように、操作部33は、体外で第二内視鏡23を操作するために、挿入部24における先端構成部25側とは反対側の端部(本実施形態において第二内視鏡23の基端部という)に配置されている。
 操作部33は、把持部34を有している。
As shown in FIG. 1, in order to operate the second endoscope 23 outside the body, the operation portion 33 is an end portion on the opposite side of the distal end component portion 25 side in the insertion portion 24 (in this embodiment, the second inner portion). (Referred to as a proximal end portion of the endoscope 23).
The operation part 33 has a grip part 34.
 把持部34は、第二内視鏡23を操作する操作者が把持することができる部位である。
本実施形態では、操作者が把持部34を把持して移動させることにより、挿入部24全体を移動させることができる。すなわち、本実施形態では、第二内視鏡23の使用時に操作者が把持部34を把持して移動させることにより、第二内視鏡23の撮像部26の撮像視野を移動させることができる。
 把持部34には、後述する照射スイッチ39及び視点変更スイッチ40が配されている。
The grip part 34 is a part that can be gripped by an operator who operates the second endoscope 23.
In the present embodiment, the operator can move the entire insertion portion 24 by gripping and moving the grip portion 34. That is, in this embodiment, when the second endoscope 23 is used, the operator can move the imaging field of view of the imaging unit 26 of the second endoscope 23 by holding and moving the holding unit 34. .
An irradiation switch 39 and a viewpoint change switch 40 which will be described later are disposed on the grip portion 34.
 図3に示すように、第二画像処理装置35は、第二内視鏡23の撮像部26に接続される。第二画像処理装置35は、第二内視鏡23の撮像部26が撮像した画像情報を撮像部26から受信して第二サブモニタ36に映像信号として出力するとともに、この画像情報を制御装置41の画像制御部43へ出力する。
 第二サブモニタ36は、第二画像処理装置35から出力された映像信号に基づいて映像を表示する。第二サブモニタ36は、処置対象部位を含む狭角画像を表示することができる。
As shown in FIG. 3, the second image processing device 35 is connected to the imaging unit 26 of the second endoscope 23. The second image processing device 35 receives image information captured by the image capturing unit 26 of the second endoscope 23 from the image capturing unit 26 and outputs the image information to the second sub-monitor 36 as a video signal. To the image control unit 43.
The second sub monitor 36 displays video based on the video signal output from the second image processing device 35. The second sub-monitor 36 can display a narrow-angle image including the treatment target site.
 図3に示すように、アーム入力部38は、制御装置41のアーム制御部44に接続されている。アーム入力部38は、例えばスコピストによって操作されることにより、アーム16を動作させるための所定の操作信号をアーム制御部44へ出力する。 As shown in FIG. 3, the arm input unit 38 is connected to the arm control unit 44 of the control device 41. The arm input unit 38 outputs a predetermined operation signal for operating the arm 16 to the arm control unit 44 by being operated by, for example, a scopist.
 照射スイッチ39は、制御装置41のレーザー制御部42に接続されている。照射スイッチ39は、レーザー照射部27によりレーザー光が出射されている状態(オン状態)と、レーザー照射部27によりレーザー光が照射されていない状態(オフ状態)とを切り替えるスイッチである。図1に示すように、照射スイッチ39は、第二内視鏡23の操作部33の把持部34に配置されている。これにより、第二内視鏡23を操作する操作者が、第二内視鏡23の操作時に容易に照射スイッチ39を操作することができる。 The irradiation switch 39 is connected to the laser control unit 42 of the control device 41. The irradiation switch 39 is a switch that switches between a state in which laser light is emitted by the laser irradiation unit 27 (on state) and a state in which laser light is not irradiated by the laser irradiation unit 27 (off state). As shown in FIG. 1, the irradiation switch 39 is disposed on the grip portion 34 of the operation portion 33 of the second endoscope 23. Thereby, an operator who operates the second endoscope 23 can easily operate the irradiation switch 39 when operating the second endoscope 23.
 視点変更スイッチ40は、制御装置41の画像制御部43に電気的に接続されている。
 視点変更スイッチ40は、第一内視鏡10によって得られた広角画像と、第二内視鏡23によって得られた狭角画像とから、所望の一方の画像を選択する切り替えスイッチである。たとえば、視点変更スイッチ40は、押しボタンスイッチであり、視点変更スイッチ40が押されるたびに、メインモニタ45に表示される画像を広角画像もしくは狭角画像に切り替える。
 視点変更スイッチ40は、処置対象部位に対して処置を行う者(たとえば執刀医等)や、第一内視鏡10や第二内視鏡23を操作する者(たとえばスコピスト)等が操作しやすい位置に配置可能である。
 たとえば、視点変更スイッチ40は、第二内視鏡23の把持部34の近傍に配置されていてもよい(図1参照)。第二内視鏡23を操作する操作者によって操作しやすい位置に本実施形態の視点変更スイッチ40が配置されていることにより、第二内視鏡23を用いた処置中に視点を変更することが容易である。
The viewpoint change switch 40 is electrically connected to the image control unit 43 of the control device 41.
The viewpoint change switch 40 is a change-over switch that selects one desired image from the wide-angle image obtained by the first endoscope 10 and the narrow-angle image obtained by the second endoscope 23. For example, the viewpoint change switch 40 is a push button switch, and switches the image displayed on the main monitor 45 to a wide-angle image or a narrow-angle image each time the viewpoint change switch 40 is pressed.
The viewpoint change switch 40 is easily operated by a person who performs a treatment on the treatment target site (for example, a surgeon) or a person who operates the first endoscope 10 or the second endoscope 23 (for example, a scoopist). Can be placed in position.
For example, the viewpoint change switch 40 may be disposed in the vicinity of the grip portion 34 of the second endoscope 23 (see FIG. 1). By changing the viewpoint change switch 40 of the present embodiment at a position that can be easily operated by an operator who operates the second endoscope 23, the viewpoint can be changed during the treatment using the second endoscope 23. Is easy.
 図1及び図3に示す制御装置41は、アーム16及び第二内視鏡23を制御する。さらに制御装置41は、メインモニタ45に、第一内視鏡10からの画像や第二内視鏡23からの画像などを表示させる。
 図3に示すように、制御装置41は、レーザー制御部42と、画像制御部43と、アーム制御部44とを備えている。
 レーザー制御部42は、照射スイッチ39に対する入力状態に従って、第二内視鏡23のレーザー照射部27におけるレーザー光の照射のオンオフを切り替えるための照射制御信号をレーザー照射部27へと出力する。さらに、レーザー制御部42は、照射スイッチ39に対する入力状態がオンであるかオフであるかを示す照射情報を画像制御部43へ出力する。前記照射情報は、たとえば、レーザー光の発光タイミングやレーザー光の強さなどの情報や、レーザー光による光点A1(図2参照)の大きさや形状などの情報をさらに含んでいてもよい。
The control device 41 shown in FIGS. 1 and 3 controls the arm 16 and the second endoscope 23. Further, the control device 41 causes the main monitor 45 to display an image from the first endoscope 10, an image from the second endoscope 23, and the like.
As shown in FIG. 3, the control device 41 includes a laser control unit 42, an image control unit 43, and an arm control unit 44.
The laser control unit 42 outputs an irradiation control signal for switching on / off of laser light irradiation in the laser irradiation unit 27 of the second endoscope 23 to the laser irradiation unit 27 in accordance with an input state with respect to the irradiation switch 39. Further, the laser control unit 42 outputs irradiation information indicating whether the input state to the irradiation switch 39 is on or off to the image control unit 43. The irradiation information may further include, for example, information such as laser light emission timing and laser light intensity, and information such as the size and shape of the light spot A1 (see FIG. 2) by the laser light.
 画像制御部43は、第一画像処理装置21,第二画像処理装置35,レーザー制御部42,視点変更スイッチ40,及びメインモニタ45に接続されている。さらに、画像制御部43は、第一画像処理装置21から出力される画像情報と、第二画像処理装置35から出力される画像情報とを用いて、アーム制御部44を動作させるための所定の情報(本実施形態ではアーム16の動作方向情報)を生成してアーム制御部44へと出力する。
 また、画像制御部43は、第一内視鏡10が撮像した画像及び第二内視鏡23が撮像した画像を取得し、視点変更スイッチ40による切り替え入力に対応した画像を、メインモニタ45へと出力する。なお、メインモニタ45は親画面と子画面による2画面で構成されていてもよく、画像制御部43は、視点変更スイッチ40による切り替え入力により指定された画像を親画面に表示させ、切り替え入力により選択されなかった画像を子画面に表示させるようになっていてもよい。
The image control unit 43 is connected to the first image processing device 21, the second image processing device 35, the laser control unit 42, the viewpoint change switch 40, and the main monitor 45. Furthermore, the image control unit 43 uses a predetermined information for operating the arm control unit 44 using the image information output from the first image processing device 21 and the image information output from the second image processing device 35. Information (in this embodiment, movement direction information of the arm 16) is generated and output to the arm control unit 44.
Further, the image control unit 43 acquires an image captured by the first endoscope 10 and an image captured by the second endoscope 23, and displays an image corresponding to the switching input by the viewpoint change switch 40 to the main monitor 45. Is output. The main monitor 45 may be composed of two screens including a main screen and a sub screen. The image control unit 43 displays an image designated by the switching input by the viewpoint change switch 40 on the main screen and performs the switching input. An image that has not been selected may be displayed on the sub-screen.
 アーム制御部44は、アーム入力部38及び画像制御部43に接続されている。さらに、アーム制御部44は、アーム16のアクチュエータ19及びエンコーダ20に接続されている。アーム制御部44は、アーム入力部38に対する入力操作によって出力される操作信号及び画像制御部43から出力される動作方向情報に従って、アーム16の各アクチュエータ19を駆動させるための駆動信号を各アクチュエータ19へ出力する。また、アーム制御部44は、アーム16の各エンコーダ20が出力するセンサ信号を参照して各アクチュエータ19の動作量を制御する。 The arm control unit 44 is connected to the arm input unit 38 and the image control unit 43. Further, the arm control unit 44 is connected to the actuator 19 and the encoder 20 of the arm 16. The arm control unit 44 outputs a drive signal for driving each actuator 19 of the arm 16 according to the operation signal output by the input operation to the arm input unit 38 and the operation direction information output from the image control unit 43. Output to. The arm control unit 44 controls the operation amount of each actuator 19 with reference to the sensor signal output from each encoder 20 of the arm 16.
 図1に示すように、メインモニタ45は、信号線SL4を介して制御装置41に接続されている。図3に示すように、メインモニタ45は、第一内視鏡10の撮像部13が撮像した画像及び第二内視鏡23の撮像部26が撮像した画像を、画像制御部43を介して表示することができる。本実施形態では、メインモニタ45は、第一内視鏡10が撮像した画像と第二内視鏡23が撮像した画像とのうち、視点変更スイッチ40による切り替え入力によって選択された一方の画像を表示する。メインモニタ45における表示状態は、制御装置41の画像制御部43によって制御されている。メインモニタ45の具体的な構成は特に限定されない。たとえば、メインモニタ45として、アナログやデジタルの映像信号に基づいて画像を表示する公知のディスプレイシステムが適宜選択されてよい。 As shown in FIG. 1, the main monitor 45 is connected to the control device 41 via a signal line SL4. As illustrated in FIG. 3, the main monitor 45 displays an image captured by the imaging unit 13 of the first endoscope 10 and an image captured by the imaging unit 26 of the second endoscope 23 via the image control unit 43. Can be displayed. In the present embodiment, the main monitor 45 selects one image selected by the switching input by the viewpoint change switch 40 from the image captured by the first endoscope 10 and the image captured by the second endoscope 23. indicate. The display state on the main monitor 45 is controlled by the image control unit 43 of the control device 41. The specific configuration of the main monitor 45 is not particularly limited. For example, as the main monitor 45, a known display system that displays an image based on an analog or digital video signal may be appropriately selected.
 本実施形態に係る内視鏡システム1における、アーム16の制御について説明する。
 本実施形態に係る内視鏡システム1は、第二内視鏡23の移動に追従して第一内視鏡10が移動するように、制御装置41が第一内視鏡10を移動させる。具体的には、制御装置41のアーム制御部44(図3参照)がアーム16を駆動させて、撮像対象部位に照射されたレーザー光による光点A1が第一内視鏡10による撮像視野内の所定の位置にある状態(図1参照)を維持する。
 第一内視鏡10及びアーム16に対する制御装置41による具体的な制御の一例について、制御手順をステップごとに分けて図4から図7を参照して以下に説明する。図4は、本実施形態に係る内視鏡システム1の制御装置41による制御手順を説明するためのフローチャートである。図5から図7までは、内視鏡システム1の作用を説明するための模式図である。
Control of the arm 16 in the endoscope system 1 according to the present embodiment will be described.
In the endoscope system 1 according to the present embodiment, the control device 41 moves the first endoscope 10 so that the first endoscope 10 moves following the movement of the second endoscope 23. Specifically, the arm control unit 44 (see FIG. 3) of the control device 41 drives the arm 16 so that the light spot A1 due to the laser light irradiated to the imaging target site is within the imaging field of view by the first endoscope 10. The state in the predetermined position (see FIG. 1) is maintained.
An example of specific control by the control device 41 for the first endoscope 10 and the arm 16 will be described below with reference to FIGS. FIG. 4 is a flowchart for explaining a control procedure by the control device 41 of the endoscope system 1 according to the present embodiment. 5 to 7 are schematic diagrams for explaining the operation of the endoscope system 1.
 まず、図3に示す画像制御部43は、第一内視鏡10の撮像部13が撮像した画像から、第二内視鏡23のレーザー照射部27によって照射されるレーザー光により撮像対象部位内に生じる光点A1を認識する(認識ステップ,ステップS1,図4参照)。ステップS1において、画像制御部43は、たとえば緑色のレーザー光による緑色の光点A1を光点A1周辺の組織と区別して識別することにより、光点A1を認識する。また、レーザー照射部27が所定の発光パターンに従って点滅するレーザー光により光点A1を生じさせる場合には、上記のパターンに従って明暗が切り替わる部位を画像中から抽出することによって光点A1を認識してもよい。
 ステップS1において、画像制御部43が光点A1を認識できた場合には、画像制御部43は、第一内視鏡10の撮像部13が撮像した画像における光点A1の位置を、所定の二次元の座標情報として記憶する。このときの座標系は、たとえば、画像の視野中心を原点とした座標系である。光点A1の座標を画像制御部43が記憶した後、ステップS1は終了してステップS2へ進む。
 ステップS1において、画像制御部43が光点A1を認識できなかった場合には、光点A1が認識できるまでステップS1が繰り返される。すなわち、本実施形態では、撮像対象部位に対してレーザー光が照射されていない場合や、撮像対象部位に対してレーザー光は照射されているがその光点A1が第一内視鏡10の撮像部13の撮像視野外にある場合などに、第一内視鏡10の撮像部13の撮像視野内に光点A1が入るまで、画像制御部43はステップS1を繰り返し実行して待機する。なお、レーザー光の照射が意図的な操作に従って停止されている場合には、レーザー光の照射が開始されるまでステップS1が開始されないようになっていてもよい。
 なお、ステップS1において画像制御部43が光点A1を認識できなかった場合、第一内視鏡10の撮像部13の撮像視野内に光点A1が含まれるように操作者がアーム16または第二内視鏡23を動作させることを促すメッセージなどを画像制御部43がメインモニタ45に出力してもよい。
First, the image control unit 43 shown in FIG. 3 uses the laser light emitted by the laser irradiation unit 27 of the second endoscope 23 from the image picked up by the image pickup unit 13 of the first endoscope 10. Is recognized (see recognition step, step S1, FIG. 4). In step S1, the image control unit 43 recognizes the light spot A1, for example, by distinguishing and identifying the green light spot A1 by the green laser light from the tissue around the light spot A1. In addition, when the laser irradiation unit 27 generates the light spot A1 by the laser light blinking according to the predetermined light emission pattern, the light spot A1 is recognized by extracting the part where the light and darkness changes according to the above pattern from the image. Also good.
In step S1, when the image control unit 43 can recognize the light spot A1, the image control unit 43 sets the position of the light spot A1 in the image captured by the imaging unit 13 of the first endoscope 10 to a predetermined value. Store as two-dimensional coordinate information. The coordinate system at this time is, for example, a coordinate system with the center of the field of view of the image as the origin. After the image control unit 43 stores the coordinates of the light spot A1, step S1 ends and the process proceeds to step S2.
In step S1, if the image control unit 43 cannot recognize the light spot A1, step S1 is repeated until the light spot A1 can be recognized. That is, in the present embodiment, when the imaging target region is not irradiated with laser light or when the imaging target region is irradiated with laser light, the light spot A1 is captured by the first endoscope 10. The image control unit 43 repeatedly executes step S1 and stands by until the light spot A1 enters the imaging field of the imaging unit 13 of the first endoscope 10 when the imaging unit 13 is outside the imaging field of the unit 13 or the like. Note that, when the laser light irradiation is stopped according to the intentional operation, step S1 may not be started until the laser light irradiation is started.
In addition, when the image control unit 43 cannot recognize the light spot A1 in step S1, the operator operates the arm 16 or the first eye so that the light spot A1 is included in the imaging field of view of the imaging unit 13 of the first endoscope 10. The image control unit 43 may output to the main monitor 45 a message that prompts the two endoscopes 23 to operate.
 ステップS2は、上記のステップS1において光点A1が認識されたら開始される。
 ステップS2は、上記のステップS1(認識ステップ)において認識された光点A1の位置と、画像上の所定の基準位置との位置関係を照合する照合ステップである。本実施形態における“画像上の所定の基準位置”とは、第一内視鏡10の撮像部13が撮像した画像の視野中心の位置である。
 ステップS2において、画像制御部43は、第一内視鏡10の撮像部13が撮像した画像の視野中心(撮像部13の撮像視野中心C1)を中心とする所定の微小な範囲D1内に光点A1が位置しているか、上記の所定の微小な範囲D1外に光点A1が位置しているかを判定する。本実施形態における“所定の微小な範囲D1”とは、第一内視鏡10の撮像部13が撮像した画像の視野中心とレーザー照射部27によるレーザー光により生じる光点A1とが実質的に一致しているとみなすことができる範囲として、あらかじめ設定されている。
 本実施形態では、ステップS2において、画像制御部43は、光点A1が上記の所定の微小な範囲D1内に位置しているかいないかを判定する。上記の所定の微小な範囲D1内に光点A1が位置していると画像制御部43が判定したとき(ステップS2においてYes,図5参照)には、ステップS1へ戻る。上記の所定の微小な範囲D1内に光点A1が位置していないと画像制御部43が判定したとき(ステップS2においてNo,図6参照)には、ステップS3へ進む。
Step S2 is started when the light spot A1 is recognized in step S1.
Step S2 is a collation step for collating the positional relationship between the position of the light spot A1 recognized in step S1 (recognition step) and a predetermined reference position on the image. The “predetermined reference position on the image” in the present embodiment is a position at the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10.
In step S <b> 2, the image control unit 43 outputs light within a predetermined minute range D <b> 1 centering on the field center of the image captured by the imaging unit 13 of the first endoscope 10 (imaging field center C <b> 1 of the imaging unit 13). It is determined whether the point A1 is located or whether the light spot A1 is located outside the predetermined minute range D1. In the present embodiment, the “predetermined minute range D1” is substantially the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10 and the light spot A1 generated by the laser light from the laser irradiation unit 27. A range that can be regarded as matching is set in advance.
In the present embodiment, in step S2, the image control unit 43 determines whether or not the light spot A1 is positioned within the predetermined minute range D1. When the image control unit 43 determines that the light spot A1 is located within the predetermined minute range D1 (Yes in step S2, see FIG. 5), the process returns to step S1. When the image control unit 43 determines that the light spot A1 is not located within the predetermined minute range D1 (No in step S2, see FIG. 6), the process proceeds to step S3.
 ステップS3は、上記のステップS1(認識ステップ)において認識された光点A1の位置に、画像上の所定の基準位置を移動させるためのアーム16の動作方向を算出する算出ステップである。
 ステップS3において、画像制御部43は、第一内視鏡10の撮像部13が撮像した画像上の光点A1の座標と、この画像における視野中心の座標とに基づいて、視野中心から光点A1に向かう方向を算出する。
 これでステップS3は終了し、ステップS4へ進む。
 なお、本実施形態では、ステップS3においてはアーム16の動作量を算出せず、アーム16の移動方向のみを算出する。本実施形態では、上記のステップS1から下記のステップS4までの繰り返し動作を行い、視野中心C1の位置が光点A1の位置にある状態(図7参照)を維持する。
Step S3 is a calculation step for calculating the operating direction of the arm 16 for moving a predetermined reference position on the image to the position of the light spot A1 recognized in step S1 (recognition step).
In step S3, the image control unit 43 sets the light spot from the center of the visual field based on the coordinates of the light spot A1 on the image captured by the imaging unit 13 of the first endoscope 10 and the coordinates of the visual field center in this image. The direction toward A1 is calculated.
Step S3 is complete | finished now and it progresses to step S4.
In this embodiment, in step S3, the movement amount of the arm 16 is not calculated, but only the moving direction of the arm 16 is calculated. In the present embodiment, the repetitive operations from the above step S1 to the following step S4 are performed, and the state where the position of the visual field center C1 is at the position of the light spot A1 (see FIG. 7) is maintained.
 ステップS4は、ステップS3において算出された動作方向へとアーム16を動作させるための動作指示をアーム制御部44がアーム16に出力する指示ステップである。
 ステップS4において、アーム制御部44は、アーム16の各アクチュエータ19に対して、第一内視鏡10の撮像部13の撮像視野がステップS3において算出された動作方向へと移動するように、駆動信号を出力する。このとき、アーム制御部44は、ステップS3で算出された動作方向に第一内視鏡10を移動させるために、アーム16の各自由度の動作量を、逆運動学を用いて算出し、各アクチュエータの制御量を決定する。アーム制御部44は、この制御量に基づいて、駆動信号を出力する。
 さらに、ステップS4において、アーム制御部44は、アーム16の各エンコーダ20が出力する移動量の情報を参照して、アーム16の移動結果を認識し、必要であれば各アクチュエータ19に対して追加の駆動信号を出力する。ステップS4は、ステップS3において算出された方向へアーム16を所定の微小な移動量だけ移動させたら終了する。なお、上記の所定の微小な移動量は、上記のステップS2において説明した所定の微小な範囲D1の大きさに基づいて、アーム16の一度の移動で上記の所定の微小な範囲D1を超えない程度に小さな移動量としてあらかじめ設定されている。なお、ステップS4におけるアーム16の移動は、たとえばトロッカを揺動中心とした軸部14の揺動移動となるように行われてもよい。また、第一内視鏡10の軸部14の中心線に直交する方向に第一内視鏡10の軸部14または撮像部13を平行移動させることができる場合には、第一内視鏡10の撮像部13をステップS3において算出された方向に平行移動してもよい。
 これでステップS4は終了し、ステップS1へ戻る。
Step S4 is an instruction step in which the arm controller 44 outputs an operation instruction for operating the arm 16 in the operation direction calculated in step S3 to the arm 16.
In step S4, the arm control unit 44 drives the actuators 19 of the arms 16 so that the imaging field of view of the imaging unit 13 of the first endoscope 10 moves in the operation direction calculated in step S3. Output a signal. At this time, the arm control unit 44 calculates the motion amount of each degree of freedom of the arm 16 using inverse kinematics in order to move the first endoscope 10 in the motion direction calculated in step S3. The control amount of each actuator is determined. The arm control unit 44 outputs a drive signal based on this control amount.
Furthermore, in step S4, the arm control unit 44 recognizes the movement result of the arm 16 with reference to the movement amount information output from each encoder 20 of the arm 16, and adds it to each actuator 19 if necessary. The drive signal is output. Step S4 ends when the arm 16 is moved by a predetermined minute movement amount in the direction calculated in step S3. The predetermined minute movement amount does not exceed the predetermined minute range D1 by one movement of the arm 16 based on the size of the predetermined minute range D1 described in step S2. It is set in advance as a small amount of movement. Note that the movement of the arm 16 in step S4 may be performed so as to be a swing movement of the shaft portion 14 with the trocar as the swing center, for example. Further, when the shaft portion 14 or the imaging unit 13 of the first endoscope 10 can be translated in a direction orthogonal to the center line of the shaft portion 14 of the first endoscope 10, the first endoscope The ten imaging units 13 may be translated in the direction calculated in step S3.
This ends step S4 and returns to step S1.
 上記のステップS1からステップS4までの各ステップは、内視鏡システム1が動作している間、たとえば常に繰り返し実行される。また、上記のステップS1からステップS4までの制御フローのオンオフを操作者が指定できるようになっていてもよい。 The above steps S1 to S4 are repeatedly executed, for example, while the endoscope system 1 is operating. Further, the operator may be able to specify on / off of the control flow from step S1 to step S4.
 本実施形態に係る内視鏡システム1の作用について説明する。
 図1に示す本実施形態に係る内視鏡システム1の使用時には、第一内視鏡10及び第二内視鏡23が体内に挿入される。すなわち、第一内視鏡10の挿入部11及び第二内視鏡23の挿入部24が、たとえばトロッカを通じて体内に挿入され、第一内視鏡10の先端構成部12が体内の処置対象部位の近傍に案内され、第二内視鏡23の先端構成部25が、処置対象部位の近傍で第一内視鏡10よりもさらに近い位置まで案内される。
The operation of the endoscope system 1 according to this embodiment will be described.
When the endoscope system 1 according to this embodiment shown in FIG. 1 is used, the first endoscope 10 and the second endoscope 23 are inserted into the body. That is, the insertion portion 11 of the first endoscope 10 and the insertion portion 24 of the second endoscope 23 are inserted into the body through, for example, a trocar, and the distal end constituting portion 12 of the first endoscope 10 is a treatment target site in the body. The distal end constituting portion 25 of the second endoscope 23 is guided to a position closer to the treatment target site and closer to the first endoscope 10.
 第一内視鏡10の先端構成部12及び第二内視鏡23の先端構成部25がともに処置対象部位の近傍に案内された状態において、第一内視鏡10の先端構成部12と処置対象部位との距離は、第二内視鏡23の先端構成部25と処置対象部位との距離よりも長い。そのため、第一内視鏡10の先端構成部12に配された撮像部13は、第二内視鏡23の先端構成部25に配された撮像部26よりも撮像視野が広い状態となっている。すなわち、上記のような距離の関係を有して第一内視鏡10と第二内視鏡23とがそれぞれ体内に配されている場合に、第一内視鏡10は処置対象部位を含んだ広角画像を撮像することができ、第二内視鏡23は処置対象部位を含んだ狭角画像を撮像することができる。なお、本実施形態において、第一内視鏡10及び第二内視鏡23がズームやマクロなどの光学機能を有していてもよいが、これらの光学機能を考慮した説明は本明細書では省略される。 In the state where the distal end constituting portion 12 of the first endoscope 10 and the distal end constituting portion 25 of the second endoscope 23 are both guided in the vicinity of the treatment target site, the distal end constituting portion 12 of the first endoscope 10 and the treatment are treated. The distance to the target part is longer than the distance between the distal end component 25 of the second endoscope 23 and the treatment target part. Therefore, the imaging unit 13 disposed in the distal end configuration unit 12 of the first endoscope 10 has a wider imaging field of view than the imaging unit 26 disposed in the distal end configuration unit 25 of the second endoscope 23. Yes. That is, when the first endoscope 10 and the second endoscope 23 are arranged in the body with the above-described distance relationship, the first endoscope 10 includes a treatment target site. A wide-angle image can be captured, and the second endoscope 23 can capture a narrow-angle image including the treatment target region. In the present embodiment, the first endoscope 10 and the second endoscope 23 may have optical functions such as zoom and macro, but an explanation in consideration of these optical functions is described in this specification. Omitted.
 第一内視鏡10及び第二内視鏡23が処置対象部位の近傍に案内された後、たとえば、操作者は、処置対象部位を観察する。このとき、操作者は第二内視鏡23を主に操作する。さらにこのとき、第一内視鏡10は、制御装置41による自動制御により動作する。一具体例として、第一内視鏡10及び第二内視鏡23が処置対象部位の近傍に案内された後、制御装置41は、上記のステップS1からステップS4までの制御手順に従ってアーム16を動作させる。ステップS1からステップS4までの各ステップが繰り返されることにより、図5から図7までに示すように、第二内視鏡23の撮像部26が撮像した狭角画像の視野中心C2と、第一内視鏡10の撮像部13が撮像した広角画像の視野中心C1とが一致した状態が維持される。 After the first endoscope 10 and the second endoscope 23 are guided to the vicinity of the treatment target site, for example, the operator observes the treatment target site. At this time, the operator mainly operates the second endoscope 23. Further, at this time, the first endoscope 10 operates by automatic control by the control device 41. As a specific example, after the first endoscope 10 and the second endoscope 23 are guided in the vicinity of the treatment target site, the control device 41 moves the arm 16 according to the control procedure from step S1 to step S4 described above. Make it work. By repeating each step from step S1 to step S4, as shown in FIGS. 5 to 7, the visual field center C2 of the narrow-angle image captured by the imaging unit 26 of the second endoscope 23, and the first The state in which the visual field center C1 of the wide-angle image captured by the imaging unit 13 of the endoscope 10 matches is maintained.
 たとえば、第二内視鏡23を操作している操作者が第二内視鏡23の撮像視野を移動させた場合、第二内視鏡23の撮像部26が移動するとともに、第二内視鏡23のレーザー照射部27も一体的に移動する。その結果、処置対象部位を含んだ撮像対象部位に照射されているレーザー光による光点A1も移動する。第一内視鏡10では、第一内視鏡10の撮像部13が撮像した画像の視野中心にあった光点A1が、第二内視鏡23に対する操作者による操作の結果、第一内視鏡10によって撮像される画像の視野中心と異なる位置に移動する。このとき、上記のステップS2において、視野中心を含む所定の微小な範囲D1から光点A1が外に移動したと判定され、画像の視野中心が上記の所定の微小な範囲D1の内側領域に位置するまで、上記のステップS1からステップS4までの各ステップが繰り返し実行される。その結果、第一内視鏡10は、第二内視鏡23の撮像部26の撮像視野の移動に追従して動作する。本実施形態では、ステップS1からステップS4までの各ステップが1度実行されることによる第一内視鏡10の移動量は微小な移動量なので、第二内視鏡23を移動させながら第二内視鏡23を用いて処置や観察をする際に、上記のステップS3における移動方向は、短時間で更新される。その結果、本実施形態では、第一内視鏡10は常に第二内視鏡23の直近の位置を移動目標として第二内視鏡23に追従動作する。 For example, when the operator operating the second endoscope 23 moves the imaging field of view of the second endoscope 23, the imaging unit 26 of the second endoscope 23 moves and the second endoscope 23 The laser irradiation unit 27 of the mirror 23 also moves integrally. As a result, the light spot A1 due to the laser light applied to the imaging target region including the treatment target region also moves. In the first endoscope 10, the light spot A <b> 1 that was in the center of the field of view of the image captured by the imaging unit 13 of the first endoscope 10 is the result of the operation by the operator on the second endoscope 23, It moves to a position different from the center of the field of view of the image picked up by the endoscope 10. At this time, in the above step S2, it is determined that the light spot A1 has moved out of the predetermined minute range D1 including the visual field center, and the visual field center of the image is located in the inner region of the predetermined minute range D1. Until this is done, the above steps S1 to S4 are repeatedly executed. As a result, the first endoscope 10 operates following the movement of the imaging field of the imaging unit 26 of the second endoscope 23. In the present embodiment, the amount of movement of the first endoscope 10 by executing each step from step S1 to step S4 once is a minute amount of movement, so the second endoscope 23 is moved while moving the second endoscope 23. When a treatment or observation is performed using the endoscope 23, the moving direction in step S3 is updated in a short time. As a result, in the present embodiment, the first endoscope 10 always follows the second endoscope 23 with the position closest to the second endoscope 23 as a movement target.
 また、たとえば、処置対象部位に対する処置を操作者が開始する前に、処置対象部位の周辺の組織の状態や血管の走行などを確認する目的で、処置対象部位を含んだ広い領域を操作者が俯瞰的に観察する場合がある。本実施形態に係る内視鏡システム1では、このような俯瞰的な観察をするために、第一内視鏡10を使用することができる。たとえば、操作者は、第二内視鏡23の撮像部26が撮像した狭角画像をメインモニタ45に表示させたり、第一内視鏡10の撮像部13が撮像した広角画像をメインモニタ45に表示させたりするために、視点変更スイッチ40(図1参照)を適宜操作する。 In addition, for example, before the operator starts treatment for the treatment target region, the operator can check a wide region including the treatment target region for the purpose of confirming the state of the tissue around the treatment target region, the running of the blood vessel, and the like. There is a case of observation from a bird's-eye view. In the endoscope system 1 according to the present embodiment, the first endoscope 10 can be used for such a bird's-eye view. For example, the operator displays a narrow-angle image captured by the imaging unit 26 of the second endoscope 23 on the main monitor 45 or a wide-angle image captured by the imaging unit 13 of the first endoscope 10. For example, the viewpoint changing switch 40 (see FIG. 1) is appropriately operated.
 本実施形態では、第一内視鏡10の撮像部13が撮像した画像と第二内視鏡23の撮像部26が撮像した画像とは、メインモニタ45にどちらの画像が表示されているかに関わらず、つねに視野中心が互いに一致した状態に維持されている。このため、視点変更スイッチ40に対して切り替え入力を行った結果新たにメインモニタ45に表示される画像は、先に表示されていた画像と同じ部位を視野中心に捉えた画像となっている。たとえば、第二内視鏡23による狭角画像により処置対象部位の詳細を観察した後に視点変更スイッチ40により広角画像に切り替えると、処置対象部位が視野中心に位置する広角画像がメインモニタ45に表示されるので、処置対象部位の周辺の組織の状態や血管の走行などが容易に確認できる。
 一例として、本実施形態に係る内視鏡システム1を用いて処置を行う執刀医は、メインモニタ45を使用することにより、処置対象部位を含む広角画像及び狭角画像を見ながら処置を行うことができる。また、本実施形態に係る内視鏡システム1の第一内視鏡10及び第二内視鏡23を操作するスコピストは第一サブモニタ22及び第二サブモニタ36を使用しながら、執刀医による処置とは独立して、あるいは執刀医による処置と協働して、各内視鏡の位置や姿勢を調整することができる。
In the present embodiment, which image is displayed on the main monitor 45 between the image captured by the imaging unit 13 of the first endoscope 10 and the image captured by the imaging unit 26 of the second endoscope 23. Regardless, the center of the visual field is always maintained in a state where they coincide with each other. For this reason, the image newly displayed on the main monitor 45 as a result of switching input to the viewpoint change switch 40 is an image in which the same part as the previously displayed image is captured at the center of the visual field. For example, when the details of the treatment target part are observed with the narrow-angle image by the second endoscope 23 and then switched to the wide-angle image by the viewpoint change switch 40, a wide-angle image in which the treatment target part is located at the center of the visual field is displayed on the main monitor 45. Therefore, the state of the tissue around the treatment target site, the running of the blood vessel, and the like can be easily confirmed.
As an example, a surgeon performing treatment using the endoscope system 1 according to the present embodiment uses the main monitor 45 to perform treatment while viewing a wide-angle image and a narrow-angle image including a treatment target region. Can do. In addition, the scopist who operates the first endoscope 10 and the second endoscope 23 of the endoscope system 1 according to the present embodiment uses the first sub-monitor 22 and the second sub-monitor 36 to perform the treatment by the surgeon. Can adjust the position and posture of each endoscope independently or in cooperation with a surgeon's procedure.
 従来、複数の内視鏡を用いて処置対象部位を撮像するときに、一方の内視鏡により処置対象部位を観察している画像と、他方の内視鏡により処置対象部位を観察している画像との対応付けを操作者が行うか、あるいは各画像の対応関係がなくても操作者がそれぞれの画像から処置対象部位や周辺組織の状態を理解して、処置を進める必要があった。複数の画像を切り替えるたびに対応付けの操作をするのは煩雑であり、対応付けすることなく操作者が各画像を理解して処置を進めると操作者にかかる作業負担が非常に高い。その結果、従来、複数の画像を頻繁に切り替えて手術を行うと、処置の休止時間が長くなるために手術時間が長時間化することがあった。 Conventionally, when imaging a treatment target region using a plurality of endoscopes, an image in which the treatment target region is observed with one endoscope and the treatment target region is observed with the other endoscope Even if there is no correspondence between the images or the correspondence between the images, the operator needs to understand the state of the treatment target region and the surrounding tissue from each image and proceed with the treatment. It is cumbersome to perform the association operation every time a plurality of images are switched, and if the operator understands each image and proceeds with the treatment without association, the work burden on the operator is very high. As a result, conventionally, when an operation is performed by frequently switching a plurality of images, the operation pause time may be increased, and thus the operation time may be prolonged.
 これに対して、本実施形態に係る内視鏡システム1によれば、第二内視鏡23の撮像部26が撮像した狭角画像の視野中心と第一内視鏡10が撮像した広角画像の視野中心とが実質的に常に一致した状態に維持される。本実施形態に係る内視鏡システム1によれば、視点変更スイッチ40の操作前後における各画像の対応関係を操作者が容易に理解でき、広角画像と狭角画像とを切り替えて観察する際の処置の休止時間を短縮することができる。その結果、本実施形態に係る内視鏡システム1によれば、手術時間における休止時間が短いので、手術時間全体を短時間化することができ、患者への負担を軽減することができる。 On the other hand, according to the endoscope system 1 according to the present embodiment, the center of the visual field of the narrow-angle image captured by the imaging unit 26 of the second endoscope 23 and the wide-angle image captured by the first endoscope 10. The center of the visual field is maintained in a state that is substantially consistent with the visual field center. According to the endoscope system 1 according to the present embodiment, the operator can easily understand the correspondence between the images before and after the operation of the viewpoint change switch 40, and when switching between a wide-angle image and a narrow-angle image for observation. Treatment downtime can be shortened. As a result, according to the endoscope system 1 according to the present embodiment, since the pause time in the operation time is short, the entire operation time can be shortened, and the burden on the patient can be reduced.
 また、本実施形態に係る内視鏡システム1によれば、内視鏡システム1を操作する操作者が処置対象部位に対する処置をしている過程において、狭角画像と広角画像とを適宜切り替えてメインモニタ45に表示させることで、処置対象部位の俯瞰的な観察と局所的な観察とをしながら処置を進めることができる。さらに、本実施形態では、処置対象部位を変更するために第二内視鏡23を移動させた場合、第一内視鏡10は自動的に第二内視鏡23に追従して移動するので、操作者は、広角画像の視野中心を新たな処置対象部位に移動させる操作をしなくてよい。
 また、従来の腹腔鏡下手術で、一本の内視鏡を用いて処置を行うケースにおいて、近接した視野(狭角視野)で剥離操作や血管の露出などの処置を行っている最中に、周辺組織状態を確認したり現在処置している血管の走行を確認したりする必要が生じる場合などがある。
 この場合、近接させていた内視鏡を引いて、全体が見える位置で観察を行い、周辺組織や血管の走行等を確認してから元の位置に内視鏡を戻す作業を行うことになる。最初の近接した視野は、処置しやすい状態となるようにスコピストへ指示を出して作り出した術野(視野)であった。ところが、全体を観察することによって、最初に作り出した視野は崩された状態となっている。全体観察の後、処置しやすい状態(視野)を再現するために、執刀医はスコピストへの指示を繰り返さねばならず、処置復帰可能となるまでの時間が長くなり、執刀医にはストレスと疲労がたまる。このため、執刀医は、このストレスと疲労を回避するために、ちょっとした確認程度では視野を崩すことを避けたくなり、全体を確認したいとおもってもあきらめてしまう可能性もある。
 本実施形態では、執刀医が確認したいと思った瞬間に広角視野で周囲を確認し、さらに、確認後は処置していた視野に速やかに戻ることができる。このため、本実施形態では、処置復帰までのタイムラグが少なく、執刀医に対するストレスも疲労も少ない。加えて、本実施形態では、広角画像を用いて周辺組織を適宜確認できるので、より安全な手術が行える可能性もある。
Further, according to the endoscope system 1 according to the present embodiment, a narrow-angle image and a wide-angle image are appropriately switched in a process in which an operator operating the endoscope system 1 is performing treatment on a treatment target region. By displaying on the main monitor 45, the treatment can be advanced while performing a bird's-eye view and a local observation of the treatment target region. Furthermore, in the present embodiment, when the second endoscope 23 is moved to change the treatment target site, the first endoscope 10 automatically follows the second endoscope 23 and moves. The operator does not have to perform an operation of moving the center of the field of view of the wide-angle image to a new treatment target site.
In a case where treatment is performed using a single endoscope in a conventional laparoscopic operation, during a procedure such as a peeling operation or blood vessel exposure in a close visual field (narrow angle visual field) In some cases, it is necessary to check the state of surrounding tissue or to check the running of the blood vessel currently being treated.
In this case, the endoscope that has been brought close to is pulled and observed at a position where the whole can be seen, and the operation of returning the endoscope to the original position is performed after confirming the running of surrounding tissues and blood vessels. . The first close visual field was the operative field (visual field) created by instructing the scopist to be easy to treat. However, by observing the whole, the field of view created first has been destroyed. In order to reproduce the condition (field of view) that is easy to treat after the overall observation, the surgeon must repeat the instructions to the scopist, and it takes a long time to be able to return to the treatment. Accumulate. For this reason, in order to avoid this stress and fatigue, the surgeon wants to avoid losing his field of vision with a small amount of confirmation, and may give up even if he wants to confirm the whole.
In this embodiment, it is possible to confirm the surroundings with a wide-angle visual field at the moment when the surgeon wants to confirm, and to quickly return to the visual field that has been treated after confirmation. For this reason, in this embodiment, there is little time lag until treatment return, and there is little stress and fatigue to a surgeon. In addition, in the present embodiment, the surrounding tissue can be appropriately confirmed using the wide-angle image, so there is a possibility that safer surgery can be performed.
(第2実施形態)
 本発明の第2実施形態について説明する。なお、本実施形態において、上記第1実施形態で説明された構成要素と同様の構成要素には、第1実施形態と同一の符号が付され、重複する説明は省略される。図8は、本発明の第2実施形態に係る内視鏡システムの模式図である。
(Second Embodiment)
A second embodiment of the present invention will be described. In the present embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant descriptions are omitted. FIG. 8 is a schematic diagram of an endoscope system according to the second embodiment of the present invention.
 図8に示す内視鏡システム2は、第1実施形態に開示された第一内視鏡10,アーム16,及びメインモニタ45を有している。また、内視鏡システム2は、第1実施形態に開示された第二内視鏡23及び制御装置41(図1参照)に代えて、第1実施形態に開示された第二内視鏡23及び制御装置41とは構成が異なる第二内視鏡50及び制御装置53を備えている。 The endoscope system 2 shown in FIG. 8 includes the first endoscope 10, the arm 16, and the main monitor 45 disclosed in the first embodiment. In addition, the endoscope system 2 is replaced with the second endoscope 23 disclosed in the first embodiment, instead of the second endoscope 23 and the control device 41 (see FIG. 1) disclosed in the first embodiment. And a second endoscope 50 and a control device 53 having different configurations from the control device 41.
 第二内視鏡50は、上記第1実施形態に開示されたレーザー照射部27(図2参照)に代えて、円状または円環状をなす光点A2(図8においては円環状の光点が模式的に示されている。)を撮像対象部位に生じさせるようにレーザー光を照射するレーザー照射部51を有している。本実施形態の第二内視鏡50は、レーザー照射部51以外の構成については上記第1実施形態に開示された第二内視鏡23(図1,2参照)と同様であって構わない。 Instead of the laser irradiation unit 27 (see FIG. 2) disclosed in the first embodiment, the second endoscope 50 has a light spot A2 having a circular shape or an annular shape (in FIG. 8, an annular light spot). Is schematically shown.) Has a laser irradiation unit 51 that irradiates a laser beam so as to be generated in the imaging target region. The second endoscope 50 of the present embodiment may be the same as the second endoscope 23 (see FIGS. 1 and 2) disclosed in the first embodiment with respect to the configuration other than the laser irradiation unit 51. .
 レーザー照射部51は、上記第1実施形態のレーザー照射部27と同様に発光部28を有している。また、本実施形態では、第1実施形態とは異なり、レーザー光源29が発するレーザー光が円状または円環状に照射されるようにレーザー光を屈折させる不図示のレンズが光学系30に含まれている。たとえば、レーザー光源29が発するレーザー光は、光学系30を通過することで円状または円環状の拡散光となる。さらに、レーザー照射部51は、レーザー光の照射対象物(たとえば第二内視鏡50による撮像対象部位)との間の距離によらず一定の大きさの円状または円環状の光点A2を照射対象物に生じさせるための出射部52を、第1実施形態に開示された出射部31(図2参照)に代えて有している。 The laser irradiation unit 51 includes a light emitting unit 28 as in the laser irradiation unit 27 of the first embodiment. In the present embodiment, unlike the first embodiment, the optical system 30 includes a lens (not shown) that refracts the laser light so that the laser light emitted from the laser light source 29 is irradiated in a circular shape or an annular shape. ing. For example, the laser light emitted from the laser light source 29 passes through the optical system 30 and becomes circular or annular diffused light. Further, the laser irradiation unit 51 generates a circular or annular light spot A2 having a constant size regardless of the distance to the object irradiated with the laser light (for example, a region to be imaged by the second endoscope 50). The emitting unit 52 for generating the irradiation object is provided in place of the emitting unit 31 (see FIG. 2) disclosed in the first embodiment.
 出射部52は、第二内視鏡50の撮像部26の撮像視野内の所定の一部に向けてレーザー光を照射する。たとえば、出射部52は、第二内視鏡50の撮像部26の視野中心とレーザー光の光軸とが同軸、あるいは実質的に同軸と見做せる程度に近接した平行状態、となるようにレーザー光を導光するための光学部品を有している。たとえば、出射部52は不図示のコリメートレンズを含んでいる。これにより、レーザー光は、レーザー光源29から出射部52に至るまでの光路内の一点からの円状または円環状の拡散光として出射部52に入射し、光軸に直交する断面が円状または円環状をなす平行光とされて出射部52から照射対象物に照射される。その結果、本実施形態では、出射部52から出射されるレーザー光は、出射部52と照射対象物との間の距離によらず一定の大きさの円状または円環状の光点A2を照射対象物に生じさせることができる。 The emitting unit 52 irradiates laser light toward a predetermined part within the imaging field of the imaging unit 26 of the second endoscope 50. For example, the emission unit 52 is in a parallel state in which the center of the field of view of the imaging unit 26 of the second endoscope 50 and the optical axis of the laser light are coaxial or close enough to be considered to be substantially coaxial. An optical component for guiding laser light is included. For example, the emitting unit 52 includes a collimator lens (not shown). Thereby, the laser light is incident on the emission part 52 as circular or annular diffused light from one point in the optical path from the laser light source 29 to the emission part 52, and the cross section perpendicular to the optical axis is circular or The irradiation object is irradiated from the emitting part 52 as parallel light having an annular shape. As a result, in the present embodiment, the laser light emitted from the emitting unit 52 irradiates a circular or annular light spot A2 having a constant size regardless of the distance between the emitting unit 52 and the irradiation object. It can be generated in an object.
 本実施形態のレーザー照射部51がレーザー光を照射する照射対象物は、第1実施形態と同様に、第二内視鏡50の撮像部26による撮像対象部位に含まれる組織等である。 The irradiation object to which the laser irradiation unit 51 of the present embodiment irradiates laser light is a tissue or the like included in a region to be imaged by the imaging unit 26 of the second endoscope 50 as in the first embodiment.
 本実施形態に係る内視鏡システム2の制御装置53は、第1実施形態に開示された制御装置41と同様にレーザー制御部42,画像制御部43,及びアーム制御部44(図3参照)を有しているが、第1実施形態に開示された制御装置41とは異なる制御手順に従って動作する。 The control device 53 of the endoscope system 2 according to the present embodiment is similar to the control device 41 disclosed in the first embodiment, in which a laser control unit 42, an image control unit 43, and an arm control unit 44 (see FIG. 3). However, it operates according to a control procedure different from that of the control device 41 disclosed in the first embodiment.
 制御装置53は、第1実施形態と同様に、第一内視鏡10の撮像部13が撮像した画像と、第二内視鏡50の撮像部26が撮像した画像とのいずれか一方または両方を、第二内視鏡50の操作部33に配置された視点変更スイッチ40に対する切り替え入力に従ってメインモニタ45に表示させる。 As in the first embodiment, the control device 53 is one or both of an image captured by the imaging unit 13 of the first endoscope 10 and an image captured by the imaging unit 26 of the second endoscope 50. Are displayed on the main monitor 45 in accordance with a switching input to the viewpoint change switch 40 disposed on the operation unit 33 of the second endoscope 50.
 また、制御装置53は、上記の第1実施形態におけるステップS1からステップS4までの各ステップとは異なる制御手順に基づいて、第一内視鏡10及びアーム16の制御をおこなう。
 本実施形態に係る内視鏡システム2は、第1実施形態と同様に、第二内視鏡50の移動に追従して第一内視鏡10が移動するように、アーム制御部44が第一内視鏡10を移動させる。ここで、本実施形態の制御装置53の画像制御部43は、第一内視鏡10の撮像部13が撮像した画像に含まれる光点A2の画像上の大きさに基づいて、第一内視鏡10と光点A2との距離を認識し、この距離が一定となる条件の下で第一内視鏡10の移動方向及び移動量を算出する。
 第一内視鏡10及びアーム16に対する制御装置53による具体的な制御の一例について、制御手順をステップごとに分けて以下に説明する。図9は、同内視鏡システムの制御装置53による制御手順を説明するためのフローチャートである。図10は、同内視鏡システムの作用を説明するための模式図である。図11は、同内視鏡システムの作用を説明するための模式図である。
Moreover, the control apparatus 53 controls the 1st endoscope 10 and the arm 16 based on the control procedure different from each step from step S1 to step S4 in said 1st Embodiment.
As in the first embodiment, the endoscope system 2 according to the present embodiment has the arm control unit 44 configured so that the first endoscope 10 moves following the movement of the second endoscope 50. One endoscope 10 is moved. Here, the image control unit 43 of the control device 53 of the present embodiment determines the first inner point based on the size of the light spot A2 included in the image captured by the imaging unit 13 of the first endoscope 10. The distance between the endoscope 10 and the light spot A2 is recognized, and the moving direction and the moving amount of the first endoscope 10 are calculated under the condition that this distance is constant.
An example of specific control by the control device 53 for the first endoscope 10 and the arm 16 will be described below by dividing the control procedure into steps. FIG. 9 is a flowchart for explaining a control procedure by the control device 53 of the endoscope system. FIG. 10 is a schematic diagram for explaining the operation of the endoscope system. FIG. 11 is a schematic diagram for explaining the operation of the endoscope system.
 まず、制御装置53の画像制御部43は、第一内視鏡10の撮像部13が撮像した画像から、第二内視鏡50のレーザー照射部51によって照射されるレーザー光により撮像対象部位に生じる円状または円環状の光点A2(たとえば図8参照)を認識する(認識ステップ,ステップS11,図9参照)。ステップS11において、画像制御部43は、レーザー照射部51が照射するレーザーによって生じる光点A2の形状に対応する形状及びレーザー光に特有の波長あるいは第1実施形態と同様の点滅状態に基づいて光点A2を認識する。画像制御部43が光点A2の形状,波長,点滅状態を識別するために、レーザー制御部42が画像制御部43へ出力した照射情報が参照される。
 ステップS11において、画像制御部43が光点A2を認識できた場合には、画像制御部43は、第一内視鏡10の撮像部13が撮像した画像における光点A2の中心位置を、所定の二次元の座標情報として記憶する。さらに、画像制御部43は、光点A2の直径を、座標情報と関連付けて記憶する。このときの座標系は、たとえば、画像の視野中心を原点とした座標系である。レーザー光が照射される照射対象物の形状に応じて光点A2の形状に歪みがあったり光点A2にわずかな欠落があったりした場合であっても、歪みを補正したり欠落を補完したりすることができる許容範囲内であれば、画像制御部43は、補正または補完後の光点A2の中心の座標を記憶するとともに、補正または補完後の光点A2の直径を記憶してもよい。光点A2の座標及び直径を画像制御部43が記憶した後、ステップS11は終了してステップS12へ進む。
 ステップS11において、画像制御部43が光点A2を認識できなかった場合には、光点A2が認識できるまでステップS11が繰り返される。なお、レーザー光に特有の波長を有しているが円状または円環状として認識できない程度に不完全な光点A2が画像に含まれている場合には、第二内視鏡50を移動させることを促すメッセージなどを画像制御部43がメインモニタ45に表示させてもよい。第二内視鏡50の操作者が第二内視鏡50を移動させると、撮像対象部位における光点A2の位置が移動する。光点A2の移動先がほぼ平面状であれば、光点A2はほぼ円状または円環状となる。これにより、円状または円環状として画像制御部43が認識可能な光点A2が第一内視鏡10の撮像部13の撮像視野内に生じ、ステップS11において光点A2の認識が可能となる。
First, the image control unit 43 of the control device 53 uses the laser light emitted by the laser irradiating unit 51 of the second endoscope 50 from the image captured by the imaging unit 13 of the first endoscope 10 to the imaging target region. The resulting circular or annular light spot A2 (see, for example, FIG. 8) is recognized (recognition step, step S11, see FIG. 9). In step S11, the image control unit 43 performs light based on the shape corresponding to the shape of the light spot A2 generated by the laser irradiated by the laser irradiation unit 51 and the wavelength peculiar to the laser light or the blinking state similar to the first embodiment. Recognize point A2. In order for the image control unit 43 to identify the shape, wavelength, and blinking state of the light spot A2, the irradiation information output to the image control unit 43 by the laser control unit 42 is referred to.
In step S11, when the image control unit 43 can recognize the light spot A2, the image control unit 43 sets the center position of the light spot A2 in the image captured by the imaging unit 13 of the first endoscope 10 to a predetermined value. Is stored as two-dimensional coordinate information. Further, the image control unit 43 stores the diameter of the light spot A2 in association with the coordinate information. The coordinate system at this time is, for example, a coordinate system with the center of the field of view of the image as the origin. Even if the shape of the light spot A2 is distorted or the light spot A2 is slightly missing depending on the shape of the irradiation object irradiated with the laser light, the distortion is corrected or the missing is compensated. The image control unit 43 stores the coordinates of the center of the light spot A2 after correction or complementation, and stores the diameter of the light spot A2 after correction or complementation. Good. After the image control unit 43 stores the coordinates and diameter of the light spot A2, step S11 ends and the process proceeds to step S12.
If the image control unit 43 cannot recognize the light spot A2 in step S11, step S11 is repeated until the light spot A2 can be recognized. When the image includes an incomplete light spot A2 that has a wavelength unique to the laser light but cannot be recognized as a circle or an annulus, the second endoscope 50 is moved. The image control unit 43 may cause the main monitor 45 to display a message prompting the user. When the operator of the second endoscope 50 moves the second endoscope 50, the position of the light spot A2 in the imaging target region moves. If the movement destination of the light spot A2 is substantially planar, the light spot A2 is substantially circular or annular. As a result, a light spot A2 that can be recognized by the image control unit 43 as a circle or an annular shape is generated in the imaging field of view of the imaging unit 13 of the first endoscope 10, and the light spot A2 can be recognized in step S11. .
 ステップS12は、上記のステップS11(認識ステップ)において認識された光点A2の位置と、画像上の所定の基準位置との位置関係を照合する照合ステップである。本実施形態における“画像上の所定の基準位置”とは、第一内視鏡10の撮像部13が撮像した画像の視野中心の位置である。
 ステップS12における具体的な制御は上記第1実施形態におけるステップS2と同様であって構わない(図4,図5及び図6参照)。ステップS12において画像の視野中心を含む所定の微小な範囲D1内に光点A2の中心が位置していると画像制御部43が判定したときには、ステップS11へ進む。上記の所定の微小な範囲D1内に光点A2の中心がないと画像制御部43が判定したときには、ステップS13へ進む。
Step S12 is a collation step for collating the positional relationship between the position of the light spot A2 recognized in step S11 (recognition step) and a predetermined reference position on the image. The “predetermined reference position on the image” in the present embodiment is a position at the center of the visual field of the image captured by the imaging unit 13 of the first endoscope 10.
Specific control in step S12 may be the same as step S2 in the first embodiment (see FIGS. 4, 5, and 6). When the image control unit 43 determines in step S12 that the center of the light spot A2 is located within a predetermined minute range D1 including the center of the field of view of the image, the process proceeds to step S11. When the image control unit 43 determines that the center of the light spot A2 is not within the predetermined minute range D1, the process proceeds to step S13.
 図9に示すステップS13は、第一内視鏡10の撮像部13と撮像対象部位との距離を測定する測距ステップである。
 ステップS13において、画像制御部43は、まず、ステップS11において記憶された光点A2の直径に基づいて、第一内視鏡10と光点A2との距離を算出する。本実施形態では、光点A2の実際の大きさは、撮像対象部位に対する第二内視鏡50の距離に関わらず一定の大きさであるので、第一内視鏡10の撮像部13が撮像した画像上における光点A2の大きさは、第一内視鏡10と光点A2との距離に反比例する。たとえば、図10に想像線で示すように第一内視鏡10と光点A2との距離が近い場合には、第一内視鏡10の撮像視野の大きさW1に対する光点A2の割合が相対的に多く、図10に実線で示すように第一内視鏡10と光点A2との距離が離れている場合には、第一内視鏡10の撮像視野の大きさW2に対する光点A2の割合が相対的に少ない。
 このため、画像制御部43は、ステップS11において記憶された光点A2の直径の情報を利用して、第一内視鏡10と光点A2との距離、すなわち、第一内視鏡10と撮像対象部位との距離を算出することができる。
 これでステップS13は終了し、ステップS14へ進む。
Step S13 shown in FIG. 9 is a distance measuring step for measuring the distance between the imaging unit 13 of the first endoscope 10 and the imaging target part.
In step S13, the image control unit 43 first calculates the distance between the first endoscope 10 and the light spot A2 based on the diameter of the light spot A2 stored in step S11. In the present embodiment, the actual size of the light spot A2 is a constant size regardless of the distance of the second endoscope 50 with respect to the imaging target site, so that the imaging unit 13 of the first endoscope 10 captures an image. The size of the light spot A2 on the obtained image is inversely proportional to the distance between the first endoscope 10 and the light spot A2. For example, when the distance between the first endoscope 10 and the light spot A2 is short as indicated by an imaginary line in FIG. 10, the ratio of the light spot A2 to the size W1 of the imaging field of the first endoscope 10 is When the distance between the first endoscope 10 and the light spot A2 is large as shown by the solid line in FIG. 10, the light spot with respect to the imaging field size W2 of the first endoscope 10 is relatively large. The proportion of A2 is relatively small.
Therefore, the image control unit 43 uses the information on the diameter of the light spot A2 stored in step S11, and the distance between the first endoscope 10 and the light spot A2, that is, the first endoscope 10 and The distance from the imaging target part can be calculated.
Step S13 is completed now and it progresses to Step S14.
 ステップS14は、上記のステップS11において認識された光点A2の位置に、画像上の所定の基準位置を移動させるためのアーム16の動作方向及び動作量を画像制御部43が算出する算出ステップである。
 ステップS14において、画像制御部43は、第一内視鏡10の撮像部13が撮像した画像上の光点A2の中心の座標と、この画像における視野中心の座標とに基づいて、視野中心から光点A2に向かう方向を算出する。さらに、画像制御部43は、上記のステップS13において算出された第一内視鏡10と撮像対象部位との距離の情報に基づいて、上記の方向への第一内視鏡10の移動量を算出する。ステップS14において、例えばトロッカを揺動中心として第一内視鏡10を揺動させることで第一内視鏡10の視野を移動させる場合には、トロッカを揺動中心とした第一内視鏡10の揺動角度を画像制御部43が算出し、さらに、第一内視鏡10と光点A2との距離が移動前後で等しくなるように、トロッカに対する軸部14の挿入量を画像制御部43が算出する。その後、画像制御部43は、アーム16の動作方向及び動作量を示す情報をアーム制御部44へと出力する。
 これでステップS14は終了し、ステップS15へ進む。
Step S14 is a calculation step in which the image control unit 43 calculates the operation direction and the operation amount of the arm 16 for moving the predetermined reference position on the image to the position of the light spot A2 recognized in the above step S11. is there.
In step S14, the image control unit 43 starts from the center of the visual field based on the coordinates of the center of the light spot A2 on the image captured by the imaging unit 13 of the first endoscope 10 and the coordinates of the visual field center in this image. The direction toward the light spot A2 is calculated. Further, the image control unit 43 determines the amount of movement of the first endoscope 10 in the above direction based on the information on the distance between the first endoscope 10 and the imaging target part calculated in step S13. calculate. In step S14, for example, when moving the field of view of the first endoscope 10 by swinging the first endoscope 10 with the trocar as the swing center, the first endoscope with the trocar as the swing center is used. 10 is calculated by the image control unit 43, and the insertion amount of the shaft unit 14 with respect to the trocar is set so that the distance between the first endoscope 10 and the light spot A2 is equal before and after the movement. 43 is calculated. Thereafter, the image control unit 43 outputs information indicating the movement direction and movement amount of the arm 16 to the arm control unit 44.
Step S14 is completed now and it progresses to Step S15.
 ステップS15は、ステップS14において算出された動作方向及び動作量に基づいてアーム16を動作させるための動作指示をアーム16に出力する指示ステップである。本実施例でも逆運動学などを用いた制御手法により目標の位置姿勢に向けてアーム姿勢を制御する点はかわらない。
 ステップS15において、アーム制御部44が、軸部14の揺動角度及び挿入量を、アーム16の各アクチュエータ19の動作量に変換する。アーム制御部44は、アーム16の各アクチュエータ19に対して、第一内視鏡10の撮像部13の撮像視野がステップS14において算出された動作方向へ上記の移動量だけ移動するように、駆動信号を出力する。さらに、ステップS15において、アーム制御部44は、アーム16の各エンコーダ20が出力する移動量の情報を参照して、アーム16の移動結果を認識し、必要であれば各アクチュエータ19に対して追加の駆動信号を出力する。ステップS15は、上記の動作方向へ上記の移動量だけ第一内視鏡10が移動したら、すなわち上記の動作方向及び動作量を満足するまで各アクチュエータ19が第一内視鏡10を移動させたら、終了する(図11参照)。
 これでステップS15は終了し、ステップS11へ進む。
Step S15 is an instruction step for outputting, to the arm 16, an operation instruction for operating the arm 16 based on the operation direction and the operation amount calculated in step S14. Even in the present embodiment, the arm posture is controlled toward the target position and posture by a control method using inverse kinematics or the like.
In step S <b> 15, the arm control unit 44 converts the swing angle and insertion amount of the shaft portion 14 into an operation amount of each actuator 19 of the arm 16. The arm control unit 44 drives the actuator 19 of the arm 16 so that the imaging field of the imaging unit 13 of the first endoscope 10 moves in the operation direction calculated in step S14 by the above movement amount. Output a signal. Further, in step S15, the arm controller 44 refers to the information on the amount of movement output by each encoder 20 of the arm 16, recognizes the movement result of the arm 16, and adds it to each actuator 19 if necessary. The drive signal is output. In step S15, when the first endoscope 10 is moved in the movement direction by the movement amount, that is, when each actuator 19 moves the first endoscope 10 until the movement direction and the movement amount are satisfied. , And ends (see FIG. 11).
Step S15 is completed now and it progresses to Step S11.
 上記のステップS11からステップS15までの各ステップは、内視鏡システム2が動作している間、たとえば常に繰り返し実行される。 The above steps S11 to S15 are repeatedly executed, for example, while the endoscope system 2 is operating.
 本実施形態に係る内視鏡システム2の作用について説明する。
 図8に示す本実施形態に係る内視鏡システム2の使用時には、上記の第1実施形態と同様に、第一内視鏡10及び第二内視鏡50が体内の処置対象部位に案内され、第一内視鏡10は処置対象部位を含んだ広角画像を撮像し、第二内視鏡50は処置対象部位を含んだ狭角画像を撮像する。
 ここで、処置対象部位に対する処置などをするために操作者が第二内視鏡50の撮像視野を移動させた場合、第一内視鏡10は、上記のステップS11からステップS15までの制御手順(図9参照)に従って、第二内視鏡50の撮像視野の移動に追従して自動的に移動する。
The operation of the endoscope system 2 according to this embodiment will be described.
When the endoscope system 2 according to the present embodiment shown in FIG. 8 is used, the first endoscope 10 and the second endoscope 50 are guided to the treatment target site in the body as in the first embodiment. The first endoscope 10 captures a wide-angle image including the treatment target part, and the second endoscope 50 captures a narrow-angle image including the treatment target part.
Here, when the operator moves the imaging field of view of the second endoscope 50 in order to perform treatment on the treatment target region, the first endoscope 10 performs the control procedure from the above-described steps S11 to S15. In accordance with (see FIG. 9), the second endoscope 50 automatically moves following the movement of the imaging field of view.
 本実施形態では、第二内視鏡50の撮像視野に追従して第一内視鏡10が移動するときに、第一内視鏡10と光点A2との距離が、第一内視鏡10の移動前後で互いに等しい。
その結果、第二内視鏡50が狭角画像を撮像し第一内視鏡10が広角画像を撮像するという関係が維持される(図11参照)。
In the present embodiment, when the first endoscope 10 moves following the imaging field of view of the second endoscope 50, the distance between the first endoscope 10 and the light spot A2 is the first endoscope. It is equal to each other before and after 10 movements.
As a result, the relationship that the second endoscope 50 captures a narrow-angle image and the first endoscope 10 captures a wide-angle image is maintained (see FIG. 11).
 本実施形態に係る内視鏡システム2も上記第1実施形態に係る内視鏡システム1と同様の効果を奏する。
 さらに、本実施形態に係る内視鏡システム2によれば、第一内視鏡10が制御装置53により自動制御されているときに、第一内視鏡10の移動前後において、第一内視鏡10と処置対象部位との距離が一定に維持される。その結果、広角画像に含まれる組織等の画像上での大きさが第一内視鏡10の移動前後でほぼ変化しないので、広角画像から狭角画像に切り替えて視野を移動したのちにさらに広角画像に切り替えたときでも各画像の対応関係がわかりやすい。
The endoscope system 2 according to the present embodiment also has the same effects as the endoscope system 1 according to the first embodiment.
Furthermore, according to the endoscope system 2 according to the present embodiment, when the first endoscope 10 is automatically controlled by the control device 53, before and after the movement of the first endoscope 10, the first endoscope The distance between the mirror 10 and the treatment target site is kept constant. As a result, since the size of the tissue or the like included in the wide-angle image does not change substantially before and after the movement of the first endoscope 10, the wide-angle image is changed after the field of view is switched from the wide-angle image to the narrow-angle image. The correspondence between images is easy to understand even when switching to images.
 (変形例)
 本実施形態の変形例について説明する。図12は、本変形例の構成を示す模式図である。
 本変形例では、図12に示すように、上記第2実施形態に開示された光学系30とは構成が異なる光学系54を第二内視鏡50が有している。
 光学系54は、レーザー光源29が発するレーザー光を、撮像対象部位に対して、互いに平行な2直線状に照射する。これにより、レーザー光が撮像対象部位に照射されることにより生じる光点A3は、本変例では、一定の距離だけ互いに離間する2つの点状である。
 本変形例では、制御装置53(図8参照)は、上記第2実施形態における円状または円環状の光点A2の中心の座標を記憶することに代えて、一定の距離だけ互いに離間する2つの点状の光点A3を構成する2つの点の中間位置の座標を光点A3の中心の座標として記憶する。さらに、上記第2実施形態における円状または円環状の光点A2の直径を記憶することに代えて、光点A3を構成する2つの点の距離を記憶する。
 このような構成であっても上記第2実施形態と同様の効果を奏する。
(Modification)
A modification of this embodiment will be described. FIG. 12 is a schematic diagram showing the configuration of this modification.
In this modification, as shown in FIG. 12, the second endoscope 50 has an optical system 54 having a configuration different from that of the optical system 30 disclosed in the second embodiment.
The optical system 54 irradiates laser light emitted from the laser light source 29 to the imaging target region in two straight lines parallel to each other. As a result, the light spot A3 generated by irradiating the imaging target site with the laser light is in the form of two dots separated from each other by a certain distance.
In this modification, the control devices 53 (see FIG. 8) are separated from each other by a certain distance instead of storing the coordinates of the center of the circular or annular light spot A2 in the second embodiment. The coordinates of the intermediate position between the two points constituting one point-like light spot A3 are stored as the coordinates of the center of the light spot A3. Furthermore, instead of storing the diameter of the circular or annular light spot A2 in the second embodiment, the distance between two points constituting the light spot A3 is stored.
Even with such a configuration, the same effects as those of the second embodiment can be obtained.
 (変形例)
 本実施形態の他の変形例について説明する。図13は、本変形例における第一内視鏡の動作を示す模式図である。
 本変形例では、図13に示すように、レーザー光が撮像対象部位に照射されることにより生じる光点A2の形状に基づいて、第二内視鏡50の撮像部26の視野方向と第一内視鏡10の撮像部13の視野方向とが所定の範囲内で実質的に同軸または平行となるように、第二内視鏡50の移動に追従して制御装置53(図8参照)が第一内視鏡10を移動させる。
 一具体例として、本変形例では、撮像対象部位における光点A2が楕円または楕円環状である場合に、楕円の長軸及び短軸の長さ及び向きに基づいて、制御装置53が、第一内視鏡10の撮像部13による画像における光点A2が実質的に円状または円環状となるように第一内視鏡10を移動させる。また、上記第2実施形態と同様に本変形例においても、光点A2と第二内視鏡50との距離よりも光点A2と第一内視鏡10との距離のほうが長い状態を維持して第一内視鏡10は制御装置53により自動的に移動する。
 本変形例によれば、第二内視鏡50の撮像部26による狭角画像をそのままズームアウトしたような広角画像を第一内視鏡10の撮像部13が撮像しているので、メインモニタ45(図8参照)において狭角画像と広角画像とを切り替えて表示する際の対応関係がさらにわかりやすい。
 なお、第一内視鏡10と第二内視鏡50とがそれぞれ別のトロッカを通じて体内に挿入されている場合には、第一内視鏡10による広角画像の視野方向と第二内視鏡50による狭角画像の視野方向とを厳密に平行にできない場合もあるが、この場合にも、可能な範囲で第二内視鏡50の移動に第一内視鏡10を追従させてよい。
(Modification)
Another modification of the present embodiment will be described. FIG. 13 is a schematic diagram showing the operation of the first endoscope in the present modification.
In this modification, as shown in FIG. 13, the visual field direction of the imaging unit 26 of the second endoscope 50 and the first direction are determined based on the shape of the light spot A <b> 2 generated when the imaging target site is irradiated with laser light. The control device 53 (see FIG. 8) follows the movement of the second endoscope 50 so that the visual field direction of the imaging unit 13 of the endoscope 10 is substantially coaxial or parallel within a predetermined range. The first endoscope 10 is moved.
As a specific example, in the present modification, when the light spot A2 in the imaging target region is an ellipse or an elliptical ring, the control device 53 performs the first operation based on the length and direction of the major axis and minor axis of the ellipse. The first endoscope 10 is moved so that the light spot A2 in the image by the imaging unit 13 of the endoscope 10 is substantially circular or annular. Further, in the present modification as well as the second embodiment, the distance between the light spot A2 and the first endoscope 10 is maintained longer than the distance between the light spot A2 and the second endoscope 50. The first endoscope 10 is automatically moved by the control device 53.
According to this modification, since the imaging unit 13 of the first endoscope 10 captures a wide-angle image obtained by zooming out the narrow-angle image obtained by the imaging unit 26 of the second endoscope 50 as it is, the main monitor In 45 (see FIG. 8), the correspondence when switching between the narrow-angle image and the wide-angle image is easier to understand.
When the first endoscope 10 and the second endoscope 50 are inserted into the body through different trocars, the viewing direction of the wide-angle image by the first endoscope 10 and the second endoscope In some cases, the first endoscope 10 may follow the movement of the second endoscope 50 as much as possible.
(第3実施形態)
 本発明の第3実施形態について説明する。なお、本実施形態において、上記各実施形態に開示された構成要素と同様の構成要素には、上記各実施形態と同様の符号が付され、重複する説明は省略されている。図14は、本発明の第3実施形態に係る内視鏡システムの要部の構成を示す模式図である。
(Third embodiment)
A third embodiment of the present invention will be described. In the present embodiment, the same components as those disclosed in the above embodiments are denoted by the same reference numerals as those in the above embodiments, and redundant description is omitted. FIG. 14 is a schematic diagram illustrating a configuration of a main part of an endoscope system according to the third embodiment of the present invention.
 図14に示す内視鏡システム3は、第1実施形態と同様の第二内視鏡23を備えている。また、本実施形態に係る内視鏡システム3は、第1実施形態に開示された第一内視鏡10及び制御装置41(図1参照)とは構成が異なる第一内視鏡60及び制御装置64を、第1実施形態に開示された第一内視鏡10及び制御装置41に代えて備えている。 The endoscope system 3 shown in FIG. 14 includes a second endoscope 23 similar to that of the first embodiment. Further, the endoscope system 3 according to the present embodiment is different from the first endoscope 10 and the control device 41 (see FIG. 1) disclosed in the first embodiment, and the first endoscope 60 and the control. The device 64 is provided in place of the first endoscope 10 and the control device 41 disclosed in the first embodiment.
 第一内視鏡60は、撮像対象部位の三次元情報を取得することができる点で上記各実施形態に開示された第一内視鏡と構成が異なっている。一具体例として、第一内視鏡60は、第1実施形態に開示された先端構成部12(図1参照)に代えて、2つの撮像部(左側撮像部62,右側撮像部63)を備えた先端構成部61を有している。本実施形態の第一内視鏡60は、先端構成部61以外の構成は上記第1実施形態に開示された第一内視鏡10と同様であって構わない。 The first endoscope 60 is different in configuration from the first endoscope disclosed in each of the above embodiments in that it can acquire three-dimensional information of the imaging target part. As a specific example, the first endoscope 60 includes two imaging units (a left imaging unit 62 and a right imaging unit 63) instead of the distal end configuration unit 12 (see FIG. 1) disclosed in the first embodiment. It has the front-end | tip structure part 61 provided. The first endoscope 60 of the present embodiment may have the same configuration as the first endoscope 10 disclosed in the first embodiment except for the distal end configuration portion 61.
 先端構成部61が備える左側撮像部62及び右側撮像部63は、同一の撮像対象部位に対して視差を有する二枚一組の画像を撮像する。たとえば、左側撮像部62と右側撮像部63とは、それぞれが独立してイメージセンサや対物光学系を有している。左側撮像部62が撮像した画像及び右側撮像部63が撮像した画像は、第1実施形態と同様に不図示の信号線等を通じて、制御装置64の画像制御部66へ送信される。
 なお、左側撮像部62と右側撮像部63とが1つのイメージセンサを共有し、撮像視野を右側から見る対物光学系からの画像と撮像視野を左側から見る対物光学系からの画像とを1つのイメージセンサが交互に撮像するようになっていてもよい。
 第一内視鏡60には、第1実施形態と同様にアーム16(図1参照)が取り付けられている。
The left imaging unit 62 and the right imaging unit 63 included in the tip configuration unit 61 capture a pair of images having parallax with respect to the same imaging target region. For example, the left imaging unit 62 and the right imaging unit 63 each independently have an image sensor and an objective optical system. The image captured by the left image capturing unit 62 and the image captured by the right image capturing unit 63 are transmitted to the image control unit 66 of the control device 64 through a signal line (not shown) as in the first embodiment.
The left imaging unit 62 and the right imaging unit 63 share one image sensor, and an image from the objective optical system viewing the imaging field from the right side and an image from the objective optical system viewing the imaging field from the left side are one. The image sensor may alternately take an image.
The arm 16 (see FIG. 1) is attached to the first endoscope 60 as in the first embodiment.
 制御装置64は、第1実施形態と同様にレーザー制御部65,画像制御部66,及びアーム制御部67を有しているが、第1実施形態の制御装置41とは一部異なる制御手順に従って動作する。 The control device 64 includes a laser control unit 65, an image control unit 66, and an arm control unit 67 as in the first embodiment, but according to a control procedure that is partially different from the control device 41 of the first embodiment. Operate.
 画像制御部66は、本実施形態の先端構成部61に配された左側撮像部62及び右側撮像部63がそれぞれ取得した画像に基づいて、第一内視鏡60から光点A1までの距離を測定する機能を有する。一例として、画像制御部66は、左側撮像部62及び右側撮像部63が取得した画像の視差を用いて光点A1までの距離を測定する。
 すなわち、本実施形態では、画像制御部66は、第2実施形態において光点A2の直径を用いて第一内視鏡60と光点A2との距離を測定していたことに代えて、光点の形状に関わらず、二枚一組で撮像された画像の視差の情報に基づいて第一内視鏡60と光点A1との距離を測定する。
The image control unit 66 determines the distance from the first endoscope 60 to the light spot A1 based on the images acquired by the left imaging unit 62 and the right imaging unit 63 arranged in the distal end configuration unit 61 of the present embodiment. Has the function to measure. As an example, the image control unit 66 measures the distance to the light spot A1 using the parallax of the images acquired by the left imaging unit 62 and the right imaging unit 63.
That is, in the present embodiment, the image control unit 66 measures the distance between the first endoscope 60 and the light spot A2 by using the diameter of the light spot A2 in the second embodiment. Regardless of the shape of the points, the distance between the first endoscope 60 and the light spot A1 is measured based on the parallax information of the images captured in pairs.
 なお、第一内視鏡60と光点A1との距離を測定するための構成は上記の構成には限られない。たとえば、第一内視鏡60の先端構成部61は、公知のレーザー測距器や赤外線測距器などの構成を適宜有していてもよい。 It should be noted that the configuration for measuring the distance between the first endoscope 60 and the light spot A1 is not limited to the above configuration. For example, the distal end configuration portion 61 of the first endoscope 60 may appropriately have a configuration such as a known laser range finder or infrared range finder.
 第一内視鏡60及びアーム16に対する制御装置64による具体的な制御の一例について、制御手順をステップごとに分けて以下に説明する。図15は、同内視鏡システムの制御装置による制御手順を説明するためのフローチャートである。
 まず、制御装置64の画像制御部66は、第一内視鏡60の左側撮像部62及び右側撮像部63が撮像した画像のうち、所定の一方の画像から、レーザー制御部65による制御に基づいて第二内視鏡23のレーザー照射部27が照射するレーザー光により撮像対象部位に生じる光点A1を認識する(認識ステップ,ステップS21,図15参照)。ステップS21において、画像制御部66は、左側撮像部62からの画像と右側撮像部63からの画像とのどちらか一方に対して、レーザー光に特有の波長あるいは第1実施形態と同様の点滅状態に基づいて光点A1を認識する。
 ステップS21において、画像制御部66が光点A1を認識できた場合には、画像制御部66は、第一内視鏡60の撮像部13が撮像した画像における光点A1の位置を、所定の二次元の座標情報として記憶する。このときの座標系は、たとえば、左側撮像部62からの画像と右側撮像部63からの画像とのうち、光点A1の認識に使用した画像における視野中心を原点とした座標系である。本実施形態において、ステップS21以降のステップにおいて使用される画像上の座標系は、すべて、光点A1の認識に使用した画像における座標系である。光点A1の座標を画像制御部66が記憶した後、ステップS21は終了してステップS22へ進む。
 ステップS21において、画像制御部66が光点A1を認識できなかった場合には、光点A1が認識できるまでステップS21が繰り返される。ステップS21におけるその他の具体的な制御については、上記第1実施形態におけるステップS1と同様であって構わない。
An example of specific control by the control device 64 for the first endoscope 60 and the arm 16 will be described below by dividing the control procedure into steps. FIG. 15 is a flowchart for explaining a control procedure by the control device of the endoscope system.
First, the image control unit 66 of the control device 64 is based on the control by the laser control unit 65 from a predetermined one of the images captured by the left imaging unit 62 and the right imaging unit 63 of the first endoscope 60. Then, the light spot A1 generated in the region to be imaged is recognized by the laser light emitted by the laser irradiation unit 27 of the second endoscope 23 (see the recognition step, step S21, FIG. 15). In step S <b> 21, the image control unit 66 sets a wavelength specific to the laser beam or a blinking state similar to that in the first embodiment for either the image from the left imaging unit 62 or the image from the right imaging unit 63. Based on the above, the light spot A1 is recognized.
In step S21, when the image control unit 66 can recognize the light spot A1, the image control unit 66 sets the position of the light spot A1 in the image captured by the imaging unit 13 of the first endoscope 60 to a predetermined value. Store as two-dimensional coordinate information. The coordinate system at this time is, for example, a coordinate system having the origin at the center of the visual field in the image used for recognizing the light spot A1 out of the image from the left imaging unit 62 and the image from the right imaging unit 63. In the present embodiment, the coordinate system on the image used in the steps after step S21 is all the coordinate system in the image used for the recognition of the light spot A1. After the image control unit 66 stores the coordinates of the light spot A1, step S21 ends and the process proceeds to step S22.
If the image control unit 66 cannot recognize the light spot A1 in step S21, step S21 is repeated until the light spot A1 can be recognized. Other specific control in step S21 may be the same as step S1 in the first embodiment.
 ステップS22は、上記のステップS21(認識ステップ)において認識された光点A1の位置と、画像上の所定の基準位置との位置関係を照合する照合ステップである。本実施形態における“画像上の所定の基準位置”とは、左側撮像部62が撮像した画像と右側撮像部63が撮像した画像とのうち、ステップS21において光点A1の認識に使用した画像の視野中心の位置である。
 ステップS22において、画像制御部66は、上記のステップS21において光点A1の認識に使用した画像において、上記第1実施形態において説明した上記の所定の微小な範囲D1内に光点A1が位置しているか、上記の所定の微小な範囲D1外に光点A1が位置しているかを判定する。
 本実施形態では、ステップS22において、画像制御部66は、光点A1が上記の所定の微小な範囲D1内に位置しているかいないかを判定する。上記の所定の微小な範囲D1内に光点A1が位置していると画像制御部66が判定したときには、ステップS21へ進む。上記の所定の微小な範囲D1内に光点A1が位置していないと画像制御部66が判定したときには、ステップS23へ進む。
Step S22 is a collation step for collating the positional relationship between the position of the light spot A1 recognized in step S21 (recognition step) and a predetermined reference position on the image. The “predetermined reference position on the image” in the present embodiment refers to the image used for recognizing the light spot A1 in step S21 out of the image captured by the left imaging unit 62 and the image captured by the right imaging unit 63. It is the position of the center of the visual field.
In step S22, the image controller 66 determines that the light spot A1 is located within the predetermined minute range D1 described in the first embodiment in the image used for recognition of the light spot A1 in step S21. Or whether the light spot A1 is located outside the predetermined minute range D1.
In the present embodiment, in step S22, the image control unit 66 determines whether or not the light spot A1 is located within the predetermined minute range D1. When the image control unit 66 determines that the light spot A1 is located within the predetermined minute range D1, the process proceeds to step S21. When the image control unit 66 determines that the light spot A1 is not located within the predetermined minute range D1, the process proceeds to step S23.
 ステップS23は、第一内視鏡60の撮像部13と撮像対象部位との距離を算出する算出ステップである。
 ステップS23において、画像制御部66は、先端構成部61に配された右側撮像部63及び左側撮像部62がそれぞれ取得した画像の視差を用いて、第一内視鏡60と光点A1との距離を測定する。
 これでステップS23は終了し、ステップS24へ進む。
Step S23 is a calculation step for calculating the distance between the imaging unit 13 of the first endoscope 60 and the imaging target part.
In step S <b> 23, the image control unit 66 uses the parallax between the images acquired by the right imaging unit 63 and the left imaging unit 62 arranged in the distal end configuration unit 61, and performs the first endoscope 60 and the light spot A <b> 1. Measure distance.
Step S23 is ended now and it progresses to Step S24.
 ステップS24は、上記のステップS21(認識ステップ)において認識された光点A1の位置に、画像上の所定の基準位置を移動させるためのアーム16の動作方向および動作量を算出する算出ステップである。
 ステップS24では、上記のステップS21において光点A1の認識に使用した画像の座標系における光点A1の位置と、第一内視鏡60と光点A1との距離とを用いて、上記の第2実施形態におけるステップS14と同様に、アーム16の各アクチュエータ19(図1参照)の動作量を算出する。
 これでステップS24は終了し、ステップS25へ進む。
Step S24 is a calculation step for calculating an operation direction and an operation amount of the arm 16 for moving a predetermined reference position on the image to the position of the light spot A1 recognized in the above step S21 (recognition step). .
In step S24, the position of the light spot A1 in the coordinate system of the image used for recognizing the light spot A1 in step S21 and the distance between the first endoscope 60 and the light spot A1 are used. Similar to step S14 in the second embodiment, the operation amount of each actuator 19 (see FIG. 1) of the arm 16 is calculated.
Step S24 is completed now and it progresses to Step S25.
 ステップS25は、上記第2実施形態におけるステップS15と同様にアーム16を動作させるための駆動信号をアーム制御部67がアーム16(図1参照)に出力する指示ステップである。
 ステップS25におけるアーム16の移動が完了したらステップS25は終了し、ステップS21へ進む。
Step S25 is an instruction step in which the arm control unit 67 outputs a drive signal for operating the arm 16 to the arm 16 (see FIG. 1) in the same manner as Step S15 in the second embodiment.
If the movement of the arm 16 in step S25 is completed, step S25 will be complete | finished and it will progress to step S21.
 上記のステップS21からステップS25までの各ステップは、第1実施形態と同様に繰り返し実行される。 Each step from step S21 to step S25 is repeatedly executed as in the first embodiment.
 本実施形態に係る内視鏡システム3の作用について説明する。
 本実施形態では、上記の第二実施形態と同様に、第一内視鏡60と撮像対象部位における光点A1との距離を測定することができる。本実施形態では、第二実施形態と異なり、第一内視鏡60と光点A1との距離との測定に光点A1の直径を使用しない。すなわち、本実施形態では、光点A1の形状に関わらず、画像制御部66は第一内視鏡60と光点A1との距離を測定することができる。
The operation of the endoscope system 3 according to this embodiment will be described.
In the present embodiment, as in the second embodiment, the distance between the first endoscope 60 and the light spot A1 at the imaging target site can be measured. In the present embodiment, unlike the second embodiment, the diameter of the light spot A1 is not used for measuring the distance between the first endoscope 60 and the light spot A1. That is, in the present embodiment, the image control unit 66 can measure the distance between the first endoscope 60 and the light spot A1 regardless of the shape of the light spot A1.
 以上に説明したように、本実施形態に係る内視鏡システム3によれば、第二実施形態に係る内視鏡システム2と同様に、第一内視鏡60と撮像対象部位との距離を一定に維持した状態で、第二内視鏡23の視野の移動に追従して第一内視鏡60を自動的に移動させることができる。その結果、本実施形態に係る内視鏡システム3でも第2実施形態に係る内視鏡システム2と同様の効果を奏する。 As described above, according to the endoscope system 3 according to the present embodiment, the distance between the first endoscope 60 and the imaging target region is set as in the endoscope system 2 according to the second embodiment. The first endoscope 60 can be automatically moved following the movement of the field of view of the second endoscope 23 while maintaining a constant state. As a result, the endoscope system 3 according to the present embodiment also has the same effects as the endoscope system 2 according to the second embodiment.
 さらに、本実施形態に係る内視鏡システム3によれば、撮像対象部位に生じる光点A1の形状に関わらず、第一内視鏡60の先端構成部61に配された左側撮像部62および右側撮像部63により撮像された二枚一組の画像を用いて第一内視鏡60と光点A1との距離を測定することができる。その結果、本実施形態では、撮像対象部位の形状によって光点A1の形状に歪みや欠落が生じていても、第一内視鏡60において光点A1の一部が撮像されていれば、画像制御部66は、光点A1を認識可能であり、また第一内視鏡60と光点A1との距離を測定可能である。このように、本実施形態に係る内視鏡システム3では、複雑な形状を有する組織等を処置対象部位とする場合であっても、これらの組織等の形状によって距離の測定ができなくなる可能性を低く抑えることができる。 Furthermore, according to the endoscope system 3 according to the present embodiment, the left imaging unit 62 disposed on the distal end constituting unit 61 of the first endoscope 60 and the shape of the light spot A1 generated in the imaging target region, and The distance between the first endoscope 60 and the light spot A1 can be measured using a set of two images captured by the right imaging unit 63. As a result, in the present embodiment, even if the shape of the light spot A1 is distorted or missing due to the shape of the imaging target part, if the first endoscope 60 captures a part of the light spot A1, the image The control unit 66 can recognize the light spot A1 and can measure the distance between the first endoscope 60 and the light spot A1. As described above, in the endoscope system 3 according to the present embodiment, there is a possibility that the distance cannot be measured depending on the shape of the tissue or the like even when the tissue or the like having a complicated shape is used as the treatment target site. Can be kept low.
(第4実施形態)
 本発明の第4実施形態について説明する。なお、本実施形態において、上記各実施形態に開示された構成要素と同様の構成要素には、上記各実施形態と同様の符号が付され、重複する説明は省略されている。図16は、本発明の第4実施形態に係る内視鏡システムの模式図である。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. In the present embodiment, the same components as those disclosed in the above embodiments are denoted by the same reference numerals as those in the above embodiments, and redundant description is omitted. FIG. 16 is a schematic diagram of an endoscope system according to the fourth embodiment of the present invention.
 図16に示す本実施形態に係る内視鏡システム4は、硬性の内視鏡に代えて軟性の内視鏡を備えている点において、上記の各実施形態と構成が大きく異なっている。
 内視鏡システム4は、軟性の第一内視鏡70と、軟性の第二内視鏡80と、第一内視鏡70及び第二内視鏡80に接続された制御装置90とを有している。また、本実施形態に係る内視鏡システム4は第1実施形態と同様のメインモニタ45を備えている。
The endoscope system 4 according to the present embodiment shown in FIG. 16 is greatly different from the above embodiments in that a flexible endoscope is provided instead of a rigid endoscope.
The endoscope system 4 includes a soft first endoscope 70, a soft second endoscope 80, and a control device 90 connected to the first endoscope 70 and the second endoscope 80. is doing. Further, the endoscope system 4 according to the present embodiment includes a main monitor 45 similar to that of the first embodiment.
 第一内視鏡70は、挿入部71と、駆動部75と、動力伝達部79とを有している。 The first endoscope 70 has an insertion portion 71, a drive portion 75, and a power transmission portion 79.
 挿入部71は、全体として軟性の細長部材である。
 挿入部71は、先端構成部72と、湾曲部73と、可撓管部74とを有している。
The insertion portion 71 is a flexible elongated member as a whole.
The insertion portion 71 has a distal end configuration portion 72, a bending portion 73, and a flexible tube portion 74.
 先端構成部72は、第1実施形態に開示された第一内視鏡10の先端構成部12(図1参照)と同様の構成を有していて構わない。たとえば、先端構成部72は、第1実施形態と同様にイメージセンサや対物光学系などを備えた撮像部13を有している。 The distal end configuration portion 72 may have the same configuration as the distal end configuration portion 12 (see FIG. 1) of the first endoscope 10 disclosed in the first embodiment. For example, the tip configuration unit 72 includes the imaging unit 13 including an image sensor, an objective optical system, and the like, as in the first embodiment.
 湾曲部73は、屈曲可能に連結された不図示の複数の湾曲駒が挿入部71の長手軸方向に並べて配置されていることにより、全体として筒状に形成されている。湾曲部73は、後述する駆動部75が発する動力によって能動的に湾曲形状に変形可能である。
 湾曲部73の先端には、上記の先端構成部72が接続されている。湾曲部73の基端には、後述する可撓管部74の先端が接続されている。
 湾曲部73が湾曲形状に変形する動作により、湾曲部73の先端に配された先端構成部72が移動するので、撮像部13の撮像視野を移動させることができる。
The bending portion 73 is formed in a cylindrical shape as a whole by arranging a plurality of bending pieces (not shown) connected so as to be bendable in the longitudinal axis direction of the insertion portion 71. The bending portion 73 can be actively deformed into a curved shape by power generated by a driving unit 75 described later.
The tip constituting portion 72 is connected to the tip of the bending portion 73. The distal end of a flexible tube portion 74 to be described later is connected to the proximal end of the bending portion 73.
Since the distal end constituting portion 72 disposed at the distal end of the bending portion 73 is moved by the operation of deforming the bending portion 73 into the curved shape, the imaging field of view of the imaging portion 13 can be moved.
 可撓管部74は、自在に湾曲可能な可撓性を有する管状の部材である。可撓管部74の内部には、撮像部13が撮像した画像を制御装置90へ送信するための不図示の信号線や、後述する動力伝達部79のアングルワイヤなどが配されている。動力伝達部79のアングルワイヤは、湾曲部73における能動湾曲方向に対応して設けられている。たとえば、上下左右の4方向に湾曲部73が湾曲する態様では、上下方向の湾曲動作をさせるためのアングルワイヤと、左右方向の湾曲動作をさせるためのアングルワイヤとが可撓管部74内に挿通される。 The flexible tube portion 74 is a flexible tubular member that can be freely bent. Inside the flexible tube 74, a signal line (not shown) for transmitting an image captured by the imaging unit 13 to the control device 90, an angle wire of a power transmission unit 79 described later, and the like are arranged. The angle wire of the power transmission unit 79 is provided corresponding to the active bending direction in the bending unit 73. For example, in an aspect in which the bending portion 73 bends in the four directions of up, down, left, and right, an angle wire for making a bending operation in the up and down direction and an angle wire for making a bending operation in the left and right direction are in the flexible tube portion 74 It is inserted.
 駆動部75は、可撓管部74の基端に接続されている。駆動部75は、アクチュエータ76と、エンコーダ77とを有している。 The drive unit 75 is connected to the proximal end of the flexible tube unit 74. The drive unit 75 includes an actuator 76 and an encoder 77.
 駆動部75のアクチュエータ76は、後述する動力伝達部79のアングルワイヤを介して湾曲部73を湾曲動作させるための動力を発する。駆動部75のアクチュエータ76は、たとえば、制御装置90のアーム制御部93からの駆動信号に従って動作可能である。
 エンコーダ77は、アクチュエータ76の動作量を検出するために駆動部75に配されている。エンコーダ77は、制御装置90のアーム制御部93と電気的に接続されている。すなわち、本実施形態では、アクチュエータ76の動作量は、アーム制御部93により検出可能である。
The actuator 76 of the drive unit 75 generates power for bending the bending unit 73 via an angle wire of the power transmission unit 79 described later. The actuator 76 of the drive unit 75 can operate according to a drive signal from the arm control unit 93 of the control device 90, for example.
The encoder 77 is disposed in the drive unit 75 in order to detect the operation amount of the actuator 76. The encoder 77 is electrically connected to the arm control unit 93 of the control device 90. That is, in the present embodiment, the operation amount of the actuator 76 can be detected by the arm control unit 93.
 アクチュエータ76及びエンコーダ77の構成は特に限定されないが、例えば、アクチュエータ76は、アーム制御部93からの駆動信号に従って動作するモータと、モータが発する動力により回転するプーリとを備えている。この場合には、アングルワイヤの数に対応した数のモータ及びプーリによりアクチュエータ76が構成される。また、この場合、エンコーダ77は各モータの動作量を検出可能となるようにたとえば各モータにそれぞれ設けられている。 The configurations of the actuator 76 and the encoder 77 are not particularly limited. For example, the actuator 76 includes a motor that operates according to a drive signal from the arm control unit 93 and a pulley that rotates by power generated by the motor. In this case, the actuator 76 includes a number of motors and pulleys corresponding to the number of angle wires. In this case, the encoder 77 is provided for each motor, for example, so that the operation amount of each motor can be detected.
 動力伝達部79は、アクチュエータ76が発する動力を湾曲部73に伝達するために挿入部71内に挿通されたアングルワイヤを有している。アングルワイヤの先端は、湾曲部73を構成する複数の湾曲駒のうちの最も先端側の湾曲駒に接続されている。アングルワイヤの基端は、駆動部75においてアクチュエータ76に接続されている。 The power transmission part 79 has an angle wire inserted into the insertion part 71 in order to transmit the power generated by the actuator 76 to the bending part 73. The distal end of the angle wire is connected to the most distal bending piece among the plurality of bending pieces constituting the bending portion 73. The proximal end of the angle wire is connected to the actuator 76 in the drive unit 75.
 第二内視鏡80は、挿入部81と、操作部85と、動力伝達部88とを有している。 The second endoscope 80 has an insertion portion 81, an operation portion 85, and a power transmission portion 88.
 挿入部81は、全体として軟性の細長部材である。
 挿入部81は、先端構成部82と、湾曲部83と、可撓管部84とを有している。
The insertion portion 81 is a flexible elongated member as a whole.
The insertion portion 81 includes a distal end configuration portion 82, a bending portion 83, and a flexible tube portion 84.
 先端構成部82は、第1実施形態に開示された第二内視鏡23の先端構成部25(図1,2参照)と同様の構成を有していて構わない。たとえば、先端構成部82は、第1実施形態と同様にイメージセンサや対物光学系などを備えた撮像部26と、第1実施形態と同様のレーザー照射部27とを有している。 The distal end configuration portion 82 may have the same configuration as the distal end configuration portion 25 (see FIGS. 1 and 2) of the second endoscope 23 disclosed in the first embodiment. For example, the tip constituting unit 82 includes the imaging unit 26 including an image sensor, an objective optical system, and the like as in the first embodiment, and the laser irradiation unit 27 as in the first embodiment.
 湾曲部83及び可撓管部84の構成は、本実施形態の第一内視鏡70の湾曲部73及び可撓管部74と同様であって構わない。 The configuration of the bending portion 83 and the flexible tube portion 84 may be the same as that of the bending portion 73 and the flexible tube portion 74 of the first endoscope 70 of the present embodiment.
 操作部85は、操作者が湾曲部83やレーザー照射部27などを操作するために、第二内視鏡80の可撓管部84の基端に接続されている。
 操作部85は、湾曲操作入力部86を有している。また、操作部85には、第1実施形態と同様の照射スイッチ39及び視点変更スイッチ40が配されている。
The operation unit 85 is connected to the proximal end of the flexible tube unit 84 of the second endoscope 80 in order for the operator to operate the bending unit 83, the laser irradiation unit 27, and the like.
The operation unit 85 has a bending operation input unit 86. Further, the operation unit 85 is provided with the irradiation switch 39 and the viewpoint change switch 40 similar to those in the first embodiment.
 湾曲操作入力部86は、後述する動力伝達部88のアングルワイヤを進退動作させるために操作部85に配されている。湾曲操作入力部86の構成としては、公知の軟性内視鏡に適用可能な構成から適宜選択されてよい。たとえば、湾曲操作入力部86は、ノブ,ダイヤル,あるいはレバーなどの入力部材(不図示)と、入力部材に固定されているとともにアングルワイヤに接続されたプーリやドラムなどの回転部材(不図示)を有している。 The bending operation input unit 86 is disposed on the operation unit 85 in order to advance and retract an angle wire of a power transmission unit 88 described later. The configuration of the bending operation input unit 86 may be appropriately selected from configurations applicable to known flexible endoscopes. For example, the bending operation input unit 86 includes an input member (not shown) such as a knob, a dial, or a lever, and a rotating member (not shown) such as a pulley or a drum fixed to the input member and connected to an angle wire. have.
 本実施形態における照射スイッチ39は、第1実施形態と同様にレーザー照射部27をオン状態またはオフ状態に切り替えるために第二内視鏡80の操作部85に配されている。 The irradiation switch 39 in the present embodiment is arranged on the operation unit 85 of the second endoscope 80 in order to switch the laser irradiation unit 27 to the on state or the off state, as in the first embodiment.
 動力伝達部88は、本実施形態の第一内視鏡70と同様のアングルワイヤを有し、第二内視鏡80の挿入部81に挿入されている。第二内視鏡80のアングルワイヤの先端は第二内視鏡80の湾曲部83を構成する不図示の湾曲駒に接続されており、第二内視鏡80のアングルワイヤの基端は湾曲操作入力部86に接続されている。 The power transmission unit 88 has an angle wire similar to that of the first endoscope 70 of the present embodiment, and is inserted into the insertion unit 81 of the second endoscope 80. The distal end of the angle wire of the second endoscope 80 is connected to a bending piece (not shown) constituting the bending portion 83 of the second endoscope 80, and the proximal end of the angle wire of the second endoscope 80 is bent. The operation input unit 86 is connected.
 制御装置90は、第1実施形態と同様にレーザー制御部91,画像制御部92,及びアーム制御部93を有している。
 制御装置90は、第一内視鏡70,第二内視鏡80,及びメインモニタ45に電気的に接続されており、第一内視鏡70,レーザー照射部27,及びメインモニタ45を制御する。本実施形態では、第1実施形態において制御装置41がアーム16(図1参照)を制御することに代えて、制御装置90のアーム制御部93が第一内視鏡70の湾曲部73の動作を制御する。本実施形態では、第一内視鏡70の湾曲部73が第1内視鏡のアーム16(図1参照)に相当する。
 本実施形態では、第一内視鏡70の撮像部13の撮像視野を制御装置90が自動制御する。
The control device 90 includes a laser control unit 91, an image control unit 92, and an arm control unit 93 as in the first embodiment.
The controller 90 is electrically connected to the first endoscope 70, the second endoscope 80, and the main monitor 45, and controls the first endoscope 70, the laser irradiation unit 27, and the main monitor 45. To do. In this embodiment, instead of the control device 41 controlling the arm 16 (see FIG. 1) in the first embodiment, the arm control unit 93 of the control device 90 operates the bending portion 73 of the first endoscope 70. To control. In the present embodiment, the curved portion 73 of the first endoscope 70 corresponds to the arm 16 (see FIG. 1) of the first endoscope.
In the present embodiment, the control device 90 automatically controls the imaging field of the imaging unit 13 of the first endoscope 70.
 本実施形態の制御装置90は、第二内視鏡80の撮像部26を操作者が移動させることに伴ってレーザー照射部27からのレーザー光の光点A1が移動することに追従して第一内視鏡70の視野を移動させる点において上記の第1実施形態と同様である。本実施形態では、制御装置90が、第一内視鏡70の駆動部75の動作を制御することによって湾曲部73を湾曲変形させ、その結果として第一内視鏡70の撮像部13を移動させる。制御装置90における制御手順は、上記第1実施形態におけるステップS4における動作指示の出力先が第一内視鏡70の駆動部75である点を除いて、第1実施形態と同様であってよい。 The control device 90 of the present embodiment follows the movement of the light spot A1 of the laser beam from the laser irradiation unit 27 as the operator moves the imaging unit 26 of the second endoscope 80. This is similar to the first embodiment in that the field of view of one endoscope 70 is moved. In the present embodiment, the control device 90 bends and deforms the bending portion 73 by controlling the operation of the driving portion 75 of the first endoscope 70, and as a result, moves the imaging portion 13 of the first endoscope 70. Let The control procedure in the control device 90 may be the same as that in the first embodiment except that the output destination of the operation instruction in step S4 in the first embodiment is the drive unit 75 of the first endoscope 70. .
 本実施形態に係る内視鏡システム4は、上記の第1実施形態に係る内視鏡システム1と同様の効果を奏する。また、本実施形態に係る内視鏡システム4では、第一内視鏡70及び第二内視鏡80がいずれも軟性内視鏡であるので、たとえば消化管内を通じて処置対象部位に第一内視鏡70及び第二内視鏡80を容易に案内して観察や処置をすることができる。 The endoscope system 4 according to the present embodiment has the same effects as the endoscope system 1 according to the first embodiment. In the endoscope system 4 according to the present embodiment, since both the first endoscope 70 and the second endoscope 80 are flexible endoscopes, for example, the first endoscope is applied to the treatment target site through the digestive tract. The mirror 70 and the second endoscope 80 can be easily guided for observation and treatment.
 本実施形態において上述した構成では、第一内視鏡70の挿入部71の進退動作を制御装置90が制御しない。なお、上記の構成に限られず、たとえば第一内視鏡70の挿入部71を進退動作させるための不図示の進退機構を内視鏡システム4が備え、この進退機構を制御装置90が制御するように構成されることにより、上記の第2実施形態と同様に、第一内視鏡70と撮像対象部位との距離を一定に維持しながら第二内視鏡80の移動に追従して第一内視鏡70を移動させることができる。
 また、本実施形態における第一内視鏡70及び第二内視鏡80は、上記の第3実施形態と同様に左側撮像部62及び右側撮像部63(図14参照)を有して距離の測定が可能であってもよい。
In the configuration described above in the present embodiment, the control device 90 does not control the advance / retreat operation of the insertion portion 71 of the first endoscope 70. The endoscope system 4 includes an unillustrated advance / retreat mechanism for moving the insertion portion 71 of the first endoscope 70 forward and backward, for example, and the control device 90 controls the advance / retreat mechanism. With this configuration, the second endoscope 80 follows the movement of the second endoscope 80 while keeping the distance between the first endoscope 70 and the imaging target portion constant, as in the second embodiment. One endoscope 70 can be moved.
In addition, the first endoscope 70 and the second endoscope 80 in the present embodiment have the left imaging unit 62 and the right imaging unit 63 (see FIG. 14) as in the third embodiment, and have a distance. Measurement may be possible.
(第5実施形態)
 本発明の第5実施形態について説明する。なお、本実施形態において、上記各実施形態に開示された構成要素と同様の構成要素には、上記各実施形態と同様の符号が付され、重複する説明は省略されている。図17は、本発明の第5実施形態に係る内視鏡システムの模式図である。
(Fifth embodiment)
A fifth embodiment of the present invention will be described. In the present embodiment, the same components as those disclosed in the above embodiments are denoted by the same reference numerals as those in the above embodiments, and redundant description is omitted. FIG. 17 is a schematic diagram of an endoscope system according to the fifth embodiment of the present invention.
 図17に示す内視鏡システム5は、第1実施形態に開示された第一内視鏡10,アーム16,制御装置41,及びメインモニタ45を備えている。また、本実施形態に係る内視鏡システム5は、公知の軟性内視鏡の軟性処置具チャンネル内に挿入することができる内視鏡用レーザー照射装置100を、第二内視鏡23に代えて備えている。 The endoscope system 5 shown in FIG. 17 includes the first endoscope 10, the arm 16, the control device 41, and the main monitor 45 disclosed in the first embodiment. In addition, the endoscope system 5 according to the present embodiment replaces the endoscope laser irradiation apparatus 100 that can be inserted into a flexible treatment instrument channel of a known flexible endoscope with the second endoscope 23. Prepared.
 本実施形態では、内視鏡用レーザー照射装置100が取り付けられる対象となる内視鏡の構成は特に限定されない。すなわち、本実施形態に係る内視鏡システム5は、上記の公知の軟性内視鏡とともに使用されるシステムであればよく、上記の公知の軟性内視鏡を構成要素に含んでいる必要はない。詳細は図示しないが、以下では、上記の公知の軟性内視鏡の構成の一例として、可撓性を有する挿入部と、挿入部の先端に配された撮像部と、挿入部の基端に接続された操作部と、操作部から挿入部まで延びる軟性処置具チャンネルとを備えた直視型の軟性内視鏡を用いる場合について説明する。 In the present embodiment, the configuration of the endoscope to which the endoscope laser irradiation apparatus 100 is attached is not particularly limited. That is, the endoscope system 5 according to the present embodiment may be a system that is used together with the above-described known flexible endoscope, and does not need to include the above-described known flexible endoscope as a component. . Although details are not shown, in the following, as an example of the configuration of the above-described known flexible endoscope, a flexible insertion section, an imaging section disposed at the distal end of the insertion section, and a proximal end of the insertion section A case where a direct-viewing type flexible endoscope including a connected operation unit and a flexible treatment instrument channel extending from the operation unit to the insertion unit will be described.
 内視鏡用レーザー照射装置100は、挿入部101と、本体部103とを有している。 The endoscope laser irradiation apparatus 100 includes an insertion part 101 and a main body part 103.
 挿入部101は、第1実施形態と同様のレーザー照射部27と、軟性内視鏡の軟性処置具チャンネル内に挿入可能な柔軟なシース部102とを有している。 The insertion unit 101 includes a laser irradiation unit 27 similar to that in the first embodiment, and a flexible sheath 102 that can be inserted into the flexible treatment instrument channel of the flexible endoscope.
 本実施形態におけるレーザー照射部27は、第1実施形態とほぼ同様の構成を有しているが、軟性処置具チャンネルの内径未満に小型化された構成を有している。また、レーザー照射部27は、レーザー光の光軸方向が軟性内視鏡の光軸と平行するように、軟性処置具チャンネルに対して係止あるいは連結などによる位置決めができるようになっている。
 本実施形態において、レーザー照射部27が照射するレーザー光の光軸は、軟性内視鏡の撮像部26の視野中心方向とは厳密には同軸でなく、厳密には平行していない場合がある。しかしながら、本実施形態に係る内視鏡システム5の使用時において、レーザー光の光軸は、軟性内視鏡の撮像部26の視野中心に近接する状態でほぼ平行するので、この視野中心方向に対して実質的に同軸であるとみなすことができる。
The laser irradiation unit 27 in the present embodiment has substantially the same configuration as that of the first embodiment, but has a configuration that is downsized to be smaller than the inner diameter of the flexible treatment instrument channel. Further, the laser irradiation unit 27 can be positioned by locking or coupling with the flexible treatment instrument channel so that the optical axis direction of the laser beam is parallel to the optical axis of the flexible endoscope.
In the present embodiment, the optical axis of the laser light emitted by the laser irradiation unit 27 may not be strictly coaxial with or strictly parallel to the visual field center direction of the imaging unit 26 of the flexible endoscope. . However, when the endoscope system 5 according to the present embodiment is used, the optical axis of the laser beam is substantially parallel to the visual field center of the imaging unit 26 of the flexible endoscope. In contrast, it can be considered substantially coaxial.
 シース部102は、レーザー照射部27と本体部103とを接続する信号線や電源線などが挿通された柔軟な筒状部である。シース部102の外径は、軟性処置具チャンネルの内径よりも小径である。 The sheath portion 102 is a flexible cylindrical portion through which a signal line, a power line, and the like that connect the laser irradiation portion 27 and the main body portion 103 are inserted. The outer diameter of the sheath part 102 is smaller than the inner diameter of the flexible treatment instrument channel.
 本体部103は、軟性内視鏡の操作部とともに、使用時には体外に配置される。本体部103は、軟性内視鏡の操作部に取り付けることができる。
 本体部103は、軟性内視鏡の軟性処置具チャンネルの基端口金(不図示)に本体部103を連結するための不図示の連結機構と、上記第1実施形態に開示された照射スイッチ39とを有している。
The main body unit 103 is disposed outside the body together with the operation unit of the flexible endoscope during use. The main body 103 can be attached to the operation part of the flexible endoscope.
The main body 103 includes a connection mechanism (not shown) for connecting the main body 103 to a proximal end base (not shown) of the soft treatment instrument channel of the flexible endoscope, and the irradiation switch 39 disclosed in the first embodiment. And have.
 制御装置41は、第1実施形態と同様の構成を有しているが、下記の点で第1実施形態と異なっている。
 まず、本実施形態の制御装置41には、上記の公知の軟性内視鏡を接続することができる。また、本実施形態の制御装置41は、上記の公知の軟性内視鏡の撮像部が撮像した画像を上記第1実施形態における狭角画像としてメインモニタ45に表示させる。
 さらに、制御装置41のレーザー制御部42に本実施形態の内視鏡用レーザー照射装置100を接続することができる。また、制御装置41の画像制御部43は、内視鏡用レーザー照射装置100によって撮像対象部位に照射されたレーザー光によって生じる光点A1を認識する。
 すなわち、本実施形態では、上記の公知の軟性内視鏡に内視鏡用レーザー照射装置100が組み合わされた構成が、上記の第1実施形態における第二内視鏡23(図1参照)に相当する機能を有する。なお、本実施形態では軟性内視鏡に内視鏡用レーザー照射装置100が組み合わされた構成が例示されているが、内視鏡用レーザー照射装置100が取り付けられる対象となる内視鏡は硬性鏡であっても構わない。この場合、内視鏡用レーザー照射装置100と硬性鏡とが組み合わされた構成は、機能面において実質的に第1実施形態の第二内視鏡23と同一となる。
The control device 41 has the same configuration as that of the first embodiment, but differs from the first embodiment in the following points.
First, the above-described known flexible endoscope can be connected to the control device 41 of the present embodiment. In addition, the control device 41 of the present embodiment displays an image captured by the imaging unit of the known flexible endoscope on the main monitor 45 as a narrow-angle image in the first embodiment.
Furthermore, the endoscope laser irradiation apparatus 100 of this embodiment can be connected to the laser control unit 42 of the control apparatus 41. In addition, the image control unit 43 of the control device 41 recognizes the light spot A <b> 1 generated by the laser light irradiated to the imaging target region by the endoscope laser irradiation device 100.
That is, in the present embodiment, the configuration in which the endoscope laser irradiation apparatus 100 is combined with the above-described known flexible endoscope is the second endoscope 23 (see FIG. 1) in the first embodiment. It has a corresponding function. In the present embodiment, a configuration in which the endoscope laser irradiation apparatus 100 is combined with the flexible endoscope is illustrated, but the endoscope to which the endoscope laser irradiation apparatus 100 is attached is rigid. It can be a mirror. In this case, the configuration in which the endoscope laser irradiation apparatus 100 and the rigid endoscope are combined is substantially the same as the second endoscope 23 of the first embodiment in terms of function.
 本実施形態に係る内視鏡システム5は、上記の第1実施形態に係る内視鏡システム1と同様に、内視鏡用レーザー照射装置100が軟性処置具チャンネルに取り付けられた状態の軟性内視鏡(第1実施形態における第二内視鏡23に相当)が操作者によって移動されると、内視鏡用レーザー照射装置100が撮像対象部位に照射するレーザー光によって生じる光点A1の位置に基づいて、制御装置41が、上記の第1実施形態におけるステップS1からステップS4までの各ステップを実行することで、第1実施形態と同様に第一内視鏡10を軟性内視鏡の移動に追従させる。
 その結果、本実施形態に係る内視鏡システム5は、第二内視鏡23に代えて公知の内視鏡を使用しても上記第1実施形態と同様の効果を奏する。
Similarly to the endoscope system 1 according to the first embodiment, the endoscope system 5 according to the present embodiment is a flexible internal device in a state where the endoscope laser irradiation device 100 is attached to the flexible treatment instrument channel. When the endoscope (corresponding to the second endoscope 23 in the first embodiment) is moved by the operator, the position of the light spot A1 generated by the laser beam irradiated to the imaging target region by the endoscope laser irradiation device 100 On the basis of the above, the control device 41 executes each step from step S1 to step S4 in the first embodiment, so that the first endoscope 10 is a flexible endoscope as in the first embodiment. Follow the movement.
As a result, even if the endoscope system 5 according to the present embodiment uses a known endoscope instead of the second endoscope 23, the same effects as those of the first embodiment can be obtained.
 (変形例)
 本実施形態の変形例について説明する。
 本変形例の内視鏡用レーザー照射装置(不図示)は、上記実施形態の内視鏡用レーザー照射装置100の挿入部101の先端にレーザー光源29が配されているのではなく、体外に配される公知のレーザー装置が発するレーザー光を挿入部101の先端まで伝送するようになっている。すなわち、本実施例の内視鏡用レーザー照射装置は、シース部102内に配された光ファイバと、本体部103内で光ファイバに接続されており上記のレーザー装置に接続可能な光コネクタとを有している。
 このような構成であっても上記の実施形態と同様の効果を奏する。
(Modification)
A modification of this embodiment will be described.
The endoscope laser irradiation apparatus (not shown) of this modification is not provided with a laser light source 29 at the distal end of the insertion portion 101 of the endoscope laser irradiation apparatus 100 of the above embodiment, but outside the body. A laser beam emitted from a known laser device is transmitted to the tip of the insertion portion 101. That is, the endoscope laser irradiation apparatus according to the present embodiment includes an optical fiber disposed in the sheath portion 102, an optical connector that is connected to the optical fiber in the main body portion 103 and can be connected to the laser device, and have.
Even with such a configuration, the same effects as those of the above-described embodiment can be obtained.
(第6実施形態)
 本発明の第6実施形態について説明する。なお、本実施形態において、上記各実施形態に開示された構成要素と同様の構成要素には、上記各実施形態と同様の符号が付され、重複する説明は省略されている。図18は、本発明の第6実施形態に係る内視鏡システムの模式図である。図19は、同内視鏡システムの作用を説明するための模式図である。
(Sixth embodiment)
A sixth embodiment of the present invention will be described. In the present embodiment, the same components as those disclosed in the above embodiments are denoted by the same reference numerals as those in the above embodiments, and redundant description is omitted. FIG. 18 is a schematic diagram of an endoscope system according to the sixth embodiment of the present invention. FIG. 19 is a schematic diagram for explaining the operation of the endoscope system.
 図18に示す内視鏡システム6は、第一内視鏡110と、上記の第1実施形態に開示されたアーム16(第一アーム)と、第一内視鏡110と同様の第二内視鏡120と、第一アーム16と同様の第二アーム130と、第1実施形態と同様のメインモニタ45とを有している。また、本実施形態に係る内視鏡システム6は、上記の第1実施形態に開示された制御装置41に代えて、第一内視鏡110,第一アーム16,第二内視鏡120,第二アーム130,及びメインモニタ45を制御する制御装置140を備えている。 An endoscope system 6 shown in FIG. 18 includes a first endoscope 110, an arm 16 (first arm) disclosed in the first embodiment, and a second endoscope similar to the first endoscope 110. It has the endoscope 120, the second arm 130 similar to the first arm 16, and the main monitor 45 similar to the first embodiment. In addition, the endoscope system 6 according to the present embodiment replaces the control device 41 disclosed in the first embodiment with the first endoscope 110, the first arm 16, the second endoscope 120, A control device 140 for controlling the second arm 130 and the main monitor 45 is provided.
 第一内視鏡110は、上記の第1実施形態において第二内視鏡23が備えるレーザー照射部27と同様のレーザー照射部111と、このレーザー照射部111のオン状態とオフ状態とを切り替えるための照射スイッチ112とを有している点で、上記の第1実施形態と構成が異なっている。また、第一内視鏡110には、上記の第1実施形態において第二内視鏡23の操作部33に配された視点変更スイッチ40(図1参照)と同様の視点変更スイッチ131が配されている。 The first endoscope 110 switches the laser irradiation unit 111 similar to the laser irradiation unit 27 included in the second endoscope 23 in the first embodiment and the on / off state of the laser irradiation unit 111. Therefore, the configuration is different from that of the first embodiment. Further, the first endoscope 110 is provided with a viewpoint change switch 131 similar to the viewpoint change switch 40 (see FIG. 1) arranged in the operation unit 33 of the second endoscope 23 in the first embodiment. Has been.
 第一内視鏡110のレーザー照射部111は、第二内視鏡120のレーザー照射部27とは区別可能な波長または形状を有する光点A4を撮像対象部位に生じさせる。すなわち、第一内視鏡110のレーザー照射部111から照射されるレーザー光によって生じる光点A4は、第二内視鏡120の撮像部26が撮像した画像において、第二内視鏡120のレーザー照射部27が照射するレーザー光によって生じる光点A1とは区別可能である。
逆に、第二内視鏡120のレーザー照射部27から照射されるレーザー光によって生じる光点A1は、第一内視鏡110の撮像部13が撮像した画像において、第一内視鏡110のレーザー照射部111が照射するレーザー光によって生じる光点A4とは区別可能である。
The laser irradiation unit 111 of the first endoscope 110 generates a light spot A4 having a wavelength or shape that is distinguishable from the laser irradiation unit 27 of the second endoscope 120 at the imaging target site. That is, the light spot A4 generated by the laser light emitted from the laser irradiation unit 111 of the first endoscope 110 is the laser of the second endoscope 120 in the image captured by the imaging unit 26 of the second endoscope 120. It can be distinguished from the light spot A1 generated by the laser light irradiated by the irradiation unit 27.
Conversely, the light spot A1 generated by the laser light irradiated from the laser irradiation unit 27 of the second endoscope 120 is the image of the first endoscope 110 in the image captured by the imaging unit 13 of the first endoscope 110. It can be distinguished from the light spot A4 generated by the laser beam irradiated by the laser irradiation unit 111.
 第一内視鏡110は、レーザー照射部111及び照射スイッチ112を備え、また視点変更スイッチ131が配されている点以外は上記の第1実施形態の第一内視鏡10と同様であって構わない。 The first endoscope 110 is the same as the first endoscope 10 of the first embodiment except that the first endoscope 110 includes a laser irradiation unit 111 and an irradiation switch 112 and a viewpoint change switch 131 is arranged. I do not care.
 図19に示すように、本実施形態の第一アーム16は、上記の第1実施形態と同様に、本実施形態の第一内視鏡110を移動させる。 As shown in FIG. 19, the first arm 16 of the present embodiment moves the first endoscope 110 of the present embodiment, similarly to the first embodiment described above.
 第二内視鏡120は、第1実施形態に開示された第二内視鏡23(図1参照)と比較して、後述する第二アーム130に接続されており制御装置140の制御に従って動作可能である点が異なっている。
 図18に示すように、第二内視鏡120は、第1実施形態の第二内視鏡23と同様に、撮像部26,レーザー照射部27,及び照射スイッチ39を有している。たとえば、第二内視鏡120は、一例として、第一内視鏡110と同型の内視鏡であってもよい。第二内視鏡120は、第一内視鏡110とは独立して動作可能であるとともに、後述する制御装置140の制御の下で第一内視鏡110と連携して動作することもできる。第二内視鏡120の具体的な構成についての説明は省略する。
The second endoscope 120 is connected to the second arm 130 described later and operates in accordance with the control of the control device 140, as compared with the second endoscope 23 (see FIG. 1) disclosed in the first embodiment. The difference is that it is possible.
As illustrated in FIG. 18, the second endoscope 120 includes an imaging unit 26, a laser irradiation unit 27, and an irradiation switch 39, similarly to the second endoscope 23 of the first embodiment. For example, the second endoscope 120 may be an endoscope of the same type as the first endoscope 110 as an example. The second endoscope 120 can operate independently of the first endoscope 110 and can also operate in cooperation with the first endoscope 110 under the control of the control device 140 described later. . A description of the specific configuration of the second endoscope 120 is omitted.
 第二アーム130は、一例として、第一アーム16と同型のアームである。第二アーム130は、第一アーム16とは独立して動作可能であるとともに、後述する制御装置140の制御の下で第一アーム16と連携して動作することもできる。第二アーム130の具体的な構成についての説明は省略する。 The second arm 130 is an arm of the same type as the first arm 16 as an example. The second arm 130 can be operated independently of the first arm 16 and can also operate in cooperation with the first arm 16 under the control of the control device 140 described later. A description of the specific configuration of the second arm 130 is omitted.
 本実施形態に係る内視鏡システム6は、操作入力手段として、第一内視鏡110に取り付け可能な第一の視点変更スイッチ131と、第二内視鏡120に取り付け可能な第二の視点変更スイッチ132とを有している。各視点変更スイッチ131,132の構成及び機能は上記の第1実施形態の視点変更スイッチ40(図1,3参照)と同様であって構わない。本実施形態では、2つの視点変更スイッチ131,132のどちらを操作しても、広角画像と狭角画像との切り替え入力をすることができる。 The endoscope system 6 according to this embodiment includes a first viewpoint change switch 131 that can be attached to the first endoscope 110 and a second viewpoint that can be attached to the second endoscope 120 as operation input means. And a change switch 132. The configurations and functions of the viewpoint change switches 131 and 132 may be the same as those of the viewpoint change switch 40 (see FIGS. 1 and 3) of the first embodiment. In the present embodiment, a switching input between a wide-angle image and a narrow-angle image can be performed by operating either of the two viewpoint change switches 131 and 132.
 制御装置140は、第一内視鏡110,第一アーム16,第二内視鏡120,第二アーム130,及びメインモニタ45に電気的に接続されている。 The control device 140 is electrically connected to the first endoscope 110, the first arm 16, the second endoscope 120, the second arm 130, and the main monitor 45.
 制御装置140の画像制御部43は、第一内視鏡110及び第二内視鏡120に電気的に接続される。本実施形態では、第一内視鏡110の撮像部13が撮像した画像及び第二内視鏡120の撮像部26が撮像した画像は、第一画像処理装置21及び第二画像処理装置35を介して画像制御部43へと送信される。 The image control unit 43 of the control device 140 is electrically connected to the first endoscope 110 and the second endoscope 120. In the present embodiment, the image captured by the imaging unit 13 of the first endoscope 110 and the image captured by the imaging unit 26 of the second endoscope 120 are transmitted to the first image processing device 21 and the second image processing device 35. To the image control unit 43.
 制御装置140は、上記の第1実施形態と同様に、第一内視鏡110を第二内視鏡120の移動に追従させて移動させる。さらに、本実施形態の制御装置140は、第二内視鏡120を第一内視鏡110の移動に追従させて移動させることができる。
 第二内視鏡120を第一内視鏡110の移動に追従させる場合における制御装置140の制御手順は、第1実施形態におけるステップS1からステップS4までの各ステップの説明において第一内視鏡110と第二内視鏡120とを入れ替えた手順で構わない。
The control device 140 moves the first endoscope 110 following the movement of the second endoscope 120 as in the first embodiment. Furthermore, the control device 140 of the present embodiment can move the second endoscope 120 following the movement of the first endoscope 110.
The control procedure of the control device 140 when causing the second endoscope 120 to follow the movement of the first endoscope 110 is the first endoscope in the description of each step from step S1 to step S4 in the first embodiment. 110 and the second endoscope 120 may be replaced.
 本実施形態に係る内視鏡システム6の作用について説明する。
 本実施形態では、第一内視鏡110と第二内視鏡120とは同型もしくは同様の構成を有しているので、第一内視鏡110と第二内視鏡120とのどちらか一方を広角画像用に割り当て、残りの一つを狭角画像用に割り当てて使用可能である。たとえば、図18及び図19に示すように、上記の第1実施形態と同様に第一内視鏡110を広角画像の撮像用にし、第二内視鏡120を狭角画像の撮像用にすることができる。この場合、二つの内視鏡のうちのどちらを操作者が操作し、どちらが制御装置140により自動制御されるかは、操作者があらかじめ設定する。
The operation of the endoscope system 6 according to this embodiment will be described.
In the present embodiment, since the first endoscope 110 and the second endoscope 120 have the same type or the same configuration, either the first endoscope 110 or the second endoscope 120 is used. Can be used for wide-angle images and the remaining one can be used for narrow-angle images. For example, as shown in FIGS. 18 and 19, the first endoscope 110 is used to capture a wide-angle image and the second endoscope 120 is used to capture a narrow-angle image, as in the first embodiment. be able to. In this case, the operator previously sets which of the two endoscopes is operated by the operator and which is automatically controlled by the control device 140.
 なお、第一内視鏡110と第二内視鏡120とが完全に対等な関係で制御装置140に制御されるようになっていてもよい。すなわち、操作者による事前の設定なしに、操作者による操作が行われていない内視鏡及びアームを、操作者によって操作される内視鏡及びアームに追従するように、第一内視鏡110又は第二内視鏡120を制御装置140が自動制御してもよい。 It should be noted that the first endoscope 110 and the second endoscope 120 may be controlled by the control device 140 in a completely equal relationship. That is, the first endoscope 110 is configured so that the endoscope and the arm that are not operated by the operator follow the endoscope and the arm that are operated by the operator without prior setting by the operator. Alternatively, the control device 140 may automatically control the second endoscope 120.
 以上に説明したように、本実施形態に係る内視鏡システム6によれば、上記の第1実施形態と同様の効果を奏する。さらに、本実施形態に係る内視鏡システム6によれば、第一内視鏡110と第二内視鏡120との主従関係(操作者に操作される内視鏡が主,制御装置140によって自動制御される内視鏡が従,となる関係)を容易に入れ替えることができる。 As described above, according to the endoscope system 6 according to the present embodiment, the same effects as those of the first embodiment can be obtained. Furthermore, according to the endoscope system 6 according to the present embodiment, the master-slave relationship between the first endoscope 110 and the second endoscope 120 (the endoscope operated by the operator is the main, the control device 140 The automatically controlled endoscope can be easily replaced.
 なお、本実施形態において、第一内視鏡110及び第二内視鏡120が同時にレーザー光を照射することがないように排他制御する構成を有していれば、第一内視鏡110からのレーザー光による光点A4と第二内視鏡120からのレーザー光による光点A1とが互いに区別可能な波長または形状でなくてもよい。 In the present embodiment, if the first endoscope 110 and the second endoscope 120 have a configuration in which exclusive control is performed so as not to irradiate laser light at the same time, the first endoscope 110 can be used. The light spot A4 due to the laser light and the light spot A1 due to the laser light from the second endoscope 120 need not have different wavelengths or shapes.
(第7実施形態)
 本発明の第7実施形態について説明する。なお、本実施形態において、上記各実施形態に開示された構成要素と同様の構成要素には、上記各実施形態と同様の符号が付され、重複する説明は省略されている。図20は、本発明の第7実施形態に係る内視鏡システムの模式図である。
(Seventh embodiment)
A seventh embodiment of the present invention will be described. In the present embodiment, the same components as those disclosed in the above embodiments are denoted by the same reference numerals as those in the above embodiments, and redundant description is omitted. FIG. 20 is a schematic diagram of an endoscope system according to the seventh embodiment of the present invention.
 図20に示す本実施形態に係る内視鏡システム7は、上記の第6実施形態に開示された内視鏡システム6と同様に、2つの内視鏡の一方に対して他方が追従動作する主従関係を有し、この主従関係を適宜入れ替えることができるシステムである。さらに、本実施形態に係る内視鏡システム7は、2つの内視鏡がそれぞれ撮像対象部位に対して一定の距離を維持して移動可能であることを特徴としている。 In the endoscope system 7 according to the present embodiment shown in FIG. 20, the other follows the one of the two endoscopes similarly to the endoscope system 6 disclosed in the sixth embodiment. This system has a master-slave relationship, and this master-slave relationship can be appropriately replaced. Furthermore, the endoscope system 7 according to the present embodiment is characterized in that each of the two endoscopes can move while maintaining a certain distance with respect to the imaging target region.
 一例として、本実施形態に係る内視鏡システム7は、上記の第6実施形態に開示された内視鏡システム6と比較して、一部の構成が異なっている。
 まず、本実施形態に係る内視鏡システム7は、上記の第6実施形態に開示された第一内視鏡110及び第二内視鏡120と一部の構成が異なる第一内視鏡150及び第二内視鏡160を備えている。すなわち、第一内視鏡150及び第二内視鏡160は、上記の第3実施形態において開示された左側撮像部62及び右側撮像部63をともに有している。本実施形態における第一内視鏡150及び第二内視鏡160は、いずれも、撮像対象部位に対する距離を測定することができる。
 なお、第一内視鏡150及び第二内視鏡160における測距のための構成として、画像に基づいた距離の測定ではなく、公知のレーザー測距器や赤外線測距器などの構成が適用されていてもよい。
As an example, the endoscope system 7 according to the present embodiment is partially different in configuration from the endoscope system 6 disclosed in the sixth embodiment.
First, the endoscope system 7 according to the present embodiment is different from the first endoscope 110 and the second endoscope 120 disclosed in the above sixth embodiment in a part of the first endoscope 150. And a second endoscope 160. That is, the first endoscope 150 and the second endoscope 160 have both the left imaging unit 62 and the right imaging unit 63 disclosed in the third embodiment. Both the first endoscope 150 and the second endoscope 160 in the present embodiment can measure the distance to the imaging target part.
As a configuration for distance measurement in the first endoscope 150 and the second endoscope 160, a configuration such as a known laser range finder or an infrared range finder is applied instead of a distance measurement based on an image. May be.
 本実施形態に係る内視鏡システム7は、上記の第一内視鏡150及び第二内視鏡160に加えて、上記の第6実施形態に開示された第一アーム16,第二アーム130,及びメインモニタ45を備え、さらに、上記の第6実施形態に開示された制御装置140とは構成が異なる制御装置170を備えている。また、本実施形態に係る内視鏡システム7は、第一アーム16と第二アーム130との相対位置関係を制御装置170に検出させるための姿勢検知装置180をさらに備えている。 The endoscope system 7 according to the present embodiment includes the first arm 16 and the second arm 130 disclosed in the sixth embodiment in addition to the first endoscope 150 and the second endoscope 160 described above. , And a main monitor 45, and further includes a control device 170 having a configuration different from that of the control device 140 disclosed in the sixth embodiment. The endoscope system 7 according to the present embodiment further includes an attitude detection device 180 for causing the control device 170 to detect the relative positional relationship between the first arm 16 and the second arm 130.
 本実施形態に係る内視鏡システム7における第一アーム16及び第二アーム130は、たとえば床などに載置されており、たとえば床に対する載置位置をそれぞれの原点として、第一アーム16に固有の座標系と、第二アーム130に固有の座標系とを有している。各アーム16,130は、床等に対して移動可能であっても構わない。 The first arm 16 and the second arm 130 in the endoscope system 7 according to the present embodiment are placed on, for example, the floor. And a coordinate system unique to the second arm 130. Each arm 16, 130 may be movable with respect to the floor or the like.
 第一アーム16に取り付けられた第一内視鏡150の位置は、第一アーム16に固有の座標系を用いて特定することができる。同様に、第二アーム130に取り付けられた第二内視鏡160の位置は、第二アーム130に固有の座標系を用いて特定することができる。なお、第一アーム16や第二アーム130が床等に対して移動可能である場合、各アーム16,130に固有の座標系自体が移動する。 The position of the first endoscope 150 attached to the first arm 16 can be specified using a coordinate system unique to the first arm 16. Similarly, the position of the second endoscope 160 attached to the second arm 130 can be specified using a coordinate system unique to the second arm 130. When the first arm 16 and the second arm 130 are movable with respect to the floor or the like, the coordinate system itself unique to each arm 16 and 130 moves.
 本実施形態に係る内視鏡システム7の姿勢検知装置180は、たとえば本実施形態に係る内視鏡システム7が設備される手術室等の空間における第一アーム16と第二アーム130との各々の位置及び姿勢を検知する。一例として、姿勢検知装置180は、第一アーム16及び第二アーム130の各関節部18に配された複数のマーカー181と、複数のマーカー181を異なる2方向以上から撮像する複数のカメラ182とを有している。姿勢検知装置180の複数のカメラ182は、本実施形態の制御装置170に接続されている。 The posture detection device 180 of the endoscope system 7 according to the present embodiment includes, for example, each of the first arm 16 and the second arm 130 in a space such as an operating room in which the endoscope system 7 according to the present embodiment is installed. Detect the position and posture. As an example, the posture detection device 180 includes a plurality of markers 181 disposed on each joint portion 18 of the first arm 16 and the second arm 130, and a plurality of cameras 182 that capture the plurality of markers 181 from two or more different directions. have. The plurality of cameras 182 of the posture detection device 180 are connected to the control device 170 of this embodiment.
 また、複数のマーカー181は、各アーム16,130の座標系の原点を規定する位置のみに配されていてもよい。また、複数のマーカー181は、第一内視鏡150と第二内視鏡160とに配されていてもよい。これらの場合、複数のマーカー181の位置及び姿勢と、各アーム16,130のエンコーダ20に基づいた各アーム16,130の姿勢とに基づいて、手術室等の空間における第一アーム16及び第二アーム130の位置及び姿勢を検知することができる。 Also, the plurality of markers 181 may be arranged only at positions that define the origin of the coordinate system of each arm 16, 130. In addition, the plurality of markers 181 may be arranged on the first endoscope 150 and the second endoscope 160. In these cases, based on the positions and postures of the plurality of markers 181 and the postures of the arms 16 and 130 based on the encoder 20 of the arms 16 and 130, the first arm 16 and the second arm 16 in a space such as an operating room. The position and posture of the arm 130 can be detected.
 本実施形態に係る内視鏡システム7の制御装置170は、画像制御部43が、姿勢検知装置180の複数のカメラ182が撮像した複数のマーカー181の位置に基づいて、第一アーム16と第二アーム130との相対位置関係を検知する。
 また、制御装置170は、第一アーム16の各エンコーダ20及び第二アーム130の各エンコーダ20が検出する移動量の情報を参照しながら、アーム制御部44によって、第一アーム16及び第二アーム130の各アクチュエータ19を動作させる。
In the control device 170 of the endoscope system 7 according to the present embodiment, the image control unit 43 uses the first arm 16 and the first arm 16 based on the positions of the plurality of markers 181 captured by the plurality of cameras 182 of the posture detection device 180. A relative positional relationship with the two arms 130 is detected.
Further, the control device 170 controls the first arm 16 and the second arm by the arm control unit 44 while referring to the information on the movement amount detected by each encoder 20 of the first arm 16 and each encoder 20 of the second arm 130. 130 actuators 19 are operated.
 さらに、制御装置170は、第一内視鏡150と撮像対象部位との距離を測定して、測定された距離が第一内視鏡150の移動前後において一致するように、第一内視鏡150の位置を制御する。また、制御装置170は、第二内視鏡160についても、第一内視鏡150と同様に、第二内視鏡23と撮像対象部位との距離を測定して、測定された距離が第二内視鏡160の移動前後において一致するように、第二内視鏡160の位置を制御する。 Furthermore, the control device 170 measures the distance between the first endoscope 150 and the imaging target region, so that the measured distance matches before and after the movement of the first endoscope 150. 150 positions are controlled. The control device 170 also measures the distance between the second endoscope 23 and the imaging target site for the second endoscope 160 as well as the first endoscope 150, and the measured distance is the first endoscope 160. The position of the second endoscope 160 is controlled so as to match before and after the movement of the second endoscope 160.
 特に、本実施形態では、たとえば、広角画像を撮像するための第一内視鏡150の方が狭角画像を撮像するための第二内視鏡160よりも撮像対象部位から遠く離れた位置になるように、制御装置170が各内視鏡の位置を調整する。一例として、第二内視鏡160の移動に第一内視鏡150が追従するように第一内視鏡150が自動制御される場合に、第二内視鏡160が撮像対象部位から離間するように操作者によって移動されたときに、制御装置170は、第一内視鏡150についても撮像対象部位からさらに離間するように移動させる。これにより、本実施形態に係る内視鏡システム7は、第二内視鏡160の撮像視野に対して常に広角の撮像視野を第一内視鏡150が有する関係を維持することができる。 In particular, in the present embodiment, for example, the first endoscope 150 for capturing a wide-angle image is located farther from the imaging target site than the second endoscope 160 for capturing a narrow-angle image. Thus, the control device 170 adjusts the position of each endoscope. As an example, when the first endoscope 150 is automatically controlled so that the first endoscope 150 follows the movement of the second endoscope 160, the second endoscope 160 is separated from the imaging target region. Thus, when moved by the operator, the control device 170 moves the first endoscope 150 so as to be further away from the imaging target region. Thereby, the endoscope system 7 according to the present embodiment can maintain the relationship in which the first endoscope 150 always has a wide-angle imaging field of view with respect to the imaging field of the second endoscope 160.
 本実施形態では、内視鏡システム7の使用時に、第一内視鏡150と第二内視鏡160との役割分担(たとえば第一内視鏡150が広角画像の撮像,第二内視鏡160が狭角画像の撮像とする役割分担)を予め定めておくことにより、意図的に上記の役割分担を変更する設定を行わない限り、第一内視鏡150と第二内視鏡160との操作者がどのように移動させても、上記の役割分担に基づいた広角画像と狭角画像とを各々の内視鏡が撮像するという関係は変わらずに維持される。
 なお、本実施形態では、上記の役割分担を変更する設定を操作者等が行うことにより、第一内視鏡150が狭角画像を撮像し、第二内視鏡160が広角画像を撮像するという役割分担に基づいた動作も可能である。
In the present embodiment, when the endoscope system 7 is used, the roles of the first endoscope 150 and the second endoscope 160 are shared (for example, the first endoscope 150 captures a wide-angle image, the second endoscope If the setting for changing the above-described role sharing is intentionally performed, the first endoscope 150 and the second endoscope 160 may be No matter how the operator moves, the relationship that each endoscope captures a wide-angle image and a narrow-angle image based on the above-described role sharing is maintained unchanged.
In the present embodiment, the first endoscope 150 captures a narrow-angle image and the second endoscope 160 captures a wide-angle image when the operator or the like performs the setting for changing the above-described role assignment. Operation based on the division of roles is also possible.
 本実施形態に係る内視鏡システム7における制御装置170による具体的な制御の一例について以下に説明する。 An example of specific control by the control device 170 in the endoscope system 7 according to the present embodiment will be described below.
 本実施形態に係る内視鏡システム7では、上記の第6実施形態と同様に、第一内視鏡150と第二内視鏡160とは、主従関係を適宜選択することができる。以下の説明では、一例として、第一内視鏡150が第二内視鏡160の動作に従属して動作するように、第二内視鏡160が主の内視鏡であり第一内視鏡150が従の内視鏡であるものとする。 In the endoscope system 7 according to the present embodiment, the master-slave relationship between the first endoscope 150 and the second endoscope 160 can be appropriately selected as in the sixth embodiment. In the following description, as an example, the second endoscope 160 is the main endoscope and the first endoscope so that the first endoscope 150 operates depending on the operation of the second endoscope 160. Assume that the mirror 150 is a slave endoscope.
 まず、操作者等によって、第一内視鏡150及び第二内視鏡160が処置対象部位の近傍まで案内される。第一内視鏡150及び第二内視鏡160は、処置対象部位を含んだ領域を撮像対象部位として、それぞれ撮像を行う。たとえば、第一内視鏡150は処置対象部位を含んだ広角画像を撮像し、第二内視鏡160は処置対象部位を含んだ狭角画像を撮像する。
 本実施形態に係る内視鏡システム7の操作者は、第一内視鏡150と第二内視鏡160とのどちらを主に操作してもよいが、以下の説明では、操作者は主に第二内視鏡160を操作するものとする。
First, the first endoscope 150 and the second endoscope 160 are guided to the vicinity of the treatment target site by an operator or the like. The first endoscope 150 and the second endoscope 160 each perform imaging using an area including the treatment target part as an imaging target part. For example, the first endoscope 150 captures a wide-angle image including the treatment target part, and the second endoscope 160 captures a narrow-angle image including the treatment target part.
The operator of the endoscope system 7 according to the present embodiment may mainly operate either the first endoscope 150 or the second endoscope 160, but in the following description, the operator Assume that the second endoscope 160 is operated.
 処置対象部位に対する処置をする際に、操作者は、第一内視鏡150及び第二内視鏡160を、処置対象部位及びその周辺領域が各内視鏡からの画像において適切な状態となるように設定する。すなわち、処置対象部位と第一内視鏡150との距離と、処置対象部位と第二内視鏡160との距離を、それぞれ好適な距離に設定する。 When performing the treatment on the treatment target region, the operator sets the first endoscope 150 and the second endoscope 160 so that the treatment target region and its peripheral region are in an appropriate state in the image from each endoscope. Set as follows. That is, the distance between the treatment target site and the first endoscope 150 and the distance between the treatment target site and the second endoscope 160 are set to suitable distances.
 操作者は、主に第二内視鏡160を操作して処置対象部位の観察や処置を進める。
 第二内視鏡160を操作者が操作しているときには、制御装置170は、上記の第3実施形態に開示されたステップS21からステップS25までの各ステップと同様の制御手順に基づいて、第一内視鏡150と処置対象部位との距離を一定に保ちながら第二内視鏡160の移動に追従して動作する。これにより、本実施形態においても、第二内視鏡160の撮像部26が撮像した画像の視野中心と第一内視鏡150の撮像部13が撮像した画像の視野中心とが一致した状態が維持される。
The operator mainly operates the second endoscope 160 to proceed with observation and treatment of the treatment target site.
When the operator is operating the second endoscope 160, the control device 170 performs the first control based on the same control procedure as each step from step S21 to step S25 disclosed in the third embodiment. It operates following the movement of the second endoscope 160 while keeping the distance between the one endoscope 150 and the treatment target portion constant. Thereby, also in this embodiment, the state where the visual field center of the image captured by the imaging unit 26 of the second endoscope 160 and the visual field center of the image captured by the imaging unit 13 of the first endoscope 150 coincide with each other. Maintained.
 また、本実施形態では、内視鏡システム7の制御装置170は、撮像対象部位と第二内視鏡160との距離の変化に追従して撮像対象部位と第一内視鏡150との距離を変化させる。すなわち、第二内視鏡160が撮像した画像に対して一定の倍率を有する広角画像を第一内視鏡150の撮像部13が撮像するように第一内視鏡150が自動制御される。 In the present embodiment, the control device 170 of the endoscope system 7 follows the change in the distance between the imaging target site and the second endoscope 160 and the distance between the imaging target site and the first endoscope 150. To change. That is, the first endoscope 150 is automatically controlled so that the imaging unit 13 of the first endoscope 150 captures a wide-angle image having a constant magnification with respect to the image captured by the second endoscope 160.
 一例として、本変形例における制御装置170は、まず、撮像対象部位(本実施形態では光点A1)と第一内視鏡150との距離(第一距離)の測定を行うと共に撮像対象部位(本実施形態では光点A1)と第二内視鏡160との距離(第二距離)の測定を行う(測距ステップ)。続いて、測距ステップにおいて測定された第一距離と第二距離との比が常に維持されるように、主となる内視鏡(操作者によって操作される内視鏡)に対して従となる内視鏡(制御装置170により自動制御される内視鏡)を追従動作させる(距離調整ステップ)。 As an example, the control device 170 in the present modification first measures the distance (first distance) between the imaging target region (light spot A1 in the present embodiment) and the first endoscope 150, and also the imaging target region ( In this embodiment, the distance (second distance) between the light spot A1) and the second endoscope 160 is measured (ranging step). Subsequently, the main endoscope (an endoscope operated by the operator) is subordinate to the main endoscope so that the ratio between the first distance and the second distance measured in the ranging step is always maintained. The following endoscope (an endoscope automatically controlled by the control device 170) is caused to follow (distance adjustment step).
 たとえば、処置対象部位に対して操作者が処置を行う場合、第二内視鏡160の撮像部26を撮像対象部位から離間させることにより第二内視鏡160の撮像視野を操作者が広げて、広角画像下で処置をすることが考えられる。このとき、上記の測距ステップ及び距離調整ステップを有する制御装置170によって、従となる第一内視鏡150は、第二内視鏡160の撮像視野が広角化されたことに追従して、第一内視鏡150の撮像部13の撮像視野をさらに広角化する。 For example, when an operator performs a treatment on a treatment target part, the operator widens the imaging field of view of the second endoscope 160 by separating the imaging unit 26 of the second endoscope 160 from the imaging target part. It is conceivable to perform treatment under a wide-angle image. At this time, by the control device 170 having the distance measurement step and the distance adjustment step, the slave first endoscope 150 follows that the imaging field of view of the second endoscope 160 is widened, The imaging field of the imaging unit 13 of the first endoscope 150 is further widened.
 同様に、本実施形態に係る内視鏡システム7は、第一内視鏡150と第二内視鏡160との主従関係を入れ替えて上記と同様の制御をすることもできる。
 また、主従関係の設定は、視点変更スイッチ(視点変更スイッチ40,視点変更スイッチ131)による制御と連動してもよい。例えば上記の視点変更スイッチによって、メインモニタ45に表示させた画像を撮影している内視鏡を主とする。これによって、メインモニタ45の画像を切り替えると、表示されている画像(内視鏡視野)は常に手動で視野を変更させることができ、かつ、表示されていない側の内視鏡は常にメインモニタ45の画像に合わせて自動で位置調整をすることになる。
 これによって、メインモニタ45の画像を切り替える操作を繰り返しながら、適宜メインモニタに映る画像(内視鏡視野)を手動で動かしても、前記主従関係が自動で切り替わるため、常に画像の視野中心が一致する状態を保つことができる。
 また、常に広角側を従として、狭角画像を主とする設定を行うこともできる。この場合、主側の狭角画像で剥離などの処置を行い、ときおりメインモニタ45の画像を従側の広角画像に切り替えると視野中心が一致していることは上述した例と同様である。さらに、ここで従側視野を移動させて、周囲を観察することもできる。このとき、主側の狭角画像を提供する内視鏡は固定された状態を維持している。次に、メインモニタ45の画像を主側の狭角画像に切り替えると、先ほど画像を切り替える前の視野がそのまま維持されているので処置を再開しやすい。さらに、このとき従側の内視鏡は、メインモニタ45が主側の内視鏡による画像の表示に切り替えられたタイミングで、自らの視野中心が主側の内視鏡の視野中心と一致するように、これまで述べているような方法で自動で位置姿勢を制御される。
Similarly, the endoscope system 7 according to the present embodiment can perform the same control as described above by switching the master-slave relationship between the first endoscope 150 and the second endoscope 160.
The master-slave relationship setting may be linked with control by the viewpoint change switch (viewpoint change switch 40, viewpoint change switch 131). For example, an endoscope that captures an image displayed on the main monitor 45 by the above-described viewpoint change switch is mainly used. Thus, when the image of the main monitor 45 is switched, the displayed image (endoscope visual field) can always be manually changed, and the non-displayed endoscope is always maintained in the main monitor. The position is automatically adjusted according to 45 images.
As a result, even if the image (endoscope field of view) displayed on the main monitor is manually moved while repeating the operation of switching the image of the main monitor 45, the master-slave relationship is automatically switched, so that the field center of the image always matches. It can keep the state to do.
It is also possible to make settings mainly for narrow-angle images with the wide-angle side as the slave. In this case, it is the same as in the above-described example that the center of the visual field coincides when a treatment such as peeling is performed on the narrow-angle image on the main side and the image on the main monitor 45 is occasionally switched to the wide-angle image on the slave side. Further, the periphery can be observed here by moving the slave visual field. At this time, the endoscope that provides the narrow-angle image on the main side is maintained in a fixed state. Next, when the image on the main monitor 45 is switched to the main-side narrow-angle image, the field of view before switching the image is maintained as it is, so that the treatment can be easily restarted. Further, at this time, the secondary endoscope matches the visual field center of the primary endoscope at the timing when the main monitor 45 is switched to display the image by the primary endoscope. As described above, the position and orientation are automatically controlled by the method described so far.
 以上に説明したように、本実施形態では、処置対象部位に対する処置をする際に好適な距離を第一内視鏡150及び第二内視鏡160について処置開始前の観察時に決定することにより、処置開始後には、処置開始前に決定した距離を維持するように各内視鏡が自動制御される。
また、処置中に各内視鏡と撮像対象部位との距離を変更して再度決定してもよい。この場合、新たに決定された距離を維持して各内視鏡が自動制御される。
 また、主側の内視鏡、従側の内視鏡それぞれが電動アーム(第一アーム16、第二アーム130)を有していることによって、主従関係の動的な入れ替えが可能になり、視野操作の自由度を高めつつ、処置の連続性を損なわない視野の自動制御が可能になる。
 これらによって、執刀医はより自在に周囲観察ができ、かつ、常にストレスなく視野変更ができ、かつ、視野変更にともなるストレスや疲労を軽減することができる。
As described above, in the present embodiment, by determining a suitable distance when performing the treatment on the treatment target site at the time of observation before starting treatment for the first endoscope 150 and the second endoscope 160, After the treatment is started, each endoscope is automatically controlled so as to maintain the distance determined before the treatment is started.
Further, the distance between each endoscope and the imaging target part may be changed and determined again during the treatment. In this case, each endoscope is automatically controlled while maintaining the newly determined distance.
In addition, since each of the main-side endoscope and the slave-side endoscope has the electric arms (the first arm 16 and the second arm 130), the master-slave relationship can be dynamically replaced, It is possible to automatically control the visual field without impairing the continuity of treatment while increasing the degree of freedom of visual field operation.
As a result, the surgeon can more freely observe the surroundings, can always change the field of view without stress, and can reduce the stress and fatigue associated with the change of field of view.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 たとえば、処置対象部位を含んだ撮像対象部位に対する広角画像を撮像する第一内視鏡の撮像部は、処置対象部位を含んだ撮像対象部位に対する狭角画像を撮像する第二内視鏡が照射するレーザー光の波長を考慮して、可視光以外の波長の光(たとえば赤外光や紫外光)を可視光に加えて検出することができるようになっていてもよい。この場合、第二内視鏡のレーザー照射部が可視光外のレーザー光を照射することも可能となり、撮像対象部位に含まれる処置対象部位に対して照射されるレーザー光の色によって処置対象部位の詳細な状態がわかりにくくなるのを防ぐことができる。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, the imaging unit of the first endoscope that captures a wide-angle image with respect to the imaging target part including the treatment target part is irradiated with the second endoscope that captures the narrow-angle image with respect to the imaging target part including the treatment target part. In consideration of the wavelength of the laser light to be emitted, light having a wavelength other than visible light (for example, infrared light or ultraviolet light) may be detected in addition to visible light. In this case, the laser irradiation unit of the second endoscope can also irradiate laser light other than visible light, and the treatment target site is determined by the color of the laser light emitted to the treatment target site included in the imaging target site. It is possible to prevent the detailed state of the information from being obfuscated.
 また、上記の各実施形態では、第一内視鏡の撮像部が撮像した画像と第二内視鏡の撮像部が撮像した画像との視野中心が互いに一致するように制御装置が第一内視鏡または第二内視鏡を自動制御する例が開示されているが、第一内視鏡による画像と第二内視鏡による画像との対応付けは、視野中心が互いに一致することには限られない。すなわち、第一内視鏡の撮像部の視野が第二内視鏡の撮像部の視野に対して所定の位置関係を有するように、第一内視鏡の撮像部による画像上の光点の位置に基づいてアーム制御部44がアームを動作させてもよい。この場合の所定の位置関係とは、第一内視鏡の撮像部による画像に第二内視鏡の撮像部の撮像視野の少なくとも一部が含まれる関係である。なお、第一内視鏡が狭角画像を撮像し、第二内視鏡が広角画像を取得するように役割分担がなされている場合には、上記の所定の位置関係とは、第二内視鏡の撮像部による画像に第一内視鏡の撮像部の撮像視野の少なくとも一部が含まれる関係である。 Further, in each of the above embodiments, the control device is arranged so that the center of the visual field of the image captured by the imaging unit of the first endoscope and the image captured by the imaging unit of the second endoscope coincide with each other. Although an example of automatically controlling the endoscope or the second endoscope is disclosed, the correspondence between the image by the first endoscope and the image by the second endoscope is that the visual field centers coincide with each other Not limited. That is, the light spot on the image by the imaging unit of the first endoscope is set so that the field of view of the imaging unit of the first endoscope has a predetermined positional relationship with the field of view of the imaging unit of the second endoscope. The arm controller 44 may operate the arm based on the position. The predetermined positional relationship in this case is a relationship in which at least a part of the imaging field of view of the imaging unit of the second endoscope is included in the image by the imaging unit of the first endoscope. Note that when the first endoscope captures a narrow-angle image and the second endoscope acquires a wide-angle image, the above-mentioned predetermined positional relationship is the second internal relationship. This is a relationship in which at least part of the imaging field of view of the imaging unit of the first endoscope is included in the image by the imaging unit of the endoscope.
 また、上記の各実施形態における内視鏡システムは、メインモニタ45上で光点が目立たないように画像の表示を制御してもよい。たとえば、メインモニタ45上で光点が目立たないように画像を制御する一態様として、画像制御部43は、光点の位置を検出した後、画像上で光点が位置する部分の照度が光点以外の部分と略同等となるように、メインモニタ45において光点が表示される部位の輝度を低下させてもよい。また、別の態様として、レーザー制御部42は所定の周期でレーザー光のオンオフを繰り返すパルス発光をさせ、画像制御部43は、撮像部13,26から出力された画像情報から、レーザー光による光点が映っていないフレームのみをメインモニタ45に出力してもよい。
 また、各サブモニタについても、各画像処理装置が同様に光点が目立たないようにする制御を行ってもよい。
In addition, the endoscope system in each of the above embodiments may control the display of images so that the light spot is not noticeable on the main monitor 45. For example, as one aspect of controlling the image so that the light spot is not conspicuous on the main monitor 45, the image control unit 43 detects the position of the light spot, and then the illuminance of the portion where the light spot is located on the image is light. The luminance of the portion of the main monitor 45 where the light spot is displayed may be reduced so as to be substantially the same as the portion other than the point. As another aspect, the laser control unit 42 emits pulse light that repeatedly turns on and off the laser light at a predetermined cycle, and the image control unit 43 uses the laser light from the image information output from the imaging units 13 and 26. Only frames in which no dots are shown may be output to the main monitor 45.
Also, for each sub-monitor, each image processing apparatus may similarly perform control so that the light spot is not noticeable.
 また、上記各実施形態に開示されたレーザー照射部に代えて、レーザー光でない光を照射する照射部が設けられていてもよい。 Further, instead of the laser irradiation unit disclosed in each of the above embodiments, an irradiation unit that irradiates light that is not laser light may be provided.
 また、上述の各実施形態及び各変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
 なお、上記具体的な構成に対する設計変更等は上記事項には限定されない。
In addition, the constituent elements shown in the above-described embodiments and modifications can be combined as appropriate.
In addition, the design change etc. with respect to the said specific structure are not limited to the said matter.
 内視鏡システムを用いる際、複数の画像を切り替えて観察する際の処置を一時的に休止する時間を少なくすることができる。 When using the endoscope system, it is possible to reduce the time for temporarily suspending the treatment when observing by switching a plurality of images.
 1,2,3,4,5,6,7 内視鏡システム
 10 第一内視鏡
 11 挿入部
 12 先端構成部
 13 撮像部
 14 軸部
 15 操作部
 16 アーム(第一アーム)
 17 リンク部
 18 関節部
 19 アクチュエータ
 20 エンコーダ
 21 第一画像処理装置
 22 第一サブモニタ
 23 第二内視鏡
 24 挿入部
 25 先端構成部
 26 撮像部
 27 レーザー照射部
 28 発光部
 29 レーザー光源
 30 光学系
 31 出射部
 32 軸部
 33 操作部
 34 把持部
 35 第二画像処理装置
 36 第二サブモニタ
 38 アーム入力部
 39 照射スイッチ
 40 視点変更スイッチ
 41 制御装置
 42 レーザー制御部
 43 画像制御部
 44 アーム制御部
 45 メインモニタ
 50 第二内視鏡
 51 レーザー照射部
 52 出射部
 53 制御装置
 54 光学系
 60 第一内視鏡
 61 先端構成部
 62 左側撮像部
 63 右側撮像部
 64 制御装置
 65 レーザー制御部
 66 画像制御部
 67 アーム制御部
 70 第一内視鏡
 71 挿入部
 72 先端構成部
 73 湾曲部
 74 可撓管部
 75 駆動部
 76 アクチュエータ
 77 エンコーダ
 79 動力伝達部
 80 第二内視鏡
 81 挿入部
 82 先端構成部
 83 湾曲部
 84 可撓管部
 85 操作部
 86 湾曲操作入力部
 88 動力伝達部
 90 制御装置
 91 レーザー制御部
 92 画像制御部
 93 アーム制御部
 100 内視鏡用レーザー照射装置
 101 挿入部
 102 シース部
 103 本体部
 110 第一内視鏡
 111 レーザー照射部
 112 照射スイッチ
 120 第二内視鏡
 130 第二アーム
 131 視点変更スイッチ
 132 視点変更スイッチ
 140 制御装置
 150 第一内視鏡
 160 第二内視鏡
 170 制御装置
 180 姿勢検知装置
 181 マーカー
 182 カメラ
1, 2, 3, 4, 5, 6, 7 Endoscope system 10 First endoscope 11 Insertion section 12 Tip configuration section 13 Imaging section 14 Shaft section 15 Operation section 16 Arm (first arm)
DESCRIPTION OF SYMBOLS 17 Link part 18 Joint part 19 Actuator 20 Encoder 21 1st image processing apparatus 22 1st sub monitor 23 2nd endoscope 24 Insertion part 25 Tip structure part 26 Imaging part 27 Laser irradiation part 28 Light emission part 29 Laser light source 30 Optical system 31 Emitting unit 32 Shaft unit 33 Operating unit 34 Gripping unit 35 Second image processing device 36 Second sub-monitor 38 Arm input unit 39 Irradiation switch 40 View point change switch 41 Control device 42 Laser control unit 43 Image control unit 44 Arm control unit 45 Main monitor DESCRIPTION OF SYMBOLS 50 2nd endoscope 51 Laser irradiation part 52 Emitting part 53 Control apparatus 54 Optical system 60 1st endoscope 61 Tip structure part 62 Left side imaging part 63 Right side imaging part 64 Control apparatus 65 Laser control part 66 Image control part 67 Arm Control unit 70 First endoscope 71 Insertion unit 72 Configuration part 73 Bending part 74 Flexible tube part 75 Drive part 76 Actuator 77 Encoder 79 Power transmission part 80 Second endoscope 81 Insertion part 82 Tip part 83 Bending part 84 Flexible pipe part 85 Operation part 86 Bending operation input part DESCRIPTION OF SYMBOLS 88 Power transmission part 90 Control apparatus 91 Laser control part 92 Image control part 93 Arm control part 100 Endoscope laser irradiation apparatus 101 Insertion part 102 Sheath part 103 Main body part 110 First endoscope 111 Laser irradiation part 112 Irradiation switch 120 Second endoscope 130 Second arm 131 View point change switch 132 View point change switch 140 Control device 150 First endoscope 160 Second endoscope 170 Control device 180 Posture detection device 181 Marker 182 Camera

Claims (6)

  1.  第一撮像部を有する第一内視鏡と、
     前記第一撮像部を移動させるために動作可能であり前記第一内視鏡に配されたアームと、
     第二撮像部及び前記第二撮像部の撮像対象部位に光を照射する照射部を有する第二内視鏡と、
     前記光が前記撮像対象部位に照射されて生じる光点を視野内に含む画像を前記第一撮像部から取得し、前記第一撮像部の視野が前記第二撮像部の視野に対して所定の位置関係を有するように前記画像上の前記光点の位置に基づいて前記アームを動作させる制御装置と、
     を備えた内視鏡システム。
    A first endoscope having a first imaging unit;
    An arm operable to move the first imaging unit and disposed on the first endoscope;
    A second endoscope having a second imaging unit and an irradiating unit for irradiating light to an imaging target site of the second imaging unit;
    An image including a light spot generated by irradiating the imaging target site with the light in a field of view is acquired from the first imaging unit, and the field of view of the first imaging unit is predetermined with respect to the field of view of the second imaging unit. A control device for operating the arm based on the position of the light spot on the image so as to have a positional relationship;
    Endoscope system equipped with.
  2.  前記制御装置は、前記アームを動作させるための制御手順として、
      前記第一撮像部が撮像した画像を用いて前記光点を認識する認識ステップと、
      前記認識ステップにおいて認識された光点を基準に、前記画像上の所定の基準位置を移動させるための前記アームの動作量を前記認識ステップの後に算出する算出ステップと、
      前記動作量に基づいて前記アームを移動させるための動作指示を前記算出ステップの後に出力する指示ステップと、
      を含み、前記制御手順に従って前記アームの動作を制御する
     請求項1に記載の内視鏡システム。
    The control device, as a control procedure for operating the arm,
    A recognition step of recognizing the light spot using an image captured by the first imaging unit;
    A calculation step for calculating, after the recognition step, an amount of movement of the arm for moving a predetermined reference position on the image with reference to the light spot recognized in the recognition step;
    An instruction step for outputting an operation instruction for moving the arm based on the operation amount after the calculation step;
    The endoscope system according to claim 1, wherein the operation of the arm is controlled according to the control procedure.
  3.  前記制御装置は、
      前記第一撮像部と前記撮像対象部位との距離である第一距離を測定する測距ステップを前記制御手順にさらに含み、
      前記算出ステップにおいて、前記動作量に基づいた移動目標位置に前記アームが到達した時点における前記第一距離が前記アームの移動開始時における第一距離と等しくなるように、前記アームの動作量を算出する
     請求項2に記載の内視鏡システム。
    The control device includes:
    The control procedure further includes a ranging step of measuring a first distance that is a distance between the first imaging unit and the imaging target site,
    In the calculating step, the movement amount of the arm is calculated so that the first distance when the arm reaches the movement target position based on the movement amount is equal to the first distance at the start of movement of the arm. The endoscope system according to claim 2.
  4.  前記制御装置は、前記第一撮像部と前記撮像対象部位との距離である第一距離と、前記第二撮像部と前記撮像対象部位との距離である第二距離とをそれぞれ測定する測距ステップと、
     前記第一距離が前記第二距離よりも大きくなるように前記アームを動作させる距離調整ステップと、
     を前記制御手順にさらに含む請求項2に記載の内視鏡システム。
    The control device measures a first distance that is a distance between the first imaging unit and the imaging target region, and a second distance that is a distance between the second imaging unit and the imaging target site, respectively. Steps,
    A distance adjusting step of operating the arm such that the first distance is greater than the second distance;
    The endoscope system according to claim 2, further comprising:
  5.  前記制御装置は、前記測距ステップにおいて、前記第一撮像部と前記光点との距離を前記第一距離として算出する請求項3または4に記載の内視鏡システム。 The endoscope system according to claim 3 or 4, wherein the control device calculates a distance between the first imaging unit and the light spot as the first distance in the ranging step.
  6.  前記第二撮像部を移動させるために動作可能であり前記第二内視鏡に配された第二アームをさらに備え、
     前記制御装置は、前記第一内視鏡、前記第二内視鏡、及び前記アームを制御する
     請求項1から5のいずれか一項に記載の内視鏡システム。
    A second arm operable to move the second imaging unit and disposed on the second endoscope;
    The endoscope system according to any one of claims 1 to 5, wherein the control device controls the first endoscope, the second endoscope, and the arm.
PCT/JP2016/081644 2015-11-13 2016-10-25 Endoscope system WO2017082047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223439 2015-11-13
JP2015-223439 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017082047A1 true WO2017082047A1 (en) 2017-05-18

Family

ID=58696049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081644 WO2017082047A1 (en) 2015-11-13 2016-10-25 Endoscope system

Country Status (1)

Country Link
WO (1) WO2017082047A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3586719A1 (en) * 2018-06-25 2020-01-01 Fujifilm Corporation Endoscope apparatus
JPWO2019111482A1 (en) * 2017-12-06 2020-11-26 ソニー・オリンパスメディカルソリューションズ株式会社 Medical control device and control method
JP6920575B1 (en) * 2020-04-10 2021-08-18 川崎重工業株式会社 Robot system and robot system control method
WO2021206149A1 (en) * 2020-04-10 2021-10-14 川崎重工業株式会社 Robot system and control method for robot system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222712A (en) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd Fluorescent endoscope system
JP2001000448A (en) * 1999-06-21 2001-01-09 Hitachi Ltd Apparatus for surgiacl operation
JP2004041778A (en) * 2003-10-20 2004-02-12 Olympus Corp Observation system for intrabody cavity
JP2011000208A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Imaging device
WO2015129474A1 (en) * 2014-02-28 2015-09-03 ソニー株式会社 Robot arm apparatus, robot arm control method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222712A (en) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd Fluorescent endoscope system
JP2001000448A (en) * 1999-06-21 2001-01-09 Hitachi Ltd Apparatus for surgiacl operation
JP2004041778A (en) * 2003-10-20 2004-02-12 Olympus Corp Observation system for intrabody cavity
JP2011000208A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Imaging device
WO2015129474A1 (en) * 2014-02-28 2015-09-03 ソニー株式会社 Robot arm apparatus, robot arm control method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019111482A1 (en) * 2017-12-06 2020-11-26 ソニー・オリンパスメディカルソリューションズ株式会社 Medical control device and control method
JP7231561B2 (en) 2017-12-06 2023-03-01 ソニー・オリンパスメディカルソリューションズ株式会社 Medical control device and control method
EP3586719A1 (en) * 2018-06-25 2020-01-01 Fujifilm Corporation Endoscope apparatus
JP6920575B1 (en) * 2020-04-10 2021-08-18 川崎重工業株式会社 Robot system and robot system control method
WO2021206149A1 (en) * 2020-04-10 2021-10-14 川崎重工業株式会社 Robot system and control method for robot system

Similar Documents

Publication Publication Date Title
US9630323B2 (en) Operation support system and control method of operation support system
US8308633B2 (en) Manipulator operation system
JP4744595B2 (en) Endoscopic surgical instrument
US11033338B2 (en) Medical information processing apparatus, information processing method, and medical information processing system
CN108348134B (en) Endoscope system
JP6598982B2 (en) Endoscope apparatus, endoscope system, and surgical system including the same
US20190290371A1 (en) Optical systems for surgical probes, systems and methods incorporating the same, and methods for performing surgical procedures
JP7115493B2 (en) Surgical arm system and surgical arm control system
JP7151109B2 (en) Medical imaging device and medical observation system
WO2017082047A1 (en) Endoscope system
JP2007301378A (en) Treatment system, trocar, and control method for treatment system
WO2018088105A1 (en) Medical support arm and medical system
JPWO2020054566A1 (en) Medical observation system, medical observation device and medical observation method
WO2020262262A1 (en) Medical observation system, control device, and control method
US11553838B2 (en) Endoscope and arm system
US20220183576A1 (en) Medical system, information processing device, and information processing method
JP6150968B1 (en) Endoscope system
WO2018043205A1 (en) Medical image processing device, medical image processing method, and program
JP7207404B2 (en) MEDICAL SYSTEM, CONNECTION STRUCTURE AND CONNECTION METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP