WO2014136775A1 - Remote automatic machine assisting device and method - Google Patents

Remote automatic machine assisting device and method Download PDF

Info

Publication number
WO2014136775A1
WO2014136775A1 PCT/JP2014/055465 JP2014055465W WO2014136775A1 WO 2014136775 A1 WO2014136775 A1 WO 2014136775A1 JP 2014055465 W JP2014055465 W JP 2014055465W WO 2014136775 A1 WO2014136775 A1 WO 2014136775A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic machine
remote automatic
legged robot
leg
transport mechanism
Prior art date
Application number
PCT/JP2014/055465
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 上原
謙司 松崎
直孝 菅沼
武人 福島
竜馬 藤原
祐輔 三ツ谷
落合 誠
崇広 三浦
泰明 徳永
陽 露木
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2014136775A1 publication Critical patent/WO2014136775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • Embodiments described herein relate generally to a remote automatic machine support apparatus and method for supporting movement of a remote automatic machine such as a multi-legged robot.
  • a remote automatic machine such as a robot having a walking mechanism of two or more legs (see, for example, Patent Document 1) is superior to those having an endless track type moving mechanism such as a wheel type or a crawler, and has a step or road surface condition. However, it is superior to wheel type or endless track type in poor environment.
  • the structure and control of the moving mechanism is more complicated than the wheel type or endless track type, so in an environment where the wheel type or endless track type can move sufficiently, such as on a flat road, The method is more advantageous.
  • An embodiment of the present invention has been made in consideration of the above-described circumstances, and a remote automatic machine support device that can realize field work by a remote automatic machine quickly and at low cost by supporting the movement of the remote automatic machine. And to provide a method.
  • a remote automatic machine support apparatus includes a remote automatic machine that includes two or more legs, each having a link mechanism having a plurality of joints, provided on a torso, and moves by movement of the legs.
  • a remote automatic machine support apparatus that is mounted and moves, the remote automatic machine being provided so that the remote automatic machine can be mounted thereon, a transport mechanism having wheels or an endless track, and attached to the transport mechanism, the remote automatic machine And a support mechanism part for supporting the load of the body part.
  • the remote automatic machine support device includes a remote automatic machine that includes two or more legs formed of a link mechanism having a plurality of joints provided on the body and moves by the operation of the legs.
  • a remote automatic machine support apparatus that is mounted so as to be capable of mounting the remote automatic machine, and is provided with a transport mechanism unit having wheels or an endless track, and is attached to the transport mechanism unit. And a holding mechanism portion that holds the leg so as to limit a movable range of the link mechanism.
  • the support mechanism portion is provided with a body holding mechanism that holds the body portion of the remote automatic machine by applying an urging force to the body portion. Is.
  • the support mechanism unit, the holding mechanism unit, or the transport mechanism unit is provided with a power supply mechanism that can supply power to the remote automatic machine.
  • the remote automatic machine support method is configured such that two or more legs including a link mechanism having a plurality of joints are provided on the trunk portion, and moves by movement of the legs.
  • a remote automatic machine support method for mounting and moving a machine wherein the remote automatic machine is mounted on a transport mechanism having wheels or an endless track and transported. The load of the trunk is supported, or the link mechanism of the leg of the remote automatic machine is held in a fixed state.
  • the field work by this remote automatic machine can be realized quickly and at low cost.
  • the side view which shows the multi-legged robot assistance apparatus which is the 1st form of the remote automatic machine assistance apparatus which concerns on this invention.
  • (A) is a side view showing the action of the trunk holding mechanism of FIG. 1 before installation of the trunk
  • (B) is a side view showing the action of the trunk holding mechanism of FIG. 1 after installation of the trunk.
  • the side view which shows the multi-legged robot of FIG. The schematic perspective view which shows the arrangement
  • the side view which shows the state of a form (A) is a side view showing a state of the second modified form of the body holding mechanism of FIG. 1 before installation of the body, and (B) is a second modification of the body holding mechanism of FIG. 1 after installation of the body.
  • the side view which shows the state of a form. (A) is a side view showing a state of the third modified form of the body holding mechanism of FIG. 1 before installation of the body, and (B) is a third modification of the body holding mechanism of FIG. 1 after installation of the body.
  • the side view which shows the state of a form The schematic side view which shows the multilegged robot assistance apparatus which is 2nd Embodiment of the remote automatic machine assistance apparatus which concerns on this invention.
  • FIG. 9A is a plan view showing a state of the holding mechanism portion of FIG. 8 before holding the leg link mechanism
  • FIG. 9B is a plan view showing a state of the holding mechanism portion of FIG. 8 after holding the leg link mechanism.
  • 8A is a partial perspective view showing a state of the first modified form of the holding mechanism portion of FIG. 8 before holding the leg link mechanism
  • FIG. 8B is a view of the holding mechanism portion of FIG. 8 after holding the leg link mechanism.
  • 8A is a partial perspective view showing a state of the second modified form of the holding mechanism portion of FIG. 8 before holding the leg link mechanism
  • FIG. 8B is a view of the holding mechanism portion of FIG. 8 after holding the leg link mechanism.
  • FIG. 13A is a side view showing a state when the robot is installed in the multi-legged robot support apparatus of FIG. 12, and FIG. 13B is a plan view showing a state when the robot is installed in the multi-legged robot support apparatus of FIG. FIG.
  • FIG. 13A is a side view showing a state when the robot leaves the multi-legged robot support apparatus of FIG. 12, and FIG. 13B is a plan view showing a state when the robot leaves the multi-legged robot support apparatus of FIG.
  • (A) is a side view showing a state of a modified form of the multi-legged robot support device of FIG. 12 when the robot is installed
  • (B) is a side view showing a state of a modified form of the multi-legged robot support device of FIG. Figure.
  • action in the multi-legged robot assistance apparatus of FIG. The side view which shows the other example of an effect
  • action of the multi-legged robot assistance apparatus of FIG. (A) is an overall side view showing a modified form of the multi-legged robot support device of FIG. 20, and (B) is a partial view taken along the line XXIIB of FIG. 22 (A).
  • (A) is a side view showing a multi-legged robot support apparatus in a seventh embodiment of the remote automatic machine support apparatus according to the present invention
  • (B) is a multi-leg in the seventh embodiment of the remote automatic machine support apparatus according to the present invention.
  • the top view which shows a robot assistance apparatus.
  • the figure which shows the screen displayed on the display apparatus of FIG. The side view which shows the multi-legged robot assistance apparatus in 8th Embodiment of the remote automatic machine assistance apparatus which concerns on this invention.
  • (A) is a diagram showing a screen displayed on the display device of FIG. 25 when the surface pressure state is good
  • (B) is a screen displayed on the display device of FIG. 25 when the surface pressure state is not good. Figure.
  • FIG. 1 is a side view showing a multi-legged robot support apparatus which is a first embodiment of a remote automatic machine support apparatus according to the present invention.
  • FIG. 3 is a side view showing the multi-legged robot of FIG.
  • a multi-legged robot support apparatus 10 as a remote automatic machine support apparatus shown in FIG. 1 is equipped with a multi-legged robot 15 as a remote automatic machine and supports its movement, and includes a transport mechanism section 11 and a support mechanism section 12. It is comprised.
  • the multi-legged robot 15 is configured by providing two or more (for example, four) legs 16 on the trunk portion 17, and each leg 16 includes a plurality of joints 18, 19, and 20 (FIG. 4). ). The multi-legged robot 15 moves (walks) when the operation of the leg 16 is operated by the operation unit 13 (FIG. 3).
  • each leg 16 includes a link mechanism 14 in which a first joint 18, a second joint 19, and a third joint 20 are sequentially connected downward by a link 21, and the first joint 18 has a trunk portion 17. It is attached to the lower part.
  • the rotation axis of the first joint 18 is arranged orthogonal to both rotation axes of the second joint 19 and the third joint 20.
  • the multi-legged robot 15 moves forward or backward in the direction of the arrow X (FIG. 4). Further, by the rotation of the first joint 18, the multi-legged robot 15 moves leftward or walks rightward (sidewalks) in the direction of the arrow Y (FIG. 4). Furthermore, by combining the rotations of the first joint 18, the second joint 19, and the third joint 20, the multi-legged robot 15 turns in the direction of the arrow Z (FIG. 4).
  • Each joint 18, 19, and 20 is comprised by the combination of an electric motor, a gear, an encoder, etc., for example.
  • the multi-legged robot 15 of the present embodiment including the leg 16 configured as described above normally performs forward walking, backward progress, left moving walking, right moving walking, left turning walking, or right turning walking continuously.
  • the walking mode and the manual operation walking mode in which the leg tip position of the leg 16 is operated by manual operation by an operator for each leg and walking are alternatively executed.
  • the walking by the legs 16 of the multi-legged robot 15 as described above is operated and controlled by the leg operation control device.
  • the leg operation control device includes an operation unit 13, various sensors (image acquisition unit 22, ground reaction force sensor 23, posture sensor 24, distance sensor 25) installed in the multilegged robot 15, a sensor processing unit 26, and the like.
  • the gait pattern generation unit 27, the control unit 28 as control means, and a signal transmission / reception unit 29 are configured.
  • the operation unit 13 outputs an operation command or the like to the control unit 28 of the multi-legged robot 15 in order to make the multi-legged robot 15 walk by an operator's operation.
  • the operation unit 13 outputs an operation command for causing the multi-legged robot 15 to walk forward or backward in the direction of the arrow X (FIG. 4) in the normal walking mode, and in the manual operation walking mode, the operation target leg 16 An operation command for moving the leg tip of the leg is output.
  • the image acquisition unit 22 is, for example, a camera installed at the front portion of the trunk portion 17 of the multi-legged robot 15, and acquires a moving image and a still image around the multi-legged robot 15 as image data.
  • the image acquisition unit 22 may be installed at the front and rear of the trunk 17 in the multi-legged robot 15.
  • the ground reaction force sensor 23 is installed at the tip of the four legs 16 in the multi-legged robot 15 and measures the ground reaction force acting on the legs 16 when the legs 16 are grounded.
  • the posture sensor 24 is installed on the bottom surface of the trunk portion 17 of the multi-legged robot 15 and is composed of a plurality of sensors for detecting the posture of the multi-legged robot 15 such as acceleration, angular velocity, and tilt angle.
  • the distance sensors 25 are installed at the front and rear portions of the trunk portion 17 of the multi-legged robot 15, and are in contact with the distance between the trunk portion 17 and the grounding surface and the leg tip of the leg 16 (particularly, the leg 16 to be operated). Measure the distance between the ground.
  • the sensor processing unit 26 in the multi-legged robot 15 is configured by a personal computer, for example, and includes image data from the image acquisition unit 22, ground reaction force data by the ground reaction force sensor 23, posture data by the posture sensor 25, and distance by the distance sensor 25. Processes analog data such as data into digital data.
  • the gait pattern generation unit 27 in the multi-legged robot 15 is configured by, for example, a personal computer, and the gait in the normal walking mode combined with the order of moving the four legs 16 and the action of moving the center of gravity of the multi-legged robot 15. Generate a pattern.
  • a crawl gait in which the legs 16 of the multi-legged robot 15 are moved one by one
  • a trot gait in which the two diagonal legs 16 are simultaneously operated, and the front and rear two legs 16 are alternately left and right at the same time.
  • the control unit 28 in the multi-legged robot 15 is composed of, for example, a personal computer, and determines the rotation angles of the joints 18 to 20 of the four legs 16 from the gait and the like generated by the gait pattern generation unit 27.
  • the operation of the legs 16 is controlled. That is, based on the operation command from the operation unit 13, the control unit 28 continuously performs forward walking, backward progress, left moving walking, right moving walking, left turning walking, or right turning walking. Is executed by the multi-legged robot 15. Further, the control unit 28 executes a manual operation walking mode in which the leg position of the leg 16 is operated by a manual operation by an operator for each leg based on an operation command from the operation unit 13 for the multi-legged robot 15.
  • Each link mechanism 14 of the multi-legged robot 15 has a configuration in which the posture cannot be maintained when the power supply is stopped, and a certain torque is required for the rotation of the link mechanism 14 even when the power supply is stopped.
  • Each of them can be held (for example, a brake motor is used for the link mechanism 14).
  • the posture can be maintained, and the force for maintaining the posture of the link mechanism 14 by the stop of the power supply is reduced, and the stability is often lowered.
  • the multi-legged robot support device 10 (FIG. 1) supports the movement (walking) of the multi-legged robot 15 configured as described above up to an area where the multi-legged robot 15 can move by wheels or an endless track.
  • the multi-legged robot support device 10 includes the transport mechanism unit 11 and the support mechanism unit 12 as described above, and includes the power supply 30, the cable winding mechanism 31, the wireless communication mechanism 32, and the monitoring device 33. .
  • the transport mechanism unit 11 is provided so that the multi-legged robot 15 can be mounted, and has a wheel 34 or an endless track (for example, a crawler), and the mounted multi-legged robot 15 is moved to the work site by driving the wheel 34 or the like.
  • the vehicle is transported to a movable area by the wheels 34.
  • a power source 30, a cable winding mechanism 31, and a wireless communication mechanism 32 are installed in the transport mechanism unit 11.
  • the cable winding mechanism 31 is a mechanism that winds or feeds a power cable 35A connected to the power supply 30 and a communication cable 35B connected to a control unit (not shown) that controls driving of the wheels 34, the monitoring device 33, and the like. .
  • the wireless communication mechanism 32 is installed when the communication cable 35B is not provided.
  • the power source 30 is a primary battery, a secondary battery, a capacitor, a generator, or the like. When the power source 30 is a primary battery or a generator, it is not necessary to provide the power cable 35A.
  • the monitoring device 33 is, for example, a camera installed at the tip of the support frame 36 erected on the transport mechanism unit 11. This monitoring device 33 has a zoom function, a pan function, and a tilt function, and acquires surrounding images including the front in the traveling direction of the multi-legged robot support device 10. The monitoring device 33 also has a function of tracking and monitoring the multi-legged robot 15 that moves (walks) away from the multi-legged robot support device 10.
  • the transport mechanism 11 in which the power supply 30, the cable winding mechanism 31, the wireless communication mechanism 32, and the monitoring device 33 are installed is based on the image information captured by the monitoring device 33.
  • the control unit moves (self-propelled) by driving and controlling the wheels 34 or is remotely operated by the operator by transmitting image information of the monitoring device 33 to the operator side using the communication cable 35B or the wireless communication mechanism 32. Move by being manually pushed by an operator.
  • the transport mechanism unit 11 may move following the multi-legged robot 15 that moves away from the multi-legged robot support apparatus 10 and moves (walks).
  • a plurality of support mechanism units 12 are installed on the transport mechanism unit 11 and support the load of the torso portion 17 of the multi-legged robot 15 by placing the torso portion 17 of the multi-legged robot 15.
  • the load of the trunk portion 17 is prevented from acting. And even if the position of the trunk portion 17 is shifted from the position where the trunk portion 17 of the multi-legged robot 15 is placed on the support mechanism portion 12, the trunk portion 17 is guided to the desired position and mounted.
  • a body holding mechanism 37 to be placed is installed.
  • the trunk portion holding mechanism 37 is configured by arranging a guide plate 40 via a rotating portion 39 on a base 38 having an L shape in side view. The guide plate 40 slides in the surface direction B of the guide plate 47 while rotating around the rotation portion 39 in the direction of the arrow A, thereby guiding the body portion 17 in contact with the desired placement position.
  • FIG. 5 shows a trunk portion holding mechanism 37A according to a first modification, in which a spring 41 is disposed between the base 38 and the guide plate 40.
  • the urging force F of the spring 41 acts on the body portion 17 via the guide plate 40, so that the body portion 17 is held in the horizontal direction on the support mechanism portion 12.
  • FIG. 6 shows a trunk holding mechanism 37B according to a second modification.
  • the swing plate 42 is supported on the base 38 via the rotation shaft 43
  • the guide plate 44 is supported on the tip of the swing plate 42 via the rotation shaft 45.
  • the guide plate 44 and the base The spring 41 is disposed between the spring 38 and the spring 38.
  • the swing plate 42 rotates around the rotation axis 43 in the direction of arrow C
  • the guide plate 44 rotates around the rotation axis 45 in the direction of arrow D, so that the trunk portion 17 in contact with the swing plate 42 and the guide plate 44 is touched. Is led to the desired position.
  • the body portion 17 is held in the horizontal direction on the support mechanism portion 12 by the urging force F of the spring 41.
  • FIG. 7 shows a trunk holding mechanism 37 ⁇ / b> C according to a third modification, in which a first magnet 46 installed on the mounting section of the support mechanism section 12 and a second magnet installed on the trunk section 17 of the multi-legged robot 15. 47. Due to the magnetic force of the first magnet 46 and the second magnet 47, the trunk portion 17 is placed at a desired position of the support mechanism portion 12.
  • the first magnet 46 and the second magnet 47 are permanent magnets or electromagnets. In the case of an electromagnet, it is possible to electrically control the magnetization and separation of both the first magnet 46 and the second magnet 47.
  • the multi-legged robot 15 by the urging force of the spring 41 acting on the trunk portion 17 and the magnetic force of the electromagnet without requiring high accuracy for positioning when placing the trunk portion 17 by the trunk portion holding mechanism 37 as described above. Can be held so that there is no backlash. In other words, by using the body holding mechanism 37 as described above, the margin of positioning accuracy when placing the body 17 on the support mechanism 12 can be increased.
  • the multi-legged robot 15 is transported by being mounted on the transport mechanism 11 having the wheels 34 or the endless track, and during this transport, the load on the trunk 17 of the multi-legged robot 15 in particular is transported. It is supported by the support mechanism unit 12 installed in the. For this reason, since the movement (walking) of the multi-legged robot 15 can be supported up to an area that can be moved by the wheels 34 or the endless track of the transport mechanism 11, the amount of walking by the multi-legged robot 15 itself can be reduced. Accordingly, on-site work by the multi-legged robot 15 from the start to withdrawal of the multi-legged robot 15 can be realized quickly and at low cost (low power consumption).
  • FIG. 8 is a schematic side view showing a multi-legged robot support apparatus which is a second embodiment of the remote automatic machine support apparatus according to the present invention.
  • FIG. 9 shows the holding mechanism portion of FIG. 8, (A) is a plan view before holding the leg link mechanism, and (B) is a plan view showing the respective states after holding the leg link mechanism.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.
  • the multi-legged robot support device 50 as the remote automatic machine support device of the second embodiment is different from the first embodiment in that the leg 16 of the multi-legged robot 15 is replaced with the support mechanism section 12 of the first embodiment. This is the point that a holding mechanism portion 51 and a leg tip holding portion 66 for holding the link mechanism 14 so as to limit the movable range of the link mechanism 14 are provided.
  • the holding mechanism 51 holds the first joint 18, the second joint 19, the third joint 20 (particularly the second joint 19, the third joint 20), and the tip of the leg 16 from both sides
  • the link mechanism 14 of the leg 16 is held in a fixed state, and includes a substrate 52 and a holding portion 53.
  • the substrate 52 is provided corresponding to the number of legs 16 of the multi-legged robot 15 and is pivotally supported by the transport mechanism 11 via the pivot shaft 54 so as to be swingable in the direction of arrow E.
  • the leg tip holding part 66 is a cylindrical body (which may be a cylinder or a polygonal cylinder, but will be described as a square cylinder in the present embodiment) fixed to the upper surface of the transport mechanism unit 11, and corresponds to the number of legs 16. Provided.
  • the holding parts 53 are installed on the respective substrates 52 by the number corresponding to the joints to be sandwiched (for example, the second joint 19 and the third joint 20) and the tips of the legs 16.
  • the holding portion 53 has a pair of guide plates 56 disposed on a base 55 having a U-shape in plan view fixed to the substrate 52 so as to face each other via a rotating portion 57.
  • a spring 65 is arranged between the guide plate 56 and the base 55.
  • the multi-legged robot 15 After the multi-legged robot 15 is mounted on the transport mechanism unit 11, when the substrates 52 arranged opposite to each other swing in a direction approaching each other about the pivot shaft 54, a pair of holding units 53 installed on each substrate 52.
  • the guide plate 56 rotates in the arrow G direction around the rotating portion 57 against the urging force of the spring 65 (FIG. 9A).
  • the second joint 19, the third joint 20, and the distal end portion of the leg 16 in the leg 16 of the multi-legged robot 15 are attached with the spring 65 via the guide plate 56 even if there is some positional deviation.
  • the link mechanism 14 of the leg 16 is held in a fixed state by being pinched from both sides by the force (FIG. 9B).
  • FIG. 10 shows the holding mechanism portion 58 of the first modified embodiment, and shows only a portion that holds one joint of the leg 16.
  • the substrate 59 is erected on the transport mechanism portion 11 so as not to swing.
  • each of the pair of holding plates 60 is pivotally supported on both sides of the substrate 59 via the rotation shaft 61 so as to be rotatable within a range of 90 degrees, for example.
  • the pair of holding plates 60 rotate in the direction of the arrow H, and the leg 16 is connected to the second joint 19 for example.
  • the link mechanism 14 of the leg 16 is held in a fixed state.
  • FIG. 11 shows the holding mechanism portion 62 of the second modified form, and shows only a portion that sandwiches one joint of the leg 16.
  • a holding part 63 having a U-shaped cross section is arranged near a joint (for example, the second joint 19 and the third joint 20) in the leg 16 of the multi-legged robot 15 via a rotating shaft 64. is there.
  • the holding unit 63 rotates in the direction of the arrow I around the rotation shaft 64, holds the joint of the leg 16 from both sides, and the link mechanism 14 of the leg 16. Is held fixed.
  • a holding mechanism portion that holds the legs 16 of the multi-legged robot 15 from both sides by using an air cylinder or an electromagnet may be used.
  • the operation of the holding mechanism units 51, 58 and 62 including this holding mechanism unit is executed by remote operation, control of the control unit provided in the multi-legged robot support device 50, or manually by the operator. Is done.
  • the tip end of each leg 16 is inserted into the leg tip holding portion 66, and the vicinity of the tip end of the leg 16 is held with the same spring and holding plate as the holding mechanism portion 58 inside.
  • the multi-legged robot 15 is transported by being mounted on the transport mechanism 11 provided with the wheels 34 or the endless track, and the support installed in the transport mechanism 11 during the transport.
  • the link mechanism 14 of the leg 16 of the mounted multi-legged robot 15 is held in a fixed state by the mechanism portions 51, 58, 62 and the like. For this reason, since the movement (walking) of the multi-legged robot 15 can be supported up to an area that can be moved by the wheels 34 or the endless track of the transport mechanism 11, the amount of walking by the multi-legged robot 15 itself can be reduced. Accordingly, the field work by the multi-legged robot 19 from the start to withdrawal of the multi-legged robot can be realized quickly and at low cost (low power consumption).
  • FIGS. 12A and 12B show a state when the robot is transported in the multi-legged robot support device which is the third embodiment of the remote automatic machine support device according to the present invention, where FIG. 12A is a side view and FIG.
  • FIG. 12A is a side view
  • FIG. 12B the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.
  • the multi-legged robot support device 70 as the remote automatic machine support device of the third embodiment is different from the first embodiment in that the multi-legged robot 15 moves to the transport mechanism section 11 and the multi-legged robot 15 moves to the transport mechanism section 11.
  • a notch 71 is formed in which the leg 16 can walk and enter and retreat.
  • the notch portion 71 is formed at two locations penetrating from the upper surface to the lower surface of the transport mechanism portion 11, and the multi-leg robot 15 has the trunk portion 17 having the multi-leg robot support device 70.
  • the leg 16 is walked in the notch 71 at the time of installation supported by the support mechanism 12 (FIG. 13) or at the time of disengagement (FIG. 14) that moves away from the multi-legged robot support device 70 (FIG. 14). Make it work.
  • the multi-legged robot 15 is caused to walk with the legs 16 standing independently to approach the multi-legged robot support device 70, and in the transport mechanism unit 11 of the multi-legged robot support device 70.
  • the leg 16 is caused to walk within the notch 71, and the independent state of the leg 16 is released at a predetermined position.
  • the multi-legged robot 15 has the body portion 17 supported by the support mechanism portion 12 of the multi-legged robot support device 70 via the body portion holding mechanism 37, and the multi-legged robot support device 70. It is ready for transport. Further, when the multi-legged robot 15 is detached as shown in FIG.
  • the leg 16 is brought into a self-supporting state with the trunk portion 17 supported by the support mechanism portion 12 of the multi-legged robot support device 70, and the leg 16 is transported.
  • the notch part 71 of the part 11 is passed through and grounded, and the body part 17 is separated from the support mechanism part 12 to be independent.
  • the multi-legged robot 15 walks the leg 16 in the notch 71 and leaves the multi-legged robot support device 70.
  • the transport mechanism unit 11 of the multi-legged robot support device 70 is formed with a notch 71 that allows the legs 16 of the multi-legged robot 15 to walk and enter and retreat, the multi-leg robot 15 When this is mounted, the operation of placing the multi-legged robot 15 on the upper surface of the transport mechanism unit 11 becomes unnecessary. As a result, the carrying operation of the multi-legged robot 15 by the multi-legged robot support device 70 can be facilitated and speeded up.
  • the leg 16 cannot maintain its posture due to the stop of the power supply, after placing the trunk portion 17 on the upper surface of the support mechanism portion 12, the tip end of the leg 16 is lifted and spread outward, and the outside of the notch portion 71.
  • the support mechanism portion 12 is pivotally supported by the transport mechanism portion 11 via the rotation shaft 72 and the multi-legged robot 15 is detached. You may be comprised so that rotation to the arrow J direction which is a direction side is possible.
  • the multi-legged robot 15 is disengaged, the multi-legged robot 15 is in a state where the trunk portion 17 is supported by the support mechanism portion 12 of the multi-legged robot support device 70, the leg 16 is in an independent state, and the leg 16 The front end of the slab is grounded through the notch 71.
  • the multi-legged robot support device 70 is moved in the direction K opposite to the direction in which the multi-legged robot 15 is detached while the trunk portion 17 of the multi-legged robot 15 is in contact with the support mechanism portion 12 of the multi-legged robot support device 70.
  • the support mechanism unit 12 rotates in the direction of arrow J, and the multi-legged robot 15 can be detached from the multi-legged robot support device 70 without causing the legs 16 of the multi-legged robot 15 to perform a walking motion.
  • the rotating shaft 72 is provided at the end of the lower end surface of the support mechanism 12 on the arrow J direction side.
  • an end portion of the lower end surface of the support mechanism unit 12 where the rotation shaft 72 is not provided comes into contact with the upper surface of the transport mechanism unit 11, so that the support mechanism unit 12 rotates in the direction opposite to the arrow J direction.
  • the body portion 17 of the multi-legged robot 15 can be stably supported.
  • a slide plate is installed at the lower part of the rear part 11 of the transporter, the multi-legged robot 15 is installed in the support mechanism section 12, and the legs 16 of the multi-legged robot 15 are arranged.
  • the slide plate may be moved manually or remotely, but first, the multi-legged robot 15 is mounted on the multi-legged robot support device 70 in an environment where the worker can approach and moved to a position close to the work area. Since it is operated remotely, it is desirable that the slide plate can be operated manually or remotely.
  • the shaft provided on the slide plate and the motor provided on the transport mechanism unit 11 are engaged with each other and driven, or configured to be slidable using a linear actuator such as an air piston. It is done. Even in such a configuration, the tip of the leg 16 does not touch the floor surface while the multi-legged robot support device 70 is moving.
  • the support mechanism unit 12 may have a lifting function. In this case, after the multi-legged robot 15 is installed on the support mechanism section 12, the support mechanism section 12 is raised so that the tip of the leg 16 does not touch the floor during the movement of the multi-legged robot support device 70. Also in this case, it is desirable to be able to operate manually or remotely as in the case of the slide plate.
  • Remote elevation is configured using a motor, an air piston, or the like.
  • a slope (inclined) groove may be formed instead of the notch 71.
  • the slope is formed so that the side on which the multi-legged robot 15 enters and leaves is low.
  • FIG. 16 is a side view showing a multi-legged robot support apparatus in the fourth embodiment of the remote automatic machine support apparatus according to the present invention.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
  • the multi-legged robot support device 75 as the remote automatic machine support device of the fourth embodiment is different from the first and second embodiments in that the transport mechanism unit 11 or the support mechanism unit 12 (for example, the support mechanism unit 12)
  • a power supply mechanism 76 capable of supplying power to the multi-legged robot 15 is provided.
  • the power supply mechanism 76 is provided, for example, in at least one of the plurality of support mechanism sections 12 and supplies power to the multi-legged robot 15 with power from the power supply 30 or power supplied via the power cable 35A.
  • the power supply mechanism 76 may be either contact-type power supply or non-contact type power supply, and may be configured such that power supply is automatically started when the multi-legged robot 15 is installed in the power supply mechanism 76.
  • the power feeding mechanism 76 may be installed in the transport mechanism unit 11 when the holding mechanism unit 51 (FIG. 8) is provided instead of the support mechanism unit 12.
  • the power supply mechanism 76 is installed in, for example, the support mechanism unit 12 of the multi-legged robot support device 75, and the power supply mechanism 76 supplies power to the multi-legged robot 15.
  • the multi-legged robot 15 can be appropriately powered during the transportation of 15 or at the work site. As a result, the operation time of the multi-legged robot 15 can be extended.
  • FIG. 17 is a side view showing a multi-legged robot support apparatus in the fifth embodiment of the remote automatic machine support apparatus according to the present invention.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.
  • the multi-legged robot support device 80 as the remote automatic machine support device of the fifth embodiment is different from the first and second embodiments in that a slope plate 82 as a walking board is developed from the transport mechanism 11 and mounted.
  • the formed multi-legged robot 15 forms a walkable walking floor, and the slope as a walking floor unfolding mechanism that guides the multi-legged robot 15 to the work site or from the work site to the transport mechanism unit 11 of the multi-legged robot support device 80.
  • the mechanism 81 is a point provided in the transport mechanism unit 11.
  • the slope plate 82 on which the multi-legged robot 15 can safely walk is disposed at one end of the transport mechanism unit 11 via the pivot shaft 83.
  • the slope plate 82 is erected with respect to the transport mechanism unit 11 as shown in FIGS.
  • the slope plate 82 is controlled by a control unit (not shown) in the multi-legged robot support device 80. The tip is grounded by remote operation or manual operation by the operator.
  • the multi-legged robot 15 can walk on the slope plate 82 and move to the work site, or can walk from the work site on the slope plate 82 of the multi-legged robot support device 80 to the transport mechanism 11.
  • the slope plate 82 in the standing state also functions as a handle that can be used by the operator.
  • a slope plate 82 is disposed so as to cover all or part of the step 84, and the multi-legged robot 15. However, by walking on the slope plate 82, it is possible to prevent the multi-legged robot 15 from walking all or part of the step 84.
  • the slope mechanism 81 that guides the work site or the transport mechanism unit 11 of the multi-legged robot support device 80 by walking the multi-leg robot 15 is installed in the transport mechanism unit 11 of the multi-leg robot support device 80. Therefore, when the multi-legged robot 15 walks on the slope plate 82 of the slope mechanism 81, the multi-legged robot 15 can be safely moved to the work site or the transport mechanism section 11.
  • the name of the slope mechanism 81 for convenience, naturally it may become flat continuously with the upper surface of the conveyance mechanism part 11 depending on the place which develops a slope board, without becoming a slope.
  • the slope plate 82 is developed on the floor where small obstacles are scattered. Especially where the floor condition is not good and it is not desired to be grounded directly, even if it does not extend beyond the step (if small obstacles are scattered, small holes or grooves are formed) It is effective when passing through, such as when oil is slippery.
  • the multi-legged robot 15 can get over the step 84 by covering the step 84 with the slope plate. Further, even when the step 84 is a step that can be walked by the multi-legged robot 15, the multi-legged robot walks on the slope plate 82 that covers all or part of the step 84, thereby walking the step 84. The time required for can be reduced or shortened.
  • FIG. 20 is a side view showing a multi-legged robot support apparatus in the sixth embodiment of the remote automatic machine support apparatus according to the present invention.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
  • the multi-legged robot support device 90 as the remote automatic machine support device of the sixth embodiment is different from the first and second embodiments in that the multi-legged robot 15 is supported directly or indirectly, and the transport mechanism 11 is A posture stabilization mechanism 91 that stabilizes the posture of the multi-legged robot 15 by holding the mounted multi-legged robot 15 in a state that is closer to the horizontal than the transport mechanism 11 when tilting is provided. This is a point provided.
  • an elevating device 93 such as a hydraulic cylinder device is disposed between the transport mechanism unit 11 and the substrate 92 on which the support mechanism unit 12 (or the holding mechanism unit 51) is erected. Composed.
  • the lifting device 93 is preferably configured to be arranged before and after the traveling direction L of the multi-legged robot support device 90, and further arranged to be arranged before and after the direction orthogonal to the traveling direction L in the horizontal plane. .
  • the posture stabilization mechanism 91 is disposed between the transport mechanism unit 11 and the support mechanism unit 12 (or the holding mechanism unit 51), and is moved by a gonio stage 95 that is bent and moved by its own weight. It may be configured.
  • the gonio stage 95 includes a gonio stage stationary unit 96 installed in the transport mechanism unit 11, and a gonio stage movable unit 97 that can bend and move in the advancing direction L of the multi-legged robot support device 90 with respect to the gonio stage stationary unit 96.
  • the support mechanism section 12 (or the holding mechanism section 51) is erected on the goniostage movable section 97.
  • the posture stabilization mechanism 91 is configured by the gonio stage 95
  • the gonio stage movable unit 97 is not equipped with the gonio stage 95. It is held in a horizontal state by bending and moving under its own weight with respect to the stationary part 96 to the downside of the road surface 94, and the posture of the multi-legged robot 15 on the goniostage movable part 97 is stabilized.
  • the gonio stage 95 is further comprised of a gonio stage as shown by a two-dot chain line in FIG.
  • the element 96B on the side in contact with the goniostage movable portion 97 can be curved and moved in the direction M perpendicular to the traveling direction L in the horizontal plane with respect to the element 96A on the side installed in the transport mechanism unit 11. Composed.
  • the sixth embodiment also provides the following effects (8) in addition to the same effects as the effects (1) to (4) of the first and second embodiments. .
  • the multi-legged robot support device 90 is provided with the posture stabilization mechanism 91 for stabilizing the posture of the mounted multi-legged robot 15 in the transport mechanism unit 11, the road surface 94 on which the multi-legged robot support device 90 is inclined. Even when the robot is moved, the multi-legged robot 15 can be held and stabilized in a horizontal state.
  • FIG. 23 shows a multi-legged robot support apparatus in a seventh embodiment of the remote automatic machine support apparatus according to the present invention, wherein (A) is a side view and (B) is a plan view.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is simplified or omitted.
  • the multi-legged robot support device 100 as the remote automatic machine support device in the seventh embodiment is different from the first and second embodiments in that a leg position detection mechanism that detects the position of the leg 16 of the mounted multi-legged robot 15.
  • Reference numeral 101 denotes a point provided in the transport mechanism unit 11.
  • the leg position detection mechanism 101 is preferably configured to include a position sensor 102 such as a line laser sensor, and further includes a display device 103.
  • a position sensor 102 such as a line laser sensor
  • two position sensors 102 are installed for one leg 16 so that laser light can be output from directions orthogonal to each other.
  • the leg position information detected by the position sensor 102 is output to the control unit 28 (FIG. 3) of the multi-legged robot 15 mounted on the multi-legged robot support apparatus 100. Feedback control is performed so that the robot support apparatus 100 is in an optimum position.
  • the leg position information of the legs 16 of the multi-legged robot 15 detected by the position sensor 102 is the display device 103 installed on the support frame 36 of the multi-legged robot support apparatus 100, the multi-legged robot 15 and the multi-legged robot.
  • the display is performed as shown in FIG. 24 on the display device 103 installed at a site where the operator of the support apparatus 100 stays.
  • An operator in the vicinity of the multi-legged robot support apparatus 100 or an operator in the site operates the multi-legged robot 15 using, for example, the operation unit 13 (FIG. 3) based on the leg position information on the display device 103.
  • the leg 16 of the multi-legged robot 15 is moved to an optimum position with respect to the multi-legged robot support apparatus 100.
  • the leg position allowable range 105 is displayed on the display device 103 and whether or not the leg position detected by the position sensor 102 is within the leg position allowable range 105 is displayed in real time. Is preferred.
  • this embodiment Since it is configured as described above, this embodiment has the same effects as the effects (1) to (4) of the first and second embodiments, and the following effect (9).
  • the leg position detection mechanism 101 that detects the positions of the legs 16 of the mounted multiple robots 15 is provided in the transport mechanism unit 11. By correcting the position of the leg 16 of the multi-legged robot 15 based on the leg position information, the multi-legged robot 15 can be stably mounted on the transport mechanism 11 of the multi-legged robot support apparatus 100.
  • FIG. 25 is a side view showing a multi-legged robot support apparatus in the eighth embodiment of the remote automatic machine support apparatus according to the present invention.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
  • the multi-legged robot support device 110 as the remote automatic machine support device in the eighth embodiment is different from the first and second embodiments in that the legs 16 of the mounted multi-legged robot 15 act on the transport mechanism unit 11.
  • a surface pressure detection mechanism 111 that detects pressure together with the position of the legs 16 is provided in the transport mechanism unit 11.
  • the surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 detected by the face-pressure detecting mechanism 111 is the display device 112 installed on the support frame 36 of the multi-legged robot support device 110 or the multi-legged robot 15. And it is displayed as shown in FIG. 26 on a display device 112 installed at a site where an operator who operates the multi-legged robot support device 110 stays. An operator in the vicinity of the multi-legged robot support device 110 or an operator in the site may, for example, if the surface pressure and position information 113 of the leg 16 on the display device 112 is not good as shown in FIG.
  • the multi-legged robot 15 is operated using the operation unit 13 (FIG. 3) so that the information 113 on the surface pressure and position of the leg 16 on the display device 112 becomes good as shown in FIG.
  • the posture of the robot 15 and the position of the leg 16 are controlled.
  • the surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 detected by the face-pressure detecting mechanism 111 is used as a control unit 28 (see FIG. 3) of the multi-legged robot 15 mounted on the multi-legged robot support apparatus 110.
  • the control unit 28 feedback-controls the posture of the multi-legged robot 15 and the position of the leg 16 so that the surface pressure and position information 113 of the leg 16 with respect to the multi-legged robot support device 110 becomes good.
  • the eighth embodiment has the same effects as the effects (1) to (4) of the first and second embodiments, and the following effect (10). .
  • the multi-legged robot support device 110 includes a surface pressure detection mechanism 111 that detects the surface pressure applied by the legs 16 of the mounted multi-legged robot 15 together with the position of the leg 16. Since it is provided in the mechanism unit 11, the posture of the multi-legged robot 15 and the position of the leg 16 are corrected based on the surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 obtained by the surface pressure detecting mechanism 111. By doing so, the multi-legged robot 15 can be stably mounted on the multi-legged robot support apparatus 110.
  • the torso holding mechanism 37 and the holding mechanism 51 have a structure using a spring or the like to increase the stability and positioning tolerance when holding the multi-legged robot 15.
  • a simple L-shape, U-shape, cylindrical shape, or the like may be used.
  • a recess such as a notch is provided in the body portion 17 and a protrusion that fits into the recess portion of the body portion 17 is provided in the body portion holding mechanism 37 to improve positioning tolerance and holding stability with a simple configuration. It is good also as the structure made to do. Further, it is not necessary to provide the leg tip holding part 66 and the holding mechanism part 51 corresponding to all the legs 16 or the link mechanisms 14, and any number may be provided. Moreover, although some embodiment demonstrated as what can be stably conveyed even if it stops the electric power supply to the leg 16, it is not necessary to stop an electric power supply. Even in such a case, the effect of reducing the load is exerted so that the load on the leg 16 is not applied.
  • Multi-legged robot support device (remote automatic machine support device) 11 Transport mechanism 12 Support mechanism 14 Link mechanism 15 Multi-legged robot (remote automatic machine) 16 legs 17 body 34 wheels 37 body holding mechanism 50 multi-legged robot support device (remote automatic machine support device) 51 Holding Mechanism 53 Holding Unit 70 Multi-legged Robot Support Device (Remote Automatic Machine Support Device) 71 Notch 75 Multi-legged robot support device (remote automatic machine support device) 76 Power supply mechanism 80 Multi-legged robot support device (remote automatic machine support device) 81 slope mechanism 82 slope plate 90 multi-legged robot support device (remote automatic machine support device) 91 Posture stabilization mechanism 93 Lifting device 95 Goniometer stage 100 Multi-legged robot support device (remote automatic machine support device) 101 Leg position detection mechanism 102 Position sensor 110 Multi-legged robot support device (remote automatic machine support device) 111 Surface pressure detection mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

By assisting movement of a remote automatic machine, field operations can be realized by the remote automatic machine quickly and at low cost. This remote automatic machine assisting device is a multi-leg robot assisting device (10) which mounts a remote automatic machine and moves, said remote automatic machine being a multi-leg robot (15) which is configured by equipping a body (17) with two or more legs (16) comprising a link mechanism (14) having multiple joints and which moves through the action of the legs (16), wherein this multi-leg robot assisting device (10) is configured to be provided with: a conveyance mechanism unit (11) which is provided so as to be able to mount the multi-leg robot (15) and is provided with wheels (34) or an endless track; and a support mechanism unit (12) which is attached to the conveyance mechanism unit (11) and supports the load of the body (17) of the multi-leg robot (15).

Description

遠隔自動機支援装置及び方法Remote automatic machine support apparatus and method
 本発明の実施形態は、多脚ロボットなどの遠隔自動機の移動を支援する遠隔自動機支援装置及び方法に関する。 Embodiments described herein relate generally to a remote automatic machine support apparatus and method for supporting movement of a remote automatic machine such as a multi-legged robot.
 2脚以上の歩行機構からなるロボット等の遠隔自動機(例えば特許文献1参照)は、車輪式やクローラ等の無限軌道式の移動機構を有するものに比べて踏破性に優れ、段差や路面状態が悪い環境では車輪式や無限軌道式に比較して優位性を持つ。 A remote automatic machine such as a robot having a walking mechanism of two or more legs (see, for example, Patent Document 1) is superior to those having an endless track type moving mechanism such as a wheel type or a crawler, and has a step or road surface condition. However, it is superior to wheel type or endless track type in poor environment.
 その一方で、車輪式や無限軌道式に比べると、移動機構の構造や制御が複雑になるので、平坦な道等のように車輪式や無限軌道式で十分に移動できる環境においては、これらの方式のほうが有利である。 On the other hand, the structure and control of the moving mechanism is more complicated than the wheel type or endless track type, so in an environment where the wheel type or endless track type can move sufficiently, such as on a flat road, The method is more advantageous.
特開2005-161427号公報JP 2005-161427 A
 路面状態が悪くない経路の先の、車輪式や無限軌道式では進入できないような現場に多脚歩行式の遠隔自動機を投入しようとする場合、作業現場まで遠隔自動機自身で移動することは、遠隔自動機の例えば脚に負荷がかかること、電源を不必要に消費すること、作業現場までの移動時間が甚大であること等の課題がある。 If you want to introduce a multi-legged remote automatic machine to a site that cannot be approached by wheel type or endless track type along a route where the road surface condition is not bad, it is not possible to move to the work site by the remote automatic machine itself For example, there is a problem that a load is applied to, for example, a leg of the remote automatic machine, the power is unnecessarily consumed, and the travel time to the work site is enormous.
 本発明の実施形態は、上述の事情を考慮してなされたものであり、遠隔自動機の移動を支援することで、遠隔自動機による現場作業を迅速且つ低コストに実現できる遠隔自動機支援装置及び方法を提供することを目的とする。 An embodiment of the present invention has been made in consideration of the above-described circumstances, and a remote automatic machine support device that can realize field work by a remote automatic machine quickly and at low cost by supporting the movement of the remote automatic machine. And to provide a method.
 本発明に係る実施形態の遠隔自動機支援装置は、複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援装置であって、前記遠隔自動機を搭載可能に設けられると共に、車輪または無限軌道を備えた運搬機構部と、この運搬機構部に取り付けられ、前記遠隔自動機の前記胴部の荷重を支持する支持機構部と、を有して構成されたことを特徴とするものである。 A remote automatic machine support apparatus according to an embodiment of the present invention includes a remote automatic machine that includes two or more legs, each having a link mechanism having a plurality of joints, provided on a torso, and moves by movement of the legs. A remote automatic machine support apparatus that is mounted and moves, the remote automatic machine being provided so that the remote automatic machine can be mounted thereon, a transport mechanism having wheels or an endless track, and attached to the transport mechanism, the remote automatic machine And a support mechanism part for supporting the load of the body part.
 また、本発明にかかる遠隔自動機支援装置は、複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援装置であって、前記遠隔自動機を搭載可能に設けられると共に、車輪または無限軌道を備えた運搬機構部と、この運搬機構部に取り付けられ、前記遠隔自動機の前記脚の前記リンク機構の可動範囲を制限するように保持する保持機構部と、を有して構成されたことを特徴とするものである。 In addition, the remote automatic machine support device according to the present invention includes a remote automatic machine that includes two or more legs formed of a link mechanism having a plurality of joints provided on the body and moves by the operation of the legs. A remote automatic machine support apparatus that is mounted so as to be capable of mounting the remote automatic machine, and is provided with a transport mechanism unit having wheels or an endless track, and is attached to the transport mechanism unit. And a holding mechanism portion that holds the leg so as to limit a movable range of the link mechanism.
 さらに、前記支持機構部には、遠隔自動機の胴部が載置される部分に、前記胴部に対して付勢力を作用させて保持する胴部保持機構が設けられたことを特徴とするものである。 Further, the support mechanism portion is provided with a body holding mechanism that holds the body portion of the remote automatic machine by applying an urging force to the body portion. Is.
 さらに、前記支持機構部、保持機構部または運搬機構部には、遠隔自動機へ給電可能な給電機構が設けられたことを特徴とするものである。 Further, the support mechanism unit, the holding mechanism unit, or the transport mechanism unit is provided with a power supply mechanism that can supply power to the remote automatic machine.
 また、本発明に係る実施形態の遠隔自動機支援方法は、複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援方法であって、前記遠隔自動機を、車輪または無限軌道を備えた運搬機構部に搭載して運搬し、この運搬中に、前記遠隔自動機の前記胴部の荷重を支持し、または前記遠隔自動機の前記脚の前記リンク機構を固定状態に保持することを特徴とするものである。 In the remote automatic machine support method according to the embodiment of the present invention, the remote automatic machine support method is configured such that two or more legs including a link mechanism having a plurality of joints are provided on the trunk portion, and moves by movement of the legs. A remote automatic machine support method for mounting and moving a machine, wherein the remote automatic machine is mounted on a transport mechanism having wheels or an endless track and transported. The load of the trunk is supported, or the link mechanism of the leg of the remote automatic machine is held in a fixed state.
 本発明の実施形態によれば、遠隔自動機の移動を、車輪または無限軌道により移動可能な領域まで支援することで、この遠隔自動機による現場作業を迅速且つ低コストに実現できる。 According to the embodiment of the present invention, by supporting the movement of the remote automatic machine to an area where the remote automatic machine can be moved by a wheel or an endless track, the field work by this remote automatic machine can be realized quickly and at low cost.
本発明に係る遠隔自動機支援装置の第1形態である多脚ロボット支援装置を示す側面図。The side view which shows the multi-legged robot assistance apparatus which is the 1st form of the remote automatic machine assistance apparatus which concerns on this invention. (A)は胴部の設置前における図1の胴部保持機構の作用を示す側面図、(B)は胴部の設置後における図1の胴部保持機構の作用を示す側面図。(A) is a side view showing the action of the trunk holding mechanism of FIG. 1 before installation of the trunk, and (B) is a side view showing the action of the trunk holding mechanism of FIG. 1 after installation of the trunk. 図1の多脚ロボットを示す側面図。The side view which shows the multi-legged robot of FIG. 図3の多脚ロボットの脚における関節の配置状況を示す概略斜視図。The schematic perspective view which shows the arrangement | positioning condition of the joint in the leg of the multilegged robot of FIG. (A)は胴部の設置前における図1の胴部保持機構の第1変形形態の状態を示す側面図、(B)は胴部の設置後における図1の胴部保持機構の第1変形形態の状態を示す側面図。(A) is a side view showing a state of the first modified form of the body holding mechanism of FIG. 1 before installation of the body, and (B) is a first modification of the body holding mechanism of FIG. 1 after installation of the body. The side view which shows the state of a form. (A)は胴部の設置前における図1の胴部保持機構の第2変形形態の状態を示す側面図、(B)は胴部の設置後おける図1の胴部保持機構の第2変形形態の状態を示す側面図。(A) is a side view showing a state of the second modified form of the body holding mechanism of FIG. 1 before installation of the body, and (B) is a second modification of the body holding mechanism of FIG. 1 after installation of the body. The side view which shows the state of a form. (A)は胴部の設置前における図1の胴部保持機構の第3変形形態の状態を示す側面図、(B)は胴部の設置後における図1の胴部保持機構の第3変形形態の状態を示す側面図。(A) is a side view showing a state of the third modified form of the body holding mechanism of FIG. 1 before installation of the body, and (B) is a third modification of the body holding mechanism of FIG. 1 after installation of the body. The side view which shows the state of a form. 本発明に係る遠隔自動機支援装置の第2実施形態である多脚ロボット支援装置を示す概略側面図。The schematic side view which shows the multilegged robot assistance apparatus which is 2nd Embodiment of the remote automatic machine assistance apparatus which concerns on this invention. (A)は脚のリンク機構の保持前における図8の保持機構部の状態を示す平面図、(B)は脚のリンク機構の保持後における図8の保持機構部の状態を示す平面図。FIG. 9A is a plan view showing a state of the holding mechanism portion of FIG. 8 before holding the leg link mechanism, and FIG. 9B is a plan view showing a state of the holding mechanism portion of FIG. 8 after holding the leg link mechanism. (A)は脚のリンク機構の保持前における図8の保持機構部の第1変形形態の状態を示す部分斜視図、(B)は脚のリンク機構の保持後における図8の保持機構部の第1変形形態の状態を示す部分斜視図。8A is a partial perspective view showing a state of the first modified form of the holding mechanism portion of FIG. 8 before holding the leg link mechanism, and FIG. 8B is a view of the holding mechanism portion of FIG. 8 after holding the leg link mechanism. The fragmentary perspective view which shows the state of a 1st modification. (A)は脚のリンク機構の保持前における図8の保持機構部の第2変形形態の状態を示す部分斜視図、(B)は脚のリンク機構の保持後における図8の保持機構部の第2変形形態の状態を示す部分斜視図。8A is a partial perspective view showing a state of the second modified form of the holding mechanism portion of FIG. 8 before holding the leg link mechanism, and FIG. 8B is a view of the holding mechanism portion of FIG. 8 after holding the leg link mechanism. The fragmentary perspective view which shows the state of a 2nd modification. (A)は本発明に係る遠隔自動機支援装置の第3実施形態である多脚ロボット支援装置におけるロボット運搬時の状態を示す側面図、(B)は本発明に係る遠隔自動機支援装置の第3実施形態である多脚ロボット支援装置におけるロボット運搬時の状態を示す平面図。(A) is a side view showing a state of carrying a robot in a multi-legged robot support device which is a third embodiment of the remote automatic device support device according to the present invention, and (B) is a view of the remote automatic device support device according to the present invention. The top view which shows the state at the time of robot conveyance in the multi-legged robot assistance apparatus which is 3rd Embodiment. (A)は図12の多脚ロボット支援装置におけるロボット設置時の状態を示す側面図、(B)は図12の多脚ロボット支援装置におけるロボット設置時の状態を示す平面図。FIG. 13A is a side view showing a state when the robot is installed in the multi-legged robot support apparatus of FIG. 12, and FIG. 13B is a plan view showing a state when the robot is installed in the multi-legged robot support apparatus of FIG. (A)は図12の多脚ロボット支援装置におけるロボット離脱時の状態を示す側面図、(B)は図12の多脚ロボット支援装置におけるロボット離脱時の状態を示す平面図。FIG. 13A is a side view showing a state when the robot leaves the multi-legged robot support apparatus of FIG. 12, and FIG. 13B is a plan view showing a state when the robot leaves the multi-legged robot support apparatus of FIG. (A)はロボット設置時における図12の多脚ロボット支援装置の変形形態の状態を示す側面図、(B)はロボット離脱時における図12の多脚ロボット支援装置の変形形態の状態を示す側面図。(A) is a side view showing a state of a modified form of the multi-legged robot support device of FIG. 12 when the robot is installed, and (B) is a side view showing a state of a modified form of the multi-legged robot support device of FIG. Figure. 本発明に係る遠隔自動機支援装置の第4実施形態における多脚ロボット支援装置を示す側面図。The side view which shows the multilegged robot assistance apparatus in 4th Embodiment of the remote automatic machine assistance apparatus which concerns on this invention. 本発明に係る遠隔自動機支援装置の第5実施形態における多脚ロボット支援装置を示す側面図。The side view which shows the multilegged robot assistance apparatus in 5th Embodiment of the remote automatic machine assistance apparatus which concerns on this invention. 図17の多脚ロボット支援装置における作用の一例を示す側面図。The side view which shows an example of an effect | action in the multi-legged robot assistance apparatus of FIG. 図17の多脚ロボット支援装置における作用の他の例を示す側面図。The side view which shows the other example of an effect | action in the multi-legged robot assistance apparatus of FIG. 本発明に係る遠隔自動機支援装置の第6実施形態における多脚ロボット支援装置を示す側面図。The side view which shows the multilegged robot assistance apparatus in 6th Embodiment of the remote automatic machine assistance apparatus which concerns on this invention. 図20の多脚ロボット支援装置の作用を示す側面図。The side view which shows the effect | action of the multi-legged robot assistance apparatus of FIG. (A)は図20の多脚ロボット支援装置の変形形態を示す全体側面図、(B)は図22(A)のXXIIB部分矢視図。(A) is an overall side view showing a modified form of the multi-legged robot support device of FIG. 20, and (B) is a partial view taken along the line XXIIB of FIG. 22 (A). (A)は本発明に係る遠隔自動機支援装置の第7実施形態における多脚ロボット支援装置を示す側面図、(B)は本発明に係る遠隔自動機支援装置の第7実施形態における多脚ロボット支援装置を示す平面図。(A) is a side view showing a multi-legged robot support apparatus in a seventh embodiment of the remote automatic machine support apparatus according to the present invention, and (B) is a multi-leg in the seventh embodiment of the remote automatic machine support apparatus according to the present invention. The top view which shows a robot assistance apparatus. 図23の表示装置に表示される画面を示す図。The figure which shows the screen displayed on the display apparatus of FIG. 本発明に係る遠隔自動機支援装置の第8実施形態における多脚ロボット支援装置を示す側面図。The side view which shows the multi-legged robot assistance apparatus in 8th Embodiment of the remote automatic machine assistance apparatus which concerns on this invention. (A)は面圧状態が良好な場合の図25の表示装置に表示される画面を示す図、(B)は面圧状態が良好でない場合の図25の表示装置に表示される画面を示す図。(A) is a diagram showing a screen displayed on the display device of FIG. 25 when the surface pressure state is good, and (B) is a screen displayed on the display device of FIG. 25 when the surface pressure state is not good. Figure.
 以下、本発明を実施するための実施形態を図面に基づき説明する。
 [A]第1実施形態(図1~図7)
 図1は、本発明に係る遠隔自動機支援装置の第1実施である多脚ロボット支援装置を示す側面図である。また、図3は、図1の多脚ロボットを示す側面図である。図1に示す遠隔自動機支援装置としての多脚ロボット支援装置10は、遠隔自動機としての多脚ロボット15を搭載してその移動を支援するものであり、運搬機構部11及び支持機構部12を有して構成される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 7)
FIG. 1 is a side view showing a multi-legged robot support apparatus which is a first embodiment of a remote automatic machine support apparatus according to the present invention. FIG. 3 is a side view showing the multi-legged robot of FIG. A multi-legged robot support apparatus 10 as a remote automatic machine support apparatus shown in FIG. 1 is equipped with a multi-legged robot 15 as a remote automatic machine and supports its movement, and includes a transport mechanism section 11 and a support mechanism section 12. It is comprised.
 ここで、多脚ロボット15は、2本以上(例えば4本)の脚16が胴部17に設けられて構成され、各脚16は、後述の如く複数の関節18、19、20(図4)を備えたリンク機構14により構成される。多脚ロボット15は、操作ユニット13(図3)により脚16の動作が操作されることで移動(歩行)する。 Here, the multi-legged robot 15 is configured by providing two or more (for example, four) legs 16 on the trunk portion 17, and each leg 16 includes a plurality of joints 18, 19, and 20 (FIG. 4). ). The multi-legged robot 15 moves (walks) when the operation of the leg 16 is operated by the operation unit 13 (FIG. 3).
 つまり、多脚ロボット15は、図3及び図4に示すように、胴部17の下部のコーナー部分に4本のそれぞれの脚16が設置される。各脚16は、第1関節18、第2関節19及び第3関節20がリンク21によって下方に向かって順次連結されたリンク機構14により構成されたものであり、第1関節18が胴部17の下部に取り付けられる。この第1関節18の回転軸は、第2関節19及び第3関節20の両回転軸と直交して配置される。 That is, in the multi-legged robot 15, as shown in FIGS. 3 and 4, four respective legs 16 are installed in the lower corner portion of the trunk portion 17. Each leg 16 includes a link mechanism 14 in which a first joint 18, a second joint 19, and a third joint 20 are sequentially connected downward by a link 21, and the first joint 18 has a trunk portion 17. It is attached to the lower part. The rotation axis of the first joint 18 is arranged orthogonal to both rotation axes of the second joint 19 and the third joint 20.
 第2関節19及び第3関節20の回転により、多脚ロボット15は矢印X(図4)方向に前進または後進歩行する。また、第1関節18の回転により、多脚ロボット15は矢印Y(図4)方向に左移動または右移動歩行(横歩き)する。更に、第1関節18、第2関節19及び第3関節20の回転を組み合わせることにより、多脚ロボット15は矢印Z(図4)方向に旋回する。各関節18、19、20は、例えば電動モータ、ギア及びエンコーダ等の組み合わせにより構成される。 As the second joint 19 and the third joint 20 rotate, the multi-legged robot 15 moves forward or backward in the direction of the arrow X (FIG. 4). Further, by the rotation of the first joint 18, the multi-legged robot 15 moves leftward or walks rightward (sidewalks) in the direction of the arrow Y (FIG. 4). Furthermore, by combining the rotations of the first joint 18, the second joint 19, and the third joint 20, the multi-legged robot 15 turns in the direction of the arrow Z (FIG. 4). Each joint 18, 19, and 20 is comprised by the combination of an electric motor, a gear, an encoder, etc., for example.
 このように構成された脚16を備える本実施形態の多脚ロボット15は、前進歩行、後進歩行、左移動歩行、右移動歩行、左旋回歩行、または右旋回歩行を連続して実行する通常歩行モードと、脚16の脚先位置が一脚毎にオペレータによるマニュアル操作により動作されて歩行するマニュアル操作歩行モードとが、択一に実行されて歩行する。 The multi-legged robot 15 of the present embodiment including the leg 16 configured as described above normally performs forward walking, backward progress, left moving walking, right moving walking, left turning walking, or right turning walking continuously. The walking mode and the manual operation walking mode in which the leg tip position of the leg 16 is operated by manual operation by an operator for each leg and walking are alternatively executed.
 上述のような多脚ロボット15の脚16による歩行は、脚操作制御装置により操作され制御される。この脚操作制御装置は、操作ユニット13と、多脚ロボット15に設置された各種センサ類(画像取得部22、接地反力センサ23、姿勢センサ24、距離センサ25)と、センサ処理部26と、歩容パターン生成部27と、制御手段としての制御部28と、信号送受信部29とを有して構成される。 The walking by the legs 16 of the multi-legged robot 15 as described above is operated and controlled by the leg operation control device. The leg operation control device includes an operation unit 13, various sensors (image acquisition unit 22, ground reaction force sensor 23, posture sensor 24, distance sensor 25) installed in the multilegged robot 15, a sensor processing unit 26, and the like. The gait pattern generation unit 27, the control unit 28 as control means, and a signal transmission / reception unit 29 are configured.
 操作ユニット13は、オペレータの操作によって多脚ロボット15を歩行させるために、この多脚ロボット15の制御部28へ動作指令等を出力する。例えば、操作ユニット13は、通常歩行モードでは、多脚ロボット15を矢印X(図4)方向に前進歩行または後進歩行させるための動作指令を出力し、マニュアル操作歩行モードでは、操作対象の脚16の脚先を移動させるための動作指令を出力する。 The operation unit 13 outputs an operation command or the like to the control unit 28 of the multi-legged robot 15 in order to make the multi-legged robot 15 walk by an operator's operation. For example, the operation unit 13 outputs an operation command for causing the multi-legged robot 15 to walk forward or backward in the direction of the arrow X (FIG. 4) in the normal walking mode, and in the manual operation walking mode, the operation target leg 16 An operation command for moving the leg tip of the leg is output.
 画像取得部22は、多脚ロボット15の胴部17における前部に設置された例えばカメラなどであり、多脚ロボット15の周囲の動画や静止画を画像データとして取得する。この画像取得部22は、多脚ロボット15における胴部17の前部及び後部に設置されてもよい。また、接地反力センサ23は、多脚ロボット15における4本の脚16の脚先に設置され、脚16の接地時にこの脚16に作用する接地反力を計測する。 The image acquisition unit 22 is, for example, a camera installed at the front portion of the trunk portion 17 of the multi-legged robot 15, and acquires a moving image and a still image around the multi-legged robot 15 as image data. The image acquisition unit 22 may be installed at the front and rear of the trunk 17 in the multi-legged robot 15. The ground reaction force sensor 23 is installed at the tip of the four legs 16 in the multi-legged robot 15 and measures the ground reaction force acting on the legs 16 when the legs 16 are grounded.
 姿勢センサ24は、多脚ロボット15における胴部17の底面に設置され、加速度、角速度、傾斜角度などのような多脚ロボット15の姿勢を検知するための複数のセンサで構成されている。また、距離センサ25は、多脚ロボット15の胴部17における前部及び後部に設置され、胴部17と接地面間の距離、及び脚16(特に操作対象の脚16)の脚先と接地面間の距離などを計測する。 The posture sensor 24 is installed on the bottom surface of the trunk portion 17 of the multi-legged robot 15 and is composed of a plurality of sensors for detecting the posture of the multi-legged robot 15 such as acceleration, angular velocity, and tilt angle. The distance sensors 25 are installed at the front and rear portions of the trunk portion 17 of the multi-legged robot 15, and are in contact with the distance between the trunk portion 17 and the grounding surface and the leg tip of the leg 16 (particularly, the leg 16 to be operated). Measure the distance between the ground.
 多脚ロボット15におけるセンサ処理部26は例えばパーソナルコンピュータにて構成され、画像取得部22からの画像データ、接地反力センサ23による接地反力データ、姿勢センサ25による姿勢データ、距離センサ25による距離データなどのアナログデータをデジタルデータに処理する。 The sensor processing unit 26 in the multi-legged robot 15 is configured by a personal computer, for example, and includes image data from the image acquisition unit 22, ground reaction force data by the ground reaction force sensor 23, posture data by the posture sensor 25, and distance by the distance sensor 25. Processes analog data such as data into digital data.
 多脚ロボット15における歩容パターン生成部27は例えばパーソナルコンピュータにて構成され、4本の脚16を動作させる順序や、多脚ロボット15の重心を移動させる動作と組み合わせた通常歩行モードにおける歩容パターンを生成する。この歩容パターンには、多脚ロボット15の脚16を一脚ずつ動作させるクロール歩容、対角の2本の脚16を同時に動作させるトロット歩容、前後2本の脚16を同時に左右交互に動作させるペース歩容、これらの歩容のそれぞれに重心移動の動作の組み合わせた歩容などがある。 The gait pattern generation unit 27 in the multi-legged robot 15 is configured by, for example, a personal computer, and the gait in the normal walking mode combined with the order of moving the four legs 16 and the action of moving the center of gravity of the multi-legged robot 15. Generate a pattern. In this gait pattern, a crawl gait in which the legs 16 of the multi-legged robot 15 are moved one by one, a trot gait in which the two diagonal legs 16 are simultaneously operated, and the front and rear two legs 16 are alternately left and right at the same time. There are pace gaits to be operated automatically, gaits in which each of these gaits is combined with a movement of the center of gravity.
 多脚ロボット15における制御部28は例えばパーソナルコンピュータにて構成され、歩容パターン生成部27にて生成された歩容等から、4本の脚16の各関節18~20の回転角度を決定して脚16の動作を制御する。つまり、制御部28は、操作ユニット13からの動作指令に基づいて、前進歩行、後進歩行、左移動歩行、右移動歩行、左旋回歩行、または右旋回歩行を連続して実行する通常歩行モードを多脚ロボット15に実行させる。また、制御部28は、操作ユニット13からの動作指令に基づいて、脚16の脚先位置が一脚毎にオペレータによるマニュアル操作により動作されて歩行するマニュアル操作歩行モードを多脚ロボット15に実行させる。
 なお、多脚ロボット15の各リンク機構14は、電力供給が停止すると姿勢を保持できない構成とする場合と、電力供給を停止してもリンク機構14の回転に一定のトルクを要し、その姿勢を保持できる構成とする場合(例えばリンク機構14にブレーキモータを用いる)のそれぞれが考えられる。ただし、電力供給が停止されても姿勢を保持できる構成であっても、電力供給の停止によってリンク機構14が姿勢を維持するための力は小さくなり、安定性が低下する場合が多い。
The control unit 28 in the multi-legged robot 15 is composed of, for example, a personal computer, and determines the rotation angles of the joints 18 to 20 of the four legs 16 from the gait and the like generated by the gait pattern generation unit 27. The operation of the legs 16 is controlled. That is, based on the operation command from the operation unit 13, the control unit 28 continuously performs forward walking, backward progress, left moving walking, right moving walking, left turning walking, or right turning walking. Is executed by the multi-legged robot 15. Further, the control unit 28 executes a manual operation walking mode in which the leg position of the leg 16 is operated by a manual operation by an operator for each leg based on an operation command from the operation unit 13 for the multi-legged robot 15. Let
Each link mechanism 14 of the multi-legged robot 15 has a configuration in which the posture cannot be maintained when the power supply is stopped, and a certain torque is required for the rotation of the link mechanism 14 even when the power supply is stopped. Each of them can be held (for example, a brake motor is used for the link mechanism 14). However, even when the power supply is stopped, the posture can be maintained, and the force for maintaining the posture of the link mechanism 14 by the stop of the power supply is reduced, and the stability is often lowered.
 さて、上述のように構成された多脚ロボット15の移動(歩行)を、車輪または無限軌道により移動可能な領域まで支援するものが前記多脚ロボット支援装置10(図1)である。この多脚ロボット支援装置10は、前述のように運搬機構部11及び支持機構部12を有すると共に、電源30、ケーブル巻取機構31、無線通信機構32及び監視装置33を有して構成される。 The multi-legged robot support device 10 (FIG. 1) supports the movement (walking) of the multi-legged robot 15 configured as described above up to an area where the multi-legged robot 15 can move by wheels or an endless track. The multi-legged robot support device 10 includes the transport mechanism unit 11 and the support mechanism unit 12 as described above, and includes the power supply 30, the cable winding mechanism 31, the wireless communication mechanism 32, and the monitoring device 33. .
 運搬機構部11は、多脚ロボット15を搭載可能に設けられると共に、車輪34または無限軌道(例えばクローラなど)を有し、車輪34等の駆動により、搭載した多脚ロボット15を作業現場までの車輪34で移動可能な領域まで運搬する。この運搬機構部11に電源30、ケーブル巻取機構31及び無線通信機構32が設置される。 The transport mechanism unit 11 is provided so that the multi-legged robot 15 can be mounted, and has a wheel 34 or an endless track (for example, a crawler), and the mounted multi-legged robot 15 is moved to the work site by driving the wheel 34 or the like. The vehicle is transported to a movable area by the wheels 34. A power source 30, a cable winding mechanism 31, and a wireless communication mechanism 32 are installed in the transport mechanism unit 11.
 ケーブル巻取機構31は、電源30に接続される電源ケーブル35Aと、車輪34の駆動を制御する図示しない制御部や監視装置33などに接続される通信ケーブル35Bとを巻き取りまたは繰り出す機構である。尚、無線通信機構32は、通信ケーブル35Bが設けられてない場合に設置される。また、電源30は一次電池、二次電池、コンデンサまたは発電機などである。この電源30が一次電池や発電機などの場合には、電源ケーブル35Aを設ける必要がない。 The cable winding mechanism 31 is a mechanism that winds or feeds a power cable 35A connected to the power supply 30 and a communication cable 35B connected to a control unit (not shown) that controls driving of the wheels 34, the monitoring device 33, and the like. . The wireless communication mechanism 32 is installed when the communication cable 35B is not provided. The power source 30 is a primary battery, a secondary battery, a capacitor, a generator, or the like. When the power source 30 is a primary battery or a generator, it is not necessary to provide the power cable 35A.
 監視装置33は、運搬機構部11に立設された支持フレーム36の先端に設置された例えばカメラである。この監視装置33はズーム機能、パン機能、チルト機能を備え、多脚ロボット支援装置10の進行方向前方を含む周囲の画像を取得する。この監視装置33は、多脚ロボット支援装置10から離脱して移動(歩行)する多脚ロボット15を追跡して監視する機能も有する。 The monitoring device 33 is, for example, a camera installed at the tip of the support frame 36 erected on the transport mechanism unit 11. This monitoring device 33 has a zoom function, a pan function, and a tilt function, and acquires surrounding images including the front in the traveling direction of the multi-legged robot support device 10. The monitoring device 33 also has a function of tracking and monitoring the multi-legged robot 15 that moves (walks) away from the multi-legged robot support device 10.
 上述のように電源30、ケーブル巻取機構31、無線通信機構32、監視装置33が設置された運搬機構部11は、監視装置33が撮影した画像情報に基づいて、多脚ロボット支援装置10の前記制御部が車輪34を駆動制御することで移動(自走)し、または監視装置33の画像情報を通信ケーブル35Bまたは無線通信機構32を用いてオペレータ側へ送信することでオペレータにより遠隔操作されて移動し、または作業者により手動で押されて移動する。この際、運搬機構部11は、多脚ロボット支援装置10から離脱して移動(歩行)する多脚ロボット15の後を追従して移動するようにしてもよい。 As described above, the transport mechanism 11 in which the power supply 30, the cable winding mechanism 31, the wireless communication mechanism 32, and the monitoring device 33 are installed is based on the image information captured by the monitoring device 33. The control unit moves (self-propelled) by driving and controlling the wheels 34 or is remotely operated by the operator by transmitting image information of the monitoring device 33 to the operator side using the communication cable 35B or the wireless communication mechanism 32. Move by being manually pushed by an operator. At this time, the transport mechanism unit 11 may move following the multi-legged robot 15 that moves away from the multi-legged robot support apparatus 10 and moves (walks).
 支持機構部12は、運搬機構部11に複数本立設され、多脚ロボット15の胴部17を載置することで、多脚ロボット15の特に胴部17の荷重を支持して、脚16に胴部17の荷重が作用しないようにする。そして、この支持機構部12には、多脚ロボット15の胴部17が載置される部分に、胴部17の位置がずれている場合にも、この胴部17を所望位置に導いて載置させる胴部保持機構37が設置されている。この胴部保持機構37は、例えば図2に示すように、側面視L字形状の基台38に回転部39を介してガイド板40が配置されて構成される。ガイド板40が回転部39回りに矢印A方向に回転しつつ、ガイド板47の面方向Bにスライドすることで、接触した胴部17を所望の載置位置に導く。 A plurality of support mechanism units 12 are installed on the transport mechanism unit 11 and support the load of the torso portion 17 of the multi-legged robot 15 by placing the torso portion 17 of the multi-legged robot 15. The load of the trunk portion 17 is prevented from acting. And even if the position of the trunk portion 17 is shifted from the position where the trunk portion 17 of the multi-legged robot 15 is placed on the support mechanism portion 12, the trunk portion 17 is guided to the desired position and mounted. A body holding mechanism 37 to be placed is installed. For example, as shown in FIG. 2, the trunk portion holding mechanism 37 is configured by arranging a guide plate 40 via a rotating portion 39 on a base 38 having an L shape in side view. The guide plate 40 slides in the surface direction B of the guide plate 47 while rotating around the rotation portion 39 in the direction of the arrow A, thereby guiding the body portion 17 in contact with the desired placement position.
 図5は、第1変形形態の胴部保持機構37Aであり、基台38とガイド板40との間にスプリング41が配置されたものである。このスプリング41の付勢力Fがガイド板40を介して胴部17に作用することで、胴部17が支持機構部12上で水平方向に保持される。 FIG. 5 shows a trunk portion holding mechanism 37A according to a first modification, in which a spring 41 is disposed between the base 38 and the guide plate 40. The urging force F of the spring 41 acts on the body portion 17 via the guide plate 40, so that the body portion 17 is held in the horizontal direction on the support mechanism portion 12.
 図6は、第2変形形態の胴部保持機構37Bである。この胴部保持機構37Bは、スイングプレート42が回転軸43を介して基台38に支持され、スイングプレート42の先端にガイドプレート44が回転軸45介して支持され、このガイドプレート44と基台38との間にスプリング41が配置されたものである。スイングプレート42が回転軸43回りに矢印C方向に回転し、且つガイドプレート44が回転軸45回りに矢印D方向に回転することで、これらのスイングプレート42及びガイドプレート44に接触した胴部17が所望位置に導かれる。そして、スプリング41の付勢力Fによって、胴部17が支持機構部12上で水平方向に保持される。 FIG. 6 shows a trunk holding mechanism 37B according to a second modification. In the body holding mechanism 37B, the swing plate 42 is supported on the base 38 via the rotation shaft 43, and the guide plate 44 is supported on the tip of the swing plate 42 via the rotation shaft 45. The guide plate 44 and the base The spring 41 is disposed between the spring 38 and the spring 38. The swing plate 42 rotates around the rotation axis 43 in the direction of arrow C, and the guide plate 44 rotates around the rotation axis 45 in the direction of arrow D, so that the trunk portion 17 in contact with the swing plate 42 and the guide plate 44 is touched. Is led to the desired position. The body portion 17 is held in the horizontal direction on the support mechanism portion 12 by the urging force F of the spring 41.
 図7は、第3変形形態の胴部保持機構37Cであり、支持機構部12の載置部に設置された第1磁石46と、多脚ロボット15の胴部17に設置された第2磁石47とを有して構成される。これらの第1磁石46及び第2磁石47の磁力により、胴部17が支持機構部12の所望位置に載置される。ここで、第1磁石46及び第2磁石47は、永久磁石または電磁石である。電磁石の場合には、両第1磁石46及び第2磁石47の磁着と離反を電気的に制御することが可能になる。
 上述のような胴部保持機構37により、胴部17を載置する際の位置決めに高い精度を要求することなく、胴部17に作用するスプリング41による付勢力や電磁石の磁力によって多脚ロボット15をガタ付きが無いように保持することができる。換言すると、上述のような胴部保持機構37とすることにより、胴部17を支持機構部12に載置する際の位置決め精度の裕度を高めることができる。
FIG. 7 shows a trunk holding mechanism 37 </ b> C according to a third modification, in which a first magnet 46 installed on the mounting section of the support mechanism section 12 and a second magnet installed on the trunk section 17 of the multi-legged robot 15. 47. Due to the magnetic force of the first magnet 46 and the second magnet 47, the trunk portion 17 is placed at a desired position of the support mechanism portion 12. Here, the first magnet 46 and the second magnet 47 are permanent magnets or electromagnets. In the case of an electromagnet, it is possible to electrically control the magnetization and separation of both the first magnet 46 and the second magnet 47.
The multi-legged robot 15 by the urging force of the spring 41 acting on the trunk portion 17 and the magnetic force of the electromagnet without requiring high accuracy for positioning when placing the trunk portion 17 by the trunk portion holding mechanism 37 as described above. Can be held so that there is no backlash. In other words, by using the body holding mechanism 37 as described above, the margin of positioning accuracy when placing the body 17 on the support mechanism 12 can be increased.
 以上のように構成されたことから、本第1実施形態によれば、次の効果(1)及び(2)を奏する。
 (1)多脚ロボット15を、車輪34または無限軌道を備えた運搬機構部11に搭載して運搬し、この運搬中に、多脚ロボット15の特に胴部17の荷重を、運搬機構部11に設置された支持機構部12にて支持している。このため、多脚ロボット15の移動(歩行)を、運搬機構部11の車輪34または無限軌道により移動可能な領域まで支援することができるので、この多脚ロボット15自身による歩行量を低減でき、その分、多脚ロボット15の発進から撤退までの多脚ロボット15による現場作業を迅速且つ低コスト(低消費電力)に実現できる。
With the configuration as described above, the following effects (1) and (2) are achieved according to the first embodiment.
(1) The multi-legged robot 15 is transported by being mounted on the transport mechanism 11 having the wheels 34 or the endless track, and during this transport, the load on the trunk 17 of the multi-legged robot 15 in particular is transported. It is supported by the support mechanism unit 12 installed in the. For this reason, since the movement (walking) of the multi-legged robot 15 can be supported up to an area that can be moved by the wheels 34 or the endless track of the transport mechanism 11, the amount of walking by the multi-legged robot 15 itself can be reduced. Accordingly, on-site work by the multi-legged robot 15 from the start to withdrawal of the multi-legged robot 15 can be realized quickly and at low cost (low power consumption).
 (2)運搬機構部11による多脚ロボット15の運搬中に、多脚ロボット15の特に胴部17の荷重を、運搬機構部11に設置された支持機構部12にて支持しているので、多脚ロボット15が不安定になることを防止できる。このため、多脚ロボット15の安全な運搬が可能になり、運搬速度を増大できるので、多脚ロボット15の発進から撤退までの作業時間をより一層短縮できる。しかも、多脚ロボット支援装置10による多脚ロボット15の運搬中に、この多脚ロボット15の脚16に電力を供給しなくとも、安定した状態を維持することができる。 (2) During the transport of the multi-legged robot 15 by the transport mechanism 11, the load of the torso 17 of the multi-leg robot 15 is supported by the support mechanism 12 installed in the transport mechanism 11. It is possible to prevent the multi-legged robot 15 from becoming unstable. For this reason, the multi-legged robot 15 can be safely carried and the carrying speed can be increased, so that the work time from the start to withdrawal of the multi-legged robot 15 can be further reduced. In addition, a stable state can be maintained without supplying power to the legs 16 of the multi-legged robot 15 during the transportation of the multi-legged robot 15 by the multi-legged robot support apparatus 10.
 [B]第2実施形態(図8~図11)
 図8は、本発明に係る遠隔自動機支援装置の第2実施形態である多脚ロボット支援装置を示す概略側面図である。また、図9は図8の保持機構部を示し、(A)は脚のリンク機構の保持前、(B)は脚のリンク機構の保持後のそれぞれの状態を示す平面図である。この第2実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 8 to 11)
FIG. 8 is a schematic side view showing a multi-legged robot support apparatus which is a second embodiment of the remote automatic machine support apparatus according to the present invention. FIG. 9 shows the holding mechanism portion of FIG. 8, (A) is a plan view before holding the leg link mechanism, and (B) is a plan view showing the respective states after holding the leg link mechanism. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.
 本第2実施形態の遠隔自動機支援装置としての多脚ロボット支援装置50が前記第1実施形態と異なる点は、第1実施形態の支持機構部12に代えて、多脚ロボット15の脚16のリンク機構14の可動範囲を制限するように保持する保持機構部51、及び脚先保持部66が設けられた点である。 The multi-legged robot support device 50 as the remote automatic machine support device of the second embodiment is different from the first embodiment in that the leg 16 of the multi-legged robot 15 is replaced with the support mechanism section 12 of the first embodiment. This is the point that a holding mechanism portion 51 and a leg tip holding portion 66 for holding the link mechanism 14 so as to limit the movable range of the link mechanism 14 are provided.
 この保持機構部51は、各脚16の第1関節18、第2関節19、第3関節20(特に第2関節19、第3関節20)及び脚16先端部を両側から挟持することによって、脚16のリンク機構14を固定状態に保持するものであり、基板52と保持部53とを有して構成される。基板52は、多脚ロボット15の脚16の本数に対応して設けられ、枢支軸54を介して運搬機構部11に矢印E方向に揺動可能に枢支される。
 また、脚先保持部66は、運搬機構部11の上面に固定された筒体(円筒でも多角筒でもよいが、本実施形態では四角筒として説明する)であり、脚16の本数に対応して設けられる。
The holding mechanism 51 holds the first joint 18, the second joint 19, the third joint 20 (particularly the second joint 19, the third joint 20), and the tip of the leg 16 from both sides, The link mechanism 14 of the leg 16 is held in a fixed state, and includes a substrate 52 and a holding portion 53. The substrate 52 is provided corresponding to the number of legs 16 of the multi-legged robot 15 and is pivotally supported by the transport mechanism 11 via the pivot shaft 54 so as to be swingable in the direction of arrow E.
The leg tip holding part 66 is a cylindrical body (which may be a cylinder or a polygonal cylinder, but will be described as a square cylinder in the present embodiment) fixed to the upper surface of the transport mechanism unit 11, and corresponds to the number of legs 16. Provided.
 保持部53は、挟持すべき関節(例えば第2関節19、第3関節20)及び脚16の先端部に対応する数だけそれぞれの基板52に設置される。この保持部53は、図9に示すように、基板52に固着された平面視コ字形状の基台55に、一対のガイド板56が、それぞれ回転部57を介し互いに対向して配置され、更に、これらのガイド板56と基台55との間にスプリング65が配置されて構成される。 The holding parts 53 are installed on the respective substrates 52 by the number corresponding to the joints to be sandwiched (for example, the second joint 19 and the third joint 20) and the tips of the legs 16. As shown in FIG. 9, the holding portion 53 has a pair of guide plates 56 disposed on a base 55 having a U-shape in plan view fixed to the substrate 52 so as to face each other via a rotating portion 57. Further, a spring 65 is arranged between the guide plate 56 and the base 55.
 多脚ロボット15が運搬機構部11に搭載された後に、対向配置された基板52が枢支軸54を中心に互いに接近する方向に揺動すると、各基板52に設置された保持部53の一対のガイド板56が、スプリング65の付勢力に抗して回転部57回りに矢印G方向に回転する(図9(A))。これにより、多脚ロボット15の脚16における例えば第2関節19、第3関節20及び脚16の先端部が、多少の位置ずれが存在していても、ガイド板56を介してスプリング65の付勢力により両側から挟持されて(図9(B))、脚16のリンク機構14が固定状態に保持される。 After the multi-legged robot 15 is mounted on the transport mechanism unit 11, when the substrates 52 arranged opposite to each other swing in a direction approaching each other about the pivot shaft 54, a pair of holding units 53 installed on each substrate 52. The guide plate 56 rotates in the arrow G direction around the rotating portion 57 against the urging force of the spring 65 (FIG. 9A). As a result, for example, the second joint 19, the third joint 20, and the distal end portion of the leg 16 in the leg 16 of the multi-legged robot 15 are attached with the spring 65 via the guide plate 56 even if there is some positional deviation. The link mechanism 14 of the leg 16 is held in a fixed state by being pinched from both sides by the force (FIG. 9B).
 図10は、第1変形形態の保持機構部58であり、脚16の一つの関節を挟持する部分のみを示す。この保持機構部58では、基板59は運搬機構部11に揺動不能に立設される。そして、この基板59の両側に一対の保持プレート60のそれぞれが回転軸61を介して、例えば90度の範囲で回転可能に軸支される。多脚ロボット15が運搬機構部11に搭載されて、その脚16が基板59付近に位置づけられたときに、一対の保持プレート60が矢印H方向に回転して、脚16の例えば第2関節19、第3関節20及び脚16の先端部を挟持することで、この脚16のリンク機構14を固定状態に保持する。 FIG. 10 shows the holding mechanism portion 58 of the first modified embodiment, and shows only a portion that holds one joint of the leg 16. In this holding mechanism portion 58, the substrate 59 is erected on the transport mechanism portion 11 so as not to swing. Then, each of the pair of holding plates 60 is pivotally supported on both sides of the substrate 59 via the rotation shaft 61 so as to be rotatable within a range of 90 degrees, for example. When the multi-legged robot 15 is mounted on the transport mechanism 11 and the leg 16 is positioned in the vicinity of the substrate 59, the pair of holding plates 60 rotate in the direction of the arrow H, and the leg 16 is connected to the second joint 19 for example. By sandwiching the third joint 20 and the tip of the leg 16, the link mechanism 14 of the leg 16 is held in a fixed state.
 図11は、第2変形形態の保持機構部62であり、脚16の一つの関節を挟持する部分のみを示す。この保持機構部62は、断面コ字形状の保持部63が多脚ロボット15の脚16における関節(例えば第2関節19、第3関節20)付近に回転軸64を介して配置されたものである。この保持部63は、多脚ロボット15が運搬機構部11に搭載された後に、回転軸64回りに矢印I方向に回転して、脚16の関節を両側から挟持し、脚16のリンク機構14を固定状態に保持する。 FIG. 11 shows the holding mechanism portion 62 of the second modified form, and shows only a portion that sandwiches one joint of the leg 16. In this holding mechanism 62, a holding part 63 having a U-shaped cross section is arranged near a joint (for example, the second joint 19 and the third joint 20) in the leg 16 of the multi-legged robot 15 via a rotating shaft 64. is there. After the multi-legged robot 15 is mounted on the transport mechanism unit 11, the holding unit 63 rotates in the direction of the arrow I around the rotation shaft 64, holds the joint of the leg 16 from both sides, and the link mechanism 14 of the leg 16. Is held fixed.
 尚、上述の保持機構部51、58及び62の他に、エアシリンダや電磁石を用いて、多脚ロボット15の脚16を両側から挟持する保持機構部であってもよい。また、この保持機構部を含め、保持機構部51、58及び62の動作は、遠隔操作によって、もしくは多脚ロボット支援装置50が備える制御部の制御によってそれぞれ実行され、または作業者の手動により実行される。
 また、脚先保持部66は、各脚16の先端が挿入されて、その内側で保持機構部58と同様のスプリングと保持プレートでもって脚16の先端近傍を保持する。
In addition to the above-described holding mechanism portions 51, 58, and 62, a holding mechanism portion that holds the legs 16 of the multi-legged robot 15 from both sides by using an air cylinder or an electromagnet may be used. In addition, the operation of the holding mechanism units 51, 58 and 62 including this holding mechanism unit is executed by remote operation, control of the control unit provided in the multi-legged robot support device 50, or manually by the operator. Is done.
In addition, the tip end of each leg 16 is inserted into the leg tip holding portion 66, and the vicinity of the tip end of the leg 16 is held with the same spring and holding plate as the holding mechanism portion 58 inside.
 以上のように構成されたことから、本第2実施形態によれば、次の効果(3)及び(4)を奏する。
 (3)多脚ロボット支援装置50では、多脚ロボット15を、車輪34または無限軌道を備えた運搬機構部11に搭載して運搬し、この運搬中に、運搬機構部11に設置された保持機構部51、58、62等によって、搭載された多脚ロボット15の脚16のリンク機構14を固定状態に保持している。このため、多脚ロボット15の移動(歩行)を、運搬機構部11の車輪34または無限軌道により移動可能な領域まで支援することができるので、この多脚ロボット15自身による歩行量を低減でき、その分、多脚ロボットの発進から撤退までの多脚ロボット19による現場作業を迅速かつ低コスト(低消費電力)に実現できる。
With the configuration as described above, the following effects (3) and (4) are achieved according to the second embodiment.
(3) In the multi-legged robot support device 50, the multi-legged robot 15 is transported by being mounted on the transport mechanism 11 provided with the wheels 34 or the endless track, and the support installed in the transport mechanism 11 during the transport. The link mechanism 14 of the leg 16 of the mounted multi-legged robot 15 is held in a fixed state by the mechanism portions 51, 58, 62 and the like. For this reason, since the movement (walking) of the multi-legged robot 15 can be supported up to an area that can be moved by the wheels 34 or the endless track of the transport mechanism 11, the amount of walking by the multi-legged robot 15 itself can be reduced. Accordingly, the field work by the multi-legged robot 19 from the start to withdrawal of the multi-legged robot can be realized quickly and at low cost (low power consumption).
 (4)運搬機構部11による多脚ロボット15の運搬中には、多脚ロボット15における脚16のリンク機構14が保持機構部51、58、62等によって固定状態に保持されるとともに、脚16の先端が脚先保持部66によって保持される。このため、多脚ロボット15の運搬中にこの多脚ロボット15の脚16への電力供給を停止しても、多脚ロボット15を安定して保持することができる。 (4) While the multi-legged robot 15 is being transported by the transport mechanism 11, the link mechanism 14 of the leg 16 in the multi-legged robot 15 is held in a fixed state by the holding mechanism 51, 58, 62, etc. The tip of the leg is held by the leg tip holding part 66. For this reason, even if the power supply to the legs 16 of the multi-legged robot 15 is stopped during the transportation of the multi-legged robot 15, the multi-legged robot 15 can be stably held.
 [C]第3実施形態(図12~図15)
 図12は、本発明に係る遠隔自動機支援装置の第3実施形態である多脚ロボット支援装置におけるロボット運搬時の状態を示し、(A)は側面図、(B)は平面図である。この第3実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIGS. 12 to 15)
FIGS. 12A and 12B show a state when the robot is transported in the multi-legged robot support device which is the third embodiment of the remote automatic machine support device according to the present invention, where FIG. 12A is a side view and FIG. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.
 本第3実施形態の遠隔自動機支援装置としての多脚ロボット支援装置70が第1実施形態と異なる点は、運搬機構部11に、多脚ロボット15が運搬機構部11に対して移動する際に、脚16が歩行して進入退避可能な切欠部71が形成された点である。 The multi-legged robot support device 70 as the remote automatic machine support device of the third embodiment is different from the first embodiment in that the multi-legged robot 15 moves to the transport mechanism section 11 and the multi-legged robot 15 moves to the transport mechanism section 11. In addition, a notch 71 is formed in which the leg 16 can walk and enter and retreat.
 つまり、切欠部71は、図12(B)に示すように、運搬機構部11の上面から下面まで貫通して2箇所形成され、多脚ロボット15は、胴部17が多脚ロボット支援装置70の支持機構部12に支持される設置時(図13)、または多脚ロボット支援装置70から離脱して移動(歩行)する離脱時(図14)に、その脚16を切欠部71内で歩行動作させる。 That is, as shown in FIG. 12B, the notch portion 71 is formed at two locations penetrating from the upper surface to the lower surface of the transport mechanism portion 11, and the multi-leg robot 15 has the trunk portion 17 having the multi-leg robot support device 70. The leg 16 is walked in the notch 71 at the time of installation supported by the support mechanism 12 (FIG. 13) or at the time of disengagement (FIG. 14) that moves away from the multi-legged robot support device 70 (FIG. 14). Make it work.
 即ち、多脚ロボット15は、図13に示す上記設置時には、脚16を自立させた状態で歩行させて多脚ロボット支援装置70に接近させ、この多脚ロボット支援装置70の運搬機構部11における切欠部71内で脚16を歩行動作させ、所定位置で脚16の自立状態を解除する。これにより、図12に示すように、多脚ロボット15は、胴部17が胴部保持機構37を介して多脚ロボット支援装置70の支持機構部12に支持され、多脚ロボット支援装置70による運搬可能状態になる。また、多脚ロボット15は、図14に示す上記離脱時には、胴部17が多脚ロボット支援装置70の支持機構部12に支持された状態で脚16を自立状態とし、この脚16を運搬機構部11の切欠部71を通過させて接地させ、胴部17を支持機構部12から離反させて自立させる。そして、多脚ロボット15は、切欠部71内で脚16を歩行動作して多脚ロボット支援装置70から離脱する。 That is, at the time of the installation shown in FIG. 13, the multi-legged robot 15 is caused to walk with the legs 16 standing independently to approach the multi-legged robot support device 70, and in the transport mechanism unit 11 of the multi-legged robot support device 70. The leg 16 is caused to walk within the notch 71, and the independent state of the leg 16 is released at a predetermined position. As a result, as shown in FIG. 12, the multi-legged robot 15 has the body portion 17 supported by the support mechanism portion 12 of the multi-legged robot support device 70 via the body portion holding mechanism 37, and the multi-legged robot support device 70. It is ready for transport. Further, when the multi-legged robot 15 is detached as shown in FIG. 14, the leg 16 is brought into a self-supporting state with the trunk portion 17 supported by the support mechanism portion 12 of the multi-legged robot support device 70, and the leg 16 is transported. The notch part 71 of the part 11 is passed through and grounded, and the body part 17 is separated from the support mechanism part 12 to be independent. Then, the multi-legged robot 15 walks the leg 16 in the notch 71 and leaves the multi-legged robot support device 70.
 従って、本第3実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(5)を奏する。 Therefore, according to the third embodiment, in addition to the effects (1) and (2) of the first embodiment, the following effect (5) is obtained.
 (5)多脚ロボット支援装置70の運搬機構部11には、多脚ロボット15の脚16が歩行して進入退避可能な切欠部71が形成されたので、運搬機構部11に多脚ロボット15を搭載する際に、この多脚ロボット15を運搬機構部11の上面に乗せる動作が不要になる。この結果、多脚ロボット支援装置70による多脚ロボット15の運搬作業を容易且つ迅速化ができる。
 なお、脚16が電力供給の停止により姿勢を保てない場合は、支持機構部12の上面に胴部17を載置した後に、脚16の先端を持ち上げて外側に広げ、切欠部71の外側に位置する運搬機構部11の上面に載せる動作を加えてもよい。この場合、胴部17が支持機構部12上に固定されているので複数の脚16を同時に駆動でき、また多脚ロボット15の歩行により運搬機構部11の上面に乗せる動作よりも制御が容易となる。
 また、脚16が電力供給の停止によってもその姿勢を保てる場合は、支持機構部12の上面に胴部17を載置した後に、脚16をある程度曲げてから電力供給を停止すればよい。この場合、図12(A)に示す状態で停止するが、脚16には荷重がかからないため、姿勢が崩れる可能性が低くなる。
(5) Since the transport mechanism unit 11 of the multi-legged robot support device 70 is formed with a notch 71 that allows the legs 16 of the multi-legged robot 15 to walk and enter and retreat, the multi-leg robot 15 When this is mounted, the operation of placing the multi-legged robot 15 on the upper surface of the transport mechanism unit 11 becomes unnecessary. As a result, the carrying operation of the multi-legged robot 15 by the multi-legged robot support device 70 can be facilitated and speeded up.
When the leg 16 cannot maintain its posture due to the stop of the power supply, after placing the trunk portion 17 on the upper surface of the support mechanism portion 12, the tip end of the leg 16 is lifted and spread outward, and the outside of the notch portion 71. You may add the operation | movement put on the upper surface of the conveyance mechanism part 11 located in this. In this case, since the trunk portion 17 is fixed on the support mechanism portion 12, a plurality of legs 16 can be driven simultaneously, and control is easier than the operation of placing the multi-leg robot 15 on the upper surface of the transport mechanism portion 11 by walking. Become.
In addition, when the leg 16 can maintain its posture even when the power supply is stopped, the power supply may be stopped after the trunk portion 17 is placed on the upper surface of the support mechanism unit 12 and then the leg 16 is bent to some extent. In this case, although it stops in the state shown to FIG. 12 (A), since the leg 16 does not apply a load, possibility that a posture will collapse will become low.
 尚、本第3実施形態の多脚ロボット支援装置70では、図15に示すように、支持機構部12が回転軸72を介して運搬機構部11に軸支されて、多脚ロボット15の離脱方向側である矢印J方向に回転可能に構成されてもよい。この場合には、多脚ロボット15の離脱時に、この多脚ロボット15は胴部17が多脚ロボット支援装置70の支持機構部12に支持された状態で、脚16を自立状態とし、脚16の先端部を切欠部71を通過させて接地させる。そして、多脚ロボット15の胴部17が多脚ロボット支援装置70の支持機構部12に接触している状態で、多脚ロボット支援装置70を多脚ロボット15の離脱方向と反対方向Kに移動させることで支持機構部12が矢印J方向に回転し、多脚ロボット15の脚16に歩行動作を実行させることなく、この多脚ロボット15を多脚ロボット支援装置70から離脱させることができる。 In the multi-legged robot support device 70 of the third embodiment, as shown in FIG. 15, the support mechanism portion 12 is pivotally supported by the transport mechanism portion 11 via the rotation shaft 72 and the multi-legged robot 15 is detached. You may be comprised so that rotation to the arrow J direction which is a direction side is possible. In this case, when the multi-legged robot 15 is disengaged, the multi-legged robot 15 is in a state where the trunk portion 17 is supported by the support mechanism portion 12 of the multi-legged robot support device 70, the leg 16 is in an independent state, and the leg 16 The front end of the slab is grounded through the notch 71. Then, the multi-legged robot support device 70 is moved in the direction K opposite to the direction in which the multi-legged robot 15 is detached while the trunk portion 17 of the multi-legged robot 15 is in contact with the support mechanism portion 12 of the multi-legged robot support device 70. As a result, the support mechanism unit 12 rotates in the direction of arrow J, and the multi-legged robot 15 can be detached from the multi-legged robot support device 70 without causing the legs 16 of the multi-legged robot 15 to perform a walking motion.
 ここで、前記回転軸72は、支持機構部12の下端面の矢印J方向側端部に設けられる。これにより、支持機構部12の下端面において回転軸72が設けられていない端部が運搬機構部11の上面に接することになるので、支持機構部12は、矢印J方向と反対側に回動することが規制されて、多脚ロボット15の胴部17を安定して支持することが可能になる。
 また、本実施形態の多脚ロボット支援装置70の変形例として、運搬機後部11の下部にスライド板を設置し、多脚ロボット15を支持機構部12に設置し、多脚ロボット15の脚16の先端を運搬機後部11の上面以上の高さまで持ち上げ、切欠部71を塞ぐようにスライド板をスライド移動させることで、多脚ロボット15の脚部が運搬機構部11に設置できる構成としてもよい。この場合、スライド板の移動は手動でも遠隔でも構わないが、最初は作業員が接近できる環境で多脚ロボット15を多脚ロボット支援装置70に搭載し、作業領域に近いところまで移動させてからは遠隔で操作するので、手動でも遠隔でもスライド板を操作可能にすることが望ましい。遠隔でスライド移動させるには、例えばスライド板に設けたシャフトと運搬機構部11に設けたモータを噛合せて駆動するか、エアピストン等の直動アクチュエータを用いてスライド可能に構成することが考えられる。このような構成でも、多脚ロボット支援装置70の移動中に脚16の先端が床面に触れることがない。
 また、別の変形例として、支持機構部12に昇降機能を備える構成としてもよい。この場合、多脚ロボット15を支持機構部12に設置したのち、支持機構部12を上昇させることで、多脚ロボット支援装置70の移動中に脚16の先端が床に触れることない。こちらの場合も、上記スライド板と同様に、手動でも遠隔でも操作できるようにすることが望ましい。遠隔での昇降は、モータやエアピストン等を用いて構成する。
 また、さらに別の変形例として、切欠部71に代えてスロープ(傾斜)状の溝を形成してもよい。この場合、スロープは多脚ロボット15の進入・離脱する側が低くなるように形成する。溝の底が低くなっている位置から多脚ロボット15を進入させることで、多脚ロボット15が運搬機構部11の上面へ乗るために越えなければならない段差を小さくすることができる。
Here, the rotating shaft 72 is provided at the end of the lower end surface of the support mechanism 12 on the arrow J direction side. As a result, an end portion of the lower end surface of the support mechanism unit 12 where the rotation shaft 72 is not provided comes into contact with the upper surface of the transport mechanism unit 11, so that the support mechanism unit 12 rotates in the direction opposite to the arrow J direction. Thus, the body portion 17 of the multi-legged robot 15 can be stably supported.
As a modification of the multi-legged robot support device 70 of the present embodiment, a slide plate is installed at the lower part of the rear part 11 of the transporter, the multi-legged robot 15 is installed in the support mechanism section 12, and the legs 16 of the multi-legged robot 15 are arranged. It is good also as a structure which can install the leg part of the multi-legged robot 15 in the conveyance mechanism part 11 by raising the front-end | tip to the height more than the upper surface of the transporter rear part 11, and sliding a slide plate so that the notch part 71 may be plugged up. . In this case, the slide plate may be moved manually or remotely, but first, the multi-legged robot 15 is mounted on the multi-legged robot support device 70 in an environment where the worker can approach and moved to a position close to the work area. Since it is operated remotely, it is desirable that the slide plate can be operated manually or remotely. For remote sliding movement, for example, it is considered that the shaft provided on the slide plate and the motor provided on the transport mechanism unit 11 are engaged with each other and driven, or configured to be slidable using a linear actuator such as an air piston. It is done. Even in such a configuration, the tip of the leg 16 does not touch the floor surface while the multi-legged robot support device 70 is moving.
As another modification, the support mechanism unit 12 may have a lifting function. In this case, after the multi-legged robot 15 is installed on the support mechanism section 12, the support mechanism section 12 is raised so that the tip of the leg 16 does not touch the floor during the movement of the multi-legged robot support device 70. Also in this case, it is desirable to be able to operate manually or remotely as in the case of the slide plate. Remote elevation is configured using a motor, an air piston, or the like.
As yet another modification, a slope (inclined) groove may be formed instead of the notch 71. In this case, the slope is formed so that the side on which the multi-legged robot 15 enters and leaves is low. By causing the multi-legged robot 15 to enter from a position where the bottom of the groove is low, the step that must be exceeded in order for the multi-legged robot 15 to ride on the upper surface of the transport mechanism unit 11 can be reduced.
 [D]第4実施形態(図16)
 図16は、本発明に係る遠隔自動機支援装置の第4実施形態における多脚ロボット支援装置を示す側面図である。この第4実施形態において第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 16)
FIG. 16 is a side view showing a multi-legged robot support apparatus in the fourth embodiment of the remote automatic machine support apparatus according to the present invention. In the fourth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
 本第4実施形態の遠隔自動機支援装置としての多脚ロボット支援装置75が第1及び第2実施形態と異なる点は、運搬機構部11または支持機構部12(例えば支持機構部12)に、多脚ロボット15へ給電を実行可能な給電機構76が設けられた点である。 The multi-legged robot support device 75 as the remote automatic machine support device of the fourth embodiment is different from the first and second embodiments in that the transport mechanism unit 11 or the support mechanism unit 12 (for example, the support mechanism unit 12) A power supply mechanism 76 capable of supplying power to the multi-legged robot 15 is provided.
 つまり、給電機構76は、例えば複数本の支持機構部12の少なくとも一つに設けられ、電源30からの電力、または電源ケーブル35Aを介して供給される電力を多脚ロボット15へ給電する。この給電機構76は、接触型給電または非接触型給電のいずれでもよく、多脚ロボット15が給電機構76に設置された時点で給電が自動的に開始される構成であってもよい。また、給電機構76は、支持機構部12に代えて保持機構部51(図8)が設けられた場合には、運搬機構部11に設置されてもよい。 That is, the power supply mechanism 76 is provided, for example, in at least one of the plurality of support mechanism sections 12 and supplies power to the multi-legged robot 15 with power from the power supply 30 or power supplied via the power cable 35A. The power supply mechanism 76 may be either contact-type power supply or non-contact type power supply, and may be configured such that power supply is automatically started when the multi-legged robot 15 is installed in the power supply mechanism 76. The power feeding mechanism 76 may be installed in the transport mechanism unit 11 when the holding mechanism unit 51 (FIG. 8) is provided instead of the support mechanism unit 12.
 以上のように構成されたことから、本第4実施形態によれば、第1及び第2実施形態の効果(1)~(4)と同様な効果を奏するほか、次の効果(6)を奏する。 As described above, according to the fourth embodiment, in addition to the effects (1) to (4) of the first and second embodiments, the following effect (6) is obtained. Play.
 (6)多脚ロボット支援装置75の例えば支持機構部12に給電機構76が設置され、この給電機構76により多脚ロボット15へ給電がなされることで、多脚ロボット支援装置75による多脚ロボット15の運搬中、または作業現場で適宜多脚ロボット15に給電を実施できる。この結果、多脚ロボット15の稼動時間を延長することができる。 (6) The power supply mechanism 76 is installed in, for example, the support mechanism unit 12 of the multi-legged robot support device 75, and the power supply mechanism 76 supplies power to the multi-legged robot 15. The multi-legged robot 15 can be appropriately powered during the transportation of 15 or at the work site. As a result, the operation time of the multi-legged robot 15 can be extended.
 [E]第5実施形態(図17~図19)
 図17は、本発明に係る遠隔自動機支援装置の第5実施形態における多脚ロボット支援装置を示す側面図である。この第5実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIGS. 17 to 19)
FIG. 17 is a side view showing a multi-legged robot support apparatus in the fifth embodiment of the remote automatic machine support apparatus according to the present invention. In the fifth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.
 本第5実施形態の遠隔自動機支援装置としての多脚ロボット支援装置80が第1及び第2実施形態と異なる点は、運搬機構部11から歩行板としてのスロープ板82を展開して、搭載された多脚ロボット15が歩行可能な歩行床を形成し、多脚ロボット15を作業現場へ、または作業現場から多脚ロボット支援装置80の運搬機構部11へ案内する歩行床展開機構としてのスロープ機構81が、運搬機構部11に設けられた点である。 The multi-legged robot support device 80 as the remote automatic machine support device of the fifth embodiment is different from the first and second embodiments in that a slope plate 82 as a walking board is developed from the transport mechanism 11 and mounted. The formed multi-legged robot 15 forms a walkable walking floor, and the slope as a walking floor unfolding mechanism that guides the multi-legged robot 15 to the work site or from the work site to the transport mechanism unit 11 of the multi-legged robot support device 80. The mechanism 81 is a point provided in the transport mechanism unit 11.
 つまり、スロープ機構81は、多脚ロボット15が安全に歩行可能なスロープ板82が、運搬機構部11の一端部に枢支軸83を介して配置される。このスロープ板82は、多脚ロボット支援装置80による多脚ロボット15の運搬時には、図17および図18に示すように運搬機構部11に対して立設される。そして、スロープ板82は、多脚ロボット15を多脚ロボット支援装置80に設置、または多脚ロボット支援装置80から離脱させる際には、多脚ロボット支援装置80における図示しない制御部による制御、オペレータによる遠隔操作または作業者による手動操作によって回転され、先端部が接地する。これにより、多脚ロボット15は、スロープ板82上を歩行して作業現場へ移動でき、または作業現場から多脚ロボット支援装置80のスロープ板82上を歩行して運搬機構部11まで移動する。尚、多脚ロボット支援装置80が作業者により手動で押されて移動する場合には、立設状態のスロープ板82は、作業者が使用可能な取っ手としても機能する。 That is, in the slope mechanism 81, the slope plate 82 on which the multi-legged robot 15 can safely walk is disposed at one end of the transport mechanism unit 11 via the pivot shaft 83. When the multi-legged robot 15 is transported by the multi-legged robot support device 80, the slope plate 82 is erected with respect to the transport mechanism unit 11 as shown in FIGS. When the multi-legged robot 15 is set on or removed from the multi-legged robot support device 80, the slope plate 82 is controlled by a control unit (not shown) in the multi-legged robot support device 80. The tip is grounded by remote operation or manual operation by the operator. As a result, the multi-legged robot 15 can walk on the slope plate 82 and move to the work site, or can walk from the work site on the slope plate 82 of the multi-legged robot support device 80 to the transport mechanism 11. When the multi-legged robot support device 80 is manually pushed and moved by an operator, the slope plate 82 in the standing state also functions as a handle that can be used by the operator.
 また、図19に示すように、多脚ロボット支援装置80の移動経路に段差84がある場合には、この段差84の全てまたは一部を覆うようにスロープ板82を配置し、多脚ロボット15がスロープ板82上を歩行することで、この多脚ロボット15が上記段差84の全てまたは一部を歩行する必要がないようにすることも可能である。 As shown in FIG. 19, when there is a step 84 in the moving path of the multi-legged robot support device 80, a slope plate 82 is disposed so as to cover all or part of the step 84, and the multi-legged robot 15. However, by walking on the slope plate 82, it is possible to prevent the multi-legged robot 15 from walking all or part of the step 84.
 以上のように構成されたことから、本第5実施形態によれば、第1及び第2実施形態の効果(1)~(4)と同様な効果を奏するほか、次の効果(7)を奏する。 As described above, according to the fifth embodiment, in addition to the same effects as the effects (1) to (4) of the first and second embodiments, the following effect (7) is obtained. Play.
 (7)多脚ロボット支援装置80の運搬機構部11に、多脚ロボット15を歩行させて作業現場、またはこの多脚ロボット支援装置80の運搬機構部11へ案内するスロープ機構81が設置されたので、このスロープ機構81のスロープ板82上を多脚ロボット15が歩行することで、多脚ロボット15を安全に作業現場または運搬機構部11へ移動させることができる。
 なお、便宜上スロープ機構81という名称で説明しているが、当然ながらスロープ板を展開させる場所によってはスロープとならずに運搬機構部11の上面と連続して平坦となることもある。例えば、小型の障害物が散乱している床の上にスロープ板82を展開した場合等である。特に段差を越えるような展開ではなくとも、局所的に床の状態が悪くなっていて直接接地させたくない箇所(小型の障害物が散乱している場合、小さい穴や溝が形成されている場合、油等で滑りやすくなっている場合等)を通行させる場合に有効である。
(7) The slope mechanism 81 that guides the work site or the transport mechanism unit 11 of the multi-legged robot support device 80 by walking the multi-leg robot 15 is installed in the transport mechanism unit 11 of the multi-leg robot support device 80. Therefore, when the multi-legged robot 15 walks on the slope plate 82 of the slope mechanism 81, the multi-legged robot 15 can be safely moved to the work site or the transport mechanism section 11.
In addition, although it has demonstrated with the name of the slope mechanism 81 for convenience, naturally it may become flat continuously with the upper surface of the conveyance mechanism part 11 depending on the place which develops a slope board, without becoming a slope. For example, when the slope plate 82 is developed on the floor where small obstacles are scattered. Especially where the floor condition is not good and it is not desired to be grounded directly, even if it does not extend beyond the step (if small obstacles are scattered, small holes or grooves are formed) It is effective when passing through, such as when oil is slippery.
 また、多脚ロボット15の歩行不可能な段差84が存在する場合にも、この段差84をスロープ板が覆うことで多脚ロボット15が段差84を乗り越えることができる。更に、段差84が多脚ロボット15の歩行可能な段差である場合にも、この段差84の全てまたは一部を覆うスロープ板82上を多脚ロボットが歩行することで、この段差84を歩行するに必要な時間を削減しまたは短縮することができる。 Further, even when there is a step 84 that the multi-legged robot 15 cannot walk, the multi-legged robot 15 can get over the step 84 by covering the step 84 with the slope plate. Further, even when the step 84 is a step that can be walked by the multi-legged robot 15, the multi-legged robot walks on the slope plate 82 that covers all or part of the step 84, thereby walking the step 84. The time required for can be reduced or shortened.
 [F]第6実施形態(図20~図22)
 図20は、本発明に係る遠隔自動機支援装置の第6実施形態における多脚ロボット支援装置を示す側面図である。この第6実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth embodiment (FIGS. 20 to 22)
FIG. 20 is a side view showing a multi-legged robot support apparatus in the sixth embodiment of the remote automatic machine support apparatus according to the present invention. In the sixth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
 本第6実施形態の遠隔自動機支援装置としての多脚ロボット支援装置90が第1及び第2実施形態と異なる点は、多脚ロボット15を直接または間接的に支持し、運搬機構部11が傾斜する際に、搭載された多脚ロボット15が運搬機構部11よりも水平に近い状態になるよう保持して多脚ロボット15の姿勢を安定化させる姿勢安定化機構91が、運搬機構部11に設けられた点である。 The multi-legged robot support device 90 as the remote automatic machine support device of the sixth embodiment is different from the first and second embodiments in that the multi-legged robot 15 is supported directly or indirectly, and the transport mechanism 11 is A posture stabilization mechanism 91 that stabilizes the posture of the multi-legged robot 15 by holding the mounted multi-legged robot 15 in a state that is closer to the horizontal than the transport mechanism 11 when tilting is provided. This is a point provided.
 この姿勢安定化機構91は、例えば運搬機構部11と、支持機構部12(または保持機構部51)が立設された基板92との間に、油圧シリンダ装置などの昇降装置93が配置されて構成される。この昇降装置93は、多脚ロボット支援装置90の進行方向Lの前後に配置されて構成され、更に、水平面内で前記進行方向Lに直交する方向の前後に配置されて構成されることが好ましい。これらの昇降装置93は、多脚ロボット支援装置90が多脚ロボット15を搭載して傾斜した路面94を移動する際に、路面94の下り側に位置する昇降装置93が伸長することで基板92を水平状態に保持し、この基板92上の多脚ロボット15の姿勢を安定化させる。 In this posture stabilization mechanism 91, for example, an elevating device 93 such as a hydraulic cylinder device is disposed between the transport mechanism unit 11 and the substrate 92 on which the support mechanism unit 12 (or the holding mechanism unit 51) is erected. Composed. The lifting device 93 is preferably configured to be arranged before and after the traveling direction L of the multi-legged robot support device 90, and further arranged to be arranged before and after the direction orthogonal to the traveling direction L in the horizontal plane. . When the multi-legged robot support device 90 is mounted on the multi-legged robot 15 and moves on the inclined road surface 94, the elevating device 93 is extended by the elevating device 93 positioned on the lower side of the road surface 94, thereby extending the substrate 92. Is held in a horizontal state, and the posture of the multi-legged robot 15 on the substrate 92 is stabilized.
 また、この姿勢安定化機構91は、図22に示すように、運搬機構部11と支持機構部12(または保持機構部51)との間に配置されて、自重により湾曲移動するゴニオステージ95によって構成されてもよい。このゴニオステージ95は、運搬機構部11に設置されたゴニオステージ静止部96と、このゴニオステージ静止部96に対し多脚ロボット支援装置90の進行方向Lに湾曲移動可能なゴニオステージ可動部97とを有して構成され、ゴニオステージ可動部97に支持機構部12(または保持機構部51)が立設される。 Further, as shown in FIG. 22, the posture stabilization mechanism 91 is disposed between the transport mechanism unit 11 and the support mechanism unit 12 (or the holding mechanism unit 51), and is moved by a gonio stage 95 that is bent and moved by its own weight. It may be configured. The gonio stage 95 includes a gonio stage stationary unit 96 installed in the transport mechanism unit 11, and a gonio stage movable unit 97 that can bend and move in the advancing direction L of the multi-legged robot support device 90 with respect to the gonio stage stationary unit 96. The support mechanism section 12 (or the holding mechanism section 51) is erected on the goniostage movable section 97.
 姿勢安定化機構91がゴニオステージ95により構成される場合にも、多脚ロボット支援装置90が多脚ロボット15を搭載して傾斜した路面94を移動する際に、ゴニオステージ可動部97はゴニオステージ静止部96に対して路面94の下り側へ自重で湾曲移動することで水平状態に保持され、このゴニオステージ可動部97上の多脚ロボット15の姿勢を安定化させる。 Even when the posture stabilization mechanism 91 is configured by the gonio stage 95, when the multi-legged robot support device 90 is mounted on the multi-legged robot 15 and moves on the inclined road surface 94, the gonio stage movable unit 97 is not equipped with the gonio stage 95. It is held in a horizontal state by bending and moving under its own weight with respect to the stationary part 96 to the downside of the road surface 94, and the posture of the multi-legged robot 15 on the goniostage movable part 97 is stabilized.
 尚、ゴニオステージ95は、ゴニオステージ静止部96が、図22の2点鎖線で示すように、更にゴニオステージで構成されることが好ましい。この場合には、運搬機構部11に設置される側のエレメント96Aに対し、ゴニオステージ可動部97に接する側のエレメント96Bが、水平面内で前記進行方向Lと直交する方向Mに湾曲移動可能に構成される。 In addition, it is preferable that the gonio stage 95 is further comprised of a gonio stage as shown by a two-dot chain line in FIG. In this case, the element 96B on the side in contact with the goniostage movable portion 97 can be curved and moved in the direction M perpendicular to the traveling direction L in the horizontal plane with respect to the element 96A on the side installed in the transport mechanism unit 11. Composed.
 以上のように構成されたことから、本第6実施形態においても、第1及び第2実施形態の効果(1)~(4)と同様な効果を奏するほか、次の効果(8)を奏する。 With the configuration as described above, the sixth embodiment also provides the following effects (8) in addition to the same effects as the effects (1) to (4) of the first and second embodiments. .
 (8)多脚ロボット支援装置90は、搭載した多脚ロボット15の姿勢を安定化させる姿勢安定化機構91が運搬機構部11に設けられたので、多脚ロボット支援装置90が傾斜した路面94を移動する場合にも、多脚ロボット15を水平状態に保持して安定化させることができる。 (8) Since the multi-legged robot support device 90 is provided with the posture stabilization mechanism 91 for stabilizing the posture of the mounted multi-legged robot 15 in the transport mechanism unit 11, the road surface 94 on which the multi-legged robot support device 90 is inclined. Even when the robot is moved, the multi-legged robot 15 can be held and stabilized in a horizontal state.
 [G]第7実施形態(図23、図24)
 図23は、本発明に係る遠隔自動機支援装置の第7実施形態における多脚ロボット支援装置を示し、(A)は側面図、(B)は平面図である。この第7実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[G] Seventh embodiment (FIGS. 23 and 24)
FIG. 23 shows a multi-legged robot support apparatus in a seventh embodiment of the remote automatic machine support apparatus according to the present invention, wherein (A) is a side view and (B) is a plan view. In the seventh embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is simplified or omitted.
 本第7実施形態における遠隔自動機支援装置としての多脚ロボット支援装置100が第1及び第2実施形態と異なる点は、搭載した多脚ロボット15の脚16の位置を検出する脚位置検出機構101が、運搬機構部11に設けられた点である。 The multi-legged robot support device 100 as the remote automatic machine support device in the seventh embodiment is different from the first and second embodiments in that a leg position detection mechanism that detects the position of the leg 16 of the mounted multi-legged robot 15. Reference numeral 101 denotes a point provided in the transport mechanism unit 11.
 脚位置検出機構101は、例えばラインレーザセンサなどの位置センサ102を有して構成され、更に表示装置103を備えることが好ましい。位置センサ102は、多脚ロボット15の脚16のそれぞれについて、例えば互いに直交する方向からレーザ光を出力し得るように、1本の脚16に対して2個設置される。位置センサ102にて検出された脚位置情報は、多脚ロボット支援装置100に搭載された多脚ロボット15の制御部28(図3)へ出力され、この制御部28により、脚16が多脚ロボット支援装置100に対して最適な位置になるようにフィードバック制御される。 The leg position detection mechanism 101 is preferably configured to include a position sensor 102 such as a line laser sensor, and further includes a display device 103. For each leg 16 of the multi-legged robot 15, two position sensors 102 are installed for one leg 16 so that laser light can be output from directions orthogonal to each other. The leg position information detected by the position sensor 102 is output to the control unit 28 (FIG. 3) of the multi-legged robot 15 mounted on the multi-legged robot support apparatus 100. Feedback control is performed so that the robot support apparatus 100 is in an optimum position.
 または、位置センサ102にて検出された多脚ロボット15の脚16の脚位置情報は、多脚ロボット支援装置100の支持フレーム36に設置された表示装置103や、多脚ロボット15及び多脚ロボット支援装置100のオペレータが滞在するサイトなどに設置された表示装置103に、図24に示すように表示される。多脚ロボット支援装置100近傍にいる作業者やサイト内のオペレータは、表示装置103上の脚位置情報に基づいて、例えば操作ユニット13(図3)を用いて多脚ロボット15を操作し、この多脚ロボット15の脚16を多脚ロボット支援装置100に対して最適な位置に移動させる。この際に、表示装置103には、脚位置許容範囲105が表示されて、位置センサ102にて検出された脚位置が脚位置許容範囲105内に存在するか否かがリアルタイムで表示されることが好ましい。 Alternatively, the leg position information of the legs 16 of the multi-legged robot 15 detected by the position sensor 102 is the display device 103 installed on the support frame 36 of the multi-legged robot support apparatus 100, the multi-legged robot 15 and the multi-legged robot. The display is performed as shown in FIG. 24 on the display device 103 installed at a site where the operator of the support apparatus 100 stays. An operator in the vicinity of the multi-legged robot support apparatus 100 or an operator in the site operates the multi-legged robot 15 using, for example, the operation unit 13 (FIG. 3) based on the leg position information on the display device 103. The leg 16 of the multi-legged robot 15 is moved to an optimum position with respect to the multi-legged robot support apparatus 100. At this time, the leg position allowable range 105 is displayed on the display device 103 and whether or not the leg position detected by the position sensor 102 is within the leg position allowable range 105 is displayed in real time. Is preferred.
 以上のように構成されたことから、本実施形態においても、第1及び第2実施形態の効果(1)~(4)と同様な効果を奏するほか、次の効果(9)を奏する。 Since it is configured as described above, this embodiment has the same effects as the effects (1) to (4) of the first and second embodiments, and the following effect (9).
 (9)多脚ロボット支援装置100では、搭載した多数ロボット15の脚16の位置を検出する脚位置検出機構101が運搬機構部11に設けられたので、この脚位置検出機構101にて得られた脚位置情報に基づき多脚ロボット15の脚16の位置を修正することで、多脚ロボット支援装置100の運搬機構部11上で多脚ロボット15を安定して搭載できる。 (9) In the multi-legged robot support device 100, the leg position detection mechanism 101 that detects the positions of the legs 16 of the mounted multiple robots 15 is provided in the transport mechanism unit 11. By correcting the position of the leg 16 of the multi-legged robot 15 based on the leg position information, the multi-legged robot 15 can be stably mounted on the transport mechanism 11 of the multi-legged robot support apparatus 100.
 [H]第8実施形態(図25、図26)
 図25は、本発明に係る遠隔自動機支援装置の第8実施形態における多脚ロボット支援装置を示す側面図である。この第8実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[H] Eighth Embodiment (FIGS. 25 and 26)
FIG. 25 is a side view showing a multi-legged robot support apparatus in the eighth embodiment of the remote automatic machine support apparatus according to the present invention. In the eighth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description will be simplified or omitted.
 本第8実施形態における遠隔自動機支援装置としての多脚ロボット支援装置110が第1及び第2実施形態と異なる点は、搭載した多脚ロボット15の脚16が運搬機構部11に作用する面圧を、脚16の位置と共に検出する面圧検出機構111が、運搬機構部11に設けられた点である。 The multi-legged robot support device 110 as the remote automatic machine support device in the eighth embodiment is different from the first and second embodiments in that the legs 16 of the mounted multi-legged robot 15 act on the transport mechanism unit 11. A surface pressure detection mechanism 111 that detects pressure together with the position of the legs 16 is provided in the transport mechanism unit 11.
 面圧検出機構111にて検出された多脚ロボット15の脚16の面圧及び位置の情報113は、多脚ロボット支援装置110の支持フレーム36に設置された表示装置112や、多脚ロボット15及び多脚ロボット支援装置110を操作するオペレータが滞在するサイトなどに設置された表示装置112に、図26に示すように表示される。多脚ロボット支援装置110近傍に居る作業者やサイト内のオペレータは、表示装置112上の脚16の面圧及び位置の情報113が図26(B)に示すように良好でない場合には、例えば操作ユニット13(図3)を用いて多脚ロボット15を操作し、表示装置112上の脚16の面圧及び位置の情報113が図26(A)のように良好になるように、多脚ロボット15の姿勢や脚16の位置を制御する。 The surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 detected by the face-pressure detecting mechanism 111 is the display device 112 installed on the support frame 36 of the multi-legged robot support device 110 or the multi-legged robot 15. And it is displayed as shown in FIG. 26 on a display device 112 installed at a site where an operator who operates the multi-legged robot support device 110 stays. An operator in the vicinity of the multi-legged robot support device 110 or an operator in the site may, for example, if the surface pressure and position information 113 of the leg 16 on the display device 112 is not good as shown in FIG. The multi-legged robot 15 is operated using the operation unit 13 (FIG. 3) so that the information 113 on the surface pressure and position of the leg 16 on the display device 112 becomes good as shown in FIG. The posture of the robot 15 and the position of the leg 16 are controlled.
 また、面圧検出機構111にて検出された多脚ロボット15の脚16の面圧及び位置の情報113は、多脚ロボット支援装置110に搭載された多脚ロボット15の制御部28(図3)へ出力され、この制御部28により、脚16の多脚ロボット支援装置110に対する面圧及び位置の情報113が良好になるように、多脚ロボット15の姿勢や脚16の位置がフィードバック制御される。 Also, the surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 detected by the face-pressure detecting mechanism 111 is used as a control unit 28 (see FIG. 3) of the multi-legged robot 15 mounted on the multi-legged robot support apparatus 110. The control unit 28 feedback-controls the posture of the multi-legged robot 15 and the position of the leg 16 so that the surface pressure and position information 113 of the leg 16 with respect to the multi-legged robot support device 110 becomes good. The
 以上のように構成されたことから、本第8実施形態においても、第1及び第2実施形態の効果(1)~(4)と同様な効果を奏するほか、次の効果(10)を奏する。 With the configuration as described above, the eighth embodiment has the same effects as the effects (1) to (4) of the first and second embodiments, and the following effect (10). .
 (10)多脚ロボット支援装置110は、搭載した多脚ロボット15の脚16が作用する面圧を、脚16の位置と共に検出する面圧検出機構111を備え、この面圧検出機構111が運搬機構部11に設けられたので、この面圧検出機構111により得られた多脚ロボット15の脚16の面圧及び位置の情報113に基づき、多脚ロボット15の姿勢や脚16の位置を修正することで、多脚ロボット支援装置110上で多脚ロボット15を安定して搭載できる。 (10) The multi-legged robot support device 110 includes a surface pressure detection mechanism 111 that detects the surface pressure applied by the legs 16 of the mounted multi-legged robot 15 together with the position of the leg 16. Since it is provided in the mechanism unit 11, the posture of the multi-legged robot 15 and the position of the leg 16 are corrected based on the surface pressure and position information 113 of the legs 16 of the multi-legged robot 15 obtained by the surface pressure detecting mechanism 111. By doing so, the multi-legged robot 15 can be stably mounted on the multi-legged robot support apparatus 110.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、各実施形態に開示された構成を任意に組み合わせることが可能である。それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、胴部保持機構37や保持機構部51は、スプリング等を用いた構造により、多脚ロボット15を保持する際の安定性や位置決め裕度を高めるものであるが、これらの構造を採用せずに、単純なL字、コの字、筒状等とした構成であっても構わない。
 また、胴部17に切り欠き等の凹部を設けるとともに、胴部保持機構37に胴部17の凹部と嵌合する凸部を設けて、簡易な構成で位置決め裕度と保持の安定性を向上させた構造等としてもよい。
 また、脚先保持部66や保持機構部51は、全ての脚16ないしリンク機構14に対応して設ける必要はなく、任意の数を設けることでよい。
 また、いくつかの実施形態では、脚16への電力供給を停止しても安定して運搬できるものとして説明したが、必ずしも電力供給を停止する必要はない。その場合でも、脚16への荷重がかからないように、あるいは荷重を軽減する効果は発揮される。
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention, and are disclosed in each embodiment. These configurations can be arbitrarily combined. Such substitutions and changes are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
For example, the torso holding mechanism 37 and the holding mechanism 51 have a structure using a spring or the like to increase the stability and positioning tolerance when holding the multi-legged robot 15. Instead, a simple L-shape, U-shape, cylindrical shape, or the like may be used.
In addition, a recess such as a notch is provided in the body portion 17 and a protrusion that fits into the recess portion of the body portion 17 is provided in the body portion holding mechanism 37 to improve positioning tolerance and holding stability with a simple configuration. It is good also as the structure made to do.
Further, it is not necessary to provide the leg tip holding part 66 and the holding mechanism part 51 corresponding to all the legs 16 or the link mechanisms 14, and any number may be provided.
Moreover, although some embodiment demonstrated as what can be stably conveyed even if it stops the electric power supply to the leg 16, it is not necessary to stop an electric power supply. Even in such a case, the effect of reducing the load is exerted so that the load on the leg 16 is not applied.
10 多脚ロボット支援装置(遠隔自動機支援装置)
11 運搬機構部
12 支持機構部
14 リンク機構
15 多脚ロボット(遠隔自動機)
16 脚
17 胴部
34 車輪
37 胴部保持機構
50 多脚ロボット支援装置(遠隔自動機支援装置)
51 保持機構部
53 保持部
70 多脚ロボット支援装置(遠隔自動機支援装置)
71 切欠部
75 多脚ロボット支援装置(遠隔自動機支援装置)
76 給電機構
80 多脚ロボット支援装置(遠隔自動機支援装置)
81 スロープ機構
82 スロープ板
90 多脚ロボット支援装置(遠隔自動機支援装置)
91 姿勢安定化機構
93 昇降装置
95 ゴニオステージ
100 多脚ロボット支援装置(遠隔自動機支援装置)
101 脚位置検出機構
102 位置センサ
110 多脚ロボット支援装置(遠隔自動機支援装置)
111 面圧検出機構
10 Multi-legged robot support device (remote automatic machine support device)
11 Transport mechanism 12 Support mechanism 14 Link mechanism 15 Multi-legged robot (remote automatic machine)
16 legs 17 body 34 wheels 37 body holding mechanism 50 multi-legged robot support device (remote automatic machine support device)
51 Holding Mechanism 53 Holding Unit 70 Multi-legged Robot Support Device (Remote Automatic Machine Support Device)
71 Notch 75 Multi-legged robot support device (remote automatic machine support device)
76 Power supply mechanism 80 Multi-legged robot support device (remote automatic machine support device)
81 slope mechanism 82 slope plate 90 multi-legged robot support device (remote automatic machine support device)
91 Posture stabilization mechanism 93 Lifting device 95 Goniometer stage 100 Multi-legged robot support device (remote automatic machine support device)
101 Leg position detection mechanism 102 Position sensor 110 Multi-legged robot support device (remote automatic machine support device)
111 Surface pressure detection mechanism

Claims (10)

  1. 複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援装置であって、
     前記遠隔自動機を搭載可能に設けられると共に、車輪または無限軌道を備えた運搬機構部と、
     この運搬機構部に取り付けられ、前記遠隔自動機の前記胴部の荷重を支持する支持機構部と、を有して構成されたことを特徴とする遠隔自動機支援装置。
    A remote automatic machine support apparatus that moves by mounting a remote automatic machine that moves by the operation of the legs, wherein two or more legs composed of a link mechanism having a plurality of joints are provided on the body,
    A transport mechanism provided with a wheel or an endless track, provided so that the remote automatic machine can be mounted;
    A remote automatic machine support apparatus, comprising: a support mechanism part attached to the transport mechanism part and supporting a load of the body part of the remote automatic machine.
  2. 複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援装置であって、
     前記遠隔自動機を搭載可能に設けられると共に、車輪または無限軌道を備えた運搬機構部と、
     この運搬機構部に取り付けられ、前記遠隔自動機の前記脚の前記リンク機構の可動範囲を制限するように保持する保持機構部と、を有して構成されたことを特徴とする遠隔自動機支援装置。
    A remote automatic machine support apparatus that moves by mounting a remote automatic machine that moves by the operation of the legs, wherein two or more legs composed of a link mechanism having a plurality of joints are provided on the body,
    A transport mechanism provided with a wheel or an endless track, provided so that the remote automatic machine can be mounted;
    A remote automatic machine support comprising: a holding mechanism part attached to the transport mechanism part and holding the leg mechanism of the remote automatic machine so as to limit a movable range of the link mechanism. apparatus.
  3. 前記支持機構部には、遠隔自動機の胴部が載置される部分に、前記胴部に対して付勢力を作用させて保持する胴部保持機構が設けられたことを特徴とする請求項1に記載の遠隔自動機支援装置。 The body portion holding mechanism that holds the body portion of the remote automatic machine by applying an urging force to the body portion is provided in the support mechanism portion. 2. The remote automatic machine support device according to 1.
  4. 前記運搬機構部には、遠隔自動機が前記運搬機構部に対して移動する際に、脚が歩行して進入退避可能な切欠部が形成されたことを特徴とする請求項1に記載の遠隔自動機支援装置。 2. The remote according to claim 1, wherein the transport mechanism is formed with a notch that allows a leg to walk and retreat when the remote automatic machine moves relative to the transport mechanism. Automatic machine support device.
  5. 前記支持機構部、保持機構部または運搬機構部には、遠隔自動機へ給電可能な給電機構が設けられたことを特徴とする請求項1又は2に記載の遠隔自動機支援装置。 3. The remote automatic machine support device according to claim 1, wherein the support mechanism unit, the holding mechanism unit, or the transport mechanism unit is provided with a power supply mechanism capable of supplying power to the remote automatic machine.
  6. 前記運搬機構部には、前記運搬機構部から歩行板を展開して、搭載された遠隔自動機が歩行可能な歩行床を形成する歩行板展開機構が設けられたことを特徴とする請求項1又は2に記載の遠隔自動機支援装置。 The walking mechanism is provided with a walking board unfolding mechanism that unfolds the walking board from the transportation mechanism and forms a walking floor on which the mounted remote automatic machine can walk. Or the remote automatic machine assistance apparatus of 2 description.
  7. 前記運搬機構部には、遠隔自動機を直接または間接的に支持し、前記運搬機構部が傾斜する際に、搭載された遠隔自動機が前記運搬機構部よりも水平に近い状態になるよう保持する姿勢安定化機構が設けられたことを特徴とする請求項1又は2に記載の遠隔自動機支援装置。 The transport mechanism unit supports the remote automatic machine directly or indirectly, and when the transport mechanism part is tilted, the remote automatic machine mounted is held in a state closer to the horizontal than the transport mechanism part. The remote automatic machine support device according to claim 1, further comprising a posture stabilization mechanism for performing the operation.
  8. 前記運搬機構部には、搭載した遠隔自動機における脚の位置を検出する脚位置検出機構が設けられたことを特徴とする請求項1又は2に記載の遠隔自動機支援装置。 The remote automatic machine support device according to claim 1 or 2, wherein the transport mechanism unit is provided with a leg position detection mechanism for detecting a position of a leg in the mounted remote automatic machine.
  9. 前記運搬機構部には、搭載した遠隔自動機における脚が作用する面圧を、前記脚の位置と共に検出する面圧検出機構が設けられたことを特徴とする請求項1又は2に記載の遠隔自動機支援装置。 3. The remote according to claim 1, wherein the transport mechanism is provided with a surface pressure detection mechanism that detects a surface pressure acting on a leg of a mounted remote automatic machine together with a position of the leg. Automatic machine support device.
  10. 複数の関節を備えたリンク機構からなる2本以上の脚が胴部に設けられて構成され、前記脚の動作により移動する遠隔自動機を搭載して移動する遠隔自動機支援方法であって、
     前記遠隔自動機を、車輪または無限軌道を備えた運搬機構部に搭載して運搬し、この運搬中に、前記遠隔自動機の前記胴部の荷重を支持し、または前記遠隔自動機の前記脚の前記リンク機構を固定状態に保持することを特徴とする遠隔自動機支援方法。
    A remote automatic machine support method in which two or more legs comprising a link mechanism having a plurality of joints are provided on the trunk, and a remote automatic machine that moves by movement of the legs is mounted and moved.
    The remote automatic machine is carried on a transport mechanism having wheels or an endless track, and supports the body load of the remote automatic machine during the transport, or the legs of the remote automatic machine The link mechanism is held in a fixed state.
PCT/JP2014/055465 2013-03-05 2014-03-04 Remote automatic machine assisting device and method WO2014136775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043415 2013-03-05
JP2013043415A JP6021693B2 (en) 2013-03-05 2013-03-05 Remote work automatic machine support apparatus and method

Publications (1)

Publication Number Publication Date
WO2014136775A1 true WO2014136775A1 (en) 2014-09-12

Family

ID=51491291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055465 WO2014136775A1 (en) 2013-03-05 2014-03-04 Remote automatic machine assisting device and method

Country Status (2)

Country Link
JP (1) JP6021693B2 (en)
WO (1) WO2014136775A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218375A (en) * 1985-07-17 1987-01-27 Toshiba Corp Magnetic adsorption type movable robot
JPS6279982A (en) * 1985-10-04 1987-04-13 工業技術院長 Aerial moving method of floor travelling type robot
JPS6447791U (en) * 1987-09-21 1989-03-24
JPH0899612A (en) * 1994-09-30 1996-04-16 Furukawa Co Ltd Jack control device for heavy machinery carrying vehicle
JP2001198865A (en) * 2000-01-20 2001-07-24 Toshiba Corp Bipedal robot device and its operating method
JP2002274142A (en) * 2001-03-14 2002-09-25 Mitsubishi Motors Corp Suspension system
JP2003019678A (en) * 2001-07-06 2003-01-21 Sony Corp Moving device for legged moving robot, control method for legged moving robot and storage medium
JP2004291175A (en) * 2003-03-27 2004-10-21 Denso Corp Robot fixing device
JP2005186220A (en) * 2003-12-25 2005-07-14 Casio Comput Co Ltd Service providing system, robot support device, robot device, robot management device, and program
JP2006305642A (en) * 2005-04-26 2006-11-09 Kawada Kogyo Kk Humanoid robot, and detachable type buttocks
JP2010042734A (en) * 2008-08-11 2010-02-25 Nabekai:Kk Vehicle loading/unloading auxiliary device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218375A (en) * 1985-07-17 1987-01-27 Toshiba Corp Magnetic adsorption type movable robot
JPS6279982A (en) * 1985-10-04 1987-04-13 工業技術院長 Aerial moving method of floor travelling type robot
JPS6447791U (en) * 1987-09-21 1989-03-24
JPH0899612A (en) * 1994-09-30 1996-04-16 Furukawa Co Ltd Jack control device for heavy machinery carrying vehicle
JP2001198865A (en) * 2000-01-20 2001-07-24 Toshiba Corp Bipedal robot device and its operating method
JP2002274142A (en) * 2001-03-14 2002-09-25 Mitsubishi Motors Corp Suspension system
JP2003019678A (en) * 2001-07-06 2003-01-21 Sony Corp Moving device for legged moving robot, control method for legged moving robot and storage medium
JP2004291175A (en) * 2003-03-27 2004-10-21 Denso Corp Robot fixing device
JP2005186220A (en) * 2003-12-25 2005-07-14 Casio Comput Co Ltd Service providing system, robot support device, robot device, robot management device, and program
JP2006305642A (en) * 2005-04-26 2006-11-09 Kawada Kogyo Kk Humanoid robot, and detachable type buttocks
JP2010042734A (en) * 2008-08-11 2010-02-25 Nabekai:Kk Vehicle loading/unloading auxiliary device

Also Published As

Publication number Publication date
JP2014172095A (en) 2014-09-22
JP6021693B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6638903B2 (en) Construction work robot
US8269447B2 (en) Magnetic spherical balancing robot drive
US9889787B2 (en) Mobile auxiliary transfer lift caddy
US20090211823A1 (en) Dual tracked mobile robot for motion in rough terrain
JP2017089211A (en) Flotation type inspection device and inspection system having the same
JP2015505763A (en) Mobile robot
Hong et al. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot
CN110494349B (en) Working vehicle
JP7324628B2 (en) Work platform mover system
US7878276B2 (en) Ambulatory vehicle
EP1719606A2 (en) Apparatus for welding ends of plastics pipes located on-site
IT201800007119A1 (en) Self-propelled wrapping machine
CN110576922A (en) Biped walking robot with speed equalizer and control method thereof
de Santos et al. Power assist devices for installing plaster panels in construction
JP6021693B2 (en) Remote work automatic machine support apparatus and method
KR20200010936A (en) Mobile robot
DE102020204710A1 (en) Procedure, compensation module and multi-robot system
JP4749442B2 (en) Vehicle moving device
JP6282211B2 (en) Panel construction machine and panel construction method
CN116621083A (en) Bull AMR
JP2016020103A (en) Conveyance apparatus
KR101685415B1 (en) Apparatus for moving robot
JP2016172613A (en) Device and method for conveying remote work automatic machine
KR101195431B1 (en) Flight Transport Apparatus
CN110667713B (en) Self-driven logistics mobile platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759904

Country of ref document: EP

Kind code of ref document: A1