WO2013022017A1 - Multi-directionally movable body module - Google Patents

Multi-directionally movable body module Download PDF

Info

Publication number
WO2013022017A1
WO2013022017A1 PCT/JP2012/070165 JP2012070165W WO2013022017A1 WO 2013022017 A1 WO2013022017 A1 WO 2013022017A1 JP 2012070165 W JP2012070165 W JP 2012070165W WO 2013022017 A1 WO2013022017 A1 WO 2013022017A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
pair
drive
bodies
driving
Prior art date
Application number
PCT/JP2012/070165
Other languages
French (fr)
Japanese (ja)
Inventor
友明 中安
園田 勝敏
幸平 國松
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Publication of WO2013022017A1 publication Critical patent/WO2013022017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/20Tracks of articulated type, e.g. chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels

Definitions

  • the present invention relates to a multidirectional moving body module applied to a moving means for a passenger and a conveying means for conveying an object to be conveyed.
  • a method of rotating a moving body for example, there is a method of changing a moving direction by tilting a rotating body such as a tire provided in a vehicle. Also, a method of moving a moving body by an endless track provided on a pair of left and right moving bodies such as a vehicle or a so-called mecanum wheel that changes a moving direction by a roller body provided on a wheel body (see, for example, Patent Document 1) .)
  • the load concentrates on one axis of one roller body, so that the allowable load is limited, and only one of the plurality of roller bodies is moved in a state where it is always in contact with the traveling surface, that is, the moving surface. Since the driving force of the body body is obtained, there is a problem that it is difficult to move smoothly and freely in a state where the contact area is increased and the load is dispersed. Further, when the above-described wheels are arranged at the four corners of a moving body main body such as a vehicle in order to reduce the load, the roller shaft diameter that supports the roller body provided on each wheel is increased to increase the strength of the drive shaft. Therefore, there is a problem that the size of the moving body, that is, the moving mechanism increases.
  • the technical problem to be solved by the present invention is to prevent wear on the moving surface, increase in the size of the mechanism along the height direction, damage to the moving surface and endless shape, and the moving surface. It is to provide a multi-directional moving body module that moves smoothly and freely in a multi-directional manner.
  • a multidirectional moving body module includes a moving body module main body that moves along a moving surface, and is provided in the moving body module main body and is driven independently of each other.
  • a pair of belt-like drive bodies and a rotation axis that is arranged in the belt-like drive body along the drive direction of the belt-like drive body and that is oblique to the drive direction of the belt-like drive body are parallel to each other.
  • a plurality of rotating bodies each having an outer peripheral surface in contact with the moving surface in a state of being axially attached, and a pair of driving body units arranged in the width direction of the belt-like driving body.
  • the multidirectional moving body module which concerns on invention of Claim 2 is a multidirectional moving body module which concerns on invention of Claim 1,
  • belt-shaped drive body is mutually parallel.
  • the multidirectional moving body module according to the invention of claim 3 is the multidirectional moving body module according to the invention of claim 2, wherein the rotation axis of the rotating body provided on one of the pair of belt-like driving bodies and the The rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies intersects with each other, thereby further solving the above-described problem.
  • the multidirectional moving body module which concerns on invention of this invention 4 is a multidirectional moving body module which concerns on invention of Claim 3, and the rotating shaft of the rotary body provided in one side of said pair of strip
  • the multi-directional moving body module according to the invention of claim 5 is the multi-directional moving body module according to any one of claims 1 to 4, wherein the pair of belt-like driving bodies are the pair of driving bodies.
  • the above-mentioned problems are achieved by forming endless shapes that are driven to move forward and backward in a state of being wound around a power transmission rotating body provided in the movable body module body corresponding to each of the belt-like driving bodies. Is a further solution.
  • the multidirectional moving body module according to claim 1 is a moving body module main body that moves along a moving surface, and a pair of strips that are provided on the moving body module main body and are driven independently of each other.
  • the moving surface is arranged in a belt-like drive body along the drive direction of the drive body and the belt-like drive body and is axially attached so that rotation axes oblique to the drive direction of the belt-like drive body are parallel to each other.
  • Each of the plurality of rotating bodies is provided with a pair of driving body units arranged in the width direction of the belt-like driving body.
  • the load of the moving body module main body is shared and supported by each rotating body while being in contact with the moving surface, and the reaction force against the force acting on each rotating body from the moving surface according to the load of the moving body module main body
  • the wear of the outer peripheral surface of each rotating body and the multi-directional moving body module are increased in size, that is, increased in size, It is possible to prevent the outer peripheral surface of the rotating body from being damaged and to move the moving body module body smoothly and freely in multiple directions along the moving surface without changing the design of the center of gravity of the moving body module body to a high position.
  • the multidirectional moving body module according to the second aspect of the invention has the above-described effects of the multidirectional moving body module according to the first aspect of the invention. Because it is parallel to each other, it is possible to easily adjust the moving speed and the direction of the moving body module body by controlling the two parameters of the rotational driving direction and the driving speed of the pair of belt-like driving bodies. And the moving body module main body can be moved smoothly and freely in multiple directions along the moving surface.
  • the multi-directional moving body module according to the third aspect of the invention has a rotating body provided on one of the pair of belt-like driving bodies in addition to the effects exhibited by the multi-directional moving body module according to the second aspect of the invention.
  • the rotation axis of the belt and the rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies cross each other, so that the driving direction of the belt-like driving body is supported in a state in which each rotation shaft is supported in a disorderly manner.
  • the body module body can be moved smoothly and freely in multiple directions along the moving surface.
  • the multidirectional moving body module which concerns on invention of this invention 4 in addition to the effect which the multidirectional moving body module which concerns on invention of Claim 3 show
  • the multi-directional moving body module according to the invention of claim 5 has the pair of belt-like driving bodies in addition to the effect produced by the multi-directional moving body module according to any one of claims 1 to 4.
  • each of the pair of belt-like drive bodies has an endless shape that is driven to move forward and backward while being wound around a power transmission rotating body provided in the movable body module body.
  • the perspective view of the multidirectional moving body module which concerns on the Example of this invention The conceptual diagram of the multidirectional moving body module which concerns on the Example of this invention.
  • the conceptual diagram which showed the some rotary body in FIG. The conceptual diagram which showed the moving direction which a multi-directional moving body module moves when each of a pair of strip
  • belt-shaped drive body which comprises a pair of drive body unit drives to a reverse direction at the same speed.
  • the direction in which the multi-directional moving body module changes direction when the driving direction of the pair of belt-like driving bodies is the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other.
  • the direction in which the multi-directional moving body module changes direction when the driving direction of the pair of belt-like driving bodies is the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other.
  • belt-shaped drive body which comprises one of a pair of drive body units is driven in the reverse direction at the mutually same drive speed.
  • belt-shaped drive body which comprises one side of a pair of drive body unit is driven in the positive direction mutually at the same drive speed.
  • the multi-directional moving body module of the present invention includes a moving body module body that moves along a moving surface, a pair of belt-like driving bodies that are provided on the moving body module body and are driven independently of each other.
  • the outer peripheral surface of the moving surface is arranged in a belt-like drive body along the drive direction of the belt-like drive body and is axially attached so that the rotation axes oblique to the drive direction of the belt-like drive body are parallel to each other.
  • a pair of drive unit units arranged in the width direction of the belt-like drive body, and wear on the moving surface and increase in size and movement of the mechanism along the height direction. Any specific embodiment may be used as long as it can prevent damage to the surface and endless shape and can move smoothly and freely in multiple directions along the moving surface.
  • the belt-like drive body may be a belt made of resin or metal, or may be a chain.
  • the plurality of rotating bodies is a state in which at least two rotating bodies adjacent to each other along the driving direction of the belt-like driving body among the plurality of rotating bodies are arranged as a set at regular intervals. May be arranged.
  • the rotating bodies arranged in each of the pair of band-shaped driving bodies may be arranged alternately along the driving direction of the band-shaped driving bodies to constitute a staggered arrangement as a whole.
  • FIG. 1 is a perspective view of a multidirectional mobile module according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of the multidirectional mobile module according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram showing a plurality of rotating bodies in FIG. 2
  • FIG. 4 shows a multidirectional moving body when each of a pair of belt-like driving bodies constituting a pair of driving body units is driven in the forward direction at the same speed.
  • FIG. 5 is a conceptual diagram showing the moving direction in which the module moves
  • FIG. 5 is a conceptual diagram showing the moving direction in which the module moves
  • FIG. 5 shows the multidirectional moving body module when each of the pair of belt-like driving bodies constituting the pair of driving body units is driven in the opposite direction at the same speed.
  • FIG. 6 and FIG. 7 are conceptual diagrams showing the moving direction of movement.
  • FIGS. 6 and 7 show the movement of the multi-directional moving body module when the pair of belt-like driving bodies constituting the driving body unit are driven in the opposite directions at the same speed.
  • It is a conceptual diagram showing the direction of movement
  • FIG. 5 is a conceptual diagram showing a moving direction in which a multidirectional moving body module moves when a belt-like driving body installed on the left side of a pair of belt-like driving bodies constituting a driving body unit is driven in a forward direction.
  • FIG. 9 is a conceptual diagram showing a moving direction in which the multidirectional moving body module moves when the belt-like driving body installed on the right side of the pair of belt-like driving bodies constituting the driving body unit is driven in the forward direction.
  • 10 and 11 show the multi-directional moving body module when the driving directions of the pair of belt-like driving bodies are the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other.
  • FIG. 12 is a conceptual diagram showing the direction in which the direction changes, and FIG. 12 shows a multi-directional movement when only a pair of belt-like drive bodies constituting one of the pair of drive body units are driven in the opposite directions at the same drive speed.
  • FIG. 13 is a conceptual diagram showing the direction in which the module moves and changes direction, and FIG.
  • driving the belt-like drive body in the forward direction means driving the grounding surface side portion of the belt-like drive body, that is, the lower portion, which is the moving surface side portion, in the backward direction B and the upper portion of the belt-like drive body. Is driven in the forward direction F.
  • driving the belt-like drive body in the reverse direction means driving the entire belt-like drive body in the opposite direction to the above-described forward direction.
  • one of the pair of drive body units 120A and 120B that is, the drive body unit 120A is composed of a pair of belt-like drive bodies 121AL and 121AR, and a plurality of rotating bodies 122AL and 122AR fixed thereto, and a drive shaft 123AL.
  • the other of the pair of drive body units 120A and 120B that is, the drive body unit 120B is composed of a pair of belt-like drive bodies 121BL and 121BR, and a plurality of rotating bodies 122BL and 122BR fixedly installed on them.
  • 123BL and 123BR are included.
  • the multidirectional moving body module 100 includes a moving body module main body 110 that moves along the moving surface P, and the moving body module main body 110 that is provided on the moving body module main body 110 and that advances and retreats independently of each other.
  • Rotating shafts 123AL, 123AR, 123BL, and 123BR that are arranged in 121AR, 121BL, and 121BR and obliquely cross with respect to the driving direction D1 of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR are mounted so as to be parallel to each other.
  • the outer peripheral surface 124 in contact with the moving surface P A plurality of rotating bodies 122AL which includes 122ar, 122BL, strip drive member and a 122BR each 121AL, 121AR, 121BL, a pair of driver units 120A arranged in the width direction D2 of 121BR, and 120B.
  • the load of the movable body module main body 110 is shared by each of the rotating bodies 122AL, 122AR, 122BL, 122BR in a state where the outer peripheral surfaces 124 of the plurality of rotating bodies 122AL, 122AR, 122BL, 122BR are in contact with the moving surface P.
  • the driving force of the mobile module main body 110 is generated in the resultant direction of the reaction force against the force acting on the rotating bodies 122AL, 122AR, 122BL, and 122BR from the moving surface P according to the load of the mobile module main body 110 that is supported. .
  • the sliding of the rotating bodies 122AL, 122AR, 122BL, 122BR with respect to the moving surface P is suppressed.
  • chains are used as the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR.
  • the drive shaft 141AL-F of the power transmission rotating body 130AL-F and the drive shaft 141AR-F of the power transmission rotating body 130AR-F are not connected to each other.
  • the drive shaft 141AL-B of the power transmission rotating body 130AL-B and the drive shaft 141AR-B of the power transmission rotating body 130AR-B are not connected to each other.
  • the drive motor 140AF is used for power transmission among a pair of power transmission rotating bodies 130AL-F and 130AL-B arranged in parallel in the vertical direction in the figure, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100.
  • the rotator 130AL-F is driven and the power transmission rotator 130AL-B is driven by the power transmission rotator 130AL-F.
  • the drive motor 140AB is used for power transmission among a pair of power transmission rotors 130AR-F and 130AR-B arranged in parallel in the vertical direction in the figure, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100.
  • the rotary body 130AR-B is driven, and the power transmission rotary body 130AR-F is driven by the power transmission rotary body 130AR-B.
  • the drive shaft 141BL-F of the power transmission rotating body 130BL-F and the drive shaft 141BR-F of the power transmission rotating body 130BR-F are not connected to each other.
  • the drive shaft 141BL-B of the power transmission rotating body 130BL-B and the drive shaft 141BR-B of the power transmission rotating body 130BR-B are not connected to each other.
  • the drive motor 140BF is used for power transmission among a pair of power transmission rotating bodies 130BL-F and 130BL-B arranged in parallel in the vertical direction in the drawing, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100.
  • the rotating body 130BL-F is driven and the power transmission rotating body 130BL-F is driven by the power transmitting rotating body 130BL-F.
  • the drive motor 140BB is used for power transmission among a pair of power transmission rotors 130BR-F and 130BR-B arranged in parallel in the vertical direction in the drawing, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100.
  • the rotating body 130BR-B is driven and the power transmission rotating body 130BR-F is driven by the power transmitting rotating body 130BR-B. That is, the belt-like driving bodies 121AL, 121AR, 121BL, 121BR arranged on the left and right in the drawing are driven independently of each other.
  • Drive motors 140AF, 140AB, 140BF, and 140BB are arranged one by one.
  • the drive directions D1 of the pair of belt-like drive bodies 121AL, 121AR and 121BL, 121BR are parallel to each other.
  • the multidirectional moving body module 100 controls the two driving parameters and the driving speed of the pair of belt-like driving bodies 121AL, 121AR and 121BL, 121BR to control the rotational driving speed and the direction of the moving body module main body 110.
  • the multidirectional moving body module 100 moves the moving body module main body 110 smoothly and freely in multiple directions along the moving surface P by a simple drive control system and method.
  • the rotation axis 123AL-A of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and the rotation axis 123AR-A of the rotating body 122AR provided on the other of the pair of belt-like driving bodies 121AL and 121AR Are crossing each other.
  • the multidirectional moving body module 100 has each rotating body 122AL, 122BL, 122AR compared with the case where the rotating shafts 123AL, 123AR, 123BL, 123BR are obliquely supported in the driving direction D1 in a state where the rotating shafts 123AL, 123AR, 123BL, 123BR are disorderly supported.
  • 122BR it is easy to set the magnitude and direction of the resultant force of the reaction force acting from the moving surface P. For this reason, the multidirectional moving body module 100 moves the moving body module main body 110 smoothly and freely in the multidirectional direction along the moving surface P by a drive control system and method using a simple control process. .
  • the rotation shaft 123AL of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and the rotation shaft 123AR of the rotating body 122AR provided on the other of the pair of belt-like driving bodies 121AL and 121AR are belt-like driving.
  • An angle of 45 ° is formed with respect to the driving direction D1 of the bodies 121AL and 121AR.
  • the multi-directional moving body module 100 reliably moves the moving body module body 110 smoothly and freely in multiple directions along the moving surface P with a drive control system and method using a simple control process. It has come to be realized.
  • the rotating shaft 123BL of the rotating body 122BL provided on one of the pair of strip-like driving bodies 121BL and 121BR and the rotating shaft 123BR of the rotating body 122BR provided on the other of the pair of strip-like driving bodies 121BL and 121BR are a strip-like shape. An angle of 45 ° is formed with respect to the drive direction D1 of the drive bodies 121BL and 121BR.
  • the multidirectional moving body module 100 is a resultant force of the reaction force acting on each rotating body 122BL, 122BR from the moving surface P as compared with the case where the rotating shafts 123BL, 123BR are obliquely crossed in the driving direction D1. It becomes easier to set the direction. For this reason, the multi-directional moving body module 100 reliably moves the moving body module body 110 smoothly and freely in multiple directions along the moving surface P with a drive control system and method using a simple control process. It has come to be realized.
  • the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR correspond to the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR, respectively. Endless shapes that are driven so as to be able to advance and retreat in a state of being wound around the provided power transmission rotating body 130 are formed.
  • the multidirectional moving body module 100 acts on the rotating bodies 122AL, 122AR, 122BL, 122BR from the moving surface P in a state where the rotating bodies 122AL, 122AR, 122BL, 122BR are grounded to the moving surface P, that is, the ground surface.
  • the multidirectional moving body module 100 includes the rotating shafts 122AL, 122AR, 122BL, 122BR and the rotating shafts 123AL, 123AR, 123BL, 123BR in order to reduce the load burden between the rotating shafts 123AL, 123AR, 123BL, 123BR.
  • the size of the rotating body 122AL, 122AR, 122BL, 122BR and its supporting portion, which are generated by increasing the shaft diameter, is prevented, and the moving body module body 110 is moved to the moving surface P without increasing the center of gravity of the multidirectional moving body module 100. It moves smoothly and freely along multiple directions.
  • the forward direction F, the backward direction B, the right traveling direction R, and the left traveling direction L of the multidirectional moving body module 100 are indicated by arrows in FIGS.
  • the white arrow shown in FIG. 1 and the white V-shaped and inverted V-shaped marks shown in FIGS. 4 to 13 are endless shapes, that is, of the belt-like drive bodies 121AL, 121AR, 121BL, 121BR having endless tracks.
  • the velocity vector of the lower part facing the moving surface P is shown. More specifically, for example, the direction of the velocity vector V in the portion facing the moving surface P in the belt-like drive body 121AR shown in FIG.
  • Such a speed vector includes various parameters such as the driving speed and direction of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR, the arrangement direction of the rotating bodies 122AL, 122AR, 122BL, and 122BR, and the configuration and position thereof, and the driving motor. It is set in consideration of 140 driving force.
  • the moving direction and the turning direction of the multidirectional moving body module 100 shown below are examples, and the multidirectional moving body module 100 has the magnitude and direction of each velocity vector of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR. By changing the combination, it is possible to move in all directions within the moving surface P and change direction, that is, turn around on the spot.
  • the speed vectors DAL1, DAR1, DBL1, and DBR1 of the belt-like drivers 121AL, 121AR, 121BL, and 121BR are equal to each other and their directions coincide with the backward direction B.
  • the direction of the resultant force vector FX1 that is the sum of the acting force vectors FAL1, FAR1, FBL1, and FBR1 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL, 122AR, 122BL, and 122BR coincides with the backward direction B.
  • the direction of the reaction force FY1 acting on the moving body module 100 from the moving surface P in accordance with the resultant force vector FX1 coincides with the forward direction F.
  • the multidirectional moving body module 100 can move in the forward direction F.
  • the speed vectors DAL2, DAR2, DBL2, and DBR2 of the belt-like drivers 121AL, 121AR, 121BL, and 121BR are equal to each other and their directions are the forward direction F.
  • the direction of the resultant force vector FX2 that is the sum of the acting force vectors FAL2, FAR2, FBL2, and FBR2 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR, 122BL, 122BR is forward. Coincides with direction F.
  • the direction of the reaction force FY2 that acts on the moving body module 100 from the moving surface P in accordance with the resultant force vector FX2 coincides with the backward direction B.
  • the multidirectional moving body module 100 can move in the backward direction B.
  • the speed vectors DAL3 and DBL3 of the belt-like drive bodies 121AL and 121BL are equal to each other and their directions coincide with the forward direction F, and the belt-like drive body.
  • the outer peripheral surface 124 of each of the rotating bodies 122AL, 122AR, 122BL and 122BR moves from the outer surface 124 to the moving surface P.
  • the direction of the resultant force vector FX3 that is the sum of the acting force vectors FAL3, FAR3, FBL3, and FBR3 coincides with the rightward traveling direction R.
  • the direction of the reaction force FY3 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX3 coincides with the left traveling direction L.
  • the multidirectional moving body module 100 can move in the left traveling direction L.
  • the magnitudes of the velocity vectors DAL4 and DBL4 of the belt-like driving bodies 121AL and 121BL are equal to each other and their directions coincide with the backward direction B, and the belt-like driving body.
  • the speed vectors DAL5 and DBL5 of the belt-like driving bodies 121AL and 121BL are equal to each other and their directions coincide with the backward direction B, and the belt-like driving body 121AR.
  • the direction of the resultant force vector FX5 which is the sum of the acting force vectors FAL5 and FBL5 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL and 122BL, proceeds to the left.
  • An angle of 45 ° is formed with respect to each of the direction L and the backward direction B.
  • the direction of the reaction force FY5 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX5 forms an angle of 45 ° with respect to each of the right traveling direction R and the forward traveling direction F.
  • the multidirectional moving body module 100 can move in a direction that forms an angle of 45 ° with respect to the right traveling direction R and the forward traveling direction F.
  • the magnitudes of the velocity vectors DAR6 and DBR6 of the belt-like drive bodies 121AR and 121BR are equal to each other, and the directions of the velocity vectors DAR6 and DBR6 coincide with the backward direction B.
  • the resultant force vector FX6 that is the sum of the acting force vectors FAR6 and FBR6 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AR and 122BR.
  • the direction forms an angle of 45 ° with respect to each of the right traveling direction R and the backward direction B.
  • the direction of the reaction force FY6 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX6 forms an angle of 45 ° with respect to each of the left traveling direction L and the forward traveling direction F.
  • the multidirectional moving body module 100 can move in a direction that forms an angle of 45 ° with respect to the left traveling direction L and the forward traveling direction F.
  • the speed vectors DAL7 and DAR7 of the pair of belt-like drive bodies 121AL and 121AR are equal to each other and the direction thereof coincides with the forward direction F.
  • the speed vectors DABL7 and DABR7 of the belt-like driving bodies 121BL and 121BR are equal to the speed vectors DAL7 and DAR7 and the direction thereof coincides with the backward direction B, each of the rotating bodies 122AL, 122AR, 122BL and 122BR
  • the rotational moment MX7 acts on the moving surface P from the multi-directional moving body module 100 in the clockwise direction in accordance with the acting force vectors FAL7, FAR7, FBL7, and FBR7 that act on the moving surface P from the outer peripheral surface 124.
  • the rotational moment MY7 acts in the counterclockwise direction from the moving surface P to the moving body module 100.
  • the multi-directional mobile module 100 can turn or turn in the counterclockwise direction on the
  • the speed vectors DAL8 and DAR8 of the pair of belt-like drive bodies 121AL and 121AR are equal to each other and their directions coincide with the backward direction F
  • the speed vectors DABL8 and DABR8 of the belt-like drive bodies 121BL and 121BR are equal in magnitude to the speed vectors DAL8 and DAR8 and the direction thereof coincides with the forward direction F
  • the rotating bodies 122AL, 122AR, 122BL and 122BR8 acts on the moving surface P from the multi-directional moving body module 100 in the counterclockwise direction in accordance with the acting force vectors FAL8, FAR8, FBL8, and FBR8 that act on the moving surface P from the outer peripheral surface 124.
  • the rotational moment MY8 acts on the moving body module 100 in the clockwise direction from the moving surface P.
  • the multi-directional mobile module 100 can turn or turn in the clockwise direction on the spot.
  • the speed vectors DAL9 and DAR9 of the belt-like drive bodies 121AL and 121AR are equal to each other and their directions coincide with the forward direction F, and the belt-like drive body 121BL. , 121BR when the magnitude of the velocity vector is zero, the moving surface P is moved from the multidirectional moving body module 100 according to the acting force vectors FAL9, FAR9 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR.
  • the rotational moment MX9 acts in an arcuate and clockwise direction along the forward direction F.
  • the rotational moment MY9 is directed in the reverse direction of the rotational moment MX9 along the backward direction B from the moving surface P to the multidirectional moving body module 100, that is, in an arcuate and counterclockwise direction.
  • the multidirectional moving body module 100 moves in an arc shape along the backward direction B and can change the direction in the counterclockwise direction.
  • the speed vectors DAL10 and DAR10 of the belt-like drive bodies 121AL and 121AR are equal to each other and the directions thereof coincide with the backward direction B, and the belt-like drive body 121BL. , 121BR when the magnitude of the velocity vector is zero, the moving surface P is moved from the multidirectional moving body module 100 in accordance with the acting force vectors FAL10, FAR10 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR.
  • the rotational moment MX10 is directed along the backward direction B in an arc shape and in a counterclockwise direction.
  • the rotational moment MY10 is directed in the reverse direction of the rotational moment MX10 along the forward direction F from the moving surface P to the multidirectional moving body module 100, that is, in an arcuate and clockwise direction.
  • the multidirectional moving body module 100 moves in an arc shape along the forward direction F and can change the direction in the clockwise direction.
  • the multi-directional moving body module 100 includes the moving body module main body 110 and a pair of driving body units 120A and 120B, so that each of the rotating bodies 122AL, 122AR, 122BL, The surface of the 122BR, that is, the outer peripheral surface, the increase in size of the multi-directional mobile module 100, that is, the increase in size and the damage of the moving surface P and the outer peripheral surface 124 of the rotating bodies 122AL, 122AR, 122BL, 122BR are prevented.
  • the movable body module body 110 can be moved smoothly and freely in multiple directions along the moving surface P without changing the design of the center of gravity to a high position.
  • Multi-directional moving body module 110 ... Moving body module main body 120A, 120B ... Drive body unit 121AL, 121AR, 121BL, 121BR ... Strip-like drive body 122AL, 122AR, 122BL, 122BR ... Rotation Body 123AL, 123AR, 123BL, 123BR ... Rotating shaft 123AL-A, 123AR-A, 123BL-A, 123BR-A ... Rotating body axis 124 ... Rotating body outer surface 130AL- F, 130AL-B, 130AR-F, 130AR-B, 130BL-F, 130BL-B, 130BR-F, 130BR-B ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Manipulator (AREA)

Abstract

Provided is a multi-directionally movable body module configured so that the module does not cause a movement surface to wear, an increase in the size of a mechanism in the height direction is prevented, damage to a travel surface, which is the movement surfaces, and to endless tracks is prevented, and the module moves smoothly, freely, and stably in multiple directions along the movement surface. A multi-directionally movable body module (100) is provided with a movable-body-module body (110) and a pair of drive body units (120A, 120B). Each of the pair of drive body units (120A, 120B) is provided with a pair of belt-like drive bodies (121AL, 121AR, 121BL, 121BR)and rotating bodies (122AL, 122AR, 122BL, 122BR). The pair of drive body units (120A, 120B) is arranged in the width direction (D2) of the belt-like drive bodies (121AL, 121AR, 121BL, 121BR).

Description

多方向移動体モジュールMulti-directional mobile module
 本発明は、搭乗者の移動手段や被搬送物を搬送する搬送手段に応用される多方向移動体モジュールに関するものである。 The present invention relates to a multidirectional moving body module applied to a moving means for a passenger and a conveying means for conveying an object to be conveyed.
 従来、移動体を転回する方法としては、例えば車両に設けられたタイヤなどの回転体を傾けて移動方向を変更する方法がある。
 また、車両などの移動体に左右一対で設けられた無限軌道によって移動体を移動させる方法やホイール体に設けられたローラ体によって移動方向を変更するホイールいわゆるメカナムホイール(例えば、特許文献1参照。)がある。
Conventionally, as a method of rotating a moving body, for example, there is a method of changing a moving direction by tilting a rotating body such as a tire provided in a vehicle.
Also, a method of moving a moving body by an endless track provided on a pair of left and right moving bodies such as a vehicle or a so-called mecanum wheel that changes a moving direction by a roller body provided on a wheel body (see, for example, Patent Document 1) .)
特表2009-504465号公報(特許請求の範囲、図1参照。)JP-T 2009-504465 (see “Claims” in FIG. 1)
 しかしながら、上述したホイールでは、一つのローラ体の一軸に荷重が集中してしまうため許容荷重に制限があるうえ複数のローラ体の一つのみを走行面すなわち移動面に常時接触させた状態で移動体本体の駆動力を得ているため、接触面積を増大させて荷重を分散した状態で円滑且つ自在な移動が困難であるという問題点があった。
 また、負荷を軽減させるために上述のホイールを車両などの移動体本体の四隅に配置した場合、各ホイールに設けられたローラ体を軸支するローラ軸径を大きくして駆動軸の強度を高めるため、移動体すなわち移動機構のサイズが増大するという問題点があった。
 加えて、駆動軸の強度を高めた状態で移動体本体の荷重を支えるため、ホイール体のサイズ増大に伴って接地面すなわち移動面に対する移動体の重心を高く設定する設計変更を生じさせて移動体の移動が不安定になるという問題点があった。
 移動体の駆動機構として無限軌道等の無端形状を採用した場合、移動体の転回時に無端形状と移動面との間に「滑り」が生じるため、無端形状が摩耗してしまうとともに移動面及び無端形状が損傷するおそれがあるという問題点があった。
However, in the wheel described above, the load concentrates on one axis of one roller body, so that the allowable load is limited, and only one of the plurality of roller bodies is moved in a state where it is always in contact with the traveling surface, that is, the moving surface. Since the driving force of the body body is obtained, there is a problem that it is difficult to move smoothly and freely in a state where the contact area is increased and the load is dispersed.
Further, when the above-described wheels are arranged at the four corners of a moving body main body such as a vehicle in order to reduce the load, the roller shaft diameter that supports the roller body provided on each wheel is increased to increase the strength of the drive shaft. Therefore, there is a problem that the size of the moving body, that is, the moving mechanism increases.
In addition, in order to support the load of the moving body with the strength of the drive shaft increased, the design moves to increase the center of gravity of the moving body with respect to the ground contact surface, that is, the moving surface as the wheel body increases in size. There was a problem that the movement of the body became unstable.
When an endless shape such as an endless track is adopted as the driving mechanism of the moving body, a slip occurs between the endless shape and the moving surface when the moving body is turned. There was a problem that the shape might be damaged.
 そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、移動面に対する摩耗と高さ方向に沿った機構のサイズ増大と移動面や無端形状の損傷とを防ぐとともに移動面に沿って多方向に円滑且つ自在に安定して移動する多方向移動体モジュールを提供することである。 Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to prevent wear on the moving surface, increase in the size of the mechanism along the height direction, damage to the moving surface and endless shape, and the moving surface. It is to provide a multi-directional moving body module that moves smoothly and freely in a multi-directional manner.
 まず、本請求項1の発明に係る多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、前記移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と前記帯状駆動体の駆動方向に沿って前記帯状駆動体に配列されているとともに前記帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で前記移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して前記帯状駆動体の幅方向に配列された一対の駆動体ユニットとを備えていることにより、前述した課題を解決したものである。 First, a multidirectional moving body module according to the first aspect of the present invention includes a moving body module main body that moves along a moving surface, and is provided in the moving body module main body and is driven independently of each other. A pair of belt-like drive bodies and a rotation axis that is arranged in the belt-like drive body along the drive direction of the belt-like drive body and that is oblique to the drive direction of the belt-like drive body are parallel to each other. A plurality of rotating bodies each having an outer peripheral surface in contact with the moving surface in a state of being axially attached, and a pair of driving body units arranged in the width direction of the belt-like driving body. This solves the aforementioned problems.
 そして、本請求項2の発明に係る多方向移動体モジュールは、請求項1の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることにより、前述した課題をさらに解決したものである。 And the multidirectional moving body module which concerns on invention of Claim 2 is a multidirectional moving body module which concerns on invention of Claim 1, Each drive direction of a pair of said strip | belt-shaped drive body is mutually parallel. Thus, the above-described problem is further solved.
 そして、本請求項3の発明に係る多方向移動体モジュールは、請求項2の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることにより、前述した課題をさらに解決したものである。 The multidirectional moving body module according to the invention of claim 3 is the multidirectional moving body module according to the invention of claim 2, wherein the rotation axis of the rotating body provided on one of the pair of belt-like driving bodies and the The rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies intersects with each other, thereby further solving the above-described problem.
 そして、本請求項4の発明に係る多方向移動体モジュールは、請求項3の発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることにより、前述した課題をさらに解決したものである。 And the multidirectional moving body module which concerns on invention of this invention 4 is a multidirectional moving body module which concerns on invention of Claim 3, and the rotating shaft of the rotary body provided in one side of said pair of strip | belt-shaped drive bodies, and said The rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies forms an angle of 45 ° with respect to the driving direction of the belt-like driving body, thereby further solving the above-described problem. is there.
 そして、本請求項5の発明に係る多方向移動体モジュールは、請求項1乃至請求項4のいずれか一つの発明に係る多方向移動体モジュールにおいて、前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることにより、前述した課題をさらに解決したものである。 The multi-directional moving body module according to the invention of claim 5 is the multi-directional moving body module according to any one of claims 1 to 4, wherein the pair of belt-like driving bodies are the pair of driving bodies. The above-mentioned problems are achieved by forming endless shapes that are driven to move forward and backward in a state of being wound around a power transmission rotating body provided in the movable body module body corresponding to each of the belt-like driving bodies. Is a further solution.
 本請求項1に係る多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と帯状駆動体の駆動方向に沿って帯状駆動体に配列されているとともに帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して帯状駆動体の幅方向に配列された一対の駆動体ユニットとを備えていることにより、複数の回転体のそれぞれの外周面を移動面に接触させた状態で移動体モジュール本体の荷重を各回転体で分担支持するとともに移動体モジュール本体の荷重に応じて移動面から各回転体に作用する力に対する反作用力の合力方向に移動体モジュール本体の駆動力を発生させ、しかも移動面に対する回転体の滑りを抑えるため、各回転体における外周面の摩耗と多方向移動体モジュールを大型化すなわちサイズ増大と移動面や回転体の外周面の損傷とを防ぐとともに移動体モジュール本体の重心を高い位置に設計変更しないで移動面に沿って多方向に円滑且つ自在に移動体モジュール本体を移動させることができる。 The multidirectional moving body module according to claim 1 is a moving body module main body that moves along a moving surface, and a pair of strips that are provided on the moving body module main body and are driven independently of each other. The moving surface is arranged in a belt-like drive body along the drive direction of the drive body and the belt-like drive body and is axially attached so that rotation axes oblique to the drive direction of the belt-like drive body are parallel to each other. Each of the plurality of rotating bodies is provided with a pair of driving body units arranged in the width direction of the belt-like driving body. The load of the moving body module main body is shared and supported by each rotating body while being in contact with the moving surface, and the reaction force against the force acting on each rotating body from the moving surface according to the load of the moving body module main body In order to generate the driving force of the moving body module body in the resultant force direction and to suppress the sliding of the rotating body with respect to the moving surface, the wear of the outer peripheral surface of each rotating body and the multi-directional moving body module are increased in size, that is, increased in size, It is possible to prevent the outer peripheral surface of the rotating body from being damaged and to move the moving body module body smoothly and freely in multiple directions along the moving surface without changing the design of the center of gravity of the moving body module body to a high position.
 そして、本請求項2の発明に係る多方向移動体モジュールは、請求項1の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることにより、一対の帯状駆動体の回転駆動方向と駆動速度との2つのパラメータを制御して移動体モジュール本体の移動速度及びその方向を容易に調整できるため、簡便な駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。 The multidirectional moving body module according to the second aspect of the invention has the above-described effects of the multidirectional moving body module according to the first aspect of the invention. Because it is parallel to each other, it is possible to easily adjust the moving speed and the direction of the moving body module body by controlling the two parameters of the rotational driving direction and the driving speed of the pair of belt-like driving bodies. And the moving body module main body can be moved smoothly and freely in multiple directions along the moving surface.
 そして、本請求項3の発明に係る多方向移動体モジュールは、請求項2の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることにより、各回転軸を無秩序に軸支した状態で帯状駆動体の駆動方向に斜交させている場合に比べて各回転体に移動面から作用する反作用力の合力の大きさ及びその方向を設定し易くなるため、簡便な制御プロセスを用いた駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。 The multi-directional moving body module according to the third aspect of the invention has a rotating body provided on one of the pair of belt-like driving bodies in addition to the effects exhibited by the multi-directional moving body module according to the second aspect of the invention. The rotation axis of the belt and the rotation axis of the rotating body provided on the other of the pair of belt-like driving bodies cross each other, so that the driving direction of the belt-like driving body is supported in a state in which each rotation shaft is supported in a disorderly manner. Compared with the case where it is obliquely crossed, it is easier to set the magnitude and direction of the reaction force acting on each rotating body from the moving surface, so that it can be moved by a drive control system and method using a simple control process. The body module body can be moved smoothly and freely in multiple directions along the moving surface.
 そして、本請求項4の発明に係る多方向移動体モジュールは、請求項3の発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることにより、各回転軸を無秩序に軸支した状態で帯状駆動体の駆動方向に斜交させている場合に比べて各回転体に移動面から作用する反作用力の合力方向をより一層設定し易くなるため、簡便な制御プロセスを用いた駆動制御システム及び方法で移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に効率良く移動させることを確実に実現できる。 And the multidirectional moving body module which concerns on invention of this invention 4 in addition to the effect which the multidirectional moving body module which concerns on invention of Claim 3 show | plays, the rotary body provided in one side of said pair of strip | belt-shaped drive body And the rotation axis of the rotary body provided on the other of the pair of belt-like drive bodies form an angle of 45 ° with respect to the drive direction of the belt-like drive body, thereby Compared with the case where the belt-like drive body is obliquely crossed in the state of being axially supported, it is easier to set the resultant direction of the reaction force acting on each rotating body from the moving surface, so a simple control process With the drive control system and method using the above, it is possible to reliably move the movable body module body smoothly and freely in multiple directions along the moving surface.
 そして、本請求項5の発明に係る多方向移動体モジュールは、請求項1乃至請求項4のいずれか一つの発明に係る多方向移動体モジュールが奏する効果に加えて、前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることにより、複数の回転体を移動面すなわち接地面に接地させた状態で移動面から回転体に作用する荷重全体を各回転体に分担支持させて回転体及びその回転軸間の荷重負担を軽減するため、回転体及びその回転軸間の荷重負担を下げるためにその回転軸の軸径を大きくすることで生じる回転体や回転体の支持部のサイズ増大を防ぎ、多方向移動体モジュールの重心を高くすることなく移動体モジュール本体を移動面に沿って多方向に円滑且つ自在に移動させることができる。 The multi-directional moving body module according to the invention of claim 5 has the pair of belt-like driving bodies in addition to the effect produced by the multi-directional moving body module according to any one of claims 1 to 4. However, each of the pair of belt-like drive bodies has an endless shape that is driven to move forward and backward while being wound around a power transmission rotating body provided in the movable body module body. Thus, with the plurality of rotating bodies in contact with the moving surface, that is, the grounding surface, the entire load acting on the rotating body from the moving surface is shared and supported by each rotating body to reduce the load burden between the rotating body and its rotating shaft. Therefore, it is possible to prevent an increase in the size of the rotating body and the supporting part of the rotating body, which is caused by increasing the shaft diameter of the rotating shaft in order to reduce the load burden between the rotating body and the rotating shaft, and to reduce the center of gravity of the multidirectional moving body module. It can be moved smoothly and freely in multiple directions along the moving surface of the moving body module body without Kusuru.
本発明の実施例に係る多方向移動体モジュールの斜視図。The perspective view of the multidirectional moving body module which concerns on the Example of this invention. 本発明の実施例に係る多方向移動体モジュールの概念図。The conceptual diagram of the multidirectional moving body module which concerns on the Example of this invention. 図2に複数の回転体を示した概念図。The conceptual diagram which showed the some rotary body in FIG. 一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを正方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multi-directional moving body module moves when each of a pair of strip | belt-shaped drive body which comprises a pair of drive body unit drives to the normal direction at the same speed. 一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを逆方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multidirectional moving body module moves when each of a pair of strip | belt-shaped drive body which comprises a pair of drive body unit drives to a reverse direction at the same speed. 駆動体ユニットを構成する一対の帯状駆動体をそれぞれ互いに反対方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multi-directional moving body module moves when a pair of strip | belt-shaped drive body which comprises a drive body unit is each driven at the same speed in the opposite direction. 駆動体ユニットを構成する一対の帯状駆動体をそれぞれ互いに反対方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multi-directional moving body module moves when a pair of strip | belt-shaped drive body which comprises a drive body unit is each driven at the same speed in the opposite direction. 駆動体ユニットを構成する一対の帯状駆動体のうち左側に設置された帯状駆動体を正方向に駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multidirectional moving body module moves, when the belt-shaped drive body installed in the left side among a pair of belt-shaped drive bodies which comprise a drive body unit is driven to a normal direction. 駆動体ユニットを構成する一対の帯状駆動体のうち右側に設置された帯状駆動体を正方向に駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図。The conceptual diagram which showed the moving direction which a multi-directional moving body module moves, when the strip | belt-shaped drive body installed in the right side among a pair of strip | belt-shaped drive bodies which comprise a drive body unit is driven to a normal direction. 一対の駆動体ユニットの一方及び他方のそれぞれにおいて一対の帯状駆動体の駆動方向が同一であるとともに一方及び他方間で相互に駆動方向が異なる際に多方向移動体モジュールが方向転換する向きを示した概念図。The direction in which the multi-directional moving body module changes direction when the driving direction of the pair of belt-like driving bodies is the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other. Conceptual diagram. 一対の駆動体ユニットの一方及び他方のそれぞれにおいて一対の帯状駆動体の駆動方向が同一であるとともに一方及び他方間で相互に駆動方向が異なる際に多方向移動体モジュールが方向転換する向きを示した概念図。The direction in which the multi-directional moving body module changes direction when the driving direction of the pair of belt-like driving bodies is the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other. Conceptual diagram. 一対の駆動体ユニットの一方を構成する一対の帯状駆動体のみを逆方向に相互に同じ駆動速度で駆動した際に多方向移動体モジュールが移動及び方向転換する向きを示した概念図。The conceptual diagram which showed the direction which a multi-directional mobile body module moves and changes direction when only a pair of strip | belt-shaped drive body which comprises one of a pair of drive body units is driven in the reverse direction at the mutually same drive speed. 一対の駆動体ユニットの一方を構成する一対の帯状駆動体のみを正方向に相互に同じ駆動速度で駆動した際に多方向移動体モジュールが移動及び方向転換する向きを示した概念図。The conceptual diagram which showed the direction which a multi-directional moving body module moves and changes direction when only a pair of strip | belt-shaped drive body which comprises one side of a pair of drive body unit is driven in the positive direction mutually at the same drive speed.
 本発明の多方向移動体モジュールは、移動面に沿って移動する移動体モジュール本体と、移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と帯状駆動体の駆動方向に沿って帯状駆動体に配列されているとともに帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行になるように軸着された状態で移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して帯状駆動体の幅方向に配列された一対の駆動体ユニットとを備え、移動面に対する摩耗と高さ方向に沿った機構のサイズ増大と移動面や無端形状の損傷とを防ぐとともに移動面に沿って多方向に円滑且つ自在に安定して移動するものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。
 例えば、帯状駆動体は、樹脂又は金属から構成されたベルトであってもよいし、チェーンであってもよい。
 また、複数の回転体は、複数の回転体のうち帯状駆動体の駆動方向に沿って少なくとも相互に隣り合う2つの回転体を一組としてこの組を一定の間隔で周期的に配列させた状態で配列されていてもよい。
 一対の帯状駆動体のそれぞれに配列された回転体は、帯状駆動体の駆動方向に沿って互い違いに配列されて全体として千鳥状の配列状態を構成していてもよい。
[実施例]
The multi-directional moving body module of the present invention includes a moving body module body that moves along a moving surface, a pair of belt-like driving bodies that are provided on the moving body module body and are driven independently of each other. The outer peripheral surface of the moving surface is arranged in a belt-like drive body along the drive direction of the belt-like drive body and is axially attached so that the rotation axes oblique to the drive direction of the belt-like drive body are parallel to each other. And a pair of drive unit units arranged in the width direction of the belt-like drive body, and wear on the moving surface and increase in size and movement of the mechanism along the height direction. Any specific embodiment may be used as long as it can prevent damage to the surface and endless shape and can move smoothly and freely in multiple directions along the moving surface. .
For example, the belt-like drive body may be a belt made of resin or metal, or may be a chain.
In addition, the plurality of rotating bodies is a state in which at least two rotating bodies adjacent to each other along the driving direction of the belt-like driving body among the plurality of rotating bodies are arranged as a set at regular intervals. May be arranged.
The rotating bodies arranged in each of the pair of band-shaped driving bodies may be arranged alternately along the driving direction of the band-shaped driving bodies to constitute a staggered arrangement as a whole.
[Example]
 以下、本発明の実施例に係る多方向移動体モジュール100を図1乃至図13に基づいて説明する。
 ここで、図1は、本発明の実施例に係る多方向移動体モジュールの斜視図であり、図2は、本発明の実施例に係る多方向移動体モジュールの概念図であり、図3は、図2に複数の回転体を示した概念図であり、図4は、一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを正方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図であり、図5は、一対の駆動体ユニットを構成する一対の帯状駆動体のそれぞれを逆方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図であり、図6及び図7は、駆動体ユニットを構成する一対の帯状駆動体をそれぞれ互いに反対方向に同速度で駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図であり、図8は、駆動体ユニットを構成する一対の帯状駆動体のうち左側に設置された帯状駆動体を正方向に駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図であり、図9は、駆動体ユニットを構成する一対の帯状駆動体のうち右側に設置された帯状駆動体を正方向に駆動した際に多方向移動体モジュールが移動する移動方向を示した概念図であり、図10及び図11は、一対の駆動体ユニットの一方及び他方のそれぞれにおいて一対の帯状駆動体の駆動方向が同一であるとともに一方及び他方間で相互に駆動方向が異なる際に多方向移動体モジュールが方向転換する向きを示した概念図であり、図12は、一対の駆動体ユニットの一方を構成する一対の帯状駆動体のみを逆方向に相互に同じ駆動速度で駆動した際に多方向移動体モジュールが移動及び方向転換する向きを示した概念図であり、図13は、一対の駆動体ユニットの一方を構成する一対の帯状駆動体のみを正方向に相互に同じ駆動速度で駆動した際に多方向移動体モジュールが移動及び方向転換する向きを示した概念図である。
 なお、本実施形態において、帯状駆動体を正方向に駆動するとは、帯状駆動体の接地面側部分すなわち移動面側部分である下側部分を後退方向Bに駆動するとともに帯状駆動体の上側部分を前進方向Fに駆動するように帯状駆動体全体を駆動することをいう。
 また、帯状駆動体を逆方向に駆動するとは、上述の正方向に対して逆向きに帯状駆動体全体を駆動することをいう。
Hereinafter, a multidirectional moving body module 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 13.
Here, FIG. 1 is a perspective view of a multidirectional mobile module according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of the multidirectional mobile module according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a plurality of rotating bodies in FIG. 2, and FIG. 4 shows a multidirectional moving body when each of a pair of belt-like driving bodies constituting a pair of driving body units is driven in the forward direction at the same speed. FIG. 5 is a conceptual diagram showing the moving direction in which the module moves, and FIG. 5 shows the multidirectional moving body module when each of the pair of belt-like driving bodies constituting the pair of driving body units is driven in the opposite direction at the same speed. FIG. 6 and FIG. 7 are conceptual diagrams showing the moving direction of movement. FIGS. 6 and 7 show the movement of the multi-directional moving body module when the pair of belt-like driving bodies constituting the driving body unit are driven in the opposite directions at the same speed. It is a conceptual diagram showing the direction of movement FIG. 5 is a conceptual diagram showing a moving direction in which a multidirectional moving body module moves when a belt-like driving body installed on the left side of a pair of belt-like driving bodies constituting a driving body unit is driven in a forward direction. 9 is a conceptual diagram showing a moving direction in which the multidirectional moving body module moves when the belt-like driving body installed on the right side of the pair of belt-like driving bodies constituting the driving body unit is driven in the forward direction. 10 and 11 show the multi-directional moving body module when the driving directions of the pair of belt-like driving bodies are the same in one and the other of the pair of driving body units and the driving directions are different between the one and the other. FIG. 12 is a conceptual diagram showing the direction in which the direction changes, and FIG. 12 shows a multi-directional movement when only a pair of belt-like drive bodies constituting one of the pair of drive body units are driven in the opposite directions at the same drive speed. FIG. 13 is a conceptual diagram showing the direction in which the module moves and changes direction, and FIG. 13 shows a case where only a pair of belt-like drive bodies constituting one of the pair of drive body units are driven in the positive direction at the same drive speed. It is the conceptual diagram which showed the direction which a multidirectional moving body module moves and changes direction.
In the present embodiment, driving the belt-like drive body in the forward direction means driving the grounding surface side portion of the belt-like drive body, that is, the lower portion, which is the moving surface side portion, in the backward direction B and the upper portion of the belt-like drive body. Is driven in the forward direction F.
In addition, driving the belt-like drive body in the reverse direction means driving the entire belt-like drive body in the opposite direction to the above-described forward direction.
 まず、図1乃至図3を参照しながら、本実施例に係る多方向移動体モジュール100の構成を説明する。
 なお、本実施例では、一対の駆動体ユニット120A、120Bの一方すなわち駆動体ユニット120Aが、一対の帯状駆動体121AL、121ARとこれらに固定設置された複数の回転体122AL、122ARと駆動軸123AL及び123ARを含んで構成され、一対の駆動体ユニット120A、120Bの他方すなわち駆動体ユニット120Bが、一対の帯状駆動体121BL、121BRとこれらに固定設置された複数の回転体122BL、122BRと駆動軸123BL、123BRを含んで構成されている。
First, the configuration of the multidirectional moving body module 100 according to the present embodiment will be described with reference to FIGS. 1 to 3.
In the present embodiment, one of the pair of drive body units 120A and 120B, that is, the drive body unit 120A is composed of a pair of belt-like drive bodies 121AL and 121AR, and a plurality of rotating bodies 122AL and 122AR fixed thereto, and a drive shaft 123AL. And the other of the pair of drive body units 120A and 120B, that is, the drive body unit 120B is composed of a pair of belt-like drive bodies 121BL and 121BR, and a plurality of rotating bodies 122BL and 122BR fixedly installed on them. 123BL and 123BR are included.
 図1乃至図3に示すように、多方向移動体モジュール100は、移動面Pに沿って移動する移動体モジュール本体110と、移動体モジュール本体110に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体121AL、121AR及び一対の帯状駆動体121BL、121BRと帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に沿って例えば等間隔dで帯状駆動体121AL、121AR、121BL、121BRに配列されているとともに帯状駆動体121AL、121AR、121BL、121BRの駆動方向D1に対して斜交する回転軸123AL、123AR、123BL、123BRがそれぞれ平行となるように軸着された状態で移動面Pに外周面124をそれぞれ接触させる複数の回転体122AL、122AR、122BL、122BRとをそれぞれ有して帯状駆動体121AL、121AR、121BL、121BRの幅方向D2に配列された一対の駆動体ユニット120A、120Bとを備えている。
 これにより、複数の回転体122AL、122AR、122BL、122BRのそれぞれの外周面124を移動面Pに接触させた状態で移動体モジュール本体110の荷重が各回転体122AL、122AR、122BL、122BRで分担支持されるとともに移動体モジュール本体110の荷重に応じて移動面Pから各回転体122AL、122AR、122BL、122BRに作用する力に対する反作用力の合力方向に移動体モジュール本体110の駆動力が発生する。
 しかも、移動面Pに対する回転体122AL、122AR、122BL、122BRの滑りが抑えられる。
 なお、本実施例では、帯状駆動体121AL、121AR、121BL、121BRとしてチェーンを用いている。
 また、図2に示すように、動力伝達用回転体130AL-Fの駆動軸141AL-Fと動力伝達用回転体130AR-Fの駆動軸141AR-Fとは、相互に繋がっていない。
 動力伝達用回転体130AL-Bの駆動軸141AL-Bと動力伝達用回転体130AR-Bの駆動軸141AR-Bとは、相互に繋がっていない。
 駆動モータ140AFは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130AL-F、130AL-Bのうち動力伝達用回転体130AL-Fを駆動するとともに動力伝達用回転体130AL-Fに対して動力伝達用回転体130AL-Bを従動させる。
 駆動モータ140ABは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130AR-F、130AR-Bのうち動力伝達用回転体130AR-Bを駆動するとともに動力伝達用回転体130AR-Bに対して動力伝達用回転体130AR-Fを従動させる。
 動力伝達用回転体130BL-Fの駆動軸141BL-Fと動力伝達用回転体130BR-Fの駆動軸141BR-Fとは、相互に繋がっていない。
 動力伝達用回転体130BL-Bの駆動軸141BL-Bと動力伝達用回転体130BR-Bの駆動軸141BR-Bとは、相互に繋がっていない。
 駆動モータ140BFは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130BL-F、130BL-Bのうち動力伝達用回転体130BL-Fを駆動するとともに動力伝達用回転体130BL-Fに対して動力伝達用回転体130BL-Bを従動させる。
 駆動モータ140BBは、図中上下方向すなわち多方向移動体モジュール100の前進方向F及び後退方向Bに沿って並列配置された一対の動力伝達用回転体130BR-F、130BR-Bのうち動力伝達用回転体130BR-Bを駆動するとともに動力伝達用回転体130BR-Bに対して動力伝達用回転体130BR-Fを従動させる。
 すなわち、図中左右に配置された帯状駆動体121AL、121AR、121BL、121BRは、相互に独立して駆動される。
 また、多方向駆動体モジュール100の重量バランスをとることとモータの設置スペースを確保することとの両方を実現するために、図2に示すように、各駆動体ユニット120A、120Bのそれぞれについて前後に一つずつ駆動モータ140AF、140AB、140BF、140BBが配置されている。
As shown in FIGS. 1 to 3, the multidirectional moving body module 100 includes a moving body module main body 110 that moves along the moving surface P, and the moving body module main body 110 that is provided on the moving body module main body 110 and that advances and retreats independently of each other. A pair of belt-like drive bodies 121AL, 121AR and a pair of belt-like drive bodies 121BL, 121BR and a pair of belt-like drive bodies 121AL, 121AR, 121BL, 121BR that are driven freely along the drive direction D1 of the belt-like drive bodies 121AL, for example, at equal intervals d. Rotating shafts 123AL, 123AR, 123BL, and 123BR that are arranged in 121AR, 121BL, and 121BR and obliquely cross with respect to the driving direction D1 of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR are mounted so as to be parallel to each other. The outer peripheral surface 124 in contact with the moving surface P A plurality of rotating bodies 122AL which includes 122ar, 122BL, strip drive member and a 122BR each 121AL, 121AR, 121BL, a pair of driver units 120A arranged in the width direction D2 of 121BR, and 120B.
Thereby, the load of the movable body module main body 110 is shared by each of the rotating bodies 122AL, 122AR, 122BL, 122BR in a state where the outer peripheral surfaces 124 of the plurality of rotating bodies 122AL, 122AR, 122BL, 122BR are in contact with the moving surface P. The driving force of the mobile module main body 110 is generated in the resultant direction of the reaction force against the force acting on the rotating bodies 122AL, 122AR, 122BL, and 122BR from the moving surface P according to the load of the mobile module main body 110 that is supported. .
In addition, the sliding of the rotating bodies 122AL, 122AR, 122BL, 122BR with respect to the moving surface P is suppressed.
In this embodiment, chains are used as the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR.
Further, as shown in FIG. 2, the drive shaft 141AL-F of the power transmission rotating body 130AL-F and the drive shaft 141AR-F of the power transmission rotating body 130AR-F are not connected to each other.
The drive shaft 141AL-B of the power transmission rotating body 130AL-B and the drive shaft 141AR-B of the power transmission rotating body 130AR-B are not connected to each other.
The drive motor 140AF is used for power transmission among a pair of power transmission rotating bodies 130AL-F and 130AL-B arranged in parallel in the vertical direction in the figure, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotator 130AL-F is driven and the power transmission rotator 130AL-B is driven by the power transmission rotator 130AL-F.
The drive motor 140AB is used for power transmission among a pair of power transmission rotors 130AR-F and 130AR-B arranged in parallel in the vertical direction in the figure, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotary body 130AR-B is driven, and the power transmission rotary body 130AR-F is driven by the power transmission rotary body 130AR-B.
The drive shaft 141BL-F of the power transmission rotating body 130BL-F and the drive shaft 141BR-F of the power transmission rotating body 130BR-F are not connected to each other.
The drive shaft 141BL-B of the power transmission rotating body 130BL-B and the drive shaft 141BR-B of the power transmission rotating body 130BR-B are not connected to each other.
The drive motor 140BF is used for power transmission among a pair of power transmission rotating bodies 130BL-F and 130BL-B arranged in parallel in the vertical direction in the drawing, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotating body 130BL-F is driven and the power transmission rotating body 130BL-F is driven by the power transmitting rotating body 130BL-F.
The drive motor 140BB is used for power transmission among a pair of power transmission rotors 130BR-F and 130BR-B arranged in parallel in the vertical direction in the drawing, that is, along the forward direction F and the backward direction B of the multi-directional moving body module 100. The rotating body 130BR-B is driven and the power transmission rotating body 130BR-F is driven by the power transmitting rotating body 130BR-B.
That is, the belt-like driving bodies 121AL, 121AR, 121BL, 121BR arranged on the left and right in the drawing are driven independently of each other.
Further, in order to realize both the weight balance of the multidirectional driver module 100 and the securing of the installation space for the motor, as shown in FIG. Drive motors 140AF, 140AB, 140BF, and 140BB are arranged one by one.
 また、一対の帯状駆動体121AL、121AR及び121BL、121BRのそれぞれの駆動方向D1は、相互に平行である。
 これにより、多方向移動体モジュール100は、一対の帯状駆動体121AL、121AR及び121BL、121BRの駆動方向と駆動速度との2つのパラメータを制御して移動体モジュール本体110の回転駆動速度及びその方向を容易に調整できる。
 このため、多方向移動体モジュール100は、簡便な駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。
Further, the drive directions D1 of the pair of belt-like drive bodies 121AL, 121AR and 121BL, 121BR are parallel to each other.
As a result, the multidirectional moving body module 100 controls the two driving parameters and the driving speed of the pair of belt-like driving bodies 121AL, 121AR and 121BL, 121BR to control the rotational driving speed and the direction of the moving body module main body 110. Can be adjusted easily.
For this reason, the multidirectional moving body module 100 moves the moving body module main body 110 smoothly and freely in multiple directions along the moving surface P by a simple drive control system and method.
 また、一対の帯状駆動体121AL、121ARの一方に設けられた回転体122ALの回転軸線123AL-Aと一対の帯状駆動体121AL、121ARの他方に設けられた回転体122ARの回転軸線123AR-Aとは、相互に交差している。
 加えて、一対の帯状駆動体121BL、121BRの一方に設けられた回転体122BLの回転軸線123BL-Aと一対の帯状駆動体121BL、121BRの他方に設けられた回転体122BRの回転軸線123BR-Aとは、相互に交差している。
 これにより、多方向移動体モジュール100は、各回転軸123AL、123AR、123BL、123BRを無秩序に軸支した状態で駆動方向D1に斜交させている場合に比べて各回転体122AL、122BL、122AR、122BRに移動面Pから作用する反作用力の合力の大きさ及びその方向を設定し易くなる。
 このため、多方向移動体モジュール100は、簡便な制御プロセスを用いた駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。
In addition, the rotation axis 123AL-A of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and the rotation axis 123AR-A of the rotating body 122AR provided on the other of the pair of belt-like driving bodies 121AL and 121AR Are crossing each other.
In addition, the rotational axis 123BL-A of the rotating body 122BL provided on one of the pair of strip-like drive bodies 121BL and 121BR and the rotational axis 123BR-A of the rotary body 122BR provided on the other of the pair of strip-like driving bodies 121BL and 121BR. And cross each other.
Thereby, the multidirectional moving body module 100 has each rotating body 122AL, 122BL, 122AR compared with the case where the rotating shafts 123AL, 123AR, 123BL, 123BR are obliquely supported in the driving direction D1 in a state where the rotating shafts 123AL, 123AR, 123BL, 123BR are disorderly supported. , 122BR, it is easy to set the magnitude and direction of the resultant force of the reaction force acting from the moving surface P.
For this reason, the multidirectional moving body module 100 moves the moving body module main body 110 smoothly and freely in the multidirectional direction along the moving surface P by a drive control system and method using a simple control process. .
 また、一対の帯状駆動体121AL、121ARの一方に設けられた回転体122ALの回転軸123ALと一対の帯状駆動体121AL、121ARの他方に設けられた回転体122ARの回転軸123ARとは、帯状駆動体121AL、121ARの駆動方向D1に対して45°の角度を形成している。
 これにより、多方向移動体モジュール100は、各回転軸123AL、123ARを無秩序に駆動方向D1に斜交させている場合に比べて移動面Pから各回転体122AL、122ARに作用する反作用力の合力方向をより一層設定し易くなる。
 このため、多方向移動体モジュール100は、簡便な制御プロセスを用いた駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に効率良く移動させることを確実に実現するようになっている。
 同様に、一対の帯状駆動体121BL、121BRの一方に設けられた回転体122BLの回転軸123BLと一対の帯状駆動体121BL、121BRの他方に設けられた回転体122BRの回転軸123BRとは、帯状駆動体121BL、121BRの駆動方向D1に対して45°の角度を形成している。
 これにより、多方向移動体モジュール100は、各回転軸123BL、123BRを無秩序に駆動方向D1に斜交させている場合に比べて移動面Pから各回転体122BL、122BRに作用する反作用力の合力方向をより一層設定し易くなる。
 このため、多方向移動体モジュール100は、簡便な制御プロセスを用いた駆動制御システム及び方法で移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に効率良く移動させることを確実に実現するようになっている。
Further, the rotation shaft 123AL of the rotating body 122AL provided on one of the pair of belt-like driving bodies 121AL and 121AR and the rotation shaft 123AR of the rotating body 122AR provided on the other of the pair of belt-like driving bodies 121AL and 121AR are belt-like driving. An angle of 45 ° is formed with respect to the driving direction D1 of the bodies 121AL and 121AR.
Thereby, the multidirectional moving body module 100 is a resultant force of reaction force acting on each rotating body 122AL, 122AR from the moving surface P as compared with the case where each rotating shaft 123AL, 123AR is obliquely crossed in the driving direction D1. It becomes easier to set the direction.
For this reason, the multi-directional moving body module 100 reliably moves the moving body module body 110 smoothly and freely in multiple directions along the moving surface P with a drive control system and method using a simple control process. It has come to be realized.
Similarly, the rotating shaft 123BL of the rotating body 122BL provided on one of the pair of strip-like driving bodies 121BL and 121BR and the rotating shaft 123BR of the rotating body 122BR provided on the other of the pair of strip-like driving bodies 121BL and 121BR are a strip-like shape. An angle of 45 ° is formed with respect to the drive direction D1 of the drive bodies 121BL and 121BR.
Thereby, the multidirectional moving body module 100 is a resultant force of the reaction force acting on each rotating body 122BL, 122BR from the moving surface P as compared with the case where the rotating shafts 123BL, 123BR are obliquely crossed in the driving direction D1. It becomes easier to set the direction.
For this reason, the multi-directional moving body module 100 reliably moves the moving body module body 110 smoothly and freely in multiple directions along the moving surface P with a drive control system and method using a simple control process. It has come to be realized.
 また、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRは、一対の帯状駆動体121AL、121ARや一対の帯状駆動体121BL、121BRのそれぞれに対応して移動体モジュール本体110に設けられた動力伝達用回転体130に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成している。
 これにより、多方向移動体モジュール100は、複数の回転体122AL、122AR、122BL、122BRを移動面Pすなわち接地面に接地させた状態で移動面Pから回転体122AL、122AR、122BL、122BRに作用する荷重全体を各回転体に分担支持させて回転体122AL、122AR、122BL、122BR及びその回転軸123AL、123AR、123BL、123BR間の荷重負担を軽減する。
 このため、多方向移動体モジュール100は、回転体122AL、122AR、122BL、122BR及びその回転軸123AL、123AR、123BL、123BR間の荷重負担を下げるためにその回転軸123AL、123AR、123BL、123BRの軸径を大きくすることで生じる回転体122AL、122AR、122BL、122BRやその支持部のサイズ増大を防ぎ、多方向移動体モジュール100の重心を高くすることなく移動体モジュール本体110を移動面Pに沿って多方向に円滑且つ自在に移動させるようになっている。
In addition, the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR correspond to the pair of belt-like driving bodies 121AL and 121AR and the pair of belt-like driving bodies 121BL and 121BR, respectively. Endless shapes that are driven so as to be able to advance and retreat in a state of being wound around the provided power transmission rotating body 130 are formed.
Thereby, the multidirectional moving body module 100 acts on the rotating bodies 122AL, 122AR, 122BL, 122BR from the moving surface P in a state where the rotating bodies 122AL, 122AR, 122BL, 122BR are grounded to the moving surface P, that is, the ground surface. The entire load to be performed is shared and supported by each rotating body to reduce the load burden between the rotating bodies 122AL, 122AR, 122BL, 122BR and their rotating shafts 123AL, 123AR, 123BL, 123BR.
For this reason, the multidirectional moving body module 100 includes the rotating shafts 122AL, 122AR, 122BL, 122BR and the rotating shafts 123AL, 123AR, 123BL, 123BR in order to reduce the load burden between the rotating shafts 123AL, 123AR, 123BL, 123BR. The size of the rotating body 122AL, 122AR, 122BL, 122BR and its supporting portion, which are generated by increasing the shaft diameter, is prevented, and the moving body module body 110 is moved to the moving surface P without increasing the center of gravity of the multidirectional moving body module 100. It moves smoothly and freely along multiple directions.
 次に、図1乃至図13を参照しながら、前述した本実施例の多方向移動体モジュール100の動作を詳細に説明する。
 なお、説明の便宜上、図1乃至図13に多方向移動体モジュール100の前進方向F、後退方向B、右進行方向R及び左進行方向Lを矢印で示している。
 また、図1に示した白抜き矢印及び図4乃至図13に示した白抜きのV字形及び逆V字形印は、無端形状すなわち無限軌道を有する帯状駆動体121AL、121AR、121BL、121BRのうち移動面Pの側に臨む下側部分の速度ベクトルを示している。
 より具体的には、例えば、図1に示した帯状駆動体121ARのうち移動面Pの側に臨む部分における速度ベクトルVの向きは、図4に示した帯状駆動体121AL、121AR、121BL、121BRの速度ベクトルDAL1、DAR1、DBL1、DBR1の向きに一致している。
 このような速度ベクトルは、帯状駆動体121AL、121AR、121BL、121BRの駆動速度およびその方向、回転体122AL、122AR、122BL、122BRの配置方向、並びにその構成及び位置等の各種パラメータと、駆動モータ140の駆動力との兼ね合いで設定される。
 また、以下で示す多方向移動体モジュール100の移動方向や転回方向は一例であり、多方向移動体モジュール100は、帯状駆動体121AL、121AR、121BL、121BRのそれぞれの速度ベクトルの大きさ及び向きの組み合わせを変更することによって移動面P内の全ての方向に移動するとともにその場で方向転換すなわち転回できる。
Next, the operation of the multi-directional moving body module 100 of the above-described embodiment will be described in detail with reference to FIGS.
For convenience of explanation, the forward direction F, the backward direction B, the right traveling direction R, and the left traveling direction L of the multidirectional moving body module 100 are indicated by arrows in FIGS.
Further, the white arrow shown in FIG. 1 and the white V-shaped and inverted V-shaped marks shown in FIGS. 4 to 13 are endless shapes, that is, of the belt-like drive bodies 121AL, 121AR, 121BL, 121BR having endless tracks. The velocity vector of the lower part facing the moving surface P is shown.
More specifically, for example, the direction of the velocity vector V in the portion facing the moving surface P in the belt-like drive body 121AR shown in FIG. 1 is the belt-like drive bodies 121AL, 121AR, 121BL, 121BR shown in FIG. Of the velocity vectors DAL1, DAR1, DBL1, and DBR1.
Such a speed vector includes various parameters such as the driving speed and direction of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR, the arrangement direction of the rotating bodies 122AL, 122AR, 122BL, and 122BR, and the configuration and position thereof, and the driving motor. It is set in consideration of 140 driving force.
In addition, the moving direction and the turning direction of the multidirectional moving body module 100 shown below are examples, and the multidirectional moving body module 100 has the magnitude and direction of each velocity vector of the belt-like driving bodies 121AL, 121AR, 121BL, and 121BR. By changing the combination, it is possible to move in all directions within the moving surface P and change direction, that is, turn around on the spot.
 図1乃至図4に示すように、帯状駆動体121AL、121AR、121BL、121BRの速度ベクトルDAL1、DAR1、DBL1、DBR1の大きさが相互に等しいとともにそれらの向きが後退方向Bに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL1、FAR1、FBL1、FBR1の和である合力ベクトルFX1の向きが後退方向Bに一致する。
 このとき、合力ベクトルFX1に応じて移動面Pから移動体モジュール100に作用する反作用力FY1の向きが、前進方向Fに一致する。
 その結果、多方向移動体モジュール100は、前進方向Fに移動できる。
As shown in FIGS. 1 to 4, the speed vectors DAL1, DAR1, DBL1, and DBR1 of the belt-like drivers 121AL, 121AR, 121BL, and 121BR are equal to each other and their directions coincide with the backward direction B. In this case, the direction of the resultant force vector FX1 that is the sum of the acting force vectors FAL1, FAR1, FBL1, and FBR1 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL, 122AR, 122BL, and 122BR coincides with the backward direction B.
At this time, the direction of the reaction force FY1 acting on the moving body module 100 from the moving surface P in accordance with the resultant force vector FX1 coincides with the forward direction F.
As a result, the multidirectional moving body module 100 can move in the forward direction F.
 また、図1乃至図3、図5に示すように、帯状駆動体121AL、121AR、121BL、121BRの速度ベクトルDAL2、DAR2、DBL2、DBR2の大きさが相互に等しいとともにそれらの向きが前進方向Fに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL2、FAR2、FBL2、FBR2の和である合力ベクトルFX2の向きは、前進方向Fに一致する。
 このとき、合力ベクトルFX2に応じて移動面Pから移動体モジュール100に作用する反作用力FY2の向きは、後退方向Bに一致する。
 その結果、多方向移動体モジュール100は、後退方向Bに移動できる。
Further, as shown in FIGS. 1 to 3 and FIG. 5, the speed vectors DAL2, DAR2, DBL2, and DBR2 of the belt-like drivers 121AL, 121AR, 121BL, and 121BR are equal to each other and their directions are the forward direction F. , The direction of the resultant force vector FX2 that is the sum of the acting force vectors FAL2, FAR2, FBL2, and FBR2 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR, 122BL, 122BR is forward. Coincides with direction F.
At this time, the direction of the reaction force FY2 that acts on the moving body module 100 from the moving surface P in accordance with the resultant force vector FX2 coincides with the backward direction B.
As a result, the multidirectional moving body module 100 can move in the backward direction B.
 また、図1乃至図3、図6に示すように、帯状駆動体121AL、121BLの速度ベクトルDAL3、DBL3の大きさが相互に等しいとともにそれらの向きが前進方向Fに一致し、しかも帯状駆動体121AR、121BRの速度ベクトルDAR3、DBR3の大きさが相互に等しいとともにそれらの向きが後退方向Bに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL3、FAR3、FBL3、FBR3の和である合力ベクトルFX3の向きは、右進行方向Rに一致する。
 このとき、合力ベクトルFX3に応じて移動面Pから移動体モジュール100に作用する反作用力FY3の向きは、左進行方向Lに一致する。
 その結果、多方向移動体モジュール100は、左進行方向Lに移動できる。
Further, as shown in FIGS. 1 to 3 and FIG. 6, the speed vectors DAL3 and DBL3 of the belt-like drive bodies 121AL and 121BL are equal to each other and their directions coincide with the forward direction F, and the belt-like drive body. When the magnitudes of the velocity vectors DAR3 and DBR3 of 121AR and 121BR are equal to each other and their directions coincide with the backward direction B, the outer peripheral surface 124 of each of the rotating bodies 122AL, 122AR, 122BL and 122BR moves from the outer surface 124 to the moving surface P. The direction of the resultant force vector FX3 that is the sum of the acting force vectors FAL3, FAR3, FBL3, and FBR3 coincides with the rightward traveling direction R.
At this time, the direction of the reaction force FY3 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX3 coincides with the left traveling direction L.
As a result, the multidirectional moving body module 100 can move in the left traveling direction L.
 また、図1乃至図3、図7に示すように、帯状駆動体121AL、121BLの速度ベクトルDAL4、DBL4の大きさが相互に等しいとともにそれらの向きが後退方向Bに一致し、しかも帯状駆動体121AR、121BRの速度ベクトルDAR4、DBR4の大きさが速度ベクトルDAL4、DBL4の大きさと相互に等しいとともにそれらの向きが前進方向Fに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL4、FAR4、FBL4、FBR4の和である合力ベクトルFX4の向きは、左進行方向Lに一致する。
 このとき、合力ベクトルFX4に応じて移動面Pから移動体モジュール100に作用する反作用力FY4の向きは、右進行方向Rに一致する。
 その結果、多方向移動体モジュール100は、右進行方向Rに移動できる。
Further, as shown in FIGS. 1 to 3 and 7, the magnitudes of the velocity vectors DAL4 and DBL4 of the belt-like driving bodies 121AL and 121BL are equal to each other and their directions coincide with the backward direction B, and the belt-like driving body. When the magnitudes of the speed vectors DAR4 and DBR4 of 121AR and 121BR are mutually equal to the magnitudes of the speed vectors DAL4 and DBL4 and their directions coincide with the forward direction F, the rotation bodies 122AL, 122AR, 122BL and 122BR The direction of the resultant force vector FX4 that is the sum of the acting force vectors FAL4, FAR4, FBL4, and FBR4 acting on the moving surface P from the outer peripheral surface 124 coincides with the left traveling direction L.
At this time, the direction of the reaction force FY4 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX4 coincides with the right traveling direction R.
As a result, the multidirectional moving body module 100 can move in the right traveling direction R.
 また、図1乃至図3、図8に示すように、帯状駆動体121AL、121BLの速度ベクトルDAL5、DBL5の大きさが相互に等しいとともにその向きが後退方向Bに一致し、しかも帯状駆動体121AR、121BRの速度ベクトルの大きさがゼロである場合、各回転体122AL、122BLの外周面124から移動面Pに作用する作用力ベクトルFAL5、FBL5の和である合力ベクトルFX5の向きは、左進行方向L及び後退方向Bのそれぞれに対して45°の角度を形成する。
 このとき、合力ベクトルFX5に応じて移動面Pから移動体モジュール100に作用する反作用力FY5の向きは、右進行方向R及び前進方向Fのそれぞれに対して45°の角度を形成する。
 その結果、多方向移動体モジュール100は、右進行方向R及び前進方向Fに対して45°の角度を形成する方向に移動できる。
Further, as shown in FIGS. 1 to 3 and 8, the speed vectors DAL5 and DBL5 of the belt-like driving bodies 121AL and 121BL are equal to each other and their directions coincide with the backward direction B, and the belt-like driving body 121AR. When the magnitude of the velocity vector of 121BR is zero, the direction of the resultant force vector FX5, which is the sum of the acting force vectors FAL5 and FBL5 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AL and 122BL, proceeds to the left. An angle of 45 ° is formed with respect to each of the direction L and the backward direction B.
At this time, the direction of the reaction force FY5 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX5 forms an angle of 45 ° with respect to each of the right traveling direction R and the forward traveling direction F.
As a result, the multidirectional moving body module 100 can move in a direction that forms an angle of 45 ° with respect to the right traveling direction R and the forward traveling direction F.
 また、図1乃至図3、図9に示すように、帯状駆動体121AR、121BRの速度ベクトルDAR6、DBR6の大きさが相互に等しいとともに速度ベクトルDAR6、DBR6の向きが後退方向Bに一致し、しかも帯状駆動体121AL、121BLの速度ベクトルの大きさがゼロである場合、各回転体122AR、122BRの外周面124から移動面Pに作用する作用力ベクトルFAR6、FBR6の和である合力ベクトルFX6の向きは、右進行方向R及び後退方向Bのそれぞれに対して45°の角度を形成する。
 このとき、合力ベクトルFX6に応じて移動面Pから移動体モジュール100に作用する反作用力FY6の向きは、左進行方向L及び前進方向Fのそれぞれに対して45°の角度を形成する。
 その結果、多方向移動体モジュール100は、左進行方向L及び前進方向Fに対して45°の角度を形成する方向に移動できる。
Further, as shown in FIGS. 1 to 3 and 9, the magnitudes of the velocity vectors DAR6 and DBR6 of the belt-like drive bodies 121AR and 121BR are equal to each other, and the directions of the velocity vectors DAR6 and DBR6 coincide with the backward direction B. Moreover, when the magnitudes of the velocity vectors of the belt-like driving bodies 121AL and 121BL are zero, the resultant force vector FX6 that is the sum of the acting force vectors FAR6 and FBR6 acting on the moving surface P from the outer peripheral surface 124 of each of the rotating bodies 122AR and 122BR. The direction forms an angle of 45 ° with respect to each of the right traveling direction R and the backward direction B.
At this time, the direction of the reaction force FY6 acting on the moving body module 100 from the moving surface P according to the resultant force vector FX6 forms an angle of 45 ° with respect to each of the left traveling direction L and the forward traveling direction F.
As a result, the multidirectional moving body module 100 can move in a direction that forms an angle of 45 ° with respect to the left traveling direction L and the forward traveling direction F.
 また、図1乃至図3、図10に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL7、DAR7の大きさが相互に等しく且つその向きが前進方向Fに一致し、しかも一対の帯状駆動体121BL、121BRの速度ベクトルDABL7、DABR7の大きさが速度ベクトルDAL7、DAR7の大きさに等しく且つその向きが後退方向Bに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL7、FAR7、FBL7、FBR7に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX7が、時計回り方向に作用する。
 このとき、回転モーメントMY7が、移動面Pから移動体モジュール100に対して反時計回り方向に作用する。
 その結果、多方向移動体モジュール100は、その場で反時計回り方向に方向転換すなわち転回できる。
Further, as shown in FIGS. 1 to 3 and FIG. 10, the speed vectors DAL7 and DAR7 of the pair of belt-like drive bodies 121AL and 121AR are equal to each other and the direction thereof coincides with the forward direction F. When the speed vectors DABL7 and DABR7 of the belt-like driving bodies 121BL and 121BR are equal to the speed vectors DAL7 and DAR7 and the direction thereof coincides with the backward direction B, each of the rotating bodies 122AL, 122AR, 122BL and 122BR The rotational moment MX7 acts on the moving surface P from the multi-directional moving body module 100 in the clockwise direction in accordance with the acting force vectors FAL7, FAR7, FBL7, and FBR7 that act on the moving surface P from the outer peripheral surface 124.
At this time, the rotational moment MY7 acts in the counterclockwise direction from the moving surface P to the moving body module 100.
As a result, the multi-directional mobile module 100 can turn or turn in the counterclockwise direction on the spot.
 また、図1乃至図3、図11に示すように、一対の帯状駆動体121AL、121ARの速度ベクトルDAL8、DAR8の大きさが相互に等しく且つその向きが後退方向Fに一致し、しかも一対の帯状駆動体121BL、121BRの速度ベクトルDABL8、DABR8の大きさが速度ベクトルDAL8、DAR8の大きさに等しく且つその向きが前進方向Fに一致している場合、各回転体122AL、122AR、122BL、122BRの外周面124から移動面Pに作用する作用力ベクトルFAL8、FAR8、FBL8、FBR8に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX8が反時計回り方向に作用する。
 このとき、回転モーメントMY8が、移動面Pから移動体モジュール100に対して時計回り方向に作用する。
 その結果、多方向移動体モジュール100は、その場で時計回り方向に方向転換すなわち転回できる。
Further, as shown in FIGS. 1 to 3 and FIG. 11, the speed vectors DAL8 and DAR8 of the pair of belt-like drive bodies 121AL and 121AR are equal to each other and their directions coincide with the backward direction F, and When the speed vectors DABL8 and DABR8 of the belt-like drive bodies 121BL and 121BR are equal in magnitude to the speed vectors DAL8 and DAR8 and the direction thereof coincides with the forward direction F, the rotating bodies 122AL, 122AR, 122BL and 122BR The rotational moment MX8 acts on the moving surface P from the multi-directional moving body module 100 in the counterclockwise direction in accordance with the acting force vectors FAL8, FAR8, FBL8, and FBR8 that act on the moving surface P from the outer peripheral surface 124.
At this time, the rotational moment MY8 acts on the moving body module 100 in the clockwise direction from the moving surface P.
As a result, the multi-directional mobile module 100 can turn or turn in the clockwise direction on the spot.
 また、図1乃至図3、図12に示すように、帯状駆動体121AL、121ARの速度ベクトルDAL9、DAR9の大きさが相互に等しく且つその向きが前進方向Fに一致し、しかも帯状駆動体121BL、121BRの速度ベクトルの大きさがゼロである場合、各回転体122AL、122ARの外周面124から移動面Pに作用する作用力ベクトルFAL9、FAR9に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX9が前進方向Fに沿って円弧状且つ時計回り方向に作用する。
 このとき、回転モーメントMY9は、移動面Pから多方向移動体モジュール100に対して、後退方向Bに沿って回転モーメントMX9の逆方向すなわち円弧状且つ反時計回り方向に向く。
 その結果、多方向移動体モジュール100は、後退方向Bに沿って円弧状に移動するとともに反時計回り方向に方向転換できる。
Further, as shown in FIGS. 1 to 3 and FIG. 12, the speed vectors DAL9 and DAR9 of the belt-like drive bodies 121AL and 121AR are equal to each other and their directions coincide with the forward direction F, and the belt-like drive body 121BL. , 121BR when the magnitude of the velocity vector is zero, the moving surface P is moved from the multidirectional moving body module 100 according to the acting force vectors FAL9, FAR9 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR. On the other hand, the rotational moment MX9 acts in an arcuate and clockwise direction along the forward direction F.
At this time, the rotational moment MY9 is directed in the reverse direction of the rotational moment MX9 along the backward direction B from the moving surface P to the multidirectional moving body module 100, that is, in an arcuate and counterclockwise direction.
As a result, the multidirectional moving body module 100 moves in an arc shape along the backward direction B and can change the direction in the counterclockwise direction.
 また、図1乃至図3、図13に示すように、帯状駆動体121AL、121ARの速度ベクトルDAL10、DAR10の大きさが相互に等しく且つその向きが後退方向Bに一致し、しかも帯状駆動体121BL、121BRの速度ベクトルの大きさがゼロである場合、各回転体122AL、122ARの外周面124から移動面Pに作用する作用力ベクトルFAL10、FAR10に応じて多方向移動体モジュール100から移動面Pに対して回転モーメントMX10が、後退方向Bに沿って円弧状且つ反時計回り方向に向く。
 このとき、回転モーメントMY10は、移動面Pから多方向移動体モジュール100に対して前進方向Fに沿って回転モーメントMX10の逆向きすなわち円弧状且つ時計回り方向に向く。
 その結果、多方向移動体モジュール100は、前進方向Fに沿って円弧状に移動するとともに時計回り方向に方向転換できる。
Further, as shown in FIGS. 1 to 3 and FIG. 13, the speed vectors DAL10 and DAR10 of the belt-like drive bodies 121AL and 121AR are equal to each other and the directions thereof coincide with the backward direction B, and the belt-like drive body 121BL. , 121BR when the magnitude of the velocity vector is zero, the moving surface P is moved from the multidirectional moving body module 100 in accordance with the acting force vectors FAL10, FAR10 acting on the moving surface P from the outer peripheral surface 124 of each rotating body 122AL, 122AR. On the other hand, the rotational moment MX10 is directed along the backward direction B in an arc shape and in a counterclockwise direction.
At this time, the rotational moment MY10 is directed in the reverse direction of the rotational moment MX10 along the forward direction F from the moving surface P to the multidirectional moving body module 100, that is, in an arcuate and clockwise direction.
As a result, the multidirectional moving body module 100 moves in an arc shape along the forward direction F and can change the direction in the clockwise direction.
 このようにして得られた本実施例に多方向移動体モジュール100は、移動体モジュール本体110と一対の駆動体ユニット120A、120Bとを備えていることにより、各回転体122AL、122AR、122BL、122BRの表面すなわち外周面の摩耗と多方向移動体モジュール100の大型化すなわちサイズ増大と移動面Pや回転体122AL、122AR、122BL、122BRの外周面124の損傷とを防ぐとともに移動体モジュール本体110の重心を高い位置に設計変更しないで移動面Pに沿って多方向に円滑且つ自在に移動体モジュール本体110を移動させることができるなど、その効果は甚大である。 The multi-directional moving body module 100 according to the present embodiment thus obtained includes the moving body module main body 110 and a pair of driving body units 120A and 120B, so that each of the rotating bodies 122AL, 122AR, 122BL, The surface of the 122BR, that is, the outer peripheral surface, the increase in size of the multi-directional mobile module 100, that is, the increase in size and the damage of the moving surface P and the outer peripheral surface 124 of the rotating bodies 122AL, 122AR, 122BL, 122BR are prevented. The movable body module body 110 can be moved smoothly and freely in multiple directions along the moving surface P without changing the design of the center of gravity to a high position.
 100 ・・・ 多方向移動体モジュール
 110 ・・・ 移動体モジュール本体
 120A、120B ・・・ 駆動体ユニット
 121AL、121AR、121BL、121BR ・・・ 帯状駆動体
 122AL、122AR、122BL、122BR ・・・ 回転体
 123AL、123AR、123BL、123BR ・・・ 回転体の回転軸
 123AL-A、123AR-A、123BL-A、123BR-A ・・・ 回転体の回転軸線
 124 ・・・ 回転体の外周面
 130AL-F、130AL-B、130AR-F、130AR-B、130BL-F、130BL-B、130BR-F、130BR-B ・・・ 動力伝達用回転体
 140AF、140AB、140BF、140BB ・・・ 駆動モータ
 141AL-F、141AL-B、141AR-F、141AR-B、141BL-F、141BL-B、141BR-F、141BR-B ・・・ 動力伝達用回転体の駆動軸
 P ・・・ 多方向移動体モジュールの移動面
 F ・・・ 多方向移動体モジュールの前進方向
 B ・・・ 多方向移動体モジュールの後退方向
 R ・・・ 多方向移動体モジュールの右進行方向
 L ・・・ 多方向移動体モジュールの左進行方向
DESCRIPTION OF SYMBOLS 100 ... Multi-directional moving body module 110 ... Moving body module main body 120A, 120B ... Drive body unit 121AL, 121AR, 121BL, 121BR ... Strip-like drive body 122AL, 122AR, 122BL, 122BR ... Rotation Body 123AL, 123AR, 123BL, 123BR ... Rotating shaft 123AL-A, 123AR-A, 123BL-A, 123BR-A ... Rotating body axis 124 ... Rotating body outer surface 130AL- F, 130AL-B, 130AR-F, 130AR-B, 130BL-F, 130BL-B, 130BR-F, 130BR-B ... Power transmission rotor 140AF, 140AB, 140BF, 140BB ... Drive motor 141AL -F, 141AL-B, 14 AR-F, 141AR-B, 141BL-F, 141BL-B, 141BR-F, 141BR-B ... Drive shaft of power transmission rotating body P ... Moving surface of multi-directional moving body module F ... Forward direction of multi-directional mobile module B: Reverse direction of multi-directional mobile module R: Right traveling direction of multi-directional mobile module L: Left traveling direction of multi-directional mobile module

Claims (5)

  1.  移動面に沿って移動する移動体モジュール本体と、
     前記移動体モジュール本体に設けられているとともに相互に独立して進退自在に駆動される一対の帯状駆動体と前記帯状駆動体の駆動方向に沿って前記帯状駆動体に配列されているとともに前記帯状駆動体の駆動方向に対して斜交する回転軸がそれぞれ平行となるように軸着された状態で前記移動面に外周面をそれぞれ接触させる複数の回転体とをそれぞれ有して前記帯状駆動体の幅方向に配列された一対の駆動体ユニットとを備えていることを特徴とする多方向移動体モジュール。
    A moving body module body that moves along the moving surface;
    A pair of belt-like drive bodies that are provided in the movable body module body and are driven independently of each other, and are arranged in the belt-like drive body along the drive direction of the belt-like drive body and the belt-like shape A plurality of rotating bodies each contacting an outer peripheral surface with the moving surface in a state in which the rotating shafts obliquely intersecting with the driving direction of the driving body are parallel to each other; A multidirectional moving body module comprising a pair of driving body units arranged in the width direction.
  2.  前記一対の帯状駆動体のそれぞれの駆動方向が、相互に平行であることを特徴とする請求項1に記載の多方向移動体モジュール。 The multi-directional moving body module according to claim 1, wherein the driving directions of the pair of belt-like driving bodies are parallel to each other.
  3.  前記一対の帯状駆動体の一方に設けられた回転体の回転軸線と前記一対の帯状駆動体の他方に設けられた回転体の回転軸線とが、相互に交差していることを特徴とする請求項2に記載の多方向移動体モジュール。 The rotation axis of a rotating body provided on one of the pair of belt-like driving bodies and the rotation axis of a rotating body provided on the other of the pair of belt-like driving bodies cross each other. Item 3. The multidirectional moving body module according to Item 2.
  4.  前記一対の帯状駆動体の一方に設けられた回転体の回転軸と前記一対の帯状駆動体の他方に設けられた回転体の回転軸とが、前記帯状駆動体の駆動方向に対して45°の角度を形成していることを特徴とする請求項3に記載の多方向移動体モジュール。 A rotating shaft of a rotating body provided on one of the pair of belt-like driving bodies and a rotating shaft of a rotating body provided on the other of the pair of belt-like driving bodies are 45 ° with respect to the driving direction of the belt-like driving body. The multi-directional moving body module according to claim 3, wherein the angle is formed as follows.
  5.  前記一対の帯状駆動体が、前記一対の帯状駆動体のそれぞれに対応して前記移動体モジュール本体に設けられた動力伝達用回転体に巻き掛けられた状態で進退自在に駆動される無端形状をそれぞれ形成していることを特徴とする請求項1乃至請求項4のいずれか一つに記載の多方向移動体モジュール。 An endless shape in which the pair of belt-like drive bodies are driven to move forward and backward in a state of being wound around a power transmission rotating body provided in the movable body module body corresponding to each of the pair of belt-like drive bodies. The multidirectional moving body module according to any one of claims 1 to 4, wherein each of the multidirectional moving body modules is formed.
PCT/JP2012/070165 2011-08-09 2012-08-08 Multi-directionally movable body module WO2013022017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174141 2011-08-09
JP2011-174141 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013022017A1 true WO2013022017A1 (en) 2013-02-14

Family

ID=47668523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070165 WO2013022017A1 (en) 2011-08-09 2012-08-08 Multi-directionally movable body module

Country Status (1)

Country Link
WO (1) WO2013022017A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201239A (en) * 2013-04-06 2014-10-27 国立大学法人東京工業大学 Omnidirectional moving vehicle
CN104386154A (en) * 2014-11-17 2015-03-04 张豫南 High-efficiency steering crawler belt and platform thereof
EP2930088A1 (en) * 2014-04-09 2015-10-14 BIBA Bremer Institut für Produktion und Logistik GmbH Running gear, tracked vehicle and sub-vehicle with same and vehicle with such a tracked vehicle or sub-vehicle
CN110606139A (en) * 2019-09-12 2019-12-24 上海工程技术大学 Universal transportation module and universal transportation mechanism made of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118388A (en) * 1990-03-29 1992-04-20 Sumitomo Heavy Ind Ltd Running gear able to transversely travel
JPH0717442A (en) * 1993-06-30 1995-01-20 Shigeo Hirose Vehicle for omnidirectional movement
JP2004344435A (en) * 2003-05-22 2004-12-09 Japan Science & Technology Agency Power assist type moving carrier
WO2008132778A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118388A (en) * 1990-03-29 1992-04-20 Sumitomo Heavy Ind Ltd Running gear able to transversely travel
JPH0717442A (en) * 1993-06-30 1995-01-20 Shigeo Hirose Vehicle for omnidirectional movement
JP2004344435A (en) * 2003-05-22 2004-12-09 Japan Science & Technology Agency Power assist type moving carrier
WO2008132778A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201239A (en) * 2013-04-06 2014-10-27 国立大学法人東京工業大学 Omnidirectional moving vehicle
EP2930088A1 (en) * 2014-04-09 2015-10-14 BIBA Bremer Institut für Produktion und Logistik GmbH Running gear, tracked vehicle and sub-vehicle with same and vehicle with such a tracked vehicle or sub-vehicle
CN104386154A (en) * 2014-11-17 2015-03-04 张豫南 High-efficiency steering crawler belt and platform thereof
CN110606139A (en) * 2019-09-12 2019-12-24 上海工程技术大学 Universal transportation module and universal transportation mechanism made of same

Similar Documents

Publication Publication Date Title
JP2014196004A (en) Multidirectional movable body module
JP2021119075A (en) Hinged vehicle chassis
CN109476429B (en) Guide module and drive device provided with same
JP4759323B2 (en) Crawler type traveling device
US20120006602A1 (en) Spherical mobility mechanism
EP1832445B1 (en) Universal transmission roller wheel
KR101245797B1 (en) Friction-type drive device and omnidirectional movable body using same
CN104210832A (en) Turnover device
WO2013022017A1 (en) Multi-directionally movable body module
WO2014043841A1 (en) Track type omnibearing moving platform
JP2009113135A (en) Biped mobile mechanism
CN107140394A (en) A kind of track adaptive motion dolly adjusting apparatus and its application method
JP5305290B2 (en) Sphere drive omnidirectional movement device
JP6629567B2 (en) Transfer device
KR20150014057A (en) Omni-directional caterpillar tracks and omni-directional moving vehicle using thereof
JP2002019629A (en) Traveling device of transfer crane
CN204714478U (en) A kind of Omni-mobile driving engine installation car
JP5305285B2 (en) Sphere drive omnidirectional movement device
JP2017124822A (en) Wheel suspension device
CN104210545A (en) Novel omnidirectional moving platform
CN101570218A (en) Method for arranging shifting carrying platform of wheels based on rotating shaft fixed type two-dimensional motion and mobile platform
US10087005B1 (en) Shunting transmission device and shunting transmission method using the same
KR100670201B1 (en) Traveling robot
WO2013141017A1 (en) Multidirectional mobile object module
JP6422482B2 (en) Moving transport mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP