WO2014012351A1 - Positioning system of mobile robot and positioning method thereof - Google Patents

Positioning system of mobile robot and positioning method thereof Download PDF

Info

Publication number
WO2014012351A1
WO2014012351A1 PCT/CN2013/000822 CN2013000822W WO2014012351A1 WO 2014012351 A1 WO2014012351 A1 WO 2014012351A1 CN 2013000822 W CN2013000822 W CN 2013000822W WO 2014012351 A1 WO2014012351 A1 WO 2014012351A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
robot
group
central processing
processing unit
Prior art date
Application number
PCT/CN2013/000822
Other languages
French (fr)
Chinese (zh)
Inventor
孔钊
宋强
姜飞
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2014012351A1 publication Critical patent/WO2014012351A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Definitions

  • navigation means that the mobile robot senses the environment and its own state through the sensor, and realizes the target-oriented autonomous movement in an environment with obstacles.
  • the success of navigation requires four modules: perception, positioning, cognition, motion control.
  • positioning is the most basic part of mobile robot navigation.
  • the so-called positioning is to determine the real-time posture of the robot in the environment.
  • the currently used positioning technologies include: visual navigation positioning, global positioning system (GPS), differential GPS positioning, ultrasonic positioning, and so on.
  • GPS global positioning system
  • differential GPS positioning differential GPS positioning
  • ultrasonic positioning and so on.
  • the image processing method of the visual navigation positioning method has a large amount of calculation, and the calculation speed is high, so the real-time performance is poor.
  • the positioning method is greatly affected by the external environment, and thus is not suitable for the positioning system of the outdoor mobile robot.
  • the central processing unit performs arithmetic processing on the first angles to obtain a third angle group between the respective laser reflection lines;
  • Figure 6 is a schematic illustration of the work area of the positioning system of the present invention being rasterized, showing all of the second angles measured when the mobile robot is in any position.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

A positioning system of a mobile robot (R) comprises some known reflection members, a turntable (T), a laser (J), an angle coder (B), and a central processing unit. A connecting line between adjacent reflection members is enclosed to form a working region of the robot (R). The laser (J) has an emitting portion (J1) and a receiving portion (J2). The central processing unit comprises a graphic processing program for rasterizing the working region, and calculates multiple second angles between connecting lines (L3) formed by connecting each intersection point to each reflection member, and the multiple second angles form a second angle group corresponding to each intersection point. The receiving portion (J2) can simultaneously receive laser rays (L1) reflected by the multiple reflection members, the central processing unit obtains, through computation processing, a third angle group between the laser rays (L1), and the third angle group is compared with the second angle group to obtain the position of the robot (R) in a coordinate system.

Description

一种移动机器人的定位系统及其定位方法 技术领域  Positioning system of mobile robot and positioning method thereof
本发明属于一种机器人的定位技术领域, 尤其涉及一种移动机器人的定位 系统与定位方法。  The invention belongs to the field of positioning technology of a robot, and in particular relates to a positioning system and a positioning method of a mobile robot.
背景技术 Background technique
在移动机器人的应用中, 导航是指移动机器人通过传感器感知环境和自身 状态, 实现在有障碍物的环境中面向目标自主运动。 导航的成功需要有四个模 块: 感知, 定位, 认知, 运动控制。 其中, 定位是移动机器人导航最基本的环 节, 所谓定位就是确定机器人在环境中的实时位姿。 当前应用较多的定位技术 有: 视觉导航定位、 全球定位系统(GPS, Global Positioning System ), 差分 GPS 定位、 超声波定位等。 其中, 视觉导航定位方式的图像处理计算量大, 计算速 度要求高, 因而实时性差, 此外, 该种定位方式受外界环境的影响较大, 因此 不太适用于户外移动机器人的定位系统。 全球定位系统是由美国国防部控制的, 对非美国国防部授权的用户, 其所能获得的定位导航精度较低, 因此不适于定 位精度较高的场合。 差分 GPS定位, 是指用户 GPS接收机附近设置一个已知精 度坐标的差分基准站, 基准站的接收机连续接收 GPS导航信号, 将测得的位置 或距离数据与已知的位置、 距离数据进行比较, 确定误差, 得出准确改正值, 然后将这些改正数据通过数据链发播给覆盖区域内的用户, 用以改正用户的定 位结果, 这种定位方法虽然定位精度高, 但成本也很高。 对于超声波定位方式, 由于超声波在空气中衰减很大, 因此只适用空间范围较小的场合。 针对上述各 种定位技术存在的缺陷, 有必要提出一种改进的移动机器人定位系统以解决上 述问题。  In the application of mobile robots, navigation means that the mobile robot senses the environment and its own state through the sensor, and realizes the target-oriented autonomous movement in an environment with obstacles. The success of navigation requires four modules: perception, positioning, cognition, motion control. Among them, positioning is the most basic part of mobile robot navigation. The so-called positioning is to determine the real-time posture of the robot in the environment. The currently used positioning technologies include: visual navigation positioning, global positioning system (GPS), differential GPS positioning, ultrasonic positioning, and so on. Among them, the image processing method of the visual navigation positioning method has a large amount of calculation, and the calculation speed is high, so the real-time performance is poor. In addition, the positioning method is greatly affected by the external environment, and thus is not suitable for the positioning system of the outdoor mobile robot. The Global Positioning System is controlled by the US Department of Defense. For users who are not authorized by the US Department of Defense, the positioning and navigation accuracy that can be obtained is low, so it is not suitable for occasions with high positioning accuracy. Differential GPS positioning refers to a differential reference station with a known accuracy coordinate set near the user's GPS receiver. The receiver of the base station continuously receives GPS navigation signals, and performs measured position or distance data with known position and distance data. Comparing, determining the error, and obtaining accurate correction values, and then transmitting the correction data to the users in the coverage area through the data link to correct the positioning result of the user. Although the positioning method has high positioning accuracy, the cost is high. . For the ultrasonic positioning method, since the ultrasonic wave is greatly attenuated in the air, it is only applicable to a case where the space is small. In view of the shortcomings of the above various positioning technologies, it is necessary to propose an improved mobile robot positioning system to solve the above problems.
发明内容 Summary of the invention
本发明的目的在于提供一种移动机器人通过角度对比来实现定位的定位系 统与定位方法。  It is an object of the present invention to provide a positioning system and positioning method for a mobile robot to achieve positioning by angle comparison.
为了实现上述目的, 本发明采用如下技术方案: 一种移动机器人的定位系 统, 该定位系统设于一坐标系内, 且该定位系统包括若干已知坐标值的反光件、 安装于机器人上可 360。旋转的转台、 激光器、 角度编码器及中央处理单元, 所 述激光器与角度编码器安装于所述转台上; 所述相邻反光仵之间的连线包围形 成机器人的工作区域; 所述激光器具有发射部与接收部, 该发射部发出激光发 射线至所述反光件后经反射形成的激光反射线被所述接收部接收, 且所述反光 件具备使该激光反射线平行于激光发射线的光线直反功能; 所述角度编码器用 于测得机器人的机头朝向线与所述激光反射线之间的第一角度; 所述中央处理 单元包括图形处理程序, 该图形处理程序对所述工作区域进行栅格化并得出各 交叉点的坐标值, 中央处理单元计算出每一交叉点连接各个反光件所形成的各 条连接线之间的多个第二角度, 该多个第二角度组成与每一交叉点对应的第二 角度组, 然后将每一第二角度组存储起来; 机器人在所述工作区域内移动时, 所述接收部可同时接收到从多个反光件反射回来的激光反射线, 所述角度编码 器可对应测得多个所述第一角度, 中央处理单元对这些第一角度进行运算处理 以获得各条激光反射线之间的一个第三角度组, 然后将所述第三角度与所述第 二角度进行对比以获得机器人在所述坐标系内的位置。。 In order to achieve the above object, the present invention adopts the following technical solutions: A positioning system for a mobile robot, the positioning system is disposed in a coordinate system, and the positioning system includes a plurality of reflectors of known coordinate values, and is mounted on the robot 360. . Rotating turntable, laser, angle encoder and central processing unit The laser and the angle encoder are mounted on the turntable; the connection between the adjacent reflective ridges surrounds a working area of the robot; the laser has a transmitting portion and a receiving portion, and the transmitting portion emits a laser emitting line to the The laser reflection line formed by the reflection after the reflector is received by the receiving portion, and the reflector has a function of directing the light of the laser reflection line parallel to the laser emission line; the angle encoder is used for measuring the robot a first angle between the head facing the line and the laser reflected line; the central processing unit includes a graphics processing program, the graphics processing program rasterizes the working area and obtains coordinate values of each intersection The central processing unit calculates a plurality of second angles between the connecting lines formed by connecting the respective reflectors at each intersection, the plurality of second angles forming a second angle group corresponding to each intersection, and then Each second angle group is stored; when the robot moves within the working area, the receiving portion can simultaneously receive the reflection from the plurality of reflectors a light reflection line, the angle encoder may correspondingly measure a plurality of the first angles, and the central processing unit performs an operation process on the first angles to obtain a third angle group between the laser reflection lines, and then The third angle is compared to the second angle to obtain a position of the robot within the coordinate system. .
优选的, 当所述第三角度组与存储的一个第二角度组中有至少两个连续相 等的角度值时, 机器人的坐标值即为该第二角度组对应的交叉点的坐标值。。  Preferably, when there is at least two consecutive equal angular values in the stored third angle group, the coordinate value of the robot is the coordinate value of the intersection corresponding to the second angle group. .
优选的, 当所述第三角度组与存储的任意一个第二角度组中仅有一个相等 的角度值或没有相等的角度值时, 中央处理单元将寻找到与该第三角度组的各 角度值最接近的另一个第二角度组, 机器人在所述坐标系内的位置最接近该另 一个第二角度组所对应的交叉点。  Preferably, when the third angle group has only one equal angle value or no equal angle value in any one of the stored second angle groups, the central processing unit will find the angles with the third angle group. Another second set of angles closest to the value, the position of the robot within the coordinate system is closest to the intersection of the other second set of angles.
优选的, 所述第二角度为所述各条连接线中相邻两条连接线之间的角度, 所述第三角度为所述各激光反射线中相邻两条激光反射线之间的角度。  Preferably, the second angle is an angle between two adjacent connecting lines of the respective connecting lines, and the third angle is between two adjacent laser reflecting lines of the laser reflection lines. angle.
优选的, 所述第二角度为其中一条连接线与其他各条连接线之间的角度, 所述第三角度为其中一条激光反射线与其他各条激光反射线之间的角度。  Preferably, the second angle is an angle between one of the connecting lines and the other connecting lines, and the third angle is an angle between one of the laser reflecting lines and the other laser reflecting lines.
优选的, 所述移动机器人为割草机器人。  Preferably, the mobile robot is a mowing robot.
优选的, 所述定位系统还包括设于机器人上的电子罗盘。  Preferably, the positioning system further comprises an electronic compass disposed on the robot.
为了实现上述目的, 本发明还可以采用如下技术方案: 一种移动机器人的 定位方法, 该机器人上安装有可 360。旋转的转台、 具有发射部与接收部的激光 器、 角度编码器以及中央处理单元, 所述激光器与角度编码器设于所述转台上, 所述定位方法包括如下步骤: 1 )将多个已知坐标值的反光件设置于机器人所在坐标系内; In order to achieve the above object, the present invention can also adopt the following technical solution: A positioning method of a mobile robot on which a 360 can be mounted. a rotating turret, a laser having a transmitting portion and a receiving portion, an angle encoder, and a central processing unit, wherein the laser and the angle encoder are disposed on the turntable, and the positioning method comprises the following steps: 1) setting a plurality of reflectors of known coordinate values in the coordinate system of the robot;
2 )所述中央处理单元的图形处理程序对这些反光件的连线包围所形成的工作区 域进行栅格化并得出各交叉点的坐标值;  2) the graphics processing program of the central processing unit rasterizes the working area formed by the line enclosing of the reflectors and obtains the coordinate values of the intersections;
3 )所述中央处理单元计算出每一交叉点连接各个反光件所形成的各条连接线之 间的多个第二角度, 多个第二角度组成与每一交叉点对应的第二角度组, 然后 将每一第二角度组存储起来;  3) The central processing unit calculates a plurality of second angles between the connecting lines formed by connecting the respective reflectors at each intersection, and the plurality of second angles constitute a second angle group corresponding to each intersection And then storing each second angle group;
4 )机器人在所述工作区域内移动时, 所述发射部发出激光发射线至所述反光件 后经反射形成的激光反射线被所述接收部接收, 所述反光件具备使该激光反射 线平行于激光发射线的光线直反功能, 且所述接收部可同时接收到从多个反光 件反射回来的多条激光反射线, 所述角度编码器对应测得机器人的机头朝向线 与所述多条激光反射线之间的多个第一角度;  4) when the robot moves in the working area, the laser reflecting line formed by the transmitting portion emitting the laser emitting line to the reflecting member and being reflected by the reflecting portion is received by the receiving portion, and the reflecting member is provided with the laser reflecting line Parallel to the light-emitting function of the laser emission line, and the receiving portion can simultaneously receive a plurality of laser reflection lines reflected from the plurality of reflectors, wherein the angle encoder corresponds to the measured head-to-line of the robot Describe a plurality of first angles between the plurality of laser reflection lines;
5 ) 中央处理单元对这些第一角度进行运算处理以获得各条激光反射线之间的一 个第三角度组;  5) the central processing unit performs arithmetic processing on the first angles to obtain a third angle group between the respective laser reflection lines;
6 ) 中央处理单元将所述第三角度组与所述第二角度组进行对比以获得机器人在 所述坐标系内的位置。  6) The central processing unit compares the third angle group with the second angle group to obtain a position of the robot within the coordinate system.
优选的, 当中央处理单元在存储的各个第二角度组中查找到一个第二角度 组, 且该第二角度组与所述第三角度组有至少两个连续相等的角度值时, 中央 处理单元就判断机器人所在位置为该第二角度组所对应的所述交叉点的位置。  Preferably, when the central processing unit finds a second angle group in each stored second angle group, and the second angle group and the third angle group have at least two consecutive equal angle values, the central processing The unit determines that the position of the robot is the position of the intersection corresponding to the second angle group.
优选的, 当中央处理单元未查找到与所述第三角度具有相等角度值的第二 角度组时, 中央处理单元判断机器人所在位置的步骤如下:  Preferably, when the central processing unit does not find the second angle group having the same angle value as the third angle, the central processing unit determines the location of the robot as follows:
1 )将所述第三角度组与存储的每一第二角度组内的各个角度值对应相减, 并得 出数量与第二角度组的数量相等的一系列第四角度组;  1) subtracting the third angle group from each stored angle value in each second angle group, and obtaining a series of fourth angle groups having the same number as the second angle group;
2 )将该一系列第四角度组中的各个角度值对应相比并选出具有最小绝对值的第 四角度组;  2) comparing the respective angle values in the series of fourth angle groups and selecting the fourth angle group having the smallest absolute value;
3 )从选出的第四角度组中选出具有所述最小绝对值最多的第四角度组, 从而获 得与该第四角度组相对应的第二角度组;  3) selecting, from the selected fourth angle group, a fourth angle group having the largest absolute absolute value, thereby obtaining a second angle group corresponding to the fourth angle group;
4 ) 中央处理单元判断机器人所在位置最靠近步骤 3中的第二角度组所对应的所 述交叉点的位置。  4) The central processing unit determines that the position of the robot is closest to the position of the intersection corresponding to the second angle group in step 3.
优选的, 当中央处理单元从存储的各个第二角度组中查找到多个第二角度 组, 且该多个第二角度组与所迷第三角度组仅 ^一个相等的周度值时, 中夬处 理单元判断机器人所在位置的步骤如下: Preferably, when the central processing unit finds a plurality of second angles from each of the stored second angle groups When the plurality of second angle groups and the third angle group are only equal to one circumferential value, the step of the middle processing unit determining the position of the robot is as follows:
1 )将所述多个第二角度组从存储的各个第二角度组 选出来;  1) selecting the plurality of second angle groups from the stored second angle groups;
2 )将所述第三角度组与该多个第二角度组内的各个角度值对应相减, 并得出多 个第五角度组;  2) subtracting the third angle group from each angle value in the plurality of second angle groups, and obtaining a plurality of fifth angle groups;
3 )将该多个第五角度组中的各个角度值对应相比并选出具有最小绝对值的第五 角度组;  3) comparing the respective angle values in the plurality of fifth angle groups and selecting the fifth angle group having the smallest absolute value;
4 )从选出的第五角度组中选出具有所述最小绝对值最多的第五角度组, 从而获 得与该第五角度组相对应的第二角度组;  4) selecting, from the selected fifth angle group, a fifth angle group having the largest absolute absolute value, thereby obtaining a second angle group corresponding to the fifth angle group;
5 )中央处理单元判断机器人所在位置最靠近步骤 4中的第二角度组所对应的所 述交叉点的位置。  5) The central processing unit determines that the position of the robot is closest to the position of the intersection corresponding to the second angle group in step 4.
优选的, 当机器人按照中央处理单元设定的指定线路移动时, 中央处理单 元按一定频率对所述第二、 第三角度组进行角度对比, 所述机器人按一定速度 沿所述指定线路移动, 中央处理单元判断机器人所在位置的步骤如下:  Preferably, when the robot moves according to the designated line set by the central processing unit, the central processing unit compares the second and third angle groups at a certain frequency, and the robot moves along the designated line at a certain speed. The steps of the central processing unit to determine the location of the robot are as follows:
1 )存储中央处理单元在前一次进行角度对比时机器人在所述坐标系内的前一时 刻位置; 1) storing a previous moment position of the robot in the coordinate system when the central processing unit performs the angle comparison in the previous time;
2 )以前一时刻位置为圓心, 所述频率与速度的乘积为半径所形成的圆确定为角 度对比的范围;  2) The position of the previous moment is the center of the circle, and the circle formed by the product of the frequency and the velocity as the radius is determined as the range of the angle comparison;
3 )选出位于该圓内或圓上的多个交叉点;  3) selecting a plurality of intersections located within the circle or on the circle;
4 )将所述第三角度组与该多个交叉点所对应的多个第二角度组对比以获得机器 人在所述坐标系内的位置。  4) comparing the third angle group with a plurality of second angle groups corresponding to the plurality of intersections to obtain a position of the robot within the coordinate system.
优选的, 机器人上安装有可测得其航行方向的电子罗盘, 中央处理器在所 述多个交叉点中选出位于机器人航行方向上的一部分交叉点, 然后将所述第三 角度组与该一部分交叉点所对应的一部分第二角度组对比以获得机器人所在坐 才示系内的位置。  Preferably, the robot is mounted with an electronic compass that can measure its navigation direction, and the central processor selects a part of the intersections in the navigation direction of the robot among the plurality of intersections, and then the third angle group and the A portion of the second angle group corresponding to a portion of the intersection is compared to obtain a position within the display system of the robot.
与现有技术相比, 本发明定位方法通过角度对比来实现机器人定位, 无需 过于复杂的计算程序, 因此不但可实现快速定位, 而且成本低廉。  Compared with the prior art, the positioning method of the invention realizes robot positioning by angle comparison, and does not need an overly complicated calculation program, so that not only rapid positioning but also low cost can be realized.
附图说明 DRAWINGS
图 1是本发明定位系统中移动机器人的部分结构示意图。 图 2是本发明定位系统中移动机器人的机头朝向线与激光反射线的示意图, 其中显示了第一角度与第二角度。 1 is a partial structural view of a mobile robot in a positioning system of the present invention. 2 is a schematic view of a head-facing line and a laser reflection line of a mobile robot in a positioning system of the present invention, in which a first angle and a second angle are shown.
图 3 是本发明定位系统中工作区域被栅格化后的示意图, 其中显示一交叉 点所对应的所有第三角度。  Figure 3 is a schematic illustration of the working area of the positioning system of the present invention being rasterized, showing all third angles corresponding to an intersection.
图 4是本发明定位系统中接收部接收多条激光反射线时的示意图, 其中显 示多个第一角度。  Fig. 4 is a schematic view showing a plurality of laser reflection lines received by a receiving portion in the positioning system of the present invention, wherein a plurality of first angles are displayed.
图 5是本发明定位系统中接收部接收多条激光反射线时的示意图, 其中对 图 4 中的多个第一角度进行运算所得出相邻两条激光反射线之间的多个第二角 度。  5 is a schematic diagram of a receiving portion receiving a plurality of laser reflection lines in the positioning system of the present invention, wherein a plurality of first angles in FIG. 4 are calculated to obtain a plurality of second angles between adjacent two laser reflection lines. .
图 6是本发明定位系统中工作区域被栅格化后的示意图, 其中显示移动机 器人位于任意一位置时所测得的所有第二角度。  Figure 6 is a schematic illustration of the work area of the positioning system of the present invention being rasterized, showing all of the second angles measured when the mobile robot is in any position.
图 7是本发明定位系统中移动机器人位于任一位置时测得两个连缘的第三 角度时的示意图。  Figure 7 is a schematic illustration of the third angle of the two connecting edges measured when the mobile robot is in either position in the positioning system of the present invention.
图 8是本发明定位系统中工作区域被栅格化后的示意图, 其中移动机器人 沿指定直线移动。  Figure 8 is a schematic illustration of the working area of the positioning system of the present invention being rasterized, wherein the mobile robot moves along a specified straight line.
具体实施方式 detailed description
参图 1与图 2所示, 本发明提供了一种移动机器人定位系统, 该定位系统 位于一平面坐标系内, 且包括若干已知坐标值的反光件 M、 安装于该转台 T上 的激光器 J和角度编码器 B以及中央处理单元(未图示)。 在本实施方式中, 所 述移动机器人 R为一割草机器人, 该割草机器人在草坪上工作, 因此整个草坪 为所述坐标系所在平面。 此外, 本实施方式中共设置 10个反光件, 分别为 Ml、 M2... ... M10, 这些反光件为插设于草坪上的具有光线直反功能的杆状路标。  As shown in FIG. 1 and FIG. 2, the present invention provides a mobile robot positioning system, which is located in a plane coordinate system and includes a plurality of reflectors M of known coordinate values and a laser mounted on the turntable T. J and angle encoder B and central processing unit (not shown). In the present embodiment, the mobile robot R is a mowing robot that works on the lawn, so that the entire lawn is the plane in which the coordinate system is located. In addition, in the embodiment, a total of 10 reflectors, M1, M2, ..., M10, are provided, and these reflectors are rod-shaped road signs with a light direct reverse function inserted on the lawn.
参图 1与图 2所示, 所述转台 T可相对机器人 R机身进行 360。旋转运动, 该转台 T上安装有激光器 J, 该激光器 J具有发射部 J1与接收部 J2。 所述发射 部 J1向外发出激光发射线, 由于转台 T作旋转运动, 因此所述激光器 J也随转 台 T一起进行 360°旋转, 当该激光发射线照射至所述反光件 M上后会被该反光 件反射而形成激光反射线 Ll。 由于所述反光件 M具备光线直反功能, 此处所谓 的光线直反是指反射光与入射光是平行的且两者之间间隔甚小而可被忽略, 因 此所述激光反射线 L1将大致沿所述激光发射线原路返回至机器人 R, 返回的激 无夂射线 L1将衩所迷接收邵 J2接收。 Referring to Figures 1 and 2, the turntable T can be 360 with respect to the body of the robot R. In the rotational motion, a laser J is mounted on the turntable T, and the laser J has a transmitting portion J1 and a receiving portion J2. The emitting portion J1 emits a laser emitting line outward. Since the turntable T performs a rotary motion, the laser J also rotates 360° with the turntable T. When the laser emitting line is irradiated onto the reflective member M, it is The reflector is reflected to form a laser reflection line L1. Since the reflector M has a direct light reverse function, the so-called direct light reverse means that the reflected light is parallel to the incident light and the interval between the two is small and can be ignored, so the laser reflection line L1 will Returning to the robot R along the original path of the laser emission line, the returning The flawless ray L1 will receive the Shao J2 reception.
参图 1与图 2所示, 所述转台 T上还设有角度编码器 B, 该角度编码器 B 是用来测得机器人 R的机头朝向线 L2与所述激光反射线 L1之间的第一角度 α, 该第一角度 α的大小是指机器人 R的机头朝向线 L2沿指定方向旋转至所述接收 部 J2接收到所述激光反射线 L1 所转过的角度, 在本实施方式中规定该指定方 向为顺时针方向。 此外, 由于转台 Τ的转速很快, 因此在同一时刻, 发射部 J 1 可同时照射到多个连续的反光件, 接收部 J2则可收到多条激光反射线 L1 , 从而 角度编码器 Β可同时测得多个第一角度 α, 中央处理单元可对多个第一角度 α 进行运算处理并获得相邻两条激光放射线 L1之间的第三角度 β。  As shown in FIG. 1 and FIG. 2, the turntable T is further provided with an angle encoder B for measuring the head between the head L2 and the laser reflection line L1 of the robot R. a first angle α, the magnitude of the first angle α is that the head of the robot R rotates in a specified direction toward the line L2 to an angle at which the receiving portion J2 receives the laser reflected line L1, in the embodiment. It is specified that the specified direction is clockwise. In addition, since the rotating speed of the turntable is fast, at the same time, the transmitting portion J 1 can simultaneously irradiate a plurality of continuous reflecting members, and the receiving portion J2 can receive a plurality of laser reflecting lines L1, so that the angle encoder can be used. At the same time, a plurality of first angles α are measured, and the central processing unit can perform arithmetic processing on the plurality of first angles α and obtain a third angle β between the adjacent two laser radiation lines L1.
参图 1至图 3所示, 本发明还提供一种移动机器人 R的定位方法, 包括如 下步骤:  As shown in FIG. 1 to FIG. 3, the present invention also provides a positioning method of the mobile robot R, which includes the following steps:
1 )将多个已知坐标值的反光件 Μ设置于机器人 R所在坐标系内;  1) setting a plurality of reflectors of known coordinate values in the coordinate system of the robot R;
2 )所述中央处理单元的图形处理程序对这些反光件 Μ的连线包围所形成的工作 区域进行栅格化并得出各交叉点的坐标值;  2) the graphics processing program of the central processing unit rasterizes the working area formed by the line enclosing of the reflectors 并 and obtains the coordinate values of the intersections;
3 )所述中央处理单元计算出每一交叉点连接各个反光件 Μ所形成的各条连接线 L3之间的多个第二角度 Θ, 多个第二角度 Θ组成与每一交叉点对应的第二角度 组, 然后将每一第二角度组存储起来;  3) The central processing unit calculates a plurality of second angles 之间 between each of the connecting lines L3 formed by connecting the respective reflectors at each intersection, and the plurality of second angles Θ are corresponding to each intersection a second angle group, and then storing each second angle group;
4 )机器人 R在所述工作区域内移动时, 所述接收部 J2可同时接收到从多个反 光件 Μ反射回来的多条激光反射线 L1 ,所述角度编码器 Β对应测得多个所述第 一角度 α;  4) When the robot R moves in the working area, the receiving portion J2 can simultaneously receive a plurality of laser reflection lines L1 reflected from the plurality of reflectors, and the angle encoder Β corresponds to the plurality of measurements Said first angle α;
5 ) 中央处理单元对这些第一角度 α进行运算处理已获得各条激光反射线 L 1之 间的一个第三角度组;  5) the central processing unit performs arithmetic processing on the first angles α to obtain a third angle group between the respective laser reflection lines L 1 ;
6 ) 中央处理单元将所述第三角度组与所述第二角度组进行对比以获得机器人在 所述坐标系内的位置。  6) The central processing unit compares the third angle group with the second angle group to obtain a position of the robot within the coordinate system.
以下将主要描述如何获得机器人 R在坐标系内的位置的。 图 3中的草坪上 的工作区域已被栅格化, 栅格的边长越小, 精度越高, 因此可以根据需要设定 合适的精度。 工作区域被栅格化的同时可得出各交叉点的坐标值, 现已其中一 个交叉点 Α为例, 由于各反光件的坐标值均已知, 因此相邻两个反光件与交叉 点 A的两条连接线 L3之间的第二角度 Θ可通过计算得出, 本实施方式中共有 ΐυ个反元 1千 Ml、 M2 M10, 因此共有 10个第二角度 θ,、 θ2 θ10, 这 10 个第二角度组成与交叉点 Α对应的一个第二角度组, 从而交叉点 A可以由这一 个第二角度组表示为 Α ( θ,、 θ2...... θ 通过同样的方式可获得其他交叉点所 对应的各个第二角度组。 待程序计算完毕后, 中央处理单元将每一交叉点所对 应的每一个第二角度组置于存储单元内。 以上步骤结束后, 机器人 R开始工作, 结合图 4与图 5所示, 机器人 R在所述工作区域内移动时, 所述激光器 J的发 射部 J1时刻向外发出激光发射线,由于接收部 J2在同一时刻可收到多条激光反 射线 L1 , 在此以接收部 J2可接收到反光件 M1〜M5反射回来的 5条激光放射线 L1为例,此时角度编码器 B可同时获得与之对应的 5个第一角度 01,、 α2、 α3、 α4 α5。所述中央处理单元对这些第一角度进行运算处理可计算出相邻两条激光反射 线 L1之间的四个第三角度, 大小分别为 ο^-α ara2、 α43、 α54The following will mainly describe how to obtain the position of the robot R within the coordinate system. The working area on the lawn in Figure 3 has been rasterized. The smaller the side length of the grid, the higher the accuracy, so you can set the appropriate accuracy as needed. The working area is rasterized and the coordinates of each intersection can be obtained. One of the intersections is now an example. Since the coordinate values of the reflectors are known, the two adjacent reflectors and the intersection A The second angle 之间 between the two connecting lines L3 can be calculated, which is common in this embodiment. There are 10 inverse angles θ, M2 M10, so there are 10 second angles θ, θ 2 θ 10 , which form a second angle group corresponding to the intersection point ,, so that the intersection point A can It is represented by this second angle group as Α ( θ, θ 2 ... θ. In the same way, each second angle group corresponding to other intersections can be obtained. After the program is calculated, the central processing unit Each second angle group corresponding to each intersection is placed in the storage unit. After the above steps are completed, the robot R starts to work, and as shown in FIG. 4 and FIG. 5, when the robot R moves in the work area, The emitting portion J1 of the laser J emits a laser emitting line at a time. Since the receiving portion J2 can receive a plurality of laser reflecting lines L1 at the same time, the receiving portion J2 can receive the reflecting members M1 to M5. The five laser radiation lines L1 are taken as an example. At this time, the angle encoder B can simultaneously obtain five first angles 01, α 2 , α 3 , α 4 α 5 corresponding thereto. The central processing unit pairs these first angles Perform arithmetic processing to calculate the adjacent two lasers The four third angles between the rays L1 are ο^-α a r a 2 , α 43 , α 54 , respectively .
参图 3与图 6所示, 通过上述分析可知, 当接收部 J2可同时接收到从所有 反光件 Ml、 M2 ··. ..· M10上反射回来的激光反射线 L1时, 中央处理单元则可同 时运算获得与所述交叉点的一组第二角度相对应的 10个第三角度 β,、β2... ... β,ο, 这 10个第三角度组成与机器人 R实时位置相对应的一个第三角度组,从而机器 人 R的实时位置可由所测得的这一个第三角度组表示为 R ( β,、 β2... ... β10 )。 中 央处理单元通过将实时测得的一个第三角度组与存储单元内的第二角度组进行 对比来获得机器人 R当前在坐标系内的位置。 Referring to FIG. 3 and FIG. 6, it can be seen from the above analysis that when the receiving portion J2 can simultaneously receive the laser reflection line L1 reflected from all the reflectors M1, M2 ··..·M10, the central processing unit Simultaneously computing to obtain 10 third angles β corresponding to a set of second angles of the intersection, β 2 β β, ο, the 10 third angles and the real-time position of the robot R Corresponding to a third angle group, so that the real-time position of the robot R can be represented by the measured third angle group as R (β, β 2 ... β 10 ). The central processing unit obtains the position of the robot R currently within the coordinate system by comparing a third angle group measured in real time with a second angle group in the storage unit.
以下具体描述中央处理单元如何将所述第三角度 β与第二角度 Θ对比而获 得机器人 R的当前位置的。当中央处理单元运算获得一个第三角度组 β,、 β2... ... βκι后, 该第三角度组与存储的每个第二角度组相比大致有以下几种情形: 1 )该 第三角度组与存储单元内的一个第二角度组至少有两个连续相等的角度值; 2 ) 该第三角度组与存储单元内的任意一个第二角度组均没有相等的角度值; 3 )该 第三角度组与存储单元内的多个第二角度组只有一个相等的角度值。 The following describes in detail how the central processing unit compares the third angle β with the second angle 而 to obtain the current position of the robot R. When the central processing unit calculates a third angle group β, β 2 ... β κι , the third angle group has the following several cases compared with each stored second angle group: 1 The third angle group has at least two consecutive equal angle values with a second angle group in the storage unit; 2) the third angle group has no equal angle value with any one of the second angle groups in the storage unit 3) The third angle group has only one equal angle value with the plurality of second angle groups in the storage unit.
对于情形 1, 参图 7所示, 假设测得的第三角度组 β,、 β2... ... 。中的两个 连续的第三角度 β,、 β2与存储单元中一个第二角度组 θ,、 θ2...... θκ)中对应的两 个连续的第二角度 θ,、 θ2相等, 对于已知反光件 Ml、 Μ2、 Μ3的坐标值以及夹 角 β,、 β2的两个三角形 ΔΜ1Μ2Ι 和 A M2M3R, 即可运算得出唯一的机器人所 在点 R的坐标值, 因此在该情形下,机器人 R当前的位置即为该第二角度组 θ,、 ϋ2 Η,ο ^ί^Γ ^的叉又点的位置, 机^人 R当 I 的坐标值即为该交叉点的坐标 值, 而其他角度值互不相等主要是因误差而引起。 For case 1, as shown in Fig. 7, the measured third angle group β, β 2 is assumed. Two consecutive third angles β, β 2 and two consecutive second angles θ corresponding to a second angle group θ, θ 2 ... θ κ in the storage unit, θ 2 is equal, for the coordinate values of the known reflectors M1, Μ2, Μ3 and the two triangles ΔΜ1Μ2Ι and A M2M3R of the angle β, β 2 , the coordinates of the point R of the unique robot can be calculated, so In this case, the current position of the robot R is the second angle group θ, ϋ 2 Η, ο ^ί^Γ ^ The position of the fork and the point, the coordinate value of the machine R is the coordinate value of the intersection, and the other angle values are not equal to each other mainly due to the error.
对于情形 2, 参图 3与图 6所示, 中央处理器将存储单元中每一个第二角度 组里的角度值与所测得的第三角度组 β,、 β2...... 1()里的角度值对应相减, 以交 叉点 Α为例, 相减后得出一个第四角度组 θ,-β, , θ22...... θκ,-β,ο, 假设共有 η 个交叉点, 则共有 η个第四角度组, 中央处理单元将这 η个第四角度组中的各 个角度值对应相比并选出具有最小绝对值的第四角度组, 从选出的第四角度组 中再选出具有所述最小绝对值最多的第四角度组, 从而获得与该第四角度组'相 对应的第二角度组, 该第二角度组所对应的所述交叉点的位置就是机器人 R在 坐标系内最接近的位置。 For case 2, as shown in FIG. 3 and FIG. 6, the central processor will store the angle value in each second angle group in the storage unit with the measured third angle group β, β 2 ... The angle value in 1() corresponds to the subtraction. Taking the intersection point Α as an example, after subtraction, a fourth angle group θ, -β, θ 22 ...... θκ, -β, ο, assuming a total of n intersections, there are n fourth angle groups, and the central processing unit compares each angle value in the n fourth angle groups and selects a fourth angle group having a minimum absolute value. Selecting a fourth angle group having the largest absolute absolute value from the selected fourth angle group, thereby obtaining a second angle group corresponding to the fourth angle group ', the second angle group corresponding to The position of the intersection is the closest position of the robot R within the coordinate system.
对于情形 3, 假设存储单元中共有 m个第二角度组有与所测得的第三角度 组仅有一个相同的角度值, 中央处理单元首先将这 m个第二角度组筛选出来, 然后运用情形 2 中相同的判断方式来确定机器人当前的位置, 即通过角度相减 将得出 m个第五角度组, 中央处理单元将这 m个第五角度组中的各个角度值对 应相比并选出具有最小绝对值的第五角度组, 从选出的第五角度组中再选出具 有所述最小绝对值最多的第五角度组, 从而获得与该第五角度组相对应的第二 角度组, 该第二角度组所对应的所述交叉点的位置就是机器人 R在坐标系内最 接近的位置。 '' 通过对以上 3 中情形的描述可知, 发生情形 1 时, 中央处理单元判断并得 出机器人位置的时间最短; 发生情形 2 时, 由于需要对每一交叉点进行对比, 因此判断时间最长; 情形 3无需对比所有交叉点, 因此判断时间小于情形 2。 在 实际测量过程中, 尤其是栅格精度越小即栅格边长越长时, 发生情形 1 的可能 性就越小, 而发生情形 2和情形 3的可能性最大。 尽管发生情形 2和情形 3的 可能性大, 中央处理单元也无需每次都将测得的第三角度组与所述 n个或 m个 第二角度组进行对比, 因为在通常情况下, 机器人 R是按指定线路移动的, 如 图 8所示, 机器人沿直线 L4移动。 假设机器人移动速度为 0.3米 /秒, 中央处理 器进行角度对比的频率为 1次 /秒, 栅格边长为 0.1米, 机器人 R前一秒的位置 为直线上的 C点, 根据机器人 R的移动速度可以认为机器人 R当前的位置一定 在以 C点为圆心, 0.3米为半径的圓内或圓上, 此时中央处理单元只需将位于该 圓内及圓上的交叉点所对应的若干第二角度组与所测得的第三角度组进行对 比, 对比方法则与以上所描述三种情形相同。 如此, 中央处理单元只需对几个 交叉点进行对比即可, 从而可实现快速定位。 中央处理单元需对比的交叉点还 可以进一步减少, 如增加电子罗盘, 当测得机器人航行方向时, 只需对比在航 行方向上的交叉点, 而未在航行方向上的就无需再作对比了。 真正需要将测得 的第三角度组与所述 n个或 m个第二角度组进行对比的情况仅发生在机器人 R 的前一秒位置未知的情形, 如操作员将机器人 R搬至另一位置, 使其重新开始 工作。 For case 3, it is assumed that there are a total of m second angle groups in the storage unit having only one angle value identical to the measured third angle group, and the central processing unit first filters the m second angle groups and then applies The same judgment method in Case 2 determines the current position of the robot, that is, the angle subtraction will result in m fifth angle groups, and the central processing unit compares and selects each angle value in the m fifth angle groups. And a fifth angle group having a minimum absolute value, and selecting a fifth angle group having the largest absolute absolute value from the selected fifth angle group, thereby obtaining a second angle corresponding to the fifth angle group The position of the intersection corresponding to the second angle group is the closest position of the robot R in the coordinate system. '' By the description of the situation in the above 3, it can be seen that when the situation 1 occurs, the central processing unit judges and draws the robot position for the shortest time; when the situation 2 occurs, the comparison time is the longest because each intersection is required to be compared. Case 3 does not need to compare all intersections, so the judgment time is less than Case 2. In the actual measurement process, especially when the grid precision is smaller, that is, the longer the grid side length, the probability of occurrence of situation 1 is smaller, and the possibility of occurrence of case 2 and case 3 is the greatest. Although the possibility of occurrence of Case 2 and Case 3 is large, the central processing unit does not need to compare the measured third angle group with the n or m second angle groups each time, because under normal circumstances, the robot R is moved according to the specified line. As shown in Fig. 8, the robot moves along the straight line L4. Assume that the robot moves at a speed of 0.3 m/s, the CPU compares the angle of the angle to 1 time/second, the grid side length is 0.1 m, and the position of the robot R one second is the C point on the line, according to the robot R The moving speed can be considered that the current position of the robot R must be in the circle or circle with the point C as the center and 0.3 meters as the radius. At this time, the central processing unit only needs to be located in the circle. The second angle groups corresponding to the intersections in the circle and on the circle are compared with the measured third angle group, and the comparison method is the same as the three cases described above. In this way, the central processing unit only needs to compare several intersections, so that fast positioning can be achieved. The intersection of the central processing unit to be compared can be further reduced, such as adding an electronic compass. When measuring the direction of the robot, it is only necessary to compare the intersections in the navigation direction, and there is no need to compare them in the navigation direction. . It is really necessary to compare the measured third angle group with the n or m second angle groups only when the position of the previous second of the robot R is unknown, such as the operator moving the robot R to another Position, make it start working again.
本发明定位系统与定位方法通过角度对比来实现机器人定位, 从而无需编 写过于复杂的计算处理程序, 因此具有简化程序和降低成本的功效; 此外, 由 于实际运作过程中, 中央处理单元仅需对比较小范围内的交叉点, 因此可实现 机器人的快速定位。 描述, 本发明定位系统与定位方法还有其他实施方式, 如在以上实施方式中所 述的第二角度 Θ为所述各条连接线 L3中相邻两条连接线之间的角度, 所述第三 角度 β为所述各激光反射线 L1中相邻两条激光反射线之间的角度。 第二角度也 可以是其中一条连接线与其他各条连接线之间的角度, 第三角度也可以是其中 一条激光反射线与其他各条激光反射线之间的角度, 角度对比方法相同, 同样 可实现机器人定位。 因此, 只要是在本发明设计理念指导下采用等同或等效变 换方式所获得的技术方案都应在本发明的保护范围之内。  The positioning system and the positioning method of the invention realize the positioning of the robot through angle comparison, thereby eliminating the need to write an overly complicated calculation processing program, thereby simplifying the program and reducing the cost; in addition, since the actual processing process, the central processing unit only needs to compare The intersections in a small range, thus enabling rapid positioning of the robot. Description, the positioning system and the positioning method of the present invention have other embodiments, such as the second angle 所述 described in the above embodiment is an angle between two adjacent connecting lines of the respective connecting lines L3, The third angle β is an angle between adjacent laser reflection lines in the respective laser reflection lines L1. The second angle may also be an angle between one of the connecting lines and the other connecting lines, and the third angle may also be an angle between one of the laser reflecting lines and the other laser reflecting lines, and the angle comparison method is the same, the same Robot positioning is possible. Therefore, any technical solution obtained by using equivalent or equivalent conversion means under the guidance of the design concept of the present invention should be within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1 .一种移动机器人的定位系统, 该定位系统设于一坐标系内, 且该定位系统 包括若干已知坐标值的反光件、 安装于机器人上可 360。旋转的转台、 激光器、 角度编码器及中央处理单元, 所述激光器与角度编码器安装于所述转台上; 所 述相邻反光件之间的连线包围形成机器人的工作区域; 所述激光器具有发射部 与接收部, 该发射部发出激光发射线至所述反光件后经反射形成的激光反射线 被所述接收部接收, 且所述反光件具备使该激光反射线平行于激光发射线的光 线直反功能; 所述角度编码器用于测得机器人的机头朝向线与所述激光反射线 之间的第一角度; 其特征在于: 所述中央处理单元包括图形处理程序, 该 '图形 处理程序对所述工作区域进行柵格化并得出各交叉点的坐标值, 中央处理单元 计算出每一交叉点连接各个反光件所形成的各条连接线之间的多个第二角度, 该多个第二角度组成与每一交叉点对应的第二角度组, 然后将每一第二角度组 存储起来; 机器人在所述工作区域内移动时, 所述接收部可同时接收到从多个 反光件反射回来的激光反射线, 所述角度编码器可对应测得多个所述第一角度, 中央处理单元对所述多个第一角度进行运算处理以获得各条激光反射线之间的 一个第三角度组, 然后将所述第三角度组与所述第二角度组进行对比以获得机 器人在所述坐标系内的位置。 What is claimed is: 1. A positioning system for a mobile robot, the positioning system being disposed in a coordinate system, and the positioning system comprising a plurality of reflectors of known coordinate values, mounted on the robot 360. a rotating turntable, a laser, an angle encoder and a central processing unit, wherein the laser and the angle encoder are mounted on the turntable; the connection between the adjacent reflectors surrounds a working area of the robot; the laser has a transmitting portion and a receiving portion, the laser reflecting line formed by the reflecting portion emitting the laser emitting line to the reflecting member and being reflected by the receiving portion, wherein the reflecting member is provided with the laser reflecting line parallel to the laser emitting line a light direct-reverse function; the angle encoder is configured to measure a first angle between a head orientation line of the robot and the laser reflection line; wherein: the central processing unit includes a graphics processing program, the 'graphic processing The program rasterizes the working area and obtains coordinate values of the intersections, and the central processing unit calculates a plurality of second angles between the connecting lines formed by connecting the respective reflectors at each intersection, a plurality of second angles constituting a second angle group corresponding to each intersection point, and then storing each second angle group; When the working area moves, the receiving part can simultaneously receive the laser reflection lines reflected from the plurality of reflectors, and the angle encoder can correspondingly measure the plurality of the first angles, and the central processing unit Calculating a plurality of first angles to obtain a third angle group between the respective laser reflection lines, and then comparing the third angle group with the second angle group to obtain a robot in the coordinate system The location inside.
2.如权利要求 1所述的定位系统, 其特征在于: 当所述第三角度组与存储的 一个第二角度组中有至少两个连续相等的角度值时, 机器人的坐标值即为该第 二角度组对应的交叉点的坐标值。  The positioning system according to claim 1, wherein: when the third angle group and the stored second angle group have at least two consecutive equal angle values, the coordinate value of the robot is The coordinate value of the intersection corresponding to the second angle group.
3.如权利要求 2所述的定位系统, 其特征在于: 当所述第三角度组与存储的 任意一个第二角度组中仅有一个相等的角度值或没有相等的角度值时, 中央处 理单元将寻找到与该第三角度组的各角度值最接近的另一个第二角度组, 机器 人在所述坐标系内的位置最接近该另一个第二角度组所对应的交叉点。  The positioning system according to claim 2, wherein: when the third angle group has only one equal angle value or no equal angle value in any one of the stored second angle groups, the central processing The unit will find another second set of angles that are closest to the respective angular values of the third set of angles, the position of the robot within the coordinate system being closest to the intersection corresponding to the other second set of angles.
4.如权利要求 3所述的定位系统, 其特征在于: 所述第二角度为所述各条连 接线中相邻两条连接线之间的角度, 所述第三角度为所述各激光反射线中相邻 两条激光反射线之间的角度。  The positioning system according to claim 3, wherein: the second angle is an angle between two adjacent connecting lines of the respective connecting lines, and the third angle is the lasers The angle between two adjacent laser reflection lines in the reflection line.
5.如权利要求 3所述的定位系统, 其特征在于: 所述第二角度为其中一条连 接线与其他各条连接线之间的角度, 所述第三角度为其中一条激光反射线与其 他务汆激无反射线之 laj的用度。 The positioning system according to claim 3, wherein: the second angle is an angle between one of the connecting lines and the other connecting lines, and the third angle is one of the laser reflected lines He is eager to stimulate the use of laj without reflection.
6.如权利要求 1至 5项中任一项所述的定位系统, 其特征在于: 所述移动机 器人为割草机器人。  The positioning system according to any one of claims 1 to 5, wherein the moving robot is a mowing robot.
7.如权利要求 6所述的定位系统, 其特征在于: 所述定位系统还包括设于机 器人上的电子罗盘。  7. The positioning system of claim 6 wherein: said positioning system further comprises an electronic compass disposed on the robot.
8.—种移动机器人的定位方法,该机器人上安装有可 360。旋转的转台、具有 发射部与接收部的激光器、 角度编码器以及中央处理单元, 所述激光器与角度 编码器设于所述转台上, 其特征在于: 所述定位方法包括如下步骤:  8. A method of positioning a mobile robot on which a 360 can be mounted. a rotary turret, a laser having a transmitting portion and a receiving portion, an angle encoder, and a central processing unit, wherein the laser and the angle encoder are disposed on the turntable, wherein: the positioning method comprises the following steps:
1 )将多个已知坐标值的反光件设置于机器人所在坐标系内;  1) setting a plurality of reflectors of known coordinate values in the coordinate system of the robot;
2 )所述中央处理单元的图形处理程序对这些反光件的连线包围所形成的工作区 域进行栅格化并得出各交叉点的坐标值;  2) the graphics processing program of the central processing unit rasterizes the working area formed by the line enclosing of the reflectors and obtains the coordinate values of the intersections;
3 )所述中央处理单元计算出每一交叉点连接各个反光件所形成的各条连接线之 间的多个第二角度, 该多个第二角度组成与每一交叉点对应的第二角度组, 然 后将每一第二角度组存储起来;  3) The central processing unit calculates a plurality of second angles between the connecting lines formed by connecting the respective reflectors at each intersection, the plurality of second angles forming a second angle corresponding to each intersection Group, then store each second angle group;
4 )机器人在所述工作区域内移动时, 所述发射部发出激光发射线至所述反光件 后经反射形成的激光反射线被所述接收部接收, 所述反光件具备使该激光反射 线平行于激光发射线的光线直反功能, 且所述接收部可同时接收到从多个反光 件反射回来的多条激光反射线, 所述角度编码器对应测得机器人的机头朝向线 与所述多条激光反射线之间的多个第一角度;  4) when the robot moves in the working area, the laser reflecting line formed by the transmitting portion emitting the laser emitting line to the reflecting member and being reflected by the reflecting portion is received by the receiving portion, and the reflecting member is provided with the laser reflecting line Parallel to the light-emitting function of the laser emission line, and the receiving portion can simultaneously receive a plurality of laser reflection lines reflected from the plurality of reflectors, wherein the angle encoder corresponds to the measured head-to-line of the robot Describe a plurality of first angles between the plurality of laser reflection lines;
5 ) 中央处理单元对所述多个第一角度进行运算处理以获得各条激光反射线之间 的一个第三角度组;  5) the central processing unit performs arithmetic processing on the plurality of first angles to obtain a third angle group between the respective laser reflection lines;
6 ) 中央处理单元将所述第三角度组与所述第二角度组进行对比以获得机器人在 所述坐标系内的位置。  6) The central processing unit compares the third angle group with the second angle group to obtain a position of the robot within the coordinate system.
9.如权利要求 8所述的定位方法, 其特征在于: 当中央处理单元在存储的各 个第二角度组中查找到一个第二角度组, 且该第二角度组与所述第三角度组有 至少两个连续相等的角度值时, 中央处理单元就判断机器人所在位置为该第二 角度组所对应的所述交叉点的位置。  The positioning method according to claim 8, wherein: when the central processing unit finds a second angle group in each of the stored second angle groups, and the second angle group and the third angle group When there are at least two consecutive equal angle values, the central processing unit determines that the position of the robot is the position of the intersection corresponding to the second angle group.
10.如权利要求 8所述的定位方法, 其特征在于: 当中央处理单元未查找到 与所述第三角度具有相等角度值的第二角度组时, 中央处理单元判断机器人所 ^:直的 口下: The positioning method according to claim 8, wherein: when the central processing unit does not find a second angle group having an angle value equal to the third angle, the central processing unit determines the robot station ^: Straight under the mouth:
1 )将所述第三角度组与存储的每一第二角度组内的各个角度值对应相减, 并得 出数量与第二角度组的数量相等的一系列第四角度组;  1) subtracting the third angle group from each stored angle value in each second angle group, and obtaining a series of fourth angle groups having the same number as the second angle group;
2 )将该一系列第四角度组中的各个角度值对应相比并选出具有最小绝对值的第 四角度组;  2) comparing the respective angle values in the series of fourth angle groups and selecting the fourth angle group having the smallest absolute value;
3 )从选出的第四角度组中选出具有所述最小绝对值最多的第四角度组, 从而获 得与该第四角度组相对应的第二角度组;  3) selecting, from the selected fourth angle group, a fourth angle group having the largest absolute absolute value, thereby obtaining a second angle group corresponding to the fourth angle group;
4 ) 中央处理单元判断机器人所在位置最靠近步骤 3中的第二角度组所对应的所 述交叉点的位置。  4) The central processing unit determines that the position of the robot is closest to the position of the intersection corresponding to the second angle group in step 3.
1 1 .如权利要求 8所述的定位方法, 其特征在于: 当中央处理单元从存储的 各个第二角度组中查找到多个第二角度组, 且该多个第二角度组与所述第三角 度组仅有 个相等的角度值时, 中央处理单元判断机器人所在位置的步骤如下: 1 )将所述多个第二角度组从存储的各个第二角度组筛选出来;  The positioning method according to claim 8, wherein: the central processing unit searches for a plurality of second angle groups from the stored second angle groups, and the plurality of second angle groups and the When the third angle group has only one equal angle value, the central processing unit determines the position of the robot as follows: 1) screening the plurality of second angle groups from the stored second angle groups;
2 )将所述第三角度组与该多个第二角度组内的各个角度值对应相减, 并得出多 个第五角度组;  2) subtracting the third angle group from each angle value in the plurality of second angle groups, and obtaining a plurality of fifth angle groups;
3 )将该多个第五角度组中的各个角度值对应相比并选出具有最小绝对值的第五 角度组;  3) comparing the respective angle values in the plurality of fifth angle groups and selecting the fifth angle group having the smallest absolute value;
4 )从选出的第五角度组中选出具有所述最小绝对值最多的第五角度组, 从而获 得与该第五角度组相对应的第二角度组;  4) selecting, from the selected fifth angle group, a fifth angle group having the largest absolute absolute value, thereby obtaining a second angle group corresponding to the fifth angle group;
5 ) 中央处理单元判断机器人所在位置最靠近步驟 4中的第二角度组所对应的所 述交叉点的位置。  5) The central processing unit determines that the position of the robot is closest to the position of the intersection corresponding to the second angle group in step 4.
12.如权利要求 8所述的定位方法, 其特征在于: 当机器人按照中央处理单 元设定的指定线路移动时, 中央处理单元按一定频率对所述第二、 第三角度组 进行角度对比, 所述机器人按一定速度沿所述指定线路移动, 中央处理单元判 断机器人所在位置的步骤如下:  The positioning method according to claim 8, wherein: when the robot moves according to a specified line set by the central processing unit, the central processing unit compares the second and third angle groups at a certain frequency, The robot moves along the designated line at a certain speed, and the central processing unit determines the location of the robot as follows:
1 )存储中央处理单元在前一次进行角度对比时机器人在所述坐标系内的前一时 刻位置;  1) storing a previous moment position of the robot in the coordinate system when the central processing unit performs the angle comparison in the previous time;
2 ) 以前一时刻位置为圓心, 所述频率与速度的乘积为半径所形成的圆确定为角 度对比的范围; 3 ) 选出位于所述圓内或圓上的多个交叉点; 2) The position of the previous moment is the center of the circle, and the circle formed by the product of the frequency and the velocity is determined as the range of the angle contrast; 3) selecting a plurality of intersections located within the circle or on the circle;
4 )将所述第三角度组与该多个交叉点所对应的多个第二角度组对比以获得机器 人在所述坐标系内的位置。  4) comparing the third angle group with a plurality of second angle groups corresponding to the plurality of intersections to obtain a position of the robot within the coordinate system.
13.如权利要求 12所述的定位方法, 其特征在于: 机器人上安装有可测得其 航行方向的电子罗盘, 中央处理器在所述多个交叉点中选出位于机器人航行方 向上的一部分交叉点, 然后将所述第三角度组与该一部分交叉点所对应的一部 分第二角度组对比以获得机器人所在坐标系内的位置。  The positioning method according to claim 12, wherein: the robot is mounted with an electronic compass that can measure its navigation direction, and the central processor selects a part of the plurality of intersections located in the navigation direction of the robot. And intersecting the third angle group with a portion of the second angle group corresponding to the part of the intersection to obtain a position within the coordinate system of the robot.
PCT/CN2013/000822 2012-07-16 2013-07-05 Positioning system of mobile robot and positioning method thereof WO2014012351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210245557.2A CN103542846B (en) 2012-07-16 2012-07-16 The alignment system of a kind of mobile robot and localization method thereof
CN201210245557.2 2012-07-16

Publications (1)

Publication Number Publication Date
WO2014012351A1 true WO2014012351A1 (en) 2014-01-23

Family

ID=49948217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000822 WO2014012351A1 (en) 2012-07-16 2013-07-05 Positioning system of mobile robot and positioning method thereof

Country Status (2)

Country Link
CN (1) CN103542846B (en)
WO (1) WO2014012351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750115A (en) * 2015-04-09 2015-07-01 北京科技大学 Laser active type navigation system and method of mobile equipment

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102222B (en) * 2014-07-31 2017-03-01 广州大学 A kind of pinpoint method of AGV
CN105716619A (en) * 2016-02-18 2016-06-29 江西洪都航空工业集团有限责任公司 Unmanned mowing vehicle outdoor navigation and control method based on GPS-RTK technology
CN107248171B (en) * 2017-05-17 2020-07-28 同济大学 Triangulation-based monocular vision odometer scale recovery method
CN108020843A (en) * 2017-12-13 2018-05-11 苏州科瓴精密机械科技有限公司 Automatic running device and automatic running device alignment system
CN108040582A (en) * 2018-01-26 2018-05-18 武汉理工大学 A kind of automatic tracking power-operated mower based on DGPS
CN111367269B (en) * 2018-12-26 2023-08-15 武汉万集信息技术有限公司 Navigation positioning method, device and system of laser radar
CN109709989A (en) * 2019-01-09 2019-05-03 中德(珠海)人工智能研究院有限公司 A kind of positioning system, localization method and augmented reality system
CN111745635B (en) * 2019-03-28 2022-03-04 苏州科瓴精密机械科技有限公司 Method for identifying reflective marker, mobile robot positioning method and mobile robot system
CN111812667B (en) * 2019-04-10 2023-06-06 苏州科瓴精密机械科技有限公司 Method for improving resolution of laser turntable and robot system
CN112212824B (en) * 2019-07-09 2021-11-26 苏州科瓴精密机械科技有限公司 Configuration method and configuration system of grid map parameters
CN112214560A (en) * 2019-07-09 2021-01-12 苏州科瓴精密机械科技有限公司 Updating method and updating system of grid map
CN110543169B (en) * 2019-08-16 2022-05-24 深圳优地科技有限公司 Robot obstacle avoidance method and device, robot and storage medium
CN112558596A (en) * 2019-09-06 2021-03-26 苏州科瓴精密机械科技有限公司 Automatic work system, automatic walking device, control method thereof, and computer-readable storage medium
CN111123287A (en) * 2019-12-31 2020-05-08 深圳前海达闼云端智能科技有限公司 Robot positioning method, robot, and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684695A (en) * 1994-03-11 1997-11-04 Siemens Aktiengesellschaft Method and apparatus for constructing an environment map of a self-propelled, mobile unit
CN101456182A (en) * 2007-12-12 2009-06-17 中国科学院自动化研究所 Intelligent robot welding device using large-scale workpiece
JP2009223757A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Autonomous mobile body, control system, and self-position estimation method
CN102121827A (en) * 2010-11-29 2011-07-13 浙江亚特电器有限公司 Positioning system of mobile robot and positioning method thereof
CN202928584U (en) * 2012-07-16 2013-05-08 苏州科瓴精密机械科技有限公司 Positioning system of mobile robot

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656429B1 (en) * 1989-12-22 1992-06-12 Commissariat Energie Atomique METHOD FOR DETERMINING THE POSITION OF A VEHICLE.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684695A (en) * 1994-03-11 1997-11-04 Siemens Aktiengesellschaft Method and apparatus for constructing an environment map of a self-propelled, mobile unit
CN101456182A (en) * 2007-12-12 2009-06-17 中国科学院自动化研究所 Intelligent robot welding device using large-scale workpiece
JP2009223757A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Autonomous mobile body, control system, and self-position estimation method
CN102121827A (en) * 2010-11-29 2011-07-13 浙江亚特电器有限公司 Positioning system of mobile robot and positioning method thereof
CN202928584U (en) * 2012-07-16 2013-05-08 苏州科瓴精密机械科技有限公司 Positioning system of mobile robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750115A (en) * 2015-04-09 2015-07-01 北京科技大学 Laser active type navigation system and method of mobile equipment

Also Published As

Publication number Publication date
CN103542846B (en) 2016-12-21
CN103542846A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2014012351A1 (en) Positioning system of mobile robot and positioning method thereof
CN105157697B (en) Indoor mobile robot pose measurement system and measurement method based on optoelectronic scanning
JP6676814B2 (en) Object detection based on rider strength
WO2014012350A1 (en) Positioning system of mobile robot and positioning method thereof
WO2014071834A1 (en) Robot location system and method for identification of reflecting devices thereof
GB2528024A (en) Automatic measurement of dimensional data with a laser tracker
CN104102222A (en) Accurately positioning method for AGV (Automatic Guided Vehicle)
EP4063913A1 (en) Long-distance sensor-based environment boundary construction method and mobile robot
CN109814093B (en) Laser radar simulation method and device based on CPU multi-core calculation
JP2018119852A (en) Position specification device, position specification method, position specification system, program for position specification, unmanned aircraft, and target for identifying unmanned aircraft
JPH05240940A (en) Optical measuring system
CN108873014A (en) Mirror surface detection method and device based on laser radar
CN202928584U (en) Positioning system of mobile robot
JPH06229715A (en) Three-dimensional coordinate measuring apparatus
GB2510510A (en) Automatic measurement of dimensional data with a laser tracker
CN111488419B (en) Method and device for creating indoor robot map, electronic equipment and storage medium
JP7417162B2 (en) measurement system
JPS642901B2 (en)
Kim et al. High resolution mobile robot obstacle detection using low directivity ultrasonic sensor ring
WO2020155142A1 (en) Point cloud resampling method, device and system
US11928830B2 (en) Systems and methods for generating three-dimensional reconstructions of environments
JPH10332347A (en) Three dimensional measuring method and its device
KR102513036B1 (en) Method and apparatus for determining plane for mapping object on three-dimensional space
US11859977B2 (en) Surveying device, surveying method, and surveying program
CN116540273B (en) GNSS-R mirror reflection point initial value position determination method and device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13819697

Country of ref document: EP

Kind code of ref document: A1